cheep-crator-2/vendor/num-complex/src/crand.rs

149 lines
3.9 KiB
Rust

//! Rand implementations for complex numbers
use crate::Complex;
use num_traits::Num;
use rand::distributions::Standard;
use rand::prelude::*;
impl<T> Distribution<Complex<T>> for Standard
where
T: Num + Clone,
Standard: Distribution<T>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
Complex::new(self.sample(rng), self.sample(rng))
}
}
/// A generic random value distribution for complex numbers.
#[derive(Clone, Copy, Debug)]
pub struct ComplexDistribution<Re, Im = Re> {
re: Re,
im: Im,
}
impl<Re, Im> ComplexDistribution<Re, Im> {
/// Creates a complex distribution from independent
/// distributions of the real and imaginary parts.
pub fn new(re: Re, im: Im) -> Self {
ComplexDistribution { re, im }
}
}
impl<T, Re, Im> Distribution<Complex<T>> for ComplexDistribution<Re, Im>
where
T: Num + Clone,
Re: Distribution<T>,
Im: Distribution<T>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
Complex::new(self.re.sample(rng), self.im.sample(rng))
}
}
#[cfg(test)]
fn test_rng() -> impl RngCore {
/// Simple `Rng` for testing without additional dependencies
struct XorShiftStar {
a: u64,
}
impl RngCore for XorShiftStar {
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
fn next_u64(&mut self) -> u64 {
// https://en.wikipedia.org/wiki/Xorshift#xorshift*
self.a ^= self.a >> 12;
self.a ^= self.a << 25;
self.a ^= self.a >> 27;
self.a.wrapping_mul(0x2545_F491_4F6C_DD1D)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
for chunk in dest.chunks_mut(8) {
let bytes = self.next_u64().to_le_bytes();
let slice = &bytes[..chunk.len()];
chunk.copy_from_slice(slice)
}
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
Ok(self.fill_bytes(dest))
}
}
XorShiftStar {
a: 0x0123_4567_89AB_CDEF,
}
}
#[test]
fn standard_f64() {
let mut rng = test_rng();
for _ in 0..100 {
let c: Complex<f64> = rng.gen();
assert!(c.re >= 0.0 && c.re < 1.0);
assert!(c.im >= 0.0 && c.im < 1.0);
}
}
#[test]
fn generic_standard_f64() {
let mut rng = test_rng();
let dist = ComplexDistribution::new(Standard, Standard);
for _ in 0..100 {
let c: Complex<f64> = rng.sample(&dist);
assert!(c.re >= 0.0 && c.re < 1.0);
assert!(c.im >= 0.0 && c.im < 1.0);
}
}
#[test]
fn generic_uniform_f64() {
use rand::distributions::Uniform;
let mut rng = test_rng();
let re = Uniform::new(-100.0, 0.0);
let im = Uniform::new(0.0, 100.0);
let dist = ComplexDistribution::new(re, im);
for _ in 0..100 {
// no type annotation required, since `Uniform` only produces one type.
let c = rng.sample(&dist);
assert!(c.re >= -100.0 && c.re < 0.0);
assert!(c.im >= 0.0 && c.im < 100.0);
}
}
#[test]
fn generic_mixed_f64() {
use rand::distributions::Uniform;
let mut rng = test_rng();
let re = Uniform::new(-100.0, 0.0);
let dist = ComplexDistribution::new(re, Standard);
for _ in 0..100 {
// no type annotation required, since `Uniform` only produces one type.
let c = rng.sample(&dist);
assert!(c.re >= -100.0 && c.re < 0.0);
assert!(c.im >= 0.0 && c.im < 1.0);
}
}
#[test]
fn generic_uniform_i32() {
use rand::distributions::Uniform;
let mut rng = test_rng();
let re = Uniform::new(-100, 0);
let im = Uniform::new(0, 100);
let dist = ComplexDistribution::new(re, im);
for _ in 0..100 {
// no type annotation required, since `Uniform` only produces one type.
let c = rng.sample(&dist);
assert!(c.re >= -100 && c.re < 0);
assert!(c.im >= 0 && c.im < 100);
}
}