cheep-crator-2/vendor/miniz_oxide
Nixon Enraght-Moony 842725426c Vendor everything 2022-07-19 12:14:16 +01:00
..
src Vendor everything 2022-07-19 12:14:16 +01:00
.cargo-checksum.json Vendor everything 2022-07-19 12:14:16 +01:00
Cargo.toml Vendor everything 2022-07-19 12:14:16 +01:00
LICENSE Vendor everything 2022-07-19 12:14:16 +01:00
LICENSE-APACHE.md Vendor everything 2022-07-19 12:14:16 +01:00
LICENSE-MIT.md Vendor everything 2022-07-19 12:14:16 +01:00
LICENSE-ZLIB.md Vendor everything 2022-07-19 12:14:16 +01:00
Readme.md Vendor everything 2022-07-19 12:14:16 +01:00

Readme.md

miniz_oxide

A fully safe, pure rust replacement for the miniz DEFLATE/zlib encoder/decoder. The main intention of this crate is to be used as a back-end for the flate2, but it can also be used on it's own. Using flate2 with the rust_backend feature provides an easy to use streaming API for miniz_oxide.

The library is fully no_std, though it requires the use of the alloc and collection crates as it allocates memory.

miniz_oxide 0.5.x Requires at least rust 1.40.0 0.3.x requires at least rust 0.36.0.

miniz_oxide features no use of unsafe code.

miniz_oxide can optionally be made to use a simd-accelerated version of adler32 via the simd-adler32 crate by enabling the 'simd' feature. This is not enabled by default as due to the use of simd intrinsics, the simd-adler32 has to use unsafe. The default setup uses the adler crate which features no unsafe code.

Usage

Simple compression/decompression:


use miniz_oxide::deflate::compress_to_vec;
use miniz_oxide::inflate::decompress_to_vec;

fn roundtrip(data: &[u8]) {
    // Compress the input
    let compressed = compress_to_vec(data, 6);
    // Decompress the compressed input
    let decompressed = decompress_to_vec(compressed.as_slice()).expect("Failed to decompress!");
    // Check roundtrip succeeded
    assert_eq!(data, decompressed);
}

fn main() {
    roundtrip("Hello, world!".as_bytes());
}

These simple functions will do everything in one go and are thus not recommended for use cases where the input size may be large or unknown, for that use case consider using miniz_oxide via flate2 or the low-level streaming functions instead.