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Abstract: 

Inspired by ACTORS (Greif and Hewitt] [Smith and Hewitt], we have 
implemented an interpreter for a LISP-like language, SCHEME, based on the 
lambda calculus [Church], but extended for side effects, multiprocessing, and 
process synchronization. The purpose of this implementation is tutorial. We 
wish to: 

(1) alleviate the confusion caused by Micro-PLANNER, CONNIVER, etc. by 
clarifying the embedding of non-recursive control structures in a recursive 
host language like LISP. 
(2) explain how to use these control structures, independent of such issues as 
pattern matching and data base manipulation. 

(3) have a simple concrete experimental, domain for. certain issues of 
programming semantics and style. 

This paper is organized into sections. The first section is a short 
“reference manual" containing specifications for all the unusual features of 
SCHEME. Next, we present a sequence of programming examples which illustrate 

various programming styles, and how to use them. This will raise certain 

issues of semantics which we will try to clarify with lambda calculus in the 

third section. In the fourth section we will give a general discussion of the 
issues facing an implementor of an interpreter for a language based on lambda 
calculus. Finally, we will present a completely annotated interpreter for 
SCHEME, written in MacLISP [Moon], to acquaint programmers with the tricks of 
the trade of implementing non-recursive control structures in a recursive 

language like LISP. 
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Section 1: The SCHEME Reference Manual 

SCHEME is essentially a full-funarg LISP. LAMBDA expressions need not 

be QUOTEd, FUNCTIONed, or *FUNCTIONed when passed as arguments or returned as 
values; they will evaluate to closures of themselves. 

All LISP functions (i.e., EXPRs, SUBRs, and LSUBRs, but not FEXPRs, 
FSUBRs, or MACROs) are primitive operators in SCHEME, and have the same 
meaning as they have in LISP. Like LAMBDA expressions, primitive operators 
and numbers are self-evaluating (they evaluate to trivial closures of 
themselves). 

There are a number of special primitives known as AINTs which are to 

SCHEME as FSUBRs are to LISP. We will enumerate them here. 

IF 
This is the primitive conditional operator. It takes three arguments. 

If the first evaluates to non-NIL, it evaluates the second expression, and 
otherwise the third. 

QUOTE 
As in LISP, this quotes the argument form so that it will be passed 

verbatim as data. The abbreviation "'FOO" may be used instead of "(QUOTE 
FOO)". 

DEFINE 
This is analogous to the MacLISP DEFUN primitive (but note that the 

LAMBDA must appear explicitly!). It is used for defining a function in the 
"global environment" permanently, as opposed to LABELS (see below), which is 
used for temporary definitions in a local environment. DEFINE takes a name 
and a lambda expression; it closes the lambda expression in the global 

environment and stores the closure in the LISP value cell of the name (which 
is a LISP atom).; | | 

LABELS 

We have decided not to use the traditional LABEL primitive in this 

interpreter because it is difficult to define several mutually recursive 
functions using only LABEL. The solution, which Hewitt (Smith and Hewitt] 
also uses, is to adopt an ALGOLesque block syntax: 

! - (LABELS <function definition list> <expression>) 

This has the effect of evaluating the expression in an environment where all 
the functions are defined as specified by the definitions list. Furthermore, 

the functions are themselves closed in that environment, and not in the outer 
environment; this allows the functions to call themselves and each other 

recursively. For example, consider a function which counts all the atoms in a 

list structure recursively to all levels, but which doesn't count the NILs 
which terminate lists (but NILs in the CAR of some list count). In order to 
perform this we use two mutually recursive functions, one to count the car and
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one to count the cdr, as follows: 

(DEFINE COUNT 

(LAMBOA (L) 

(LABELS ((COUNTCAR 

(LAMBDA (L) 

CIF (ATOM L) 21 

(+ (COUNTCAR (CAR L)) 

(COUNTCDR (COR L)))))) 

(COUNTCOR 

(LAMBDA (L) 

_ CIF (ATOM LD 

CIF (NULL L) 8 1) 

(+ (COUNTCAR (CAR L)) 

(COUNTCOR (COR L))))))) 

(COUNTCDOR L)))) ;Note: COUNTCOR is defined here. 

ASET 
This is the side effect primitive. It is analogous to the LISP function 

SET. For example, to define a cell [Smith and Hewitt], we may use ASET as 
follows: 

(DEFINE CONS-CELL 
(LAMBDA (CONTENTS) 

(LABELS ((THE-CELL 
(LAMBOR (MSG) 

(IF (EQ MSG CONTENTS?) CONTENTS 
_ (IF (EQ MSG *CELL?) *YES 

(IF (EQ (CAR MSG) *<-) 
(BLOCK (ASET ’CONTENTS (CADR NSG)) 

THE-CELL) 
(ERROR ’ [UNRECOGNIZED MESSAGE - CELL| 

NSG 
> WRNG-TYPE-ARG) )))))) 

THE-CELL) )) 

Those of you who may complain about the lack of ASETQ are invited to write 

(ASET' foo bar) instead of (ASET 'foo bar). 

EVALUATE 

This is similar to the LISP function EVAL. It evaluates its argument, 
and then evaluates the resulting s-exprassion as SCHEME code. 

CATCH 
This is the “escape operator" which gives the user a handle on the 

control structure of the interpreter. The expression: 

(CATCH <identifier> <expression>)
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evaluates <expression> in an environment where <identifier> is bound to a 

continuation which is "just about to return from the CATCH"; that is, if the 
continuation is called as a function of one argument, then control proceeds as 
if the CATCH expression had returned with the supplied (evaluated) argument as 
its value. For example, consider the following obscure definition of. SQRT 
(Sussman's favorite style/Steele's least favorite): 

(OEFINE SQRT 

(LAMBOR (X EPSILON) 

C(LAMBOR (ANS LOOPTAG) 

(CATCH RETURNTAG 

(PROGN 
(ASET *LOOPTAG (CATCH M M)) sCREATE PROG TAG 

(IF (< (ABS (-$ (#$ ANS ANS) X)) EPSILON) 
(RETURNTAG ANS) ;RETURN 
NIL) ; JFCL 

(ASET ANS (//$ (4$ (//$ X ANS) ANS) 2.8)) 
(LOOPTAG LOOPTAG)))) ;GOTO 

1.8 
NIL))) 

Anyone who doesn't understand how this manages to work probably should not 
attempt to use CATCH. 

As another example, we can define a THROW function, which may then be 
used with CATCH much as they are in LISP: 

(DEFINE THROW (LAMBDA (TAG RESULT) (TAG RESULT))) 

CREATE! PROCESS 
This is the process generator for multiprocessing. It takes one 

argument, an expression to be evaluated in the current environment as a 
separate parallel process. If the expression aver returns a value, the 
process automatically terminates. The value of CREATE! PROCESS is a process id 
for the newly generated process. Note that the newly created process will not 
actually run until it is explicitly started. 

START! PROCESS 
This takes one argument, a process id, and starts up that process. It 

then runs. 

STOP! PROCESS 
This also takes a process id, but stops the process. The stopped 

process may be continued from where it was stopped by using START! PROCESS 
again on it. The magic global variable **PROCESS** always contains the 

process id of the currently running process; thus a process can stop itself by 
doing (STOP! PROCESS **PROCESS**). A stopped process is garbage collected if 
no live process has a pointer to its process id. 

EVALUATE! UNINTERRUPTIBLY



Sussman and Steele December 29, 1975 4 The SCHENE Reference Manual 

This is the synchronization primitive. It evaluates an expression 

uninterruptibly; i.e. no other process may run until the expression has 

returned a value. Note that if a funarg is returned from the scope of an 

EVALUATE! UNINTERRUPTIBLY, then that funarg will be uninterruptible when it is 
applied; that is, the uninterruptibility property follows the rules of 

variable scoping. For example, consider the following function: 
{ 

(DEFINE SENGEN 

(LAMBDA (SENVAL) 

(LIST (LAMNBDR ©) 

(EVALUATE !UNINTERRUPTIBLY 

(ASET’ SEMVAL (+ SEMVAL 1)))) 

(LABELS (P (LANBBR () 

(EVALUATE !'UNINTERRUPTIBLY 

(IF (PLUSP SENVRL) 

(ASET’ SENVAL (+ SEMVAL 1)) 

(P))))) 

P)))) 

This returns a pair of functions which are V and P operations on a newly 

created semaphore. The argument to SENGEN is the initial value for the 
semaphore. Note that P busy-waits by iterating if necessary; because 

EVALUATE! UNINTERRUPTIBLY uses variable-scoping rules, other processes have a 

chance to get in at the beginning of each iteration. This busy-wait can be 

made much more efficient by replacing the expression (P) in the definition of 
P with 

((LAMBOR (ME). . 

(BLOCK (STARTIPROCESS (CREATE!PROCESS ’ (STARTIPROCESS HNE))) 

(STOP !PROCESS ME) 

(P))) 

*&PROCESS«+) 

Let's see you figure this one out! Note that a STOP! PROCESS within an 
EVALUATE! UNINTERRUPTIBLY forces the process to be swapped out even if it is 
the current one, and so other processes get to run; but aS soon as it gets 

swapped in again, others are locked out as before. 

Besides the AINTs, SCHEME has a class of primitives known as AMACROs. 
These are similar to MacLISP MACROs, in that they are expanded into equivalent 
code before being executed. Some AMACROs supplied with the SCHEME 

interpreters 

COND 

This is like the MacLISP COND statement, except that singleton clauses 

(where the result of the predicate is the returned value) are not allowed. 

AND, OR 
These are also as in MacLISP.



Sussman and Steele December 22, 1975 5 The SCHENE Reference Manual 

BLOCK . 
This is like the MacLISP PROGN, but arranges to evaluate its last 

argument without an extra net control frame (explained later), so that the 

last argument may involved in an iteration. Note that in SCHEME, unlike 

MacLISP, the body of a LAMBDA expression is not an implicit PROGN. 

DO 
This is like the MacLISP “new-style" DO; old-style DO is not supported. 

AMAPCAR, AMAPLIST 
These are like MAPCAR and MAPLIST, but they expect a SCHEME lambda 

Closure for the first argument. 

To use SCHEME, simply incant at DDT (on MIT-AI): 

:LISP LIBLSP;SCHEME 

which will load up the current version of SCHEME, which will announce itself 
and give a prompt. If you want to escape to LISP, merely hit *G. To restart 

SCHEME, type (SCHEME). Sometimes one does need to use a LISP FSUBR such as 
UREAD; this may be accomplished by typing, for example, 

(EVAL’ (UREAD FOO BAR OSK LOSER)) 

After doing this, typing ~Q will, of course, cause SCHEME to read from the 
file. 

This concludes the SCHEME Reference Manual.
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Section 2: Some SCHEME Programming Examples 

Traditional Recursion 

Here is the good old familiar recursive definition of factorial, written 
in SCHEME. 

(DEFINE FACT 

(LAMBDA (N) CIF (=e N 9) 1 

(x N (FACT (= N 1999900) 

What About Iteration? 

There are many other ways to compute factorial. One important way is 

through the use of iteration. Consider the following definition of FACT. 

Although it appears to be recursive, since it "calls itself", it captures the 
essence of our intuitive notion of iteration, because execution of this 
program will not produce internal structures (e.g. stacks or variable 
bindings) which increase in size with the number of iteration steps. This 
surprising fact will be explained in two ways. 

(1) We will consider programming styles in terms of substitution semantics of 
the lambda calculus (Section 3). 

(2) We will show how the SCHEME interpreter is implemented (Sections 4,5). 

(DEFINE FACT 

(LAMBOR (ND oo 
(LABELS ((FACTL (LAMBDA (M ANS) 

(IF (= M8) ANS 
(FACTL (= M 4) 

(= M ANS)))))) 
(FACTi N 1)))) 

A common iterative construct is the DO loop. The most general form we 
have seen in any programming language is the MacLISP DO [Moon]. It permits 
the simultaneous initialization of any number of control variables and the 

simultaneous stepping of these variables by arbitrary functions at each 
iteration step. The loop is terminated by an arbitrary predicate, and an 
arbitrary value may be returned. The DO loop may have a body, a series of 
expressions executed for effect on each iteration. 

The general form of a MacLISP DO is: 

(00 ((<varl> <initl> <stepl>) 

(<var2> <init2> <step2>) 

(<varn> <initn> <stepn>)) 

(<pred> <value>) 

<body>) |



Sussman and Steele December 22, 1975 7 SCHENE Programming Exampies 

The semantics of this are that the variables are bound and initialized to the 
values of the <initi> expressions, which must all be evaluated in the 
environment outside the DO; then the predicate <pred> is evaluated in the new 
environment, and if TRUE, the <value> is evaluated and returned. Otherwise 
the body is evaluated, then each of the steppers <stepi> is evaluated in the 

current environment, all the variables made to have the results as their 
values, and the predicate evaluated again, and so on. 

For example, the following MacLISP function: 

(DEFUN REV (L) 

(00 ((L12 L (COR LL) 

(ANS NIL (CONS (CAR L1) ANS))) 

CCNULL Li) ANS))) 

computes the reverse of a list. In SCHEME, we could write the same function, 

in the same iterative style, as follows: 

(DEFINE REV 

(LAMBDA {L) 

(LABELS ((DOLOOP (LAMBDA (Li ANS) 

(TF (NULL £1) ANS 

(DOLOOP (COR L1) 

(CONS (CAR L1) ANS)))))) 

(DOLOOP L NIL)))) 

From this we can infer a general way to express iterations in SCHEME in 
a manner isomorphic to the MacLISP DO: 

(LABELS ((DOLOOP | 
(LAMBDA (<dummy> <varl> <var2> ... <varn>) 

(IF <pred> <value> 

(DOLOOP <body> <stepl> <step2> ... <stepn>))))) 

(DOLOOP NIL <initl> <init2> ... <initn>)) , 

This is in fact what, the supplied DO AMACRO. expands into. Note that there are 

no side effects in the steppings of the iteration variables. 

Another Way To Do Recursion 

Now consider the following alternative definition of FACT. It has an 
extra argument, the continuation [Reynolds], which is a function to call with 
the answer, when we have it, rather than return a value; that is, rather than 
ultimately reducing to the desired value, it reduces to a combination which is 
the application of the*continuation to the desired value. —



  

Sussman and Steele December 22, 1975 8 SCHEME Programming Exampies 

(DEFINE FACT 

(LANBOR (N C) 

CIF (2 N 8) (C 1) 

(FACT (- N 1) 

(LAMBDA (A) (C (x NADI) 

Note that we can call this like an ordinary function if we supply (LAMBDA (X) 
X) as the second argument. For example, (FACT 3 (LAMBDA (X) X)) returns 6. 

Apparently “Hairy" Control Structure 

A classic problem difficult to solve in most programming languages, 
including standard (stack-oriented) LISP, is the samefringe problem [Smith and 
Hewitt]. The problem is to determine whether the fringes of two trees are the 
same, even if the internal structures of the trees are not. This problem is 

easy to solve if one merely computes the fringe of each tree separately as a 

list, and then compares the two lists. We would like. to solve the problem so 
that the fringes are generated and compared incrementally. This is important 
if the fringes of the trees are very large, but differ, say, in the first 
position. 

Consider the following obscure solution to samefringe, which is in fact 

isomorphic to the one written by Shrobe and presented by Smith and Hewitt. 
Note that SCHEME does not have the packagers of PLASMA, and so we were forced 
to use continuations; rather than using packages and a next operator, we pass 

a fringe a continuation (called the "getter") which will get the next and the 
rest of the fringe as its two arguments. 

(DEFINE FRINGE 

(LAMBDA (TREE) 

(LABELS ((FRINGEN 

(LAMBOA (NODE ALT) 

(LAMBDA (GETTER) 

(IF (ATOM NODE) 

(GETTER NODE ALT) 
((FRINGEN (CAR NODE) 

(LAMBOR (GETTERL) 

C(FRINGEN (COR NODE) 

ALT) 

GETTERL))) 

— GETTER) ))))) 

(FRINGEN TREE 

| (LAMBDA (GETTER) 

(GETTER * (EXHAUSTED) NIL))))))



Sussman and Steele December 22, 1975 9 SCHEME Programming Examples 

(OEFINE SANEFRINGE 

(LANBOR (TREEL TREE2) 

(LABELS ( (SANE 

(LAMBDA (S1 $2) 

(S12 (LAMBDA (X1 R21) 

(S2 (LAMBOA (X2 R2) 

(IF (EQUAL X1 X2) 

(IF (EQUAL Xl ’ (EXHAUSTED) ) 

T 

(SANE RL R2)) 

NIL)))))))) 

(SAME (FRINGE TREE1L) 

(FRINGE TREE2))))) 

Now let us consider an alternative solution to the samefringe problem. 
We believe that this solution is clearer for two reasons: 

(1) the implementation of SAMEFRINGE is more clearly iterative; 
(2) rather than returning an object which will return both the first and the 
rest of a fringe to a given continuation, FRINGE returns an object which will 
deliver up a component in response to a request for that component. 

(DEFINE FRINGE 
(LAMBDA (TREE) 

(LABELS ((FRINGEL 
(LAMBDA (NODE ALT) 

(IF (ATOM NODE) 
(LAMBDA (MSG) 

(IF (EQ MSG ’FIRST) NODE 
(IF (EQ MSG NEXT) (ALT) (ERROR)))) 

(FRINGEL (CAR NODE) 
(LAMBDA () (FRINGE (COR NODE) ALT))))))) 

(FRINGEL TREE 
(LAMBDA ©) 

(LAMBOA (MSG) (IF (EQ MSG ’FIRST) *sEOFe (ERROR)))))))) 

(DEFINE SAMEFRINGE 
(LAMBDA (T1 T2) 

(DO ((CL (FRINGE T1) (C1 ’NEXT)) 
(C2 (FRINGE T2) (C2 ’NEXT))) 

(COR (NOT (EQ (CL °FIRST) (C2 ?FIRST))) 

(EQ (Cl ’FIRST) ’sEOFs) 

. (EQ (C2 FIRST) ’s€0Fs)) 

(EQ (CL ’FIRST) (C2 °FIRST))))3) 

A much simpler and more probable problem is that of building a pattern 

matcher with backtracking for segment matches. The matcher presented below is 
intended for matching single-level list structure patterns against lists of 
atoms. A pattern is a list containing three types of elements:
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(1) constant atoms, which match themselves only. 
(2) (THV x), which matches any single element in the expression consistently. 
We may abbreviate this as ?x by means of a LISP reader macro character. 

(3) (THV® x), which matches any segment of zero or more elements in the 
expression consistently. We may abbreviate this as !x. 

The matcher returns either NIL, meaning no match is possible, or a list of two 
items, an alist specifying the bindings of the match variables, and a 
continuation to call, if you don't like this particular set of bindings, which 
will attempt to find another match. Thus, for example, the invocation 

(MATCH *(A $B 2C 2C $B 'E) 

"RXYQAQXY22XYQQXYR)) 

would return the result 

(CCE (2 2X YQQX YR) 

(C Q) 

(BX Y)) 

<cont inuationl>) 

where calling <continuationl> as a function of no arguments would produce the 
result 

CCCE (RD) 

(C 2) 

(BX YQaQxX Y))) 

<cont inuation2>) 

where calling <continuation2> would produce NIL. 
The MATCH function makes use of two auxiliary functions called NFIRST 

and NREST. The former returns a list of the first n elements.of a given list, 
while the latter returns the tail of the given list after the first n 
elements. | 

(DEFINE NFIRST | : | | | 
| (LAMBDA (EN) 

CIF (a NO) NIL 
(CONS (CAR E) (NFIRST (COR E) (= N 1)))))) 

(DEFINE NREST 
(LAMBDA (E ND 

(IF (a N 8) E 
(NREST (COR E) (- N 1))))) 

The main MATCH function also uses a subfunction called MATCH] which 
takes four arguments: the tail of the pattern yet to be matched; the tail of 
the expression yet to be matched; the alist of match bindings made so far; and 
a continuation to call if the match fails at this point. A subfunction of 

MATCH, called MATCH*, handles the matching of segments of the expression 
against THV* match variables. It is in the matching of segments that the
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potential need for backtracking enters, for segments of various lengths may 

have to be tried. After MATCH* matches a segment, it calls MATCH1 to continue 
the match, giving it a failure continuation which will back up and try to 
match a longer segment if possible. A failure can occur if a constant fails 

to match, or if one or the other of pattern and expression runs out before the 
other one does.
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(DEFINE MATCH 

(LAMBDA (PATTERN EXPRESSION) 

(LABELS ( (MATCH 
(LAMBDA (P E ALIST LOSE) 

(IF (NULL P) (IF (NULL E) (LIST ALIST LOSE) (LOSE)) 
(IF (ATOM (CAR P)) 

(IF (NULL E) (LOSE) 

CIF (EQ (CAR E) (CAR P)) 

(MATCHL (COR P) (COR E) ALIST LOSE) 

(LOSE) )) 

(IF (EQ (CRAR P) > THY) 

(IF (NULL E) (LOSE) 

((LAMBDA (V) 

CIF V CIF (EQ (CAR E) (CROR V)) 

(MATCHL (COR P) (COR E) ALIST LOSE) 
(LOSE)) 

(MATCHL (COR P) (COR E) 

(CONS (LIST (CADAR P) (CAR E)) ALIST) 

LOSE))) 

(ASSQ (CADAR P) ALIST))) 

(IF (EQ (CAAR P) ’THVs) 
C(LAMBOA (Vv) 

(IF Vv 

(IF (< (LENGTH E) (LENGTH (CADR V))) (LOSE) 

(IF (EQUAL (NFIRST € (LENGTH (CADR V))) 

(CADR V)) 
(MATCHL (CDR P) 

(NREST E (LENGTH (CADR V))) 

ALIST 

LOSE) 

(LOSE) >) 

(LABELS ((MATCHs 

(LANBOA (N) 

(IF (> N (LENGTH E)) (LOSE) 
(MATCHL (COR P) (NREST E ND 

(CONS (LIST (CADAR P) 

(NFIRST €& N)) 

ALIST) 

(LAMBDA () 

(MATCHe (+ N 1)))))))) 

(MATCHs 9)))) 
(RSSQ (CROAR P) ALIST)) 

. (LOSE)))))))) 

(MATCH1 PATTERN 

EXPRESSION 

NIL 

(LAMBOA () NIL)))))
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A Useless Multiprocessing Example 

One thing we might want to use multiprocessing for is to try two things 

in parallel, and terminate as soon as one succeeds. We can do this with the 

following function. 

(DEFINE TRY! TWO! THINGS! IN!PARALLEL 

(LANBOR (Fl F2) 

(CATCH C 

((LANBDA (P1 P2) 

((LANBDA (FL F2) 

(EVALUATE !UNINTERRUPTIBLY 

(BLOCK (ASET °P1 (CREATEIPROCESS * (Fi))) 

(ASET *P2 (CREATE!PROCESS ° (F2))) 

(START!IPROCESS Pl) 

(STARTIPROCESS P2) 

(STOP!PROCESS xxPROCESSxx)))) 

(LAMBOR () 

C((LAMBOA (VALUE) 

(EVALUATE 1UNINTERRUPTIBLY 

(BLOCK (STOP!PROCESS P2) (C VALUE)))) 

(FL))) 

(LANBOR (©) 

C(LAMBOA (VALUE) 

(EVALUATE !UNINTERRUPTIBLY 

(BLOCK (STOPIPROCESS PL) (C VALUE)))) 

(F2))))) 

NIL NJL)))) 

TRY! TWO! THINGS! IN! PARALLEL takes two functions of no arguments (in order to 

pass an unevaluated expression and its environment in for later use, so as to 
avoid variable conflicts). It creates two processes to run them, and returns 
the value of whichever completes first. 

As an example of how to misuse TRY! TWO! THINGS! IN! PARALLEL, here is a 
function which determines the sign of an integer using only ADD1, SUB1, and 
EQUAL. 

(DEFINE SIGN 
(LAMBDA (N) 

(IF (EQUAL N 8) ‘ZERO 
(TRY! TWO! THINGS ! IN! PARALLEL 

(LAMBDA 
. (DO ((1 8 (ADDL 1))) 

((EQUAL IN) *POSITIVE))) 
(LAMBOA © 

(DO (CI @ (SUBL 1))) 
((EQUAL IN) *NEGATIVE)))))))
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Section 3: Substitution Semantics and Programming Styles 

In the previous section we showed several different SCHEME programs for 
computing the factorial function. How are they different? We intuitively 
distinguish recursive from iterative programs, for example, by noting that 
recursive programs "call themselves" but in the last section we claimed to do 
iteration with a seemingly recursive program. Experienced programmers "know" 
that recursion uses up "stack" so a program implemented recursively will run 

out of stack on a sufficiently large problem. Can we make these ideas more 
precise? One traditional approach is to model the computation with lambda 
calculus. 

Reviewing the Lambda Calculus 

Traditionally language constructs are broken up into two distinct 
Classes: imperative constructs and those with side-effects -- such as 

assignment and go-to; and applicative constucts -- those executed for value -- 

such as arithmetic expressions. In addition, compiled languages often require 
a third class, declarative constructs, but these are provided primarily to 

guide the compilation process and do not directly affect the semantics of 
execution, and so will not concern us here. 

Lambda calculus is a model for the applicative component of programming 
languages. It models all non-imperative constructs as applications of 

functions and specifies the semantics of such expressions by a set of axioms 
or rewrite rules. One axiom states that a combination, i.e. an expression 
formed by a function applied to some arguments, is equivalent to the body of 

that function with the appropriate arguments substituted for the free 

occurrences of the formal parameters of the function in its body: 

( (LAMBDA <vars> <body>) <args>) = Subst[<args> <vars> <body>) 
: 

le \ 

Another axiom requires that the meaning of an expression be independent of the 

names of the formal parameters bound in the expression: 

(LANBOA <vars> <body>). 

= (LAMBDA <newvars> Subst <newvars> <vars> <body>) ) 

provided that none of <newvars> appears free in <body>. 

These constraints, force Subst to be defined in such a way that an important 
kind of referential transparency is obtained. Besides these "structural” 
axioms, others are provided which specify the result of certain primitive 

functions applied to specific arguments. We shall not be concerned with these 
problems here -- we will assume a small reasonable set of primitive functions.
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Recursive programs 

Now, let's see how lambda calculus may be used (informally) to model a 

computation. Consider the standard definition of the factorial function: 

(DEFINE FACT 

(LAMBOA (N) CIF (a N 9) 1 

(x N (FACT (= N 1))90)))) 

We are being very informal -- lambda calculus as presented by [Church] does 
not include such constucts as DEFINE, IF, or =, *, or even 1! The "usual" 

lambda calculus construct for defining recursive functions is a rather obscure 
object called the "fixed-point" operator. We have been lax to avoid the 
hassle of “rigor mortis" in this tutorial paper. Similarly, IF is the SCHEME 
conditional construct we will use for convenience, it reduces to its second or 

third argument depending on whether the first reduces to TRUE or FALSE. The 

objects *, =, 0, 1, etc. may be thought of as abbreviations for complex lambda 
expressions (such as Church numerals) whose details we are not interested in. 

On the other hand, we may think of them as primitive expressions, defined by 

additional axioms; this viewpoint leads to practical interpreter 
implementations. 

Now let's reduce the expression (FACT 3). We will perform the 

expression reductions, except for the IF primitive, in Applicative Order (call 
by value), though this is not necessary, as we will discuss later. We display 
a "trace" of the substitutions: 

=> (FACT 3) 
a> CIF (e 3.8) 1 (#3 (FACT (- 31099) 
=> (x 3 (FACT (- 3 1))) 

=> (#3 (FACT 2)) 

=> (e 3 CIF (we 2 6) 1 (& 2 (FACT Ce 2 1))))) 

=> (x 3 (x 2 (FACT (- 2:12))) 

=> (x 3 (a 2 (FACT 1))) 

=> (e 3 (a 2 CIF Ge 18) L (x L (FACT (~ 2 10000)) 
=> (x 3 (ew 2 Ce 1 (FACT (- 1 1099) 
a> (* 3 (ds 2 (a lb (FACT 6)))) 

=> (s 3 (x 2 (& 1 CIF (a 8 8) 1 (e 8 CRACT (- 8 1))9)))) 

a>  (& 3 (& 2 (& 11))) 

=> (x 3 (s 2:1)), 

“=> (s 3 2) 

=> § 

You will note that we have calculated (fact 3) by a process wherein each 
expression is replaced by an expression which is provably equivalent to it via 
an axiom or which is produced by application of a primitive function.
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Now, What About Iteration? 

Consider the "iterative" definition of FACT. Although it appears to be 
recursive, since it “calls itself", we will see that tt captures the essence 
of our intuitive notion of iteration. 

(OEF INE FACT 

(LAMBDA (N) 

(LABELS ((FACTL 

(LAMBDA (M ANS) 

(IF (= 1 8) ANS 

(FACTL (+ M 1) (me M ANS)))))) 

(FACTI N 1)))) 

Let us now compute (fact 3). 

e> (FACT 3) 
=>  (FACTL 3 1) 
e> (IF (2 38) 1 

(FACT! (- 3 1) (# 3 1))) 
=>  (FACTL (= 3.1) (#3 1)) 
e>  (FACTL 2 (e 3 1)) 
=> (FACTL 2 3) 
«> (IF (s 2 0) 3 

(FACTL (~ 2.1) (# 2 3))) 
=> (FACTL (- 2 1) ( 2 3)) 
=>  (FACTL 1 (se 2 3)) 
=>  (FACTL 1 6) 
=> (IF (« 18) 6 

(FACTL (= 1 1) (x 1 6))) 
=>  (FACTI (~ 1.1) (#1 6) 
=>  (FACTI @ (# 1 6)) 
e>  (FACTL 8 6) 
a> (IF (« 88) 6 

(FACTL (- 8 1) (s 0 6))) 
=> $ 

Notice that the expressions involved have a fixed maximum size independent of 
the argument to FACT! In fact, as Marvin Minsky pointed out, successive 

reductions produce a cycle of expressions which are identical except for the 

numerical quantities involved. Looking back, we may note by way of comparison 

that the recursive version caused creation of expressions proportional in size 

to the argument. This is why we think that this version of FACT is iterative 

rather than recursive. At each stage of the iterative version the “state” of 
the computation is summarized in two variables, the counter and the answer 

accumulator, while at each stage of the recursive version the "state" contains 
a chain of pieces each of which contains a component of the state. In the 
recursive version of FACT, for example, the state contains the sequence of 

multiplications to be performed upon return from the bottom. It is true that 

the iterative factorial also can produce expressions of arbitrary size, since
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the number of bits needed to express factorial of n grows with n; but this is 
a property of the numbers calculated by the function which is implemented in 
iterative style, and not of the iterative control structure itself. A 

recursive control structure inherently creates expressions of unbounded size 
as a function of the recursion depth, while an iterative control structure 

produces a cycle of equivalent expressions, and so the expressions are of 

approximately the same size no matter how many iteration steps are taken. 

This is the essence of the difference between the notions of iteration and 

recursion. Hewitt (MAC, p. 234] made a similar observation in passing, 

expressing the difference in terms of storage used in program execution rather 

than in terms of intermediate expressions produced by substitution semantics. 

Continuation Passing Recursion 

Remember the other way to compute factorials? 

(DEFINE FACT 

(LAMBOR (N C) 

CIF (es N 8) (C1) 

(FACT (- N 1) 

(LAMBOR (A) (C (x NADI) 

This looks iterative on the surface! but in fact it is recursive. Let's 

compute (FACT 3 ANSWER), where ANSWER is a continuation which is to receive 

the result of FACT applied to 3; that is, the last thing FACT should do is 
apply the continuation ANSWER to its result. 

=> (FACT 3 ANSWER) 
=> | (IF (= 3 0) (ANSHER 1) 

. (FACT (- 3 1) (LAMBDA (A) (ANSWER (x 3 A))))) 
=> (FACT (~ 3 1) (LAMBDA (A) (ANSWER (* 3 A)))) 

=> (FACT 2 (LAMBDA (A) (ANSWER (« 3 A)))) 
e> . CIF (ws 2.6) CCLAMBDA (A) (ANSHER (# 3A))) 1) 

| (FACT (- 2 1) 

Pa! (LAMBDA (A) 
: C(LAMBOA (A) CANSHER (% 3 AD?) 

(# 2.A)))) 
a> (FACT (- 2:1) 

(LAMBOR (A) 
(CLAMBOA (A) (ANSNER (« 3 A))) 

(x 2 A)))) 

=> (FACT 1. 

(LAMBDA (A) 

C(LAMBDA (A) (ANSWER («x 3 A))) 

(x 2 A))))
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s> 

s> 

s> 

=> 

a> 

4 

CIF (a 1 8) 

((LAMBOA (A) 

((LANBDA (A) (ANSWER (as 3 A))). 

(# 2 A))) 

1) 

(FACT (+ 1 1) 

(LAMBDA (A) 

((LAMBOA (A) 

CCLAMBOA (A) 

(ANSWER (x 3 A))) 

(x 2 AD)) 

(# 1 Ad)))) 

(FACT (= 1 1) 

(LAMBOR (A) 

(({LAMBDA (AD 

((LAMBDA (A) 

(ANSWER (s 3 AD)) 

(x 2 A))) 

(e 1 ADD) 

(FACT 8 

(LAMBDA (A) 

((LAMBDA (A) 

((LAMBDA (A) 

(ANSWER (* 3 A))) 

(x 2 ADD) 

(# 1 A)))) 

CIF (= 8 8) 

((LANBOA (A) 

((LAMBDA (A) 

C(LAMBOR (A) 

(ANSWER (¥ 3 A))) 

(a 2 AD)) 

(* 1 AD) 

1) 

(FACT (= @ 1) 

(LAMBDA (A) 

((LAMBDA (A) 

((LAMBOA (A) 

((LAMBOR (A) 

(ANSWER (« 3 A))) 

(s 2.A))) 

(x 1 Ad)) 

. (x 8 A))))) 

((LAMBDA (A) 

((LAMBOA (A) 

C(LAMBDA (A) 

(ANSWER (&% 3 A))) 

(s 2 A))) 

(# 1 A))) 

1)
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=> ((LAMBDA (A) 

((LAMBDA (A) 

(ANSWER (* 3 A))) 

(* 2 A))) 

(* 1 1)) 

=>. ((LAMBOA (A) 

((LAMNBOR (A) 

(ANSWER (& 3 A))) 

(x 2 A))) 

1) 

=> CCLANBOR (A) 

(ANSWER (x 3 A))) 

(x 2 1)) 

=> ((LANBOA (A) 

(ANSWER (x 3 A))) 

2) 

=> (ANSHER (a 3 2)) 

=> (ANSWER 6) Whew! 

Note that we have computed factorial of 3 (and are about to give this 
result to the continuation), but in the process no combination with FACT in 
the first position has ever been reduced except as the outermost expression. 
If we think of the computation in terms of evaluation rather than 
substitution, this means that we never returned a value from any application 

of the function FACT! It is always possible, if we are willing to specify 

explicitly what to do with the answer, to perform any calculation in this way: 

rather than reducing to its value, it reduces to an application of a 
continuation to its value (cf. [Fischer]). That is, in this continuation- 

passing programming style, a function always "returns" its result by “sending" 
it to another function. This is the key idea. 

We also note that by our previous observation, this program is 
essentially recursive in that the expressions produced as intermediate results 
of the substitution semantics grow to a size proportional to the depth. In 
fact, the same information is being stored in the nested continuations 
produced by this program as in the nested products produced by the traditional 

recursion -- what to do with the result. 

One might object that this FACT is not the same kind of object as the 
previous definition, since we can't use it as a function in the same manner. 

Note, however, that if we supply the continuation (LAMBDA (X) X), the 
resulting combination (FACT 3 (LAMBDA (X) X)) will reduce to 6, just as with 
traditional recursion. 

One might also object that we are using function values -- the 
primitives =, -, and * are functions which return values, for example. But 
this is just a property of the primitives; consider a new set of primitives 

z=, --, and ** which accept continuations (indeed, let == take two 
continuations: if the predicate is TRUE call the first, otherwise call the 

second). We can then define fact as follows:
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(DEFINE FACT 

(LAMBOA (N C) 

(en NO 

(LAMBDA © (C 1)) 

(LAMBDA () 

(-- Nl 

(LAMBDA (Mm) 

(FACT M (LAMBDA (A) (ex AN C))))990)) 

We can see here that no functional application returns a value in a 

computation of factorial in this situation. We believe that functional usage, 
where applicable (pun intended), is more perspicuous than continuation- 
passing. We shall therefore use functional primitives such as * rather than 
** wherever possible, keeping in mind that we could use ** instead if we 
wished.
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Section 4: Some Implementation Issues 

The key problem is efficiency. Although it is easy to build an 
inefficient interpreter which straightforwardly performs expression 

substitutions; such an interpreter performs much unnecessary copying of 
intermediate expressions. The standard solution to this problem is to use an 
auxiliary structure, called the environment, which represents a setjof virtual 
substitutions. Thus, when evaluating an expression of the form 

((LAMNBOR <vars> <body>) <args>) in environment € 

instead of reducing it by performing 

Subst [<args> <vars> <body>] 

we reduce it to 

<body> in environment &'sPairlis{<vars> <args>e E) 

where pairlis creates a new environment E' in which the <vars> are logically 

paired with (i.e. “bound to") the corresponding <args>*® (the precise meaning 
of <args>* will be explained presently), and in which any variables not in 
<vars> are bound as they were in E. 

When using environments, it is necessary to keep them straight. For 

example, the following expression should manage to evaluate to 7: 

CCCLAMBDA (X) (LAMBDA (Y) (+ X ¥))) 3) 4) 

A substitution interpreter would cause the free occurrence of x in the inner 
lambda expression to be replaced by 3 before applying that lambda expression 
to 4. An interpreter which uses environments must arrange for the expression 
(+ x.y) to be evaluated in an environment such that x is bound to 3 and y is 
bound to 4... This implies that when the inner lambda expression is applied to 
4, there must be associated with it an environment in which x is bound to 3. 
In order to solve this problem we introduce the notion of a closure [McCarthy] 
[Moses] which is a data structure containing a lambda expression, and an 

environment to be used when that lambda expression is applied to arguments. 

We will notate a closure using the beta construct (our own notation, but 
isomorphic to the LISP funarg construct) as follows: 

(BETA (LAMBDA <vars> <body>) <environmnent>) 

When a lambda expression is to be evaluated, because it was passed as an 

argument, it evaluates to a closure of. that lambda expression in the 
environment it is evaluated in (i.e., the environment it was passed from): 

(LAMBDA <vars> <body>») in environment €
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evaluates to 

(BETA (LAMBOA <vars> <body>) E) in environment € 

When a closure is to be applied to some arguments: 

((BETA (LAMBDA <vars> <body>) El) <args>) in environment €2 

this is performed by reducing the application expression to 

<body> in environment Pairlis{<vars> <args in E2> El) 

That is, any free variables in the closed lambda expression refer to the 

environment as of the time of closure (El), not as of the time of application 
(E2), whereas the arguments are evaluated in the application environment as 
expected. 

This notion of closure has gone by many other names in other contexts. 

In LISP, for example, such a closure has been traditionally known as a funarg. 

ALGOL has several related ideas. Every ALGOL procedure is, at the time of its 
invocation, essentially a “downward funarg". In addition, expressions which 
are passed by name instead of by value are closed through the use of 
mechanisms called thunks [Ingerman]. It turns out that an actor (other than a 
cell or a serializer) is also a closure. Hewitt [Smith and Hewitt] describes 
an actor as consisting of a script, which is code to be executed, and a set of 

acquaintances, which are other actors which it knows about. We contend that 

the script is in fact identical to the lambda expression in a closure, and 

that the set of acquaintances is in effect an environment. As an example, 

consider the following code for cons taken from [Smith and Hewitt] (cf. 
{Fischer ]}): 

{CONS = 

(a> (eA 2B) 

(CASES 

(a> FIRST? 

A) 

(a> REST? 

B) 
(g> LIST? 

YES)))) 

When the form (cons x y) is evaluated, the result is an (evaluated) cases 

statement, which is a receiver ready to accept a message such as "first?" or 
“rest?". This resulting receiver evidently knows about the actors x and y as 

being bound to the variables a and b; it is evidently a closure of the cases 

script plus a set of acquaintances which includes x and y (as well as "first?" 
and "rest?" and: "yes", for example; PLASMA considers such “constant, 
acquaintances" to be part of the set, whereas in SCHEME we might prefer to 
Consider them part of the script). Once we realize that it is a closure and 
nothing more, we can see easily how to express the same semantics in SCHEME: 

‘ 
! 

1 
{
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(DEFINE CONS 
(LAMBDA (A B) 

(LAMBDA (mM) 

(IF (EQ M *FIRST?) A 
(IF (EQ M REST?) B 
VIF (EQ M LIST?) *YES 

(ERROR * {UNRECOGNIZED MESSAGE - CONS| 
MH 
*WRNG-TYPE-ARG))))))) 

Note that we have used explicit eq tests on the incoming message rather than 
the implicit pattern-matching of the cases statement, but the underlying 
semantics of the approach are the same. 

There are several important consequences of closing every lambda | 

expression in the environment from which it is passed (i.e., in its “lexical*® 
or “static” environment). First, the axioms of lambda calculus are 

automatically preserved. Thus, referential transparency is enforced. This in 

turn implies that there are no "fluid" variable bindings (as there are in 
Standard stack implementations of LISP such as MacLISP). Second, the upward 
funarg problem [Moses] requires that the environment structure be potentially 
tree-like. Finally, the environment at any point in a computation can never 
be deeper than the lexical depth of the expression being evaluated at that 
time; i.e., the environment contains bindings only for variables bound in 

lambdas lexically surrounding the expression being evaluated. This is true 

even if recursive functions are involved. It follows that if list structures 

are used to implement environments, the time to look up a variable is 
proportional only to the lexical distance from the reference to the binding 
and not to the depth of recursion or any other dynamic parameter. Therefore 
it is not necessarily as expensive as many people have been led to believe. 

Furthermore, it iS not even necessary to scan the environment for the 
variable, since its value must be in a known position relative to the top of 
the environment structure; this position can be computed by a compiler at 

compile time on the basis of lexical scope. The tree-like structure of an 
environment prevents one from merely indexing into the it, however; it is 
necessary to cdr down it. (Some ALGOL compilers use a similar technique 
involving base registers pointing to sets of variables for each level of block 

nesting; it is necessary to determine the base pointer for the block desired 
for a variable reference, but then the variable is at a known offset from the 
base address.) It also follows that an iterative programming style will lead 
to no net accumulation of environment structures in the interpreter. The 
recursive. style, with or without continuation-passing, will lead to 

accumulation of environment structures as a function of the recursion depth, 

not because any environment becomes arbitrarily deep, but rather because at 

each level of recursion it is necessary to save the environment at that point. 

It is saved by the interpreter in the case of traditional recursion, so that 
computation can continue in the correct environment on return from the 
recursive call; it is saved as part of the continuation closure in! 
continuation-passing. | : 

Another problem is concerned with control. This is a consequence of the
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functional interpretation of the lambda calculus, i.e. the view that a 

"axpression" (combination) represents a value to be "returned" (to replace the 
combination) to its "caller" (the process evaluating the combination 
containing the original one). The interpreter must provide for correctly 

resuming the caller when the callee has returned its value. The state of the 

Computation at the time of the call must therefore be preserved. We see, 
then, that part of the state of the computation must be (a pointer to) the 

preserved state of its caller; we will call this component of the state the 

clink [McDermott and Sussman] [Bobrow and Wegbreit]. Just before the 
evaluation of a subexpression, the state of the current computation, including 
the clink, must be gathered together into a single data structure, which we 
will call a frame; the clink is then altered to point to this new frame. The 
evaluation of the subexpression then returns by restoring the state of the 

process from the current clink. Note that the value of the subexpression had 
better not be part of the state, for otherwise it would be lost by the state 

restoration. Thus, we only build a new frame if further computation would 

result in losing information which might be necessary. This only occurs if we 
must somehow return to that state. This in turn can only occur if we must 
evaluate an expression whose value must be obtained in order to continue 
computation in the current state. 

This implies that no frame need be created in order to apply a lambda 
expression to its arguments. This in turn implies that the iterative and 

continuation-passing styles lead to no net creation of frames, because they 
are implemented only in terms of explicit lambda applications, whereas the 

recursive style leads to the creation of one net frame per level of recursive 
depth, because the recursive invocation involves the evaluation of a 

expression containing the recursive lambda application as a subexpression. 
A clink in a.lambda calculus-based interpreter is in fact equivalent to 

a low-level default continuation as created by the, PLASMA interpreter. Such a 
continuation is a (closed) lambda expression of one argument whose script will 
carry on the computation after receiving the value of the subexpression. The 
clink mechanism is therefore not. necessary, if we are willing to transform all 
our programs into pure continuation-passing style. We could do this 
explicitly, by requiring the user to write his programs in this form; or 
implicitly, as PLASMA does, by creating these one-argument continuations as 

necessary, passing them as hidden extra arguments to lambda expressions which 

behave like functions. On! the other hand, we may think of a clink as a highly 
optimized continuation, whose "script" is that carefully coded portion of the 
lambda calculus interpreter which restores the frame and then carries on. We 
find this notion useful in defining a primitive, CATCH (named for the CATCH 
construct in MacLISP. [Moon]), for "hairy control structure", similar to 
Reynolds’ ESCAPE operator [Reynolds], which makes these low-level | 
continuations available to the user. Note that PLASMA has a similar facility 
for getting hold of the low-level continuations, namely the “ss>" receiver 
cpnstruct. : | 

Another problem for the implementor of an interpreter of a lambda 

calculus based language is the order in which to perform reductions, There 

are two standard orders of evaluation (and several other semi-standard ones, 
which we will not consider here). The first is Normal Order, which
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corresponds roughly to ALGOL's “call by name", and the second is Applicative 
Order, which corresponds roughly to ALGOL's “call by value" or to LISP 
functional application. 

Under a call-by-name implementation, the <args>* mentioned above are in 

fact the actual argument expressions, each paired with the environment E. The 
evaluator has two additional rules: 
(1) when a variable x is to be evaluated in environment El, then its 

associated expression-environment pair [A,E2] (which is equivalent to an ALGOL 
thunk) is looked up in El, and then A is evaluated in EZ. 
(2) when a "primitive operator" is to be applied, its arguments must be 
evaluated at. that time, and then the operator applied in a call-by-value 
manner. 

Under a call-by-value implementation, the <args>* are the values of the 
argument expressions; i.e., the argument expressions are evaluated in 

environment E, and only then is the lambda expression applied. Note that this 
leads to trouble in defining conditionals. Under call-by-name one may define 

predicates to return (LAMBDA (X Y) X) for TRUE and (LAMBDA (X Y) Y) for FALSE, 
and then one may simply write 

({s AB) <do this if TRUE> <do this if FALSE>) 

This trick depends implicitly on the order of evaluation. It will not work 
under call-by-value, nor in general under any other reductive order except 
Normal Order. It is therefore necessary to introduce a special primitive 
operator (such as "if") which is applied in a call-by-name manner. This leads 
us to the interesting conclusion that a practical lambda calculus interpreter 
cannot be purely call-by-name or call-by-value; it is necessary to have at 

least a little of each. 

There is a fundamental problem, however, with using Normal Order 

evaluation in a lambda calculus interpreter, which is brought out by the 
iterative programming style. We already know that no net frames are created 
by iterative programs, and. that no net environment structures are created 

either. The problem is that under a call-by-name implementation there may be 
a net thunk structure created proportional in size to the number of iteration 
steps. This problem is inherent in Normal Order, because Normal Order 

substitution semantics exhibit the same phenomenon of increasing expression 

size. Therefore iteration cannot be effectively modeled in a call-by-name 

interpreter. An alternative view is that a call-by-name interpreter remembers 

more than is logically necessary to perform the computations indicated by the 
original expressions. This is indicated by the fact that the Applicative 
Order substitution semantics lead to.expressions of fixed maximum size 
independent of the number of iteration steps. 

It turns out that this conflict between call-by-name and iteration is 
resolved by the use of continuation-passing. If we use a pure continuation- 
passing programming style, then Normal Order and Applicative Order are the 
same order! In pure continuation-passing no combination is ever a 
subcombination of another combination. (This is the justification for the 

fact mentioned above that no clinks are needed if pure continuation-passing 

style is used.) Thus, if we wish to model iteration in pure lambda calculus 

without even an if primitive, we can use Normal Order substitutions and
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express the iteration in the continuation-passing style. 
Under any reductive order, whether Normal Order, Applicative Order, or 

any other order, it is in practice convenient to introduce a means of 
terminating the evaluation process on a given form; in order to do this we 

introduce three different and equally useful notions. The first is the 

primitive operator such as +; the evaluator can apply such an operator 

directly, without substituting a lambda expression for the operator and 

reducing the resulting form. The second is the self-evaluating constant; this 
is used for primitive objects such as numbers, which effectively behave as if 

always “bound to themselves" in any environment. The third is the quoting 

function, which protects its argument from reductions so that it is returned 

as is; this is used for treating forms as data in the usual LISP manner. 
These three ideas are not logically necessary, since the evaluation 

process will (eventually) terminate when no reductions can be made, but they 
are a great convenience for introducing various functions and data into the 
lambda calculus. Note too that some are easily defined in terms of the 

others; for example, instead of letting 3 be a self-evaluating constant, we 

could let 3 be a primitive operator of no arguments which returned 3, or we 
could merely quote it; similarly, instead of quoting forms we could let forms 

be a self-evaluating data type, as in MDL [Galley and Pfister] (better known 

as MUDDLE), written with different parentheses. Because, as we have said, 

these constructs are all strictly for convenience, we will not strive for any 
kind of minimality, but will continue to use all three notions in.our 
interpreter, as we already have in our examples. We provide an interface so 

that all MacLISP subrs may be used as primitive operators; we define numbers 
to be self-evaluating; and we will use QUOTE to quote forms as in LISP (and 
thus we may use the “'" character as an abbreviation). 

One final issue which the implementor of a lambda calculus based 

interpreter should consider is that of extensions to the language, such as 

primitives for side effects, multiprocessing, and synchronization of 

processes. Note that these are ideas which are very hard, if not impossible, 
to model using the substitution semantics of the lambda calculus, but which 
are easily incorporated in other semantic models, including the environment 
interpreter and, perhaps more notably, the ACTORS model [Greif and Hewitt]. 
The fundamental problem with modelling such concepts using substitution 
semantics is that substitution produces copies of expressions, and so cannot 

model the notion of sharing very well. In an interpreter which uses 

environments, all instances of a variable scoped in a given environment refer 

to the same virtual substitution contained in that environment, and so may be 

thought of as sharing a value cell in that environment. We can take advantage 
of this sharing by introducing a primitive operator which modifies the 
contents of a value cell; since all occurrences refer to the same value cell, 
changing the contents of that value cell will change the result of future 
references to that value cell (i.e., occurrences of the variable which invoke 
the virtual substitution mechanism). Such a primitive operator would then be 
similar to the SET function of LISP, or the := of ALGOL. We include such an 
operator, ASET, in our interpreter. 

Introducing multiprocessing into the interpreter is fairly 

straightforward; all that is necessary is to introduce a mechanism for time-
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Slicing the interpreter among several processes. One can even model this in 
substitution semantics by supposing that there can be more than one 
expression, and at each step an expression is randomly chosen to perform a 

reduction within. (On the other hand, synchronizing of the processes is very 
hard to model using substitution semantics! ) 

Since our value cells effectively solve the readers and writers problem 
(i.e. reads and writes of variables are indivisible) no more than our side 
effect primitive is necessary to synchronize our processes [Dijkstra] [Knuth] 
[Lamport]. However, the techniques for achieving synchronization using only 

$= are quite cumbersome and opaque.. It behooves the implementor to make 

things easier for the user by introducing a more tractable synchronization 
primitive (e.g. P+V or monitors or path expressions or ...). Machine language 
programmers have long known that the easiest way to synchronize processes is 
to turn off the scheduling clock during the execution of critical code. We 
have introduced such a primitive, EVALUATE! UNINTERRUPTIBLY, (which is a sort 
of “over-anxious serializer", because it locks out the whole world) into our 

interpreter.
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Section 5: The Implementation of the Interpreter 

Here we present a real live SCHEME interpreter. This particular version 
was written primarily for expository purposes; it works, but not as 
efficiently as possible. The "production version" of SCHEME is coded somewhat 
more intricately, and runs about twice as fast as the interpreter presented 

below. 

The basic idea behind the implementation is think machine language. In 

particular, we must not use recursion in the implementation language to 

implement recursion in the language being interpreted. This is a crucial 
mistake which has screwed many language implementations (e.g. Micro-PLANNER 
[Sussman]). The reason for this is that if the implementation language does 

not support certain kinds of control structures, then we will not be able to 

effectively interpret them. Thus, for example, if the control frame structure 

in the implementation language is constrained to be stack-like, then modelling 
more general control structures in the interpreted language will be very 
difficult unless we divorce ourselves from the constrained structures at the 
outset. 

It will be convenient to think of an implementation machine which has 
certain operations, which are "micro-coded" in LISP; these are used to 

operate on various "registers", which are represented as free LISP variables. 
These registers are: 

AK EXP 

The expression currently being evaluated. 

mXENVAX 

A pointer to the environment in which to evaluate EXP. 

*xCLINK** 
_A pointer to the frame for the computation of which. the current one is a 

subcomputation. . | . 

xKPCKK 

The “program counter". As each "instruction" is executed, it updates 
KKPCKX to point to the next instruction to be executed. 

RRVALHX 

The returned value of a subcomputation. This register is not saved and 
restored in **CLINK** frames; in fact, its sole purpose is to pass Ss values back 

safely across the restoration of a frame. 

MRUNEVLIS®®, MEVLIS*™ 
7 These are utility registers which are part of the state of the 
interpreter (they are saved in **CLINK** frames). They are used primarily for 
evaluation of components of combinations, but may be used for other purposes 
also. i 

i 
!
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xxTEMR 

A super-temporary register, used for random purposes, and not saved in 
**CLINK**® frames or across interrupts. It therefore may not be used to pass 
information between "instructions" of the "machine", and so is best thought of 
as an internal hardware register. 

*XQUEUEX* 

A list of all processes other than the one currently being interpreted. 

RRTICKR® 
A magic register which a “hardware clock" sets to T every so often, used 

to drive the scheduler. 

**PROCESS** 
This register always contains the name of the process currently swapped 

in and running.
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The following declarations and macros are present only to make the 

compiler happy, and to make the version number of the SCHEME implementation 

available in the global variable VERSION. 

(DECLARE (SPECIAL wxEXPax xxUNEVLIS«s xsENVex seEVLISxe saPCsx saCLINKae seVALex aeTEMos 

#eTOPsx «eQUEUEss 2%TICKex xePROCESSes ssQUANTUMNss 

VERSION LISPVERSION)) 

(DEFUN VERSION MACRO (X) 

(COND (COMPILER-STATE (LIST *QUOTE (STATUS UREAD))) 

(T (RPLACA X QUOTE) 

(RPLACD X (LIST VERSION) ) 

(LIST *QUOTE VERSION)))) 

(OECLARE (READ) 

(SETQ VERSION ((LAMBOA (COMPILER-STATE) (VERSION)) T)) 

The function SCHEME initializes the system driver. The two SETQ's 
merely set up version numbers. The top level loop itself is written in 
SCHEME, and is a LABELS which binds the function **TOP** to be a read-eval- 

print loop. The LISP global variable **TOP** is initialized to the closure of 
the **TOP** function for convenience and accessibility to user-defined 
functions. 

(DEFUN SCHENE () 

(SETQ VERSION (VERSION) LISPVERSION (STATUS LISPVERSION)) 

(TERPRI) 7 oof L 

(PRINC ?|This is SCHEME |) 

(PRINC VERSION) | 
(PRINC *] running in LISP |) 

(PRINC LISPVERSIGN) 

(SETQ ssENVex NIL. #¢QUEUExs NIL 

#ePROCESS«% (CREATE!PROCESS ° (aeTOPsa ’ (SCHEME -- Toplevel|))) 

(SWAP INPROCESS) 

(ALARMCLOCK RUNTIME szQURNTUMsx) 

(MLOOP)) 

(SETQ aeTOPsx 

*(BETA (LAMBDA (xaxMESSAGEs«) 

(LABELS ((sxTOPlsx 

(LAMBOAR (axIGNORELxs «eIGNORE2ss s«IGNORE3ss) 

(ssTOPlax (TERPRI) (PRINC {==> |) 

(PRINT (SET ’* (EVALUATE (READ)))))))) 

(#eTOPlex (TERPRI) (PRINC xsMESSAGEss) NIL))) 

. 

NIL)) 

. When the LISP alarmclock tick occurs, the global register **TICK** is 
Set to T. **QUANTUM**, the amount of runtime between ticks, is measured in
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micro-seconds. 

(DEFUN SETTICK (X) (SETQ s#TICKee T)) 

(SETQ +«QUANTUM+x 1908000. ALARMCLOCK *SETTICK) 

MLOOP is the main loop of the interpreter. It may be thought of as the 
instruction dispatch in the micro-code of the implementation machine. If an 

alarmclock tick has occurred, and interrupts are allowed, then the scheduler 

is called to switch processes. Otherwise the “instruction” specified by 
x*PCXX is executed via FASTCALL. 

(DEFUN MLOOP () 

(DO (CseTICKes NIL)? (NIL) 300 forever 

(AND #eTICKax (ALLOW) (SCHEDULE)) 

(FASTCALL sePCas))) 

FASTCALL is essentially a FUNCALL optimized for compiled “microcode”. 
Note the way it pulls the SUBR property to the front of the property list if 
possible for speed. 

(QEFUN FASTCALL (ATSYM) 

(COND ((EQ (CAR (COR ATSYM)) *SUBR) 

(SUBRCALL NIL (CADR (COR ATSYN)))) 

(T ((LAMBOR (SUBR) 

(COND (SUBR (REMPROP ATSYM ’SUBR) 

(PUTPROP ATSYM SUBR ’SUBR) 

(SUBRCALL NIL SUBR)) 

'(T (FUNCALL ATSYM)))) 

(GET ATSYM ’SUBR))))) 

Interrupts are allowed unless the variable *ALLOW* is bound to NIL in 
the current environment. This is used to implement the 
EVALUATE! UNINTERRUPTIBLY primitive. 

(DEFUN ALLOW. «) 
(CLAMBDA (VCELL) 

(COND ,(VCELL (CADR VCELL)) 

(T T))) 

(ASSQ 'sALLOWs xsxENVex))) 

Next comes the scheduler. It is apparently interrupt-driven, but in 
fact is not, The key here is to think microcode! There is one place in the 
microcoded instruction interpretation loop which checks to see if there is an 
interrupt pending; in our "machine", this occurs in MLOOP, where **TICK**® is 
checked on every. cycle. This is another case where we must beware of using 
too much of the power of the host language; just as we must avoid using host 

recursion directly to implement recursion, so we must avoid using host 
interrupts directly to implement interrupts. We may not modify any register 

during a host language interrupt, except one (such as **TICK**) which is
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specifically intended to signal interrupts. Thus, if we were to add an 

interrupt character facility to SCHEME similar to that in MacLISP [Moon], the 
MacLISP interrupt character function would merely set a register like **TICK** 
and dismiss; MLOOP would eventually notice that this register had changed and 
dispatch to the interrupt handler. All this implies that the "microcode" for 
the interrupt handlers does not itself contain critical code that must be 

protected from host language interrupts. 

When the scheduler is invoked, if there is another process waiting on 
the process queue, then the current process is swapped out and put on the end 

of the queue, and a new process swapped in from the front of the queue. The 

process stored on the queue consists of an atom which has the current frame 

and **VAL**® register on its property list. Note that the **TEM** register is 
not saved, and so cannot be used to pass information between instructions. 

(DEFUN SCHEDULE ©) 

(COND (#xQUEVE ss 

(SWAPOUTPROCESS) 

(NCONC ssQUEVEss (LIST #sPROCESS«x)) 

(SETQ xe#PROCESSex (CAR xxQUEUEs«) 

SeQUEUEse (COR «xsQUEUEss)) 

(SWAP INPROCESS) )) 

(SETQ eeTICKse NIL) 

(ALARMCLOCK "RUNTIME «sQUANTUMNs%)) 

(DEFUN SHAPOUTPROCESS () 

C(LAMBDA (ssCLINKss) 

(PUTPROP «sPROCESSsx (SAVEUP xePCxx) ’CLINK) 

(PUTPROP xaPROCESSss saVALse ’VAL)) 

#eCL INKx#) ) 

(OEFUN SWAPINPROCESS «) 

(SETQ saCLINKax (CET asPROCESSex 'CLINK) 
*eVALeex (CET aPROCESSss 'VAL)) 

- (RESTORE) ) 

Primitive operators are LISP functions, i.e. SUBRs, EXPRs, and LSUBRs. 

CEFN pRinop (X) (GETL X ? (SUBR EXPR LSUBR))) 

- SAVEUP conses a new frame onto the *ECLINK®® Structure. It saves the 
Values of all important registers. It takes one argument, RETAG, which is the 

instruction to return to when the computation is restored. 

(OEFUN SAVEUP (RETAG) 

(SETQ xaCLINKes (LIST seEXPsx xsUNEVLISee sxENVax ssEVLISee RETAG «xeCLINKsx) )) 

RESTORE restores a computation from the CLINK. The use of TEMP is a 
kludge to optimize the compilation of the "microcode".
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(DEFUN RESTORE ©) 

(PROG (TEMP) 

(SETQ TEMP (OR seCLINKss 

(ERROR *|PROCESS RAN OUT ~ RESTORE| 

esEXPxs 

*FARIL-ACT)) 

exEXPxe (CAR TEMP) 

TEMP (COR TEMP) 

esUNEVLIS#« (CAR TEMP) 

TEMP (COR TEMP) 

asENVex (CAR TEMP) 

TEMP (COR TEMP) 

#sEVLISas (CAR TEMP) 

TEMP (COR TEMP) 

#3PCsx (CAR TEMP) 

TEMP (COR TEMP) 

esCLINKesx (CAR TENP)))) 

This is the central function of the SCHEME interpreter. This 
“instruction” expects **EXP** to contain an expression to evaluate, and 

RKENV** to contain the environment for the evaluation. The fact that we have 

arrived here indicates that **PC** contains 'AEVAL, and so we need not change 
eAPCX*® if the next instruction is also to be AEVAL. Besides the obvious 
objects likes numbers, identifiers, LAMBDA expressions, and BETA expressions 
(closures), there are also several other objects of interest. There are 

primitive operators (LISP functions); AINTs (which are to SCHEME as FSUBRs 
like COND are to LISP}; and AMACROs, which are used to implement DO, AND, OR, 
COND, BLOCK, etc.
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(DEFUN AEVAL © 

(COND (CATON xsEXP2x) 

(COND ((NUMBERP ssEXPx) 

(SETQ seVAL sx xsEXPae) 

(RESTORE) ) 

C(PRIMOP axEXP xx) 

(SETQ seVALaxx saEXP ox) 

(RESTORE) ) 

CCSETQ xaTEMax (ASSQ eeEXPae xsENVex) ) 

(SETQ saVALsex (CADR sxTEMxe)) 

(RESTORE) ) 

(T (SETQ xaVALse (SYMEVAL *%EXPe«)) 

(RESTORE) ))) 

CCATON (CAR aeEXPax)) 

(COND ({SETQ #sTEMss (GET (CAR seEXPae) ’AINT)) 

(SETQ xePCax sx TENxx) ) 

((EQ (CAR xsEXPex) *LANBDA) 

(SETQ sxVALex (LIST *BETA ssEXPe% xeENVas) ) 

(RESTORE) ) ; 

C(SETQ xxTEMxx (GET (CAR ssEXPxu) *AMACRO)) 

(SETO ##EXPax (FUNCALL saTEMex xeEXPex) )) 

(T (SETQ ssEVLISe% NIL 

ssUNEVLISae ssEXPex 

#aPCsx EVLIS)))) 

C(EQ (CAAR =xEXPssx) *LANBOA) 

(SETQ xsxEVLISsx (LIST (CAR axEXPas)) 

eeUNEVLISxs (COR xeEXPex) 

wePCae ’EVLIS)) 

(T (SETQ xsEVLISs« NIL 

@SUNEVLISes xeEXPxx 

#aPCae 'EVLIS)))) 

We come to EVLIS when a combination is encountered. The intention is to 
evaluate each component of the combination and then apply the resulting 
function to the resulting arguments... We use the register **UNEVLIS** to hold 
the list of components yet to be evaluated, and the register **EVLIS** to hold 
the list of evaluated components. We assume that these have been set up by 
AEVAL. Note that in the case of an explicit LAMBDA expression in the CAR of a 
combination **UNEVLIS** is initialized to be the list of unevaluated arguments 
and **EVLIS** is initialized to be the list containing the lambda expression. 

EVLIS checks to see if there remain any more components yet to be 

evaluated. If not, it applies the function, Note that the primitive 
operators ane applied using the LISP function APPLY. Note also how a BETA 
expression controls the environment in which its body is to be evaluated. 

DELTA expressions are CATCH tags (see CATCH). It is interesting that the 
evaluated components are collected in the reverse order from that which we 
need them in, and so we must reverse the list before applying the function. 
Do you see why we must not use side effects (e.g. the NREVERSE function) to 
reverse the list? Think about CATCH! 

If there remain components yet to be evaluated, EVLIS saves up a frame,
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so that execution can be resumed at EVLIS] when the evaluation of the 
component returns with a value. It then sets up **EXP** to point to the 
component to be evaluated and dispatches to AEVAL. 

(DEFUN EVLIS © 

(COND ((NULL xsUNEVLISs=) 
(SETQ weEVLISss (REVERSE «xEVLISe«)) 

(COND (CATOM (CAR seEVLIS#x)) 

(SETQ asVALex (APPLY (CAR xeEVLIS#s) (COR s#EVLISes))) 

(RESTORE) ) 

((EQ (CAAR xsEVLISsas) *LAMBOA) 

(SETQ xsENVex (PAIRLIS (CADAR s#EVLISes) (COR s#EVLISes) «*ENVax) 

@eEXPax (CRODAR s#EVLISe«) 

suPCex ’REVAL)) 

(CEQ (CAAR xsEVLISss) ’BETA) 

(SETQ xsENVax (PRIRLIS (CAOR (CADAR seEVLISe#s)) 

(COR szEVLISss) 

(CADDAR xeEVLIS#s) ) 

sxEXPxx (CADOR (CADAR x#EVLTS ex) ) 

wuPCxx 'REVAL)) 

(CEQ (CAAR +3EVLISss) ’DELTA) 

(SETQ zsCLINKss (CADAR ssEVLISe«)) 

(RESTORE) ) 

(T (ERROR ’|BAD FUNCTION - EVARGLIST| ##EXPse °FAIL-ACT)))) 

(T (SAVEUP 'EVLIS1) 

(SETQ ssEXPss (CAR xsUNEVLISs«) 

w&PCxe 'AEVAL)))) 

The purpose of, EVLIS1 is to gobble up the value, passed in the **VAL*" 
register, of the subexpression just evaluated. It saves this value on the 
list in the **EVLIS** register, pops off the unevaluated subexpression from 
the **UNEVLIS** register, and dispatches back to EVLIS. 

(DEFUN EVLIS1 () 

(SETQ ssEVLISex (CONS aaVALes aeEVLISss) 

#eUNEVLISse (COR x#UNEVLIS#s) 

xaPCax *EVLIS)) 

Here is the code for the various AINTs. On arrival at the instruction 
for an AINT, **EXP** contains the expression whose functional position 
contains the name of the AINT. None of the arguments have been evaluated, and 
no new control frame has been created. Note that each AINT is defined by the 
presence of .an AINT property on the property list of the LISP atom which is 
its name. The value of this property is the LISP function which is the first 

“instruction" of the AINT. 

EVALUATE is similar to the LISP function EVAL; it evaluates its 
argument, which should result in a s-expression, which is then fed back into 
the SCHEME expression evaluator (AEVAL).
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(DEFPROP EVALUATE EVALUATE AINT) 

(OEFUN EVALUATE () 

(SAVEUP * EVALUATE 1) 

(SETQ seEXPes (CADR xsEXPxx) 

xePCae REVAL) ) 

(DEFUN EVALUATEL © 
(SETQ ssEXPas xeVAL45 

«ePCs« "REVAL)) 

IF evaluates its first argument, with a return address of IFl. IFl 
examines the resulting **VAL**, and gives either the second or third argument 
to AEVAL depending on whether the **VAL** was non-NIL or NIL. 

(DEFPROP IF IF AINT) 

(OEFUN IF () | 
(SAVEUP °IF1) 

(SETQ esEXPse (CADR seEXPex) 

*¢PCee 'AEVAL)) 

(DEFUN IF1L 

(COND (xeVALex (SETQ «sEXPxe (CADOR seEXPxx))) 

(T (SETQ asEXPsxs (CADOOR xeEXPxs)))) 

(SETQ xePCse *AEVAL)) 

As it was in the beginning, is now, and ever shall be: QUOTE without 
end. (Amen, amen.) . 

(DEFPROP QUOTE AQUOTE RINT) 

(OEFUN AQUOTE () 

(SETQ ssVALas (CAOR «sEXPax)) 

(RESTORE) ) 

LABELS merely feeds its second argument to AEVAL after constructing a 

fiendishly clever environment structure. This is done in two stages: first 
the skeleton of the structure is created, with null environments in the 
closures of the bound functions; next the created environment is clobbered 
into each of the closures. 
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(OEFPROP LABELS LABELS AINT) 

(OEFUN LABELS © 

(SETQ sxTEMae (MAPCAR ’ (LAMBOA (DEF) 

(LIST (CAR DEF) 

(LIST ’BETA (CAOR DEF) NIL))) 

(CADR #2EXPax))) 

(MAPC > (LAMBOA (VC) (RPLACA (COOADR VC) xeTENee)) se TEMex) 

(SETQ «sENVae (NCONC soTENxs esENVee) 

eeEXPax (CADOR xeEXPax) 

wePCxex "REVAL)) 

We now come to the multiprocess primitives. 
CREATE! PROCESS temporarily creates a new set of machine registers (by 

the lambda-binding mechanism of the host language), establishes the new 
process in those registers, swaps it out, and returns the new process id; 
returning causes the old machine registers to be restored. 

(DEFUN CREATEIPROCESS (EXP) 

CCLAMBDA (esPROCESSax sxEXPae seENVae seUNEVLISae seEVLISes aePCos xeCLINKse x¢VAL se) 

(SWAPOUTPROCESS) : 

#ePROCESSe«) 

(GENSYM) 

EXP 

seENVex 

NIL 

NIL 

* REVAL 

(LIST NIL NIL NIL NIL ’ TERMINATE NIL) 

NIL)) 

(DEFUN START!PROCESS (P) 

(COND ((OR (NOT (ATOM P)) (NOT (GET P *CLINK))) 

(ERROR ’|BAD PROCESS ~~ STARTIPROCESS| ssEXPae ’FAIL-ACT))) 

(OR (EQ P sePROCESSax) (MENQ P xsQUEVEss) 

' (SETQ *eQUEUExs (NCONC axQUEVEss (LIST P)))) 

P) 

(DEFUN STOP!IPROCESS (P) 
(COND ((MENQ P seQUEUEs#) 

(SETQ seQUEVEsx (DELQ P sxQUEVEs«))) 

((EQ P sePROCESSe%) (TERMINATE) )) 
P) goof | 

TERMINATE is an internal microcode routine which terminates the current 
process. If the current process is the only one, then all processes have been 

stopped, and so a new SCHEME top level is created; otherwise TERMINATE pulls 
the next process off the scheduler queue and swaps it in. Note that we cannot 
use SWAPINPROCESS because a RESTORE will happen in EVLIS as soon as TERMINATE 
completes (this is a very deep global property of the interpreter, and a fine
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source of bugs; much care is required). 

(DEFUN TERMINATE () 

(COND ((NULL =2QUEUEs=) 

(SETQ =#PROCESS«« 

(CREATE!PROCESS ° (asTOPax ’|SCHEME -- QUEUEOUT|)))) 

(T (SETQ «#PROCESSxs (CAR #sQUEUEss) 

esQUEVExs (COR seQUEVEse)))) 

(SETQ seCLINKssx (GET ssPROCESSss ’CLINK)) 

(SETQ seVALsx (CET sPROCESSss *VAL)) 

* TERNINATE-VALUE) 

EVALUATE! UNINTERRUPTIBLY merely binds the variable *ALLOW* to NIL, and 

then evaluates its argument. This is why this primitive follows the scoping 
rules for variables! 

(DEFPROP EVALUATE! UNINTERRUPTIBLY EVALUATE !UNINTERRUPTIBLY AINT) 

(DEFUN EVALUATE! UNINTERRUPTIBLY () 

(SETQ «sENVex (CONS (LIST 'sALLOWs NIL) ssENVas) 

aeEXPas (CADR «sEXPsx) 

*uPCxe 'REVAL)) 

DEFINE closes the function to be defined in the null environment, and 

installs the closure in the LISP value cell. 

(DEFPROP DEFINE DEFINE AINT) 

(OEFUN DEFINE 0 

ASET (CAOR seEXPxx) (LIST *BETA (CADOR xsEXPxe) NIL)) 

(SETQ s%VALsx (CADR xsxEXPsx)) 

(RESTORE) ) 

ASET looks up the specified variable in the current environment, and 

clobbers the value cell in the environment with the new value. If the 
variable is not bound in the current environment, the LISP value cell is set. 
Note that ASET does not need to be an AINT, since it does not fool with order 
of evaluation; all it needs is access to the "machine register" **ENV**, 

(OEFUN ASET (VAR VALU) 

(SETQ saxTEMsx (ASSO VAR. aENVaw) ) 

(COND (apTEMex (RPLACA (COR wxTENes) VALU)) 
(T (SET VAR VALU))) 

VALU) 

. CATCH binds the tag variable to a DELTA expression which contains the 

current CLINK. When AEVAL applies such an expression as a function (of one 
argument), it makes the **CLINK** in the DELTA expression be the **CLINK**, 

places the value of the argument in **VAL**, and does a RESTORE. The effect 
is to return from the CATCH expression ‘with the argument to the DELTA
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expression as its value (can you see why?). 

(DEFPROP CATCH ACATCH AINT) 

(DEFUN ACATCH () 

(SETQ sxENVex (CONS (LIST (CADR usEXPae) (LIST 'OELTA eeCLINKex)) asENVex) 

exEXPee (CADDR «sEXPxx) 

xePCse 'REVAL)) 

PAIRLIS is as in the LISP 1.5 Programmer's Manual [McCarthy]. 

(DEFUN PAIRLIS (X Y 2) 

(0 (Cl X (COR 1D) 

(J ¥ (COR J)) 

(L 2 (CONS (LIST (CAR 1) (CAR J)) L))) 

CCAND (NULL T) (NULL J)) L) 

CAND (OR (NULL 1) (NULL J)) 

(ERROR ’ |WRONG NUMBER OF ARGUMENTS - PAIRLIS| 

*eEXP xx 

*WRNG-NO-ARGS)))) 

AMACROs are fairly complicated beasties, and have very little to do with 
the basic issues of the implementation of SCHEME per se, so the code for them 

will not be given here. AMACROs behave almost exactly like MacLISP macros 
[Moon]. 

This is the end of the SCHEME interpreter!
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