cheep-crator-2/vendor/wide/src/u64x4_.rs

404 lines
12 KiB
Rust

use super::*;
pick! {
if #[cfg(target_feature="avx2")] {
#[derive(Default, Clone, Copy, PartialEq, Eq)]
#[repr(C, align(32))]
pub struct u64x4 { avx2: m256i }
} else if #[cfg(target_feature="sse2")] {
#[derive(Default, Clone, Copy, PartialEq, Eq)]
#[repr(C, align(32))]
pub struct u64x4 { sse0: m128i, sse1: m128i }
} else if #[cfg(target_feature="simd128")] {
use core::arch::wasm32::*;
#[derive(Clone, Copy)]
#[repr(C, align(32))]
pub struct u64x4 { simd0: v128, simd1: v128 }
impl Default for u64x4 {
fn default() -> Self {
Self::splat(0)
}
}
impl PartialEq for u64x4 {
fn eq(&self, other: &Self) -> bool {
!v128_any_true(v128_or(v128_xor(self.simd0, other.simd0), v128_xor(self.simd1, other.simd1)))
}
}
impl Eq for u64x4 { }
} else {
#[derive(Default, Clone, Copy, PartialEq, Eq)]
#[repr(C, align(32))]
pub struct u64x4 { arr: [u64;4] }
}
}
int_uint_consts!(u64, 4, u64x4, u64x4, u64a4, const_u64_as_u64x4, 256);
unsafe impl Zeroable for u64x4 {}
unsafe impl Pod for u64x4 {}
impl Add for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn add(self, rhs: Self) -> Self::Output {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: add_i64_m256i(self.avx2, rhs.avx2) }
} else if #[cfg(target_feature="sse2")] {
Self { sse0: add_i64_m128i(self.sse0, rhs.sse0), sse1: add_i64_m128i(self.sse1, rhs.sse1) }
} else if #[cfg(target_feature="simd128")] {
Self { simd0: u64x2_add(self.simd0, rhs.simd0), simd1: u64x2_add(self.simd1, rhs.simd1) }
} else {
Self { arr: [
self.arr[0].wrapping_add(rhs.arr[0]),
self.arr[1].wrapping_add(rhs.arr[1]),
self.arr[2].wrapping_add(rhs.arr[2]),
self.arr[3].wrapping_add(rhs.arr[3]),
]}
}
}
}
}
impl Sub for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn sub(self, rhs: Self) -> Self::Output {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: sub_i64_m256i(self.avx2, rhs.avx2) }
} else if #[cfg(target_feature="sse2")] {
Self { sse0: sub_i64_m128i(self.sse0, rhs.sse0), sse1: sub_i64_m128i(self.sse1, rhs.sse1) }
} else if #[cfg(target_feature="simd128")] {
Self { simd0: u64x2_sub(self.simd0, rhs.simd0), simd1: u64x2_sub(self.simd1, rhs.simd1) }
} else {
Self { arr: [
self.arr[0].wrapping_sub(rhs.arr[0]),
self.arr[1].wrapping_sub(rhs.arr[1]),
self.arr[2].wrapping_sub(rhs.arr[2]),
self.arr[3].wrapping_sub(rhs.arr[3]),
]}
}
}
}
}
impl Mul for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn mul(self, rhs: Self) -> Self::Output {
pick! {
if #[cfg(target_feature="simd128")] {
Self { simd0: u64x2_mul(self.simd0, rhs.simd0), simd1: u64x2_mul(self.simd1, rhs.simd1) }
} else {
let arr1: [u64; 4] = cast(self);
let arr2: [u64; 4] = cast(rhs);
cast([
arr1[0].wrapping_mul(arr2[0]),
arr1[1].wrapping_mul(arr2[1]),
arr1[2].wrapping_mul(arr2[2]),
arr1[3].wrapping_mul(arr2[3]),
])
}
}
}
}
impl Add<u64> for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn add(self, rhs: u64) -> Self::Output {
self.add(Self::splat(rhs))
}
}
impl Sub<u64> for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn sub(self, rhs: u64) -> Self::Output {
self.sub(Self::splat(rhs))
}
}
impl Mul<u64> for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn mul(self, rhs: u64) -> Self::Output {
self.mul(Self::splat(rhs))
}
}
impl Add<u64x4> for u64 {
type Output = u64x4;
#[inline]
#[must_use]
fn add(self, rhs: u64x4) -> Self::Output {
u64x4::splat(self).add(rhs)
}
}
impl Sub<u64x4> for u64 {
type Output = u64x4;
#[inline]
#[must_use]
fn sub(self, rhs: u64x4) -> Self::Output {
u64x4::splat(self).sub(rhs)
}
}
impl Mul<u64x4> for u64 {
type Output = u64x4;
#[inline]
#[must_use]
fn mul(self, rhs: u64x4) -> Self::Output {
u64x4::splat(self).mul(rhs)
}
}
impl BitAnd for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn bitand(self, rhs: Self) -> Self::Output {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: bitand_m256i(self.avx2, rhs.avx2) }
} else if #[cfg(target_feature="sse2")] {
Self { sse0: bitand_m128i(self.sse0, rhs.sse0), sse1: bitand_m128i(self.sse1, rhs.sse1) }
} else if #[cfg(target_feature="simd128")] {
Self { simd0: v128_and(self.simd0, rhs.simd0), simd1: v128_and(self.simd1, rhs.simd1) }
} else {
Self { arr: [
self.arr[0].bitand(rhs.arr[0]),
self.arr[1].bitand(rhs.arr[1]),
self.arr[2].bitand(rhs.arr[2]),
self.arr[3].bitand(rhs.arr[3]),
]}
}
}
}
}
impl BitOr for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn bitor(self, rhs: Self) -> Self::Output {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: bitor_m256i(self.avx2, rhs.avx2) }
} else if #[cfg(target_feature="sse2")] {
Self { sse0: bitor_m128i(self.sse0, rhs.sse0) , sse1: bitor_m128i(self.sse1, rhs.sse1)}
} else if #[cfg(target_feature="simd128")] {
Self { simd0: v128_or(self.simd0, rhs.simd0), simd1: v128_or(self.simd1, rhs.simd1) }
} else {
Self { arr: [
self.arr[0].bitor(rhs.arr[0]),
self.arr[1].bitor(rhs.arr[1]),
self.arr[2].bitor(rhs.arr[2]),
self.arr[3].bitor(rhs.arr[3]),
]}
}
}
}
}
impl BitXor for u64x4 {
type Output = Self;
#[inline]
#[must_use]
fn bitxor(self, rhs: Self) -> Self::Output {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: bitxor_m256i(self.avx2, rhs.avx2) }
} else if #[cfg(target_feature="sse2")] {
Self { sse0: bitxor_m128i(self.sse0, rhs.sse0), sse1: bitxor_m128i(self.sse1, rhs.sse1) }
} else if #[cfg(target_feature="simd128")] {
Self { simd0: v128_xor(self.simd0, rhs.simd0), simd1: v128_xor(self.simd1, rhs.simd1) }
} else {
Self { arr: [
self.arr[0].bitxor(rhs.arr[0]),
self.arr[1].bitxor(rhs.arr[1]),
self.arr[2].bitxor(rhs.arr[2]),
self.arr[3].bitxor(rhs.arr[3]),
]}
}
}
}
}
macro_rules! impl_shl_t_for_u64x4 {
($($shift_type:ty),+ $(,)?) => {
$(impl Shl<$shift_type> for u64x4 {
type Output = Self;
/// Shifts all lanes by the value given.
#[inline]
#[must_use]
fn shl(self, rhs: $shift_type) -> Self::Output {
pick! {
if #[cfg(target_feature="avx2")] {
let shift = cast([rhs as u64, 0]);
Self { avx2: shl_all_u64_m256i(self.avx2, shift) }
} else if #[cfg(target_feature="sse2")] {
let shift = cast([rhs as u64, 0]);
Self { sse0: shl_all_u64_m128i(self.sse0, shift), sse1: shl_all_u64_m128i(self.sse1, shift) }
} else if #[cfg(target_feature="simd128")] {
let u = rhs as u32;
Self { simd0: u64x2_shl(self.simd0, u), simd1: u64x2_shl(self.simd1, u) }
} else {
let u = rhs as u64;
Self { arr: [
self.arr[0] << u,
self.arr[1] << u,
self.arr[2] << u,
self.arr[3] << u,
]}
}
}
}
})+
};
}
impl_shl_t_for_u64x4!(i8, u8, i16, u16, i32, u32, i64, u64, i128, u128);
macro_rules! impl_shr_t_for_u64x4 {
($($shift_type:ty),+ $(,)?) => {
$(impl Shr<$shift_type> for u64x4 {
type Output = Self;
/// Shifts all lanes by the value given.
#[inline]
#[must_use]
fn shr(self, rhs: $shift_type) -> Self::Output {
pick! {
if #[cfg(target_feature="avx2")] {
let shift = cast([rhs as u64, 0]);
Self { avx2: shr_all_u64_m256i(self.avx2, shift) }
} else if #[cfg(target_feature="sse2")] {
let shift = cast([rhs as u64, 0]);
Self { sse0: shr_all_u64_m128i(self.sse0, shift), sse1: shr_all_u64_m128i(self.sse1, shift) }
} else if #[cfg(target_feature="simd128")] {
let u = rhs as u32;
Self { simd0: u64x2_shr(self.simd0, u), simd1: u64x2_shr(self.simd1, u) }
} else {
let u = rhs as u64;
Self { arr: [
self.arr[0] >> u,
self.arr[1] >> u,
self.arr[2] >> u,
self.arr[3] >> u,
]}
}
}
}
})+
};
}
impl_shr_t_for_u64x4!(i8, u8, i16, u16, i32, u32, i64, u64, i128, u128);
impl u64x4 {
#[inline]
#[must_use]
pub fn new(array: [u64; 4]) -> Self {
Self::from(array)
}
#[inline]
#[must_use]
pub fn cmp_eq(self, rhs: Self) -> Self {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: cmp_eq_mask_i64_m256i(self.avx2, rhs.avx2) }
} else if #[cfg(target_feature="sse4.1")] {
Self { sse0: cmp_eq_mask_i64_m128i(self.sse0, rhs.sse0),sse1: cmp_eq_mask_i64_m128i(self.sse1, rhs.sse1) }
} else if #[cfg(target_feature="simd128")] {
Self { simd0: u64x2_eq(self.simd0, rhs.simd0), simd1: u64x2_eq(self.simd1, rhs.simd1) }
} else {
let s: [i64;4] = cast(self);
let r: [i64;4] = cast(rhs);
cast([
if s[0] == r[0] { -1_i64 } else { 0 },
if s[1] == r[1] { -1_i64 } else { 0 },
if s[2] == r[2] { -1_i64 } else { 0 },
if s[3] == r[3] { -1_i64 } else { 0 },
])
}
}
}
#[inline]
#[must_use]
pub fn cmp_gt(self, rhs: Self) -> Self {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: cmp_gt_mask_i64_m256i(self.avx2, rhs.avx2) }
} else if #[cfg(target_feature="sse4.2")] {
Self { sse0: cmp_gt_mask_i64_m128i(self.sse0, rhs.sse0), sse1: cmp_gt_mask_i64_m128i(self.sse1, rhs.sse1) }
} else {
// u64x2_gt on WASM is not a thing. https://github.com/WebAssembly/simd/pull/414
let s: [u64;4] = cast(self);
let r: [u64;4] = cast(rhs);
cast([
if s[0] > r[0] { -1_i64 } else { 0 },
if s[1] > r[1] { -1_i64 } else { 0 },
if s[2] > r[2] { -1_i64 } else { 0 },
if s[3] > r[3] { -1_i64 } else { 0 },
])
}
}
}
#[inline]
#[must_use]
pub fn blend(self, t: Self, f: Self) -> Self {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: blend_varying_i8_m256i(f.avx2,t.avx2,self.avx2) }
} else if #[cfg(target_feature="sse4.1")] {
Self { sse0: blend_varying_i8_m128i(f.sse0, t.sse0, self.sse0), sse1: blend_varying_i8_m128i(f.sse1, t.sse1, self.sse1) }
} else if #[cfg(target_feature="simd128")] {
Self { simd0: v128_bitselect(t.simd0, f.simd0, self.simd0), simd1: v128_bitselect(t.simd1, f.simd1, self.simd1) }
} else {
generic_bit_blend(self, t, f)
}
}
}
pub fn to_array(self) -> [u64; 4] {
cast(self)
}
pub fn as_array_ref(&self) -> &[u64; 4] {
cast_ref(self)
}
}
impl Not for u64x4 {
type Output = Self;
fn not(self) -> Self {
pick! {
if #[cfg(target_feature="avx2")] {
Self { avx2: self.avx2.not() }
} else if #[cfg(target_feature="sse2")] {
Self { sse0: self.sse0.not() , sse1: self.sse1.not() }
} else if #[cfg(target_feature="simd128")] {
Self { simd0: v128_not(self.simd0) , simd1: v128_not(self.simd1) }
} else {
Self { arr: [
!self.arr[0],
!self.arr[1],
!self.arr[2],
!self.arr[3],
]}
}
}
}
}