
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo 379 November 1976

LAMBDA

THE ULTIMATE DECLARATIVE

by

Guy Lewis Steele Jr. *

Abstract:

In this paper, a sequel to LAMBDA: The Ultimate Imperative, a new

view of LAMBDA as a renaming operator is presented and contrasted with the

usual functional view taken by LISP. This view, combined with the view of
function invocation as a kind of generalized GOTO, leads to several new
insights into the nature of the LISP evaluation mechanism and the symmetry
between form and function, evaluation and application, and control and
environment. It also complements Hewitt's actors theory nicely, explaining
the intent of environment manipulation as cleanly, generally, and intuitively
as the actors theory explains control structures. The relationship between
functional and continuation-passing styles of programming is also clarified.

This view of LAMBDA leads directly to a number of specific techniques
for use by an optimizing compiler:
(1) Temporary locations and user-declared variables may be allocated in a

uniform manner.
(2) Procedurally defined data structures may compile into code as good as

' would be expected for data defined by the more usual declarative means.

(3) Lambda-calculus-theoretic models of such constructs as GOTO, DO loops,
call-by-name, etc. may be used directly as macros, the expansion of which

may then compile into code as good as that produced by compilers which are

designed especially to handle GOTO, DO, etc. .

The necessary characteristics of such a compiler designed according to this

philosophy are discussed. Such a compiler is to be built in the near future

-asS a testing ground for these ideas.

Keywords: environments, lambda-calculus, procedurally defined data, data
types, optimizing compilers, control structures, function invocation,
temporary variables, continuation passing, actors, lexical scoping,
dynamic binding

This report describes research done at the Artificial Intelligence Laboratory

of the Massachusetts Institute of Technology. Support for the laboratory's

artificial intelligence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N0Q0014-75-C-0643.

x NSF Fellow

Contents

1. A Different View of LAMBDA 1

1.1. Primitive Operations in Programming Languages l
1.2. Function Invocation: The Ultimate Imperative 2

1.3. LAMBDA as a Renaming Operator 7
1.4. An Example: Compiling a Simple Function 8
1.5. Who Pops the Return Address? ll

2. Lexical and Dynamic Binding 12

3. LAMBDA, Actors, and Continuations 16

3.1. Actors = Closures (mod Syntax) 16
3.2. The Procedural View of Data Types 20

4. Some Proposed Organization for a Compiler 25
4.1. Basic Issues 25

4.2. Some Side Issues 27

5. Conclusions 29

Appendix A. Conversion to Continuation-Passing Style 30
Appendix B. Continuation-Passing with Multiple Value Return 36

Notes | 39
References 42

Acknowledgements

Thanks are due to Gerald Sussman, Carl Hewitt, Allen Brown, Jon Doyle,
Richard Stallman, and Richard Zippel for discussing the issues

presented here and for proofreading various drafts of the document.

An earlier version of this document was submitted in April 1976
to the Department of Electrical Engineering and Computer Science at MIT
in the form of a proposal for research towards a Master's Thesis.

Guy L. Steele Jr. 1 LAMBDA: The Ultimate Declarative

1. A Different View of LAMBDA

Historically, LAMBDA expressions in LISP have been viewed as
functions: objects which, when applied ordered sets of arguments, yield
Single values. These single values typically then become arguments for yet
other functions. The consistent use of functions in LISP leads to what is
called the applicative programming style. Here we discuss a more general

view, of which the functional view will turn out to be a special case. We

will consider a new interpretation of LAMBDA as an environment operator which

performs the primitive declarative operation of renaming a quantity, and we
will consider a function call to be a primitive unconditional imperative

operator which includes GOTO as a special case. (In an earlier paper
{Steele 76] we described LAMBDA as “the ultimate imperative". Here we assert
that this was unfortunately misleading, for it is function invocation which is

imperative.)

1.1. Primitive Operations in Programming Languages

What are the primitive operations common to all high-level programming
languages? It is the data manipulation primitives which most clearly
differentiate high-level languages: FORTRAN has numbers, characters, and
arrays; PL/I has strings and structures as well; LISP has list cells and
atomic symbols. All have, however, similar notions of control structures and
of variables.

If we ignore the various data types and data manipulation primitives,
we find that only a few primitive ideas are left. Some of these are:

Transfer of control

Environment operations

Side effects

Process synchronization

Transfer of control may be subdivided into conditional and unconditional

transfers. Environment operations include binding of variables on function
entry, declaration of local variables, and so on. Side effects include not
only modifications to data structures, but altering of global variables and
input/output. Process synchronization includes such issues as resource
allocation and passing of information between processes in a consistent

manner.
Large numbers of primitive constructs are provided in contemporary

programming languages for these purposes. The following short catalog is by

no means complete, but only representative:

Transfer of control

Sequential blocks

GOTO
IF -THEN-ELSE
WHILE-DO, REPEAT-UNTIL, and other loops

CASE
SELECT
EXIT (also known as ESCAPE or CATCH/THROW)
Decision tables

Guy L. Steele Jr. 2 LAMBDA: The Ultimate Declarative

Environment operations
Formal procedure parameters
Declarations within blocks
Assignments to local variables
Pattern matching

Side effects
Assignments to global (or COMMON) variables
Input/output
Assignments to array elements
Assignments to other data structures

Process synchronization
Semaphores

Critical regions

Monitors

Path expressions

Often attempts are made to reduce the number of operations of each type to
some minimal set. Thus, for example, there have been proofs that sequential
blocks, IF-THEN-ELSE, and WHILE-DO form a complete set of control operations.
One can even do without IF-THEN-ELSE, though the technique for eliminating it
seems to produce more rather than less complexity. {Note No IF-THEN-ELSE} A
minimal set should contain primitives which are not only universal but also
easy to describe, simple to implement, and capable of describing more complex
constructs in a straightforward manner. This is why the semaphore is still
commonly used; its simplicity makes it is easy to describe as well as
implement, and it can be used to describe more complex synchronization
operators. The expositors of monitors and path expressions, for example, go

to great lengths to describe them in terms of semaphores [Hoare 74]

(Campbell 74]; but it would be difficult to describe either of these "“high-
level" synchronization constructs in terms of the other.

With the criteria of simplicity, universality, and expressive power in

mind, let us consider some choices for sets of control and environment

operators. Side effects and process synchronization will not be treated

further in this paper.

1.2. Function Invocation: The Ultimate Imperative

The essential characteristic of a control operator is that it
transfers control. It may do this in a more or less disciplined way, but this

discipline is generally more conceptual than actual; to put it another way,

"down underneath, DO, CASE, and SELECT all compile into IFs and GOTOs". This
is why many people resist the elimination of GOTO from high-level languages;
just as the semaphore seems to be a fundamental synchronization primitive, so
the GOTO seems to be a fundamental control primitive from which, together with
IF, any more complex one can be constructed if necessary. (There has been a
recent controversy over the nested IF-THEN-ELSE as well. Alternatives such as
repetitions of tests or decision tables have been examined. However, there is

no denying that IF-THEN-ELSE seems to be the simplest conditional control
operato~ c2sily capable of expressing all others.)

One of the difficulties of using GOTO, however, is that to communicate
information from the code gone from to the code gone to it is necessary to use

global variables. This was a fundamental difficulty with the CONNIVER

language [McDermott 74], for example; while CONNIVER allowed great
flexibility in its control structures, the passing around of data was so
undisciplined as to be completely unmanageable. It would be nice if we had

Guy L. Steele Jr. 3 LAMBDA: The Ultimate Declarative

some primitive which passed some data along while performing a GOTO.

It turns out that almost every high-level programming language already
has such a primitive: the function call! This construct is almost always
completely ignored by those who catalog control constructs; whether it is
because function calling is taken for granted, or because it is not considered

a true control construct, I do not know. One might suspect that there is a

bias against function calling because it is typically implemented as a

complex, slow operation, often involving much saving of registers, allocation
of temporary storage, etc. {Note Expensive Procedures}

Let us consider the claim that a function invocation is equivalent to

a GOTO which passes some data. But what about the traditional view of a

function call which expects a returned value? The standard scenario for a
function call runs something like this:

[1] Calculate the arguments and put them where the function expects to
find then.

{2] Call the function, saving a return address (on the PDP-10, for
example, a PUSHJ instruction is used, which transfers control to

the function after saving a return address on a pushdown stack).

[3] The function calculates a value and puts it where its caller can
get it.

[4] The function returns to the saved address, throwing the saved
address away (on the PDP-10, this is done with a POPJ instruction,
which pops an address off the stack and jumps to that address).

It would appear that the saved return address is necessary to the scenario.
If we always compile a function invocation as a pure GOTO instead, how can the
function know where to return?

To answer this we must consider carefully the steps logically required
in order to compute the value of a function applied to a set of arguments.
Suppose we have a function BAR defined as:

(DEFINE BAR
(LAMBDA (X Y)

(F (GX) (H Y))))

In a typical LISP implementation, when we arrive at the code for BAR we expect
to have two computed quantities, the arguments, plus a return address,
probably on the control stack. Once we have entered BAR and given the names X

and Y to the arguments, we must invoke the three functions denoted by F, G,
and H. When we invoke G or H, it is necessary to supply a return address,

because we must eventually return to the code in BAR to complete the

computation by invoking F. But we do not have to supply a return address to F;

we can merely perform a GOTO, and F will inherit the return address originally

supplied to BAR.
Let us simulate the behavior of a PDP-10 pushdown stack to see why

this is true. If we consistently used PUSHJ for calling a function and POPJ

for returning from one, then the code for BAR, F, G, and H would look
something like this:

Guy L. Steele Jr. 4 LAMBDA: The Ultimate Declarative

BAR: eee F: eee
PUSHJ G POPJ

BARI: eee

PUSHJ H G: eee
BAR2: cee POPJ

PUSHJ F
BAR3: POPJ H:

POPJ

We have labeled not only the entry points to the functions, but also a few key
points within BAR, for expository purposes. We are justified in putting no
ellipsis between the PUSHJ F and the POPJ in BAR, because we assume that no
Cleanup other than the POPJ is necessary, and because the value returned by F

(in the assumed RESULT register) will be returned from BAR also.
Let us depict a pushdown stack as a list growing towards the right.

On arrival at BAR, the caller of BAR has left a return address on the stack.

--, “return address for BAR>

On executing the PUSHJ G, we enter the function G after leaving a return
address BAR] on the stack:

--, “return address for BAR>, BARI

The function G may call other functions in turn, adding other return addresses

to the stack, but these other functions will pop them again on exit, and so on

arrival at the POPJ in G the stack is the same. The POPJ pops the address
BAR1 and jumps there, leaving the stack like this:

..-, “return address for BAR>

In a similar manner, the address BARZ is pushed when H is called, and H pops
this address on exit. The same is true of F and BAR3. On return from F, the

POPJ in BAR is executed, and the return address supplied by BAR‘'s caller is
popped and jumped to.

Notice that during the execution of F the stack looks like this:

.-, “return address for BAR>, BAR3, ...

Suppose that at the end of BAR we replaced the PUSHJ F, POPJ by GOTO F. Then

on arrival at the GOTO the stack would look like this:

--, “return address for BARD

The stack would look this way on arrival at the POPJ in F, and so F would pop

this return address and return to BAR's caller. The net effect is as before.

The value returned by F has been returned to BAR's caller, and the stack was
left the same. The only difference was that one fewer stack slot was consumed
during the execution of F, because we did not push the address BAR3.

Thus we see that F may be invoked in a manner different from the way
in which G and H are invoked. This fact is somewhat disturbing. We would

like our function invocation mechanism to be uniform, not only for aesthetic

reasons, but so that functions may be compiled separately and linked up at run

time with a minimum of special-case interfacing. Uniformity is achieved in
some LISPs by always using PUSHJ and never GOTO, but this is at the expense of

using more stack space than logically necessary. At the end of every function

Guy L. Steele Jr. 5 LAMBDA: The Ultimate Declarative

X the sequence “PUSHJ Y; POPJ" will occur, where Y is the last function
invoked by X, requiring a logically unnecessary return address pointing to a
POPJ. {Note Debugging}

An alternate approach is suggested by the implementation of the SCHEME
interpreter. [Sussman 75] We note that the textual difference between the

calls on F and G is that the call on G is nested as an argument to another

function call, whereas the call to F is not. This suggests that we save a
return address on the stack when we begin to evaluate a form (function call)
which is to provide an argument for another function, rather than when we

invoke the function. (The SCHEME interpreter works in exactly this way.)
This discipline produces a rather elegant symmetry: evaluation of forms
(function invocation) pushes additional control stack, and application of
functions (function entry and the consequent binding of variables) pushes

additional environment stack. Thus for BAR we would compile approximately the
following code:

BAR: PUSH [BAR]] ssave return address for (G X)
<set up arguments for G>
GOTO G ;call function G

BARI: <save result of @ ;
PUSH [BAR2} ;save return address for (H Y)
<set up arguments for H>

GOTO H © ;call function H

BARZ: <set up arguments for F>
GOTO F scall function F

The instruction PUSH [X] pushes the address X on the stack. Note that no code

appears in BAR which ever pops a return address off the stack; it pushes

return addresses for G and H, but G and H are responsible for popping then,
and BAR passes its own return address implicitly to F without popping it.
This point is extremely important, and we shall return to it later.

Those familiar with the MacLISP compiler will recognize the code of
the previous example as being similar to the “LSUBR" calling convention.
Under this convention, more than just return addresses are kept on the control

stack; a function receives its arguments on the stack, above the return

address. Thus, when BAR is entered, there are (at least) three items on the
Stack: the last argument, Y, is on top; below that, the previous (and in

fact first) one, X; and below that, the return address. The complete code
for BAR might look like this:

BAR: PUSH ([BAR1 J ssave return address for (G x)
PUSH -2(P) s;push a copy of X
GOTO G scall function G

BARI: PUSH RESULT sresult of G is in RESULT register
PUSH [BAR2] s;save return address for (H Y)
PUSH -2(P) spush a copy of Y :

GOTO H scall function H a
BAR2: POP -2(P) ;clobber X with result of G

MOVEM RESULT, (P) sclobber Y with result of H

GOTO F ;call function F

(There is some tricky code at point BAR2: on return from H the stack looks
like:

.-, “return address for BAR>, X, Y, <result from G>

Guy L. Steele Jr. 6 LAMBDA: The Ultimate Declarative

After the POP instruction, the stack looks like:

--, “return address for BARD, <result from G>, Y

That is, the top item of the stack has replaced the one two below it. After
the MOVEM (move to memory) instruction:

--, “return address for BARD, <result from G>, <result from H>

which is exactly the correct setup for calling F. Let us not here go into the
issue of how such clever code might be generated, but merely recognize the
fact that it gets the stack into the necesssary condition for calling F.)

Suppose that the saving of a return address and the setting up of
arguments were commutative operations. (This is not true of the LSUBR calling
convention, because both operations use the stack; but it is true of the SUBR

convention, where the arguments are "spread" [McCarthy 62] [Moon 74] in
registers, and the return address on the stack.) Then we may permute the code

as follows (from the original example):

BAR: <set up arguments for G in registers>

PUSH [BAR1] ;save return address for (G X)
GOTO G ;call function G

BARI: <save result of G>

<set up arguments for H in registers>

PUSH [BAR2] ;save return address for (H Y)
GOTO H ;call function H

BAR2: <set up arguments for F in registers>

GOTO F scall function F

As it happens, the PDP-10 provides an instruction, PUSHJ, defined as follows:

PUSH [L1]

GOTO G is the same as PUSHJ G

Ll: Ll:

except that the PUSHJ takes less code. Thus we may write the code as:

BAR: <set up arguments for G in registers>

PUSHJ G ;save return address, call G

<save result of G>

<set up arguments for H in registers>

PUSHJ H ;save return address, call H
<set up arguments for F in registers)
GOTO F ;call function F

This is why PUSHJ (and similar instructions on other machines, whether they

save the return adress on a stack, in a register, or in a memory location)

works as a subroutine call, and, by extension, why up to now many people have

thought of pushing the return address at function call time rather than at

form evaluation time. The use of GOTO to call a function “tail-recursively"
(known around MIT as the "JRST hack", from the PDP-10 instruction: for GOTO,
though the hack itself it dates back to the PDP-1) is in fact not just a hack,
but rather the most uniform method for invoking functions. PUSHJ is not a
function calling primitive per se, therefore, but rather an optimization of

this general approach.

Guy L. Steele Jr. 7 LAMBDA: The Ultimate Declarative

1.3. LAMBDA as a Renaming Operator

Environment operators also take various forms. The most common are

assignment to local variables and binding of arguments to functions, but there

are others, such as pattern-matching operators (as in COMIT [MITRLE 62]
CY¥ngve 72], SNOBOL [Forte 67], MICRO-PLANNER [Sussman 71], CONNIVER
(McDermott 74], and PLASMA [Smith 75]). It is usual to think of these
operators as altering the contents of a named location, or of causing the

value associated with a name to be changed.

In understanding the action of an environment operator it may be more

fruitful to take a different point of view, which is that the value involved

is given a new (additional) name. If the name had previously been used to

denote another quantity, then that former use is shadowed; but this is not

necessarily an essential property of an environment operator, for we can often
use alpha-conversion ("uniquization" of variable names) to avoid such
shadowing. It is not the names which are important to the computation, but

rather the quantities; hence it is appropriate to focus on the quantities and

think of them as having one or more names over time, rather than thinking of a

name as having one or more values over time.

Consider our previous example involving BAR. On entry to BAR two

quantities are passed, either in registers or on the stack. Within BAR these

quantities are known as X and Y, and may be referred to by those names. In

other environments these quantities may be known by other names; if the code

in BAR's caller were (BAR W (+ X 3)), then the first quantity is known as W

and the second has no explicit name. {Note Return Address} On entry to BAR,
however, the LAMBDA assigns the names X and Y to these two quantities. The

fact that X means something else to BAR's caller is of no significance, since

these names are for BAR's use only. Thus the LAMBDA not only assigns names,

but determines the extent of their significance (their scope). Note an

interesting symmetry here: control constructs determine constraints in time

(sequencing) in a program, while environment operators determine constraints

in space (textual extent, or scope).

One way in which the renaming view of LAMBDA may be useful is in
allocation of temporaries in a compiler. Suppose that we use a targeting and
preferencing scheme similar to that described by in [Wulf 75] and
[Johnsson 75]. Under such a scheme, the names used in a program are
partitioned by the compiler into sets called “preference classes". The

grouping of several names into the same set indicates that it is preferable,

other things being equal, to have the quantities referred to by those names

reside in the same memory location at run time; this may occur because the

names refer to the same quantity or to related quantities (such as X and X+¢l).

A set may also have a specified target, a particular memory location which is

preferable to any other for holding quantities named by members of the set.
As an example, consider the following code skeleton:

((LAMBDA (A B) <body>) (+ X Y) (* Z W))

Suppose that within the compiler the names Tl and T2 have been assigned to the

temporary quantities resulting from the addition and multiplication. Then to

process the "binding" of A and B we need only add A to the preference class of

Tl, and B to the preference class of T2. This will have the effect of causing

A and Tl to refer to the same location, wherever that may be; similarly B and

T2 will refer to the same location. If Tl is saved on a stack and T2 winds up
in a register, fine; references to A and B within the <body> will
automatically have this information.

On the other hand, suppose that <body> is (FOO 1 A B), where FOO is a

Guy L. Steele Jr. 8 LAMBDA: The Ultimate Declarative

built-in function which takes its arguments in registers 1, 2, and 3. Then

A's preference class will be targeted on register 2, and B's on register 3

(since these are the only uses of A and B within <body>); this will cause Tl

and T2 to have the same respective targets, and at the outer level an attempt

will be made to perform the addition in register 2 and the multiplication in
register 3. This general scheme will produce much better code than a scheme
which says that all LAMBDA expressions must, like the function FOO, take their
arguments in certain registers. Note too that no code whatsoever is generated

for the variable bindings as such; the fact that we assign names to the
results of the expressions (+ X Y) and (® ZW) rather than writing

(FOO 1 (* ZW) (+ X Y))

makes no difference at all, which is as it should be. Thus, compiler
temporaries and simple user variables are treated on a completely equal basis.
This idea was used in [Johnsson 75], but without any explanation of why such
equal treatment is justified. Here we have some indication that there is
conceptually no difference between a user variable and a compiler-generated
temporary. This claim will be made more explicit later in the discussion of
continuation-passing. Names are merely a convenient textual device for

indicating the various places in a program where a computed quantity is

referred to. If we could, say, draw arrows instead, as in a data flow
diagram, we would not need to write names. In any case, names are eliminated

at compile time, and so by run time the distinction between user names and the

compiler's generated names has been lost.

Thus, at the low level, we may view LAMBDA as a renaming operation
which has more to do with the internal workings of the compiler (or the
interpreter), and with a notation for indicating where quantities are referred

to, than with the semantics as such of the computation to be performed by the

progran.

1.4. An Example: Compiling a Simple Function

One of the important consequences of the view of LAMBDA and function

calls presented above is that programs written in a style based on the lambda-
calculus-theoretic models of higher-level constructs such as DO loops (see
[Stoy 74] [Steele 76]) will be correctly compiled. As an example, consider
this iterative factorial function:

(DEFINE FACT
(LAMBDA (N)

(LABELS ((FACT1
(LAMBDA (M A)

(IF (2 M0) A
(FACT1 (- M 1)

(* M A))))))
(FACT1 N 1))))

Let us step through a complete compilation process for this function, based on

the ideas we have seen. (This scenario is intended only to exemplify certain
ideas, and does not reflect entirely accurately the targeting and preferencing

techniques described in [Wulf 75] and [Johnsson 75].)
First, let us assign names to all the intermediate quantities

(temporaries) which will arise:

Guy L. Steele Jr. 9 LAMBDA: The Ultimate Declarative

(DEFINE FACT
(LAMBDA (N)

Tls(LABELS ((FACT1
(LAMBDA (M A)

T2a(IF T3a(> M0) A

T4a(FACT1 T5a(- M 1)

Toa(* M A))))))
T7a(FACT1 N 1))))

We have attached a name Tl-T7 to all the function calls in the definition;
these names refer to the quantities which will result from these function
calls.

Now let us place the names in preference classes. Since N is used

only once, as an argument to FACT1, which will call that argument M, N and M

belong in the same class; T5 also belongs to this class for the same reason.

Tl, T2, T4, and T7 belong in the same class because they are.all names, in

effect, for the result of FACT] or FACT. T6 and A belong in the same class,
because T6 is an argument to FACT1; TZ and A belong in the same class, because
A is one possible result of the IF. T3 is in a class by itself.

{M, N, T5}
{A, Tl, T2, T4, T6, T7}

{T3}

A fairly complicated analysis of the "lifetimes" of these quantities shows
that M and T5 must coexist simultaneously (while calculating T6), and so they
cannot really be assigned the same memory location. Hence we must split T5
off into a class of its own after all.

Let us suppose that we prefer to target the result of a global

function into register RESULT, and the single argument to a function into

register ARG. (FACT1, which is not a global function, is not subject to these
preferences.) Then we have:

{M, N} target ARG (by virtue of N)

{T5}
{A, Tl, T2, T4, T6, T7} target RESULT (by virtue of Tl)

{T3}

T3, on the other hand, will need no memory location (a property of the PDP-10
instruction set). Thus we might get this assignment of locations:

{M, N} ARG
{T5} Rl
{A, Tl, T2, T4, 16, T7} RESULT

where Rl is an arbitrarily chosen register.
We now really have two functions to compile, FACT and FACT1. Up to

now we have used the renaming properties of LAMBDA to assign registers; now
we use the GOTO property of function calls to construct this code skeleton:

Guy L. Steele Jr. 10 LAMBDA: The Ultimate Declarative

FACT: <set up arguments for FACTI1>

GOTO FACT1 3;call FACT1

FACT1: <if quantity names M is non-zero go to FACTIA>
<return quantity named A in register RESULT>

POPJ

FACTIA: <do subtraction and multiplication>
GOTO FACT1 ;FACT1 calling itself

Filling in the arithmetic operations and register assignments gives:

33; On arrival here, quantity named N is in register ARG.

FACT: MOVEI RESULT, 1 ;N already in ARG; set up 1
GOTO FACT1 scall FACT1

33; On arrival here, quantity named M is in ARG,

$33 and quantity named A is in RESULT.

FACT1: JUMPN ARG,FACTIA
POPJ sA is already in RESULT!

FACTLA: MOVE R1,ARG smust do subtraction in Rl

SUBI R1,1
IMUL RESULT, ARG ;do multiplication
MOVE ARG,R1 snow put result of subtraction in ARG
GOTO FACT1 sFACT1 calling itself

This code, while not perfect, is not bad. The major deficiency, which is the

use of Rl, is easily cured if the compiler could know at some level that the
subtraction and multiplication can be interchanged (for neither has side
effects which would affect the other), producing:

FACTIA: IMUL RESULT, ARG
SUBI ARG,1
GOTO FACTI

Similarly, the sequence:

GOTO FACT]

FACT1:

could be optimized by removing the GOTO. These tricks, however, are known by
any current reasonably sophisticated optimizing compiler.

What is more important is the philosophy taken in interpreting the
meaning of the program during the compilation process. The structure of this

compiled code is a loop, not a nested sequence of stack-pushing function

calls. Like the SCHEME interpreter or the various PLASMA implementations, a

compiler based on these ideas would correctly reflect the semantics of lambda-

calculus-based models of high-level constructs.

Guy L. Steele Jr. ll LAMBDA: The Ultimate Declarative

1.5. Who Pops the Return Address?

Earlier we showed a translation of BAR into “machine language", and
noted that there was no code which explicitly popped a return address; the
buck was always passed to another function (F, G, or H). This may seem

surprising at first, but it is in fact a necessary consequence of our view of

function calls as "GOTOs with a message". We will show by induction that only

primitive functions not expressible in our language (SCHEME) perform POPJ;
indeed, only this nature of the primitives determines the fact that our
language is functionally oriented!

What is the last thing performed by a function? Consider the

definition of one:

(DEFINE FUN (LAMBDA (Xl X2 ... XN) <body>))

Now <body> must be a form in our language. There are several cases:

[1] Constant, variable, or closure. In this case we actually compiled
a POPJ in the case of FACT above, but we could view constants,

variables, and closures (in general, things which “evaluate
trivially" in the sense described in [Steele 76]) as functions of
zero arguments if we wished, and so GOTO a place which would get
the value of the constant, variable, or closure into RESULT. This
place would inherit the return address, and so our function need

not pop it. Alternatively, we may view constants, etc. as

primitives, the same way we regard integer addition as a primitive

_ (note that CTA2 above required a POPJ, since we had “open-coded"
the addition primitive).

[2] (IF <pred> <expl> <exp2>). In this case the last thing our
function does is the last thing <expl> or <exp2> does, and so we

appeal to this analysis inductively.

[3] (LABELS <defns> <exp>). In this case the last thing our function
does is the last thing <exp> does. This may involve invoking a

function defined in the LABELS, but we can consider them to be
separate functions for our purposes here.

[4] A function call. In this case the function called will inherit
the return address.

Since these are all the cases, we must conclude that our function never pops

its return address! But it must get popped at some point so that the final
value may be returned.

Or must it? If we examine the four cases again and analyze the
recursive argument, it becomes clear that the last thing a function that we
define in SCHEME eventually does is invoke another function. The functions we
define therefore cannot cause a return address to be popped. It is, rather,

the primitive, built-in operators of the language which pop return addresses.

These primitives cannot be directly expressed in the language itself (or, more

accurately, there is some basis set of them which cannot be expressed). It is

the constants (which we may temporarily regard as zero-argument functions),
the arithmetic operators, and so forth which pop the return address. (One

might note that in the compilation of CURRIED-TRIPLE-ADD above, a POPJ
appeared only at the point the primitive "+" function was open-coded as ADD

instructions.)

Guy L. Steele Jr. 12 LAMBDA: The Ultimate Declarative

2. Lexical and Dynamic Binding

The examples of the previous section, by using only local variables,
avoided the question of whether variables are lexically or dynamically scoped.

In this section we will-see that lexical scoping is necessary in order to
reflect the semantics of lambda-calculus-based models. We might well ask,
then, if LISP was originally based on lambda calculus, why do most current

LISP systems employ dynamic binding rather than lexical?

The primary reason seems to be the introduction of stack hardware at

about the time of early LISP development. (This was not pure cause and

effect; rather, each phenomenon influenced the other.) The point is that a

dynamic bindings stack parallels the control stack in structure. If one has
an escape operator [Reynolds 72] (also known as CATCH [Moon 74] or EXIT
[Wulf 71] (Wulf 72]) then the “control stack" may be, in general, a tree
structure, just as the introduction of FUNARGs requires that the environment

be tree-structured. [Moses 70] If these operators are forbidden, or only
implemented in the “downward" sense (in the same way that ALGOL provides

“downward funarg" (procedure arguments to functions) but not "upward funarg"
(procedure-valued functions)) as they historically have been in most non-toy

LISP systems, then hardware stack instructions can always be used for function
calling and environment binding. Since the introduction of stack hardware
(e.g. in the PDP-6), most improvements to LISP's variable binding methods have
therefore started with dynamic binding and then tried to patch it up.

MacLISP [Moon 74] uses the so-called shallow access scheme, in which
the current value of a variable is in a fixed location, and old values are on
a stack. The advantage of this technique is that variables can be accessed

using only a single memory reference. When code is compiled, variables are

divided into two classes: special variables are kept in their usual fixed

locations, while local variables are kept wherever convenient, at the
compiler's discretion, saving time over the relatively expensive special

binding mechanism.

InterLISP [Teitelman 74] (before spaghetti stacks) used a deep access
scheme, in which it was necessary to look up on the bindings stack to find
variable bindings; if a variable was not bound on the stack, the its global
value cell was checked. The cost of the stack search was ameliorated by
looking up, on entry to a function, the locations of variables needed by that
function. The advantage of this scheme is that the “top level" value of a

variable is easily accessed, since it is always in the variable's value cell.

(InterLISP also divides variables into two classes for purposes of

compilation; only special variables need be looked up on the bindings stack.)

Two other notable techniques are the use of value cells as a cache for
a deep dynamic access scheme, and “spaghetti stacks" [Bobrow 73], which

attempt to allow the user to choose between static and dynamic binding. The

problem with the latter is that they are so general that it is difficult for
the compiler to optimize anything; also, they do not completely solve the

problem of choosing between static and dynamic binding. For example, the GEN-
SQRT-OF -GIVEN-EXTRA-TOLERANCE function given in [Steele 76] cannot be handled

properly with spaghetti stacks in the straightforward way. The difficulty is
that there is only one access link for each frame, while there are
conceptually two distinct access methods, namely lexical and dynamic.

Unfortunately, dynamic binding creates two difficulties. One is the
well-known "“FUNARG" problem [Moses 70]; the essence of this problem is that

lexical scoping is desired for functional arguments. The other is more
subtle. Consider the FACT example above. If we were to use dynamic binding,
then every time around the FACT] loop it would be necessary to bind M and A on

a stack. Thus the binding stack would grow arbitrarily deep as we went around

Guy L. Steele Jr. 13 LAMBDA: The Ultimate Declarative

the loop many times.

It might be argued that a compiler might notice that the old values of

M and A can never be referenced, and so might avoid pushing M and A onto a

Stack. This is true of this special case, but is undecidable in general,
given that the compiler may not be in a position to examine all the functions
called by the function being compiled. Let us consider our BAR example above:

(DEFINE BAR
(LAMBDA (X Y)

(F (GX) (H Y))))

Under dynamic binding, F might refer to the variables X and Y bound by BAR.

Hence we must push X and Y onto the bindings stack before calling F, and we
must also pop them back off when F returns. It is the latter operation that
causes difficulties. We cannot merely GOTO F any more; we must provide to F

the return address of a routine which will pop X and Y and then return from

BAR. F cannot inherit BAR's return address, because the unbinding operation

must occur between the return from F and the return from BAR.
Thus, if we are to adhere to the view proposed earlier of LAMBDA and

function calls, we are compelled to accept lexical scoping of variables. This

will solve our two objections to dynamic binding, but there are two objections
to lexical scoping to be answered. The first is whether it will be inherently

less efficient than dynamic binding (particularly given that we know so much

about how to implement the latter!); the second is whether we should abandon

dynamic binding, inasmuch as it has certain useful applications.
ALGOL implementors have used lexical scoping for many years, and have

evolved techniques for handling it efficiently, in particular the device known
as the display. [Dijkstra 67] Some machines have even had special hardware
for this purpose [Hauck 68], just as PDP-6's and PDP-10's have special
hardware which aids dynamic binding. The important point is that even if deep

access is used, it is not necessary to search for a variable's binding as it

is for dynamic binding, since the binding must occur at a fixed place relative
to the current environment. The display is in fact simply a double-indexing
scheme for accessing a binding in constant time. It is not difficult to see
that search is unnecessary if we consider that the binding appears lexically
in a fixed place relative to the reference to the variable; a compiler can

determine the appropriate offset at compile time. Furthermore, the "access

depth" of a lexical variable is equal to the number of closures which contain
it, and in typical programs this depth is small (less than 5). .

In an optimizing compiler for lexically scoped LISP it would not
necessary to create environment structures in a standard form. Local

variables could be kept in any available registers if desired. It would not

necessary to interface these environment structures to the interpreter.

Because the scoping would be strictly lexical, a reference to a variable in a

compiled environment structure must occur in compiled code appearing within
the LAMBDA that bound the variable, and so no interpreted reference could
refer to such a variable. Similarly, no compiled variable reference could

refer to an environment structure created by the interpreter. (An exception

to this argument is the case of writing an interactive debugging package, but

that will be discussed later. This problem can be fixed in any case if the

compiler outputs an appropriate map of variable locations for use by the
debugger.)

Consider this extension of a classic example of the use of closures:

(DEFINE CURRIED-TRIPLE-ADD
(LAMBDA (X)

Guy L. Steele Jr. 14 LAMBDA: The Ultimate Declarative

(LAMBDA (Y)
(LAMBDA (Z) (+ X ¥Y Z)))))

Using a very simple-minded approach, let us represent a closure as a vector

whose first element is a pointer to the code and whose succeeding elements are

all the quantities needed by that closure. We will write a vector as [x0, xl,
--, X<n-1>]. Let us also assume that when a closed function is called the

Closure itself is in register CLOSURE. (This is convenient anyway on a PDP-

10, since one can call the closure by doing an indexed GOTO, such as

GOTO @(CLOSURE), where @ means indirection through the first element of the

vector.) Let us use the LSUBR calling convention described earlier for

passing arguments. Finally, let there be a series of functions nCLOSE which

create closure vectors of n elements, each taking its arguments in reverse

order for convenience (the argument on top of the stack becomes element 0 of

the vector.) Then the code might look like this:

CTA: PUSH [CTA1] 3X is on stack; add address of code
GOTO 2CLOSE screate closure [CTAl, X]

CTAL: PUSH CLOSURE snow address of [CTAl, X] is in CLOSURE
PUSH [CTA2] ;Y¥ was on stack on entry
GOTO 3CLOSE sreturn closure [CTAZ, [CTAl, X], Y]

CTAZd: POP RESULT ;pop Z into result
ADD RESULT,2(CLOSURE) ;add in Y (using commutativity, etc.)
MOVE TEMP, 1(CLOSURE) ;fetch pointer to outer closure
ADD RESULT, 1(TEMP) ;add in X
POPJ ;return sum in RESULT

Admittedly this does not compare favorably with uncurried addition, but the

point is to illustrate how easily closures can be produced and accessed. If

several variables had been closed in the outer closure rather than just X,

then one might endeavor in CTA2Z to fetch the outer closure pointer only once,

just as in ALGOL one loads a display slot only once and then uses it many

times to access the variables in that contour.

A point to note is that it is not necessary to divide lexically scoped
variables into two classes for compilation purposes; the compiler can always
determine whether a variable is referred to globally or not. Furthermore,
when creating a closure (i.e. a FUNARG), the compiler can determine precisely
what. variables are needed by the closure and include only those variables in

the data structure for the closure, if it thinks that would be more efficient.

For example, consider the following code skeleton:

(LAMBDA (A BC DE)

(LAMBDA (FG)... Bu... Euce Hess) vee)

It is quite clear that H is a global variable and so must be "special",
whereas B and E are local (though global to the inner LAMBDA). When the
compiler creates code to close the inner LAMBDA expression, the closure need

only include the variables B and E, and not A, C, or D. The latter variables
in fact can be kept in registers; only B and E need be:kept in a semi-

permanent data structure, and even then only if the inner closure is actually

created.

Hewitt [Hewitt 76] has mentioned this idea repeatedly, saying actors
are distinguished from LISP closures in that actor closures contain precisely

Guy L. Steele Jr. 1§ LAMBDA: The Ultimate Declarative

those "acquaintances" which are necessary for the actor closure to run,
whereas LISP closures may contain arbitrary numbers of unnecessary variable
bindings. This indeed is an extremely important point to us here, but he
failed to discuss two aspects of this idea:

(1) Hewitt spoke in the context of interpreters and other “incremental”

implementations rather than of full-blown compilers. In an

interpreter it is much more convenient to use a uniform closure

method than to run around determining which variables are actually
needed for the closure. In fact, to do this efficiently in PLASMA,

it is necessary to perform a “reduction” pre-pass on the expression,
which is essentially a semi-compilation of the code; it is perhaps

unfair to compare a compiler to an interpreter. {Note PLASMA

Reduction} In any case, the semantics of the language are

unaffected; it doesn't matter that extra variable bindings are

present if they are not referred to. Thus this is an efficiency

question only, a question of what a compiler can do to save storage,
and not a question of semantics.

(2) It is not always more efficient to create minimal closures!
Consider the following case:

(LAMBDA (A B C D)

(LAMBDA () A. B...)
(LAMBDA () A. C ...)
(LAMBDA () ... A. D...)
(LAMBDA () ... B. C’...)
(LAMBDA () B. D...)
(LAMBDA () ... C. D...) ...)

The six closures, if each created minimally, will together contain
twelve variable bindings; but if they shared the single environment

containing A, B, C, and D as in a LISP interpreter, there would be
only four bindings. Thus PLASMA may in certain cases take more

storage with its closure strategy rather than less. On the other
hand, suppose five of the closures are used immediately and then
discarded, and only the sixth survives indefinitely. Then in the
long run, PLASMA's strategy would do better!

The moral is that neither strategy is guaranteed to be the more efficient in
any absolute sense, since the efficiency can be made a function of the

behavior of the user's program, not just of the textual form of the progran.

The compiler should be prepared to make a decision as to which is more
efficient (and in some simple and common cases such a choicé can be made

correctly), and perhaps to accept advice from the user in the form of

declarations.
It seems, then, that if these ideas are brought to bear, lexical

binding need not be expensive. This leaves the question of whether to abandon

dynamic binding completely. Steele and Sussman [Steele 76] demonstrate
Clearly the technique for simulating dynamic binding in a lexically scoped
language; they also make a case for separating the two kinds of variables and
having two completely distinct binding mechanisms, exhibiting a programming
example which cannot be coded easily using only dynamic binding or only
lexical scoping. The two mechanisms naturally require different compilation

techniques (one difference is that fluid-variables, unlike static ones, are

somewhat tied down to particular locations or search mechanisms because it

cannot generally be determined at compile time who will reference a variable

when), but they are each so valuable in certain contexts that in a general-

Guy L. Steele Jr. 16 LAMBDA: The Ultimate Declarative

purpose programming language it would be foolish to abandon either.

3. LAMBDA, Actors, and Continuations

_ Suppose that we choose a set of primitive operators which are not
functions. This will surely produce a radical change in our style of

programming, but, by the argument of the previous section, it will not change
our interpretation of LAMBDA and function calling. A comparison between our

view of LAMBDA and the notion of actors as presented by Hewitt will motivate
the choice of a certain set of non-functional primitives which lead to the so-

called “continuation-passing" style.

3.1. Actors # Closures (mod Syntax)

In [Sussman 75] Sussman and Steele note that actors (other than those

which embody side effects and synchronization) and closures of LAMBDA

expressions are isomorphic in their behavior. Smith and Hewitt [Smith 75]
describe an actor as a combination of a script (code to be executed) and a set
of acquaintances (computational quantities available to the code). A LISP
closure in like manner is a combination of a body of code and a set of
variable bindings (or, using our idea of renaming, a set of computational
quantities with (possibly implicitly) associated names). Hewitt [Hewitt 76]
has challenged this isomorphism, saying that closures may contain unnecessary
quantities, but I have already dealt with this issue above.

Let us therefore examine this isomorphism more closely. We have noted
above that it is more accurate to think of the caller of a LAMBDA as
performing a GOTO rather than the LAMBDA itself. It is the operation of
invocation that is the transfer of control. This transfer of control is
similar to the transfer of control from one actor to another.

In the actors model, when control is passed from one actor to another,
more than a GOTO is performed. A computed quantity, the message, is passed to
the invoked actor. This corresponds to the set of arguments passed to a

LAMBDA expression. Now if we wish to regard the actor/LAMBDA expression as a
black box, then we need not be concerned with the renaming operation; all we

care about is that an answer eventually comes out. We do not care that the

LAMBDA expression will "spread" the set of arguments out and assign names to

various quantities. In fact, there are times when the caller may not wish to
think of the argument set as a set of distinct values; this attitude is
reflected in the APPLY primitive of LISP, and in the FEXPR calling convention.
The actors model points out that, at the interface of caller and callee, we
may usefully think of the argument set as a single entity.

In the actors model, one important element of the standard message is

the continuation. This is equivalent to the notion of return address in a
LISP system (more accurately, the continuation is equivalent to the return
address plus all the quantities which will be needed by the code at that
address). We do not normally think of the return address as an argument to a
LAMBDA expression, because standard LISP notation suppresses that fact.

On the one hand, though, Steele and Sussman [Steele 76] point out that
it is possible to write LISP code in such a manner that return addresses are
passed explicitly. (This style corresponds to the use in PLASMA of s=> and

<== to the exclusion of #>, <=, and functional notation.) When code is

written in this “continuation-passing style“, no implicit return addresses are

ever created on the control stack. All that is necessary to write code
entirely in this style is that continuation-passing primitives be available.

Guy L. Steele Jr. 17 LAMBDA: The Ultimate Declarative

The reason LISP is so function-oriented is that all the primitives (CAR, CONS,
+, etc.) are functions, expecting return addresses on the stack. The stack
is simply a conventional place to pass.some (or all) of the arguments. If,
for example, we consider the LSUBR argument-passing convention described
earlier, it is easy to think of the return address as being the "zeroth"

argument, for it is passed on the stack just below arguments 1 through n.

On the other hand, the PLASMA language, while based on actor

semantics, has a number of abbreviations which allow the user to ignore the

continuation portion of a message in the same way he would in LISP. When the

user writes in PLASMA what would be a function invocation in LISP, the PLASMA

interpreter automatically supplies an “underlying continuation" which is
passed in a standard component of the message packet. This is analogous to
the way the LISP system automatically supplies a return address in a standard
place (the control stack). (Hewitt [Hewitt 76] has expressed doubt as to
whether these underlying continuations can themselves be represented

explicitly as LAMBDA expressions. My impression is that he sees a potential

infinite regression of underlying continuations. If the underlying

continuations are written in pure continuation-passing style as defined in
[Steele 76], however, this problem does not arise.)

Let us define a convenient set of continuation-passing primitives.
Following the convention used in [Steele 76], we will let the last argument(s)

to such a primitive be the continuation(s), where a continuation is simply a

"function" of values delivered by the primitive.

(++ a bc) delivers the sum of a and b to the continuation c.
(-- abc) delivers the difference of a and b to the continuation c.

(** ab c) delivers the product of a and b to the continuation c.
(** abc) delivers a raised to the power b to the continuation c.
(%= ab c) delivers T to continuation c if a and b are arithmetically

equal, and otherwise NIL.

(== abcd) invokes continuation c if a and b are arithmetically equal,
and otherwise continuation d (c and d receive no values from

Note that predicates may usefully be defined in at least two ways. The
predicate %= is analogous to a functional predicate in LISP, in that it

delivers a truth value to its continuation, while == actually implements a

conditional control primitive.

Thus far in our comparison of closures and actors we have focused on
aspects of control. Now let us consider the manipulation of environments.

When an actor is invoked, it receives a message. It is convenient to assign

names to parts of this message for future reference within the script. This

is done by pattern matching in PLASMA, and by "spreading" in LISP. This
assignment of names is a matter purely internal to the workings of the
actor/LAMBDA expression; the outside world should not be affected by which
names are used. (This corresponds indirectly to the notion of referential

transparency.)
In discussing control we noted that on invoking a function the LISP

and PLASMA interpreters create an implicit underlying continuation, a return

address. This is a hidden creation of a control operation. Are there any
hidden environment operations?

The hidden control operation occurs just before invocation of a
function. We might expect, by symmetry, a hidden environment operation to
occur on return from the function. This is in fact the case. The underlying
continuation, itself an actor, will assign one or more hidden names to the
contents of the message it receives. If the actor originally invoked was a

Guy L. Steele Jr. 18 LAMBDA: The Ultimate Declarative

function, then the message is the returned valua” of the function. Consider

this example, taken from [Steele 76]: :

(- (* B 2) (* 4A C))

When the function "*" is invoked, the message to it contains three items:

the value of B, the value of 2, and the implicit continuation. When it
returns, the implicit continuation saves the returned value in some internal

named place, then invokes the function "*". The message to "*" contains four

items: the values of 4, A, and C, and a second implicit continuation. This

continuation contains the internal place where the value from "*" was saved!

When "%" returns, the continuation then calls "-", giving it the saved result

from "*", the result freshly obtained from "*", and whatever continuation was

given for the evaluation of the entire expression; "-" will deliver its
result to that (inherited) continuation.

This is all made more clear by writing the example out in pure
continuation-passing style, using our continuation-passing primitives:

(** B2

(LAMBDA (X)
(** 4 AC

(LAMBDA (Y)
(-- X Y <the-inherited-continuation>)))))

Here X and Y are the explicit names for intermediate quantities which were
hidden before by the function-calling syntax. We use LAMBDA to express the
continuations passed to "**" and "**", These LAMBDA expressions are not
functions; they never return values, but rather merely invoke more
continuation-passing primitives. However, the interpretation of a LAMBDA
expression is as before: when invoked, the arguments are assigned the

additional names specified in the LAMBDA variables list, and then the body of
the LAMBDA expression is executed.

In the context of a compiler, the intermediate quantities passed to
the continuations are usually known as "“temporaries", or are kept in places

called temporaries. Usually the temporaries are mentioned in the context of

the problem of allocating them. The present analysis indicates that they are
just like names assigned by the user; they are different only in that the

user is relieved by the syntax of a functional language of having to mention

their names explicitly. This is made even more clear by considering two

extremes. In assembly language, there are no implicitly named quantities;

every time one is used, its name (be it a register name, a memory location, or

whatever) must be mentioned. On the other hand, in a data flow language (e.g.
some of the AMBIT series) it is possible to draw arrows and never mention
Names at all.

By considering temporaries as just another kind of name (or

alternatively, user names to be just another kind of temporary), the example

of allocation of temporaries given earlier may be understood on a firmer

theoretical level. Furthermore, greater understanding of this uniformity may

lead to advances in language design. Let us consider two examples.

rivst, we may notice that the underlying continuations in LISP and
PLASMA take only one argument: the returned value. Why are there not

implicit continuations of more than one argument? The answer is that this

characteristic is imposed by the syntax and set of primitives provided in

functional languages. Suppose we were to augment LISP as follows (this is not

a serious proposal for a language extension, but only an example):

Guy L. Steele Jr. 19 LAMBDA: The Ultimate Declarative

(1) Wherever n consecutive arguments might be written in a function
call, one may instead write ({f xl... xmjn, where n is a
positive integer. The "function" f must return n values, which
are used as n arguments in the function call.

(2) The primitive (values xl ... xn) returns its n arguments as its
n values. Thus writing "{values xl ... xn}n" is the same as
writing "xl... xn” as arguments in a function call.

Then we might write code such as:

(DEFINE FOO
(LAMBDA (A)

(VALUES (* A 2) (* A 3))))

(LIST {FOO 5}2 (+ {FOO 4}2) {FOO 3}2)

Evaluating the second form produces (25 125 80 9 27). When FOO is invoked, it
is provided an implicit continuation which expects two arguments, i.e. two
returned values from FOO. We need VALUES as a primitive in order to be able

to return several values. (We could imagine syntactic sugar for this, such as
(LAMBDA (A) (* A 2) (* A 3)), but it is no more than sugar.) When (* A 2)
and (* A 3) have been evaluated, FOO does a GOTO to VALUES, whereupon VALUES
inherits the two-argument continuation given to FOO. Thus the LAMBDA
expression for FOO never needs to know how many arguments its continuation

takes; that is a matter for the primitives to decide.

All this suggests our second example, namely a way to return multiple
values from a function without all the extra syntax and primitives. All that
is necessary is to use explicit continuation-passing. Thus the above example
might be written:

(DEFINE FOO
(LAMBDA (A CONT)

(CONT (* A 2) (* A 3))))

(FOO 5 (LAMBDA (X1 X2)
(FOO 4 (LAMBDA (Yl Y2)

((LAMBDA (X3)
(FOO 7 (LAMBDA (X4 X5)

(LIST X1 X2 X3 X4 X5))))
(+ Yl Y2))))))

Here we have used a mixture of functional and continuation-passing styles,

employing only enough of the latter to express the multiple values returned by
FOO. The implicit continuations for the evaluation of the arguments to LIST
and “+" (and their implicit temporaries Xl, X2, X3, X4, X5, Yl, and Y2) have
been made explicit. While one might see how to implement multiple-value-
return in an interpreter on the basis of the first example (by augmenting the

interpreter to handle the new “primitives"), the second makes it clear how to
compile it without introducing new primitives at the low level. (Appendix A

presents a program which converts ordinary SCHEME programs to pure

continuation-passing style; Appendix B presents a modification to this

program which handles the multiple-value-return construct.) Furthermore, by

using the same mechanism to compile both function calls and multiple value

returns, the multiple values will get returned in registers in the same way

arguments might be passed, without the need for any additional machinery.
{Note PLASMA Registers}

Guy L. Steele Jr. 20 LAMBDA: The Ultimate Declarative

3.2. The Procedural View of Data Types

Up to now we have concentrated on LAMBDA and function calling as
environment and control primitives. Based on the actor approach, we will see
that a certain amount of useful data manipulation can be expressed in terms of
LAMBDA expressions. If compiled well enough, such data manipulation would be
no more costly than code generated by special-case compiler routines. Thus,

yet one more programming construct could be handled by this general

compilation mechanism, making the compiler yet more uniforn. .

The procedural approach to data type behavior has been developing for

Many years. Typical of languages of the early 1970's with such ideas are ECL
{Wegbreit 74] and MUDDLE [Galley 75]. Each allows certain characteristics of
a data type to be expressed as an arbitrary procedure. Specifically, ECL
allows the behavior of the creation, assignment, coercion, subscripting, and

printing operations to be procedurally specified; MUDDLE allows procedural

specification of the methods for evaluation and application of objects. The

pieces of data are still thought of as objects, however, and there are

mechanisms for defeating the procedural specifications by "lowering" a data

type to a more primitive type (such mechanisms are necessary for use by the

behavior specification procedures themselves). One problem with (feature
of??) the lowering mechanism is that any procedure, not just one controlling

the behavior of a data type, can use the lowering primitive and so defeat the
data type functions.

The next step in this direction is the idea that the notion of a data
type is meaningful only in terms of the operations that can be performed on
it; that is, all that one can do with an object is give it to one of a
defined set of procedures which know how to operate on that data type. This
notion is exemplified in the CLU language. [Liskov 74] [Liskov 76] Associated
with a data type is a cluster of procedures; only those procedures can

manipulate the data type. Unfortunately, a “lowering” ("rep") mechanism is
still needed within the cluster so that cluster procedures can get at the

“underlying representation" of a data object. The definition of this
mechanism causes certain problems. CLU at least solves the problem of
indiscriminate use of the mechanism, by restricting its use to the cluster
procedures.

Carrying this notion still further, Hewitt has proposed the notion of
"actors". [Hewitt 73] Rather than dichotomizing the world into data objects

and procedures, he suggests that only procedures are meaningful; each “data

object" actually embodies all the operations on itself as a procedure. The

only operation one can perform on an object is to invoke its procedure. There

is no problem of “lowering” the data type to an underlying representation,

because an object of the data type does not exist as such to be lowered. In

this way the integrity of a data type is much more easily preserved. (While

some people object to having to use this model of data types in writing their
programs, there is no reason it cannot be hidden with syntactic sugar. {Note
PLASMA Sugar} There is much to be said for it as a formal model of data type

behavior, but as a practical programming tool it is not always conceptually

convenient.)

Let us consider abstractly (though not rigorously) the motivation for
the notion of data types. Typically we have an object X and want to perform

some operation F on it. Suppose that F is a non-primitive operator; then it

must decide what set of primitive actions to perform. Let such decisions made

by F partition its domain into classes, such that all objects in a class cause
the same set of primitive actions to occur when given to F. One may then

Guy L. Steele Jr. 21 LAMBDA: The Ultimate Declarative

define the data type of X with respect to F to be the class into which F's
decisions place X. By extension, one may let F range over some set of

operations with similar domains, and let the union of their decisions
determine the classes. Loosely speaking, then, a data type is a class of
objects which may be operated on in a uniform manner. The notion of data

types provides a simple conceptual way to classify an object for the purposes

of deciding how to operate on it.

Now let uS approach the problem from another direction. Consider a

prototypical function call (F X). (We may consider a function call of more
than one argument to be equivalent to (F (LIST X1 ... Xn)) for our purposes
here.) When executed, this function call is to be elaborated into some series

of more primitive operations. It may help to think of execution as a mapping

from the product space of the sets of operators and operands to the space of
sequences of more primitive operations. Such a mapping can be expressed as a
matrix. For example:

Operation

TYPE PRINT ATOM FIRST CAR
Operand
0 RET(FIXNUM) TYO("0") RET(T) ERROR ERROR vee

43 RET(FIXNUM) TYO("4") RET(T) ERROR ERROR eee
TYO("3")

(A B) RET(LIST) TYO(“(*) RET(NIL) RET(A) RET(A) eee
TYO("A")
TYO(" ")
TYO("B")

TYO(")")

(1] RET(VECTOR) TYO("[") RET(NIL) RET(1) RET(1)
TYO("1")

TYO("J")

Legend: TYO outputs a character; RET returns a value.

Now it would be completely impractical to specify this matrix explicitly in
its entirety. It is convenient to lump all FIXNUM objects, for example, into

one class, and provide a matrix entry under PRINT which is less efficient for

any one application but which works for all such objects. That is, rather

than having a separate entry for each FIXNUM under PRINT which knows exactly
what characters to output, we have some algorithm which generates digits

arithmetically. (Similarly, for lists and vectors we have an algorithm which

knows how to print subcomponents in a general manner.) We say that 0 and 43,
or [1 2] and [4 5 6], have the same type because almost all operations which

apply to both can use the same set of primitive actions, appropriately chosen.

Operators may similarly lumped together; for example, in many LISP
implementations CAR will get the first element of any composite data object,

lumping in such operators as FIRST of a vector or an array.
It is hard to think of natural examples of operator lumping since it

seldom occurs in practice. Historically, the tendency has been to break up

the matrix by columns. All the entries for TYPE are lumped together, all
those for PRINT, and so on. When one invents a new operator, one merely

writes a routine encoding the new column of entries; such a routine typically

Guy L. Steele Jr. — 22 LAMBDA: The Uitimate Declarative

begins with a dispatch on the data type of its argument. When one invents a

new data type, however, it is necessary to change every routine a little bit

to incorporate the new row entry.
The procedural approach to data types includes, in effect, a

Suggestion that the matrix be sliced up by rows instead of columns. The
result of this is to group all the operations for a single data type together.

This of course yields the inverse problem: adding a new data type is easy,

but adding a new generic operator is difficult because many data type routines

must be changed. {Note Slice Both Ways}
The important point, however, is that the data type of an object

provides a way of selecting a row of the operations matrix. Whether this
selection is represented as a procedure, a symbol, or a set of bits does not
concern us. When combined with a column selector (choice of operator), it
determines what set of actions to undertake. {Note Turing Machines}

Hewitt has pointed out that non-primitive actors can be made to

implement data structures such as queues and list cells. It is shown in

[Sussman 75] that the PLASMA expression (from [Smith 75]):

[CONS =

(s> [=A =B]

(CASES
(a> FIRST?

A)
(2> REST?

B)
(a> LIST?

YES)))]

may be written in terms of LAMBDA expressions:

(DEFINE CONS
(LAMBDA (A B)

(LAMBDA (M)
(IF (EQ M 'FIRST?) A

(IF (EQ M 'REST?) B
(IF (EQ M ‘LIST?) ‘YES

(ERROR ...)))))))

(For some reason, Hewitt seems to prefer FIRST? and REST? to CAR and CDR.)
There are two points to note here. One is that what we normally think

of as a data structure (a list cell) has been implemented by means of a
closure; the result of CONS is a closure of the piece of code
(LAMBDA (M) ...) and the environment containing A and B. The other is that
the body of the code is essentially a decision proecedure for selecting a
column of our operations matrix. This suggests a pretty symmetry: we may

either first determine an operator and then submit an object-specifier to the

row-selection procedure for that operator, or first determine an operand and

submit an operator-specifier to the column-selection procedure for that

operand.

This kind of definition has been well Known to lambda-calculus
theoreticians for years; examples of it occur in Church's monograph.
{Church 41] It has generally not been used as a practical definition technique

in optimizing compilers, however. Hewitt has promoted this idea in PLASMA,
but he has only described an interpreter implementation with no clues as to

how to compile it. Moreover, no one seems to have stated the inverse

implication, namely, that the way to approach the problem of compiling

Guy L. Steele Jr. 23 LAMBOA: The Ultimate Declarative

closures is to think of them as data structures, with all structures produced
by closing a given LAMBDA expression being thought of as having the same data
type. Up to now closures have generally been thought of as expensive beasts
to implement in a programming language; however, thinking of them in terms of

data types should make them appear much less frightening. Consider this
definition of CAR:

(DEFINE CAR
(LAMBDA (CELL)

(CELL 'FIRST?)))

Now consider this code fragment:

((LAMBDA (FOO)

(CAR FOO)

(CONS zi’ 'ZAP))

It may appear that this must compile into extremely poor code if we use the

procedural definition of a list cell given above. However, at the point where
the result of the CONS is given to CAR, the compiler can be made to output a
HLRZ instruction and no more, just as if the MacLISP NCOMPLR optimizing
compiler [Moon 74] had seen (CAR FOO) or the ECL compiler [Wegbreit 74] had
seen "FOO.LEFT". All that is required is some knowledge that FOO was created
by CONS (that is, we must know FOO's “data type"), plus standard optimization
techniques such as procedure integration, constants folding, and dead code
elimination. The idea is to recognize that FOO names a closure of two data

items with the code of the inner LAMBDA expression in CONS; this could be

done either by declaration or by flow analysis. Integrating this LAMBDA
expression as well as the definition of CAR into our code fragment yields:

((LAMBDA (FOO)

((LAMBDA (CELL) (CELL ‘FIRST?))
(LAMBDA (M) ;in FOO

(IF (EQ M 'FIRST?) A
(IF (EQ M 'REST?) B

(IF (EQ M 'LIST?) 'YES
(ERROR ...))))))

oe)
(CONS ‘ZIP ‘ZAP))

The comment "in FOO" means that any free variables in the expression are meant

to refer to quantities in the closure FOO. Notice that we do not take
advantage of the explicit appearance of 'ZIP and 'ZAP as arguments to CONS,
though we might do so in practice; our purpose here is to illustrate the more

general case where we know that FOO names some result of CONS but we don't
know which one.

Integrating (LAMBDA (M) ...) into (LAMBDA (CELL) ...) and then
substituting through the argument FIRST? yields:

Guy L. Steele Jr. 24 LAMBDA: The Ultimate Declarative

((LAMBDA (FOO)

(IF (EQ 'FIRST? 'FIRST?) A sin FOO
wee)

we)

(CONS 'ZIP 'ZAP))

Standard constants folding and dead code elimination leads to:

((LAMBDA (FOO)

A sin FOO

wee)
(CONS 'ZIP 'ZAP))

Now the compiler presumably knows the format of the closures produced by CONS;
all it needs to do is generate the instruction(s) to fetch the quantity named

A out of the closure FOO. If, for example, closures are represented as

vectors (as assumed above in the CURRIED-TRIPLE-ADD example) it would in fact
take only one instruction on a PDP-10, just as it would for MacLISP.

All this may sound rather complicated, but these are all well-known

optimization techniques (see [Allen 72], for example), which happen not to
have been applied before in this context. The one tricky point is keeping

track of environments correctly (as with the "in FOO" comment above). All
kinds of heterogeneous data structures may be created in this way in terms of

LAMBDA expressions; no separate primitive creation or selection operators are

necessary. A certain amount of data type analysis will be necessary to carry

this out. In this context, data type analysis would consist of determining of
what LAMBDA expression a given data object is the closure. This may be

determined by global data flow analysis (for example, the recent Allen and
Cocke algorithm [Allen 76] might be applicable here), or by user-supplied
declarations.

If data structures are specified in these terms, it is left up to the
compiler to determine a good representation for these structures. If done
properly, there is no reason why the creation of a list cell using CONS as
above should not actually perform precisely the same storage allocation as
might occur in ECL at the low level. In any case, the compiler should know
something about designing and packing data structures. (Some work has been
done on this already in the ECL system [Wegbreit 74], for example.)

One might object that this technique cannot quite produce the
efficiency of MacLISP in performing CONS, since a standard MacLISP list cell
contains only two pointers, while the LAMBDA version would produce a cell
containing the two pointers plus a pointer to the code for the LAMBDA
expression. In a sense this is true; it is necessary to have a pointer to
the code. However, we need not actually have a pointer to the code in the

closure; all that is necessary is that we be able to locate the code given

the object. Standard LISP systems typically encode this information in other

ways, Calling it the data type. Remembering the operations matrix described

earlier, we may think of the code as the data type of the closure; all either
does is provide a row selector for the matrix. Current systems such as ECL

and MUVDLE which allow definition of arbitrary numbers of data types have

indeed found it necessary to store a full pointer, more or less, to describe

the data type of an object. In special cases, however, ECL can compress a
data type to only a few bits. There is no reason why a sufficiently clever
compiler could not use equally clever encodings of the data type, including
the technique of encoding the data type in the address of the closure much as

Guy L. Steele Jr. 25 LAMBDA: The Ultimate Declarative

the “Bibop" version of MacLISP does. [Moon 74]
In any case, we can see that the use of closures to define data types

need not be expensive. Once again, LAMBDA seems to provide a uniform and

general method which is, as always, subject to clever optimizations in special

cases.

4. Some Proposed Organization for a Compiler

In order to test some of the ideas suggested above in a practical
context, I propose to construct a working, highly optimizing compiler for a

small dialect of LISP. The resulting code should be able to run on a PDP-10
in the MacLISP run-time environment. (The compiler should also be modularized
so that code for another machine could be generated, but I do not propose to

incorporate any complex and general machine description facility such as that

of Snyder [Snyder 75].)

4.1. Basic Issues

The compiler will need to perform a large amount of global data flow
and data type analysis; much of this can be based on the approach used by
Wulf in the BLISS-11 compiler [Wulf 75], augmented by some general flow-graph
analysis scheme. (The BLISS-11 flow analysis is not sufficiently general in

that it only analyzes single functions, and within a function the only control
constructs are conditionals, loops, and block exits.)

For the allocation of registers and temporaries I propose to use a

modification of BLISS-1ll's preferencing and targeting scheme. This will be
tempered by the attitude towards LAMBDA-binding described earlier, namely that
it is merely a renaming operation. Thus, no variable is considered to have a

specific location or “home"; assignment to a variable should cause no motion

of data, but merely reorganize the compiler's idea of where the quantity

involved is located at that point in the code. (At any point in the code a

quantity may have several names, and may also have several homes, by which I

mean physical copies in the runtime machine environment. For example, a

quantity may happen to reside in two different registers at some point; there

is no a priori reason for either one to be considered THE original copy of

that quantity to be preserved for the future.) Data structures are another
Matter; assignment to a component must actually modify the component. This

is the purpose of introducing the ASET primitive, since simple SETQ's as used
in LISP PROG statements can be simulated by using LAMBDA expressions (see

[Steele 76]). (On the other hand, the modification to the component need not

happen immediately, as long as it happens soon enough that some other process,

if any cannot detect that the assignment did not happen immediately.)

The essential set of primitives will include the following:

LAMBDA, LABELS, IF

ASET (perhaps restricted to a quoted first argument, i.e. ASETQ)

EQ

These by themselves constitute an extremely rich domain for optimization! As

~ shown above and in [Steele 76], they effectively encompass data structure

creation, access, and modification; a host of control structures, including

non-local exits; and a variety of parameter-passing disciplines, including
call-by-name, call-by-need, and fluid variables. In fact, one of the great
assets of this approach is that such constructs can be written as macros and

used in both an interpreter and compiler; because the base language is

Guy L. Steele Jr. 26 LAMBDA: The Ultimate Declarative

essentially a lexically scoped LISP, the lambda-calculus-theoretic models of

such constructs may be used almost directly to write such macros. Indeed, a
library of such macros already exists for the SCHEME interpreter.

If time permits, extensions may be made to handle integers (strictly

speaking, integers mod 235,) and these operations on then:

+ addition

- subtraction

x multiplication

fT} division
\ remainder
MAX, MIN maximum and minimum

BOOLE bit-wise boolean operations

LSH logical shifting

<, >, = relationals

The compiler will need to contain the following kinds of knowledge in
great detail:

Knowledge about the behavior of LAMBDA expressions and closures, in

particular how environments nest and interact, and how procedure

integration works. For example, in the situation:

(LABELS ((FOO (LAMBDA () ... (BAR)))
(BAR (LAMBDA () ...)))

.--)

the compiler should be able to realize that FOO and BAR run in the
same environment (since each adds no variables to the outer
environment), and so the call to BAR in FOO can compile as if it
were a GOTO, with no adjustment in environment necessary. If that
is the only call on BAR, then no GOTO is needed; the code for BAR
may simply follow (or be integrated into) FOO.

Knowledge about how to construct data structures in the run-time

environment. In MacLISP, this will imply using the built-in CONS

and other low-level storage allocation primitives.

Knowledge about how primitives can be compiled into machine code, or if
they are run-time routines, with what conventions they are invoked.

Knowledge about optimization of machine code, for example that a certain
combination of PUSH and JRST can be combined into PUSHJ.

Each kind of knowledge should be represented as modularly as possible. It
should not be necessary to change fifteen routines in the compiler just to

install a new arithmetic primitive.

Although I propose to construct only the lower-level portion of the

compiler, plus the necessary macros to provide standard LISP features such as

COND and PROG, one could easily imagine constructing an ALGOL compiler, for
example, by providing a parser plus the necessary macros as a front end.
Indeed, by using CGOL [Pratt 76] for our parser we could create an ALGOL-like
language quite easily, which could include such non-LISP features as multiple-

value-return and call-by-name.
Tats possibility indicates that a carefully chosen small dialect of

LISP would we a good UNCOL (UNiversal Computer-Oriented Language), that is, a
good intermediate compilation language. The reason for trying to develop a
good UNCOL is to solve the "m*n" problem compiler-builders face. If one has m
programming languages and n machines, then it takes m*n compilers to compile

each language for each machine; but it would require only m+n compilers if

one had m language-to-UNCOL compilers and n UNCOL-to-machine compilers. Up to

Guy L. Steele Jr. 27 LAMBDA: The Ultimate Declarative

now the UNCOL idea has failed; the usual problem is that proposed UNCOLS are

not sufficiently general. I suspect that this is because they tend to be too
low-level, too much like machine language. I believe that LAMBDA expressions,

combining the most primitive control operator (GOTO) with the most primitive

environment operator (renaming) put LISP at a low enough level to make a good
UNCOL, yet at a high enough level to be completely machine independent.

It should be noted that a compiler which uses LAMBDA expressions

internally does not have to be for a LISP-like language. The features of LISP

as an UNCOL which interest me are the environment and control primitives,

because they can be used easily to simulate the environment and control

structures of most high-level languages.

4.2. Some Side Issues

In this section we discuss briefly some issues which are not directly
relevant to LAMBDA expressions, but which will impinge on the design of a
compiler. These are:

(1) Order of argument evaluation (as opposed to order of evaluation,
which is to be applicative order).

(2) Analysis of side effects and their interactions.
(3) Declarations versus compile-time analysis.
(4) Block compilation (in the InterLISP sense); i.e., inter-function

optimization.

(5) Debugging; in particular, the ability to walk around environment

structures and examine their contents.

(6) Bootstrapping.

Because these are side issues, we will merely consider an easy way out for
each, realizing that the compiler should be designed so as to allow for more
complex ways of handling them later.

(1) The two standard choices for order of argument evaluation are "left to
right" and "doesn't matter". Most LISP systems use the former convention;
most languages with infix syntax, notably BLISS [Wulf 75], use the latter. If
the latter is chosen, there is the matter of whether the compiler will enforce
it by warning the user if he tries to depend on some ordering; if the former

is chosen, there is the matter of determining whether the compiler can perform

optimizations which depend on permuting the order. In either of these cases

an analysis of side-effect interactions among arguments is necessary, and once
we have decided to perform such an analysis, the choice of convention is not

too important.

(2) Analysis of side effects is desirable not only between arguments in a
Single function call, but at all levels. For example, if a copy of a variable

is in a register, then it need not be re-fetched unless an assignment has

occurred. Similarly, if CONS as above were extended to have an RPLACA
message, we would like to know whether sending a given cell an RPLACA message
will require re-transmission of a CAR message. The easy approach is to assume

that an unknown function changes everything, and not to attempt optimization
across calls to unknown functions. Other increasingly clever approaches

include:
Declaration of whether a function can produce side effects or not.

Declaration of what kinds of arguments to a function produce side

effects.

Guy L. Steele Jr. 28 LAMBDA: The Ultimate Declarative

Declaration of classes of side effects. Thus an RPLACA causes previous
CAR operations to become invalid, but not simple variable fetches or
GETs.

Declarations of classes of side effects as a function of certain objects
and/or arguments. Thus (PUTPROP x y z) invalidates all previous GET
operations; (PUTPROP x y 'ZAP) invalidates (GET x 'ZAP) and
(GET x y), but not (GET x 'ZIP). Neither one invalidates (CAR FOO),
probably. Similarly (RPLACA FOO) does not invalidate (CAR FIE) if
it can be determined that FOO and FIE are distinct objects.

Naturally, anything described above as being declared could sometimes also be
determined by a clever compile-time analysis.

(3) As for the issue of declarations versus analysis itself, probably both
should be available. One might envision first implementing a declaration

scheme which can be used to make the thing go, and then adding analysis
routines afterwards. The analysis routines should merely create declarations

in the same way the user can; this would allow uniformity of processing and
extensibility of design.

(4) Block compilation might be necessary for production of very efficient
code, though this will of course depend on the style of programming. If many
data structures are defined in the actor-like style described above, much
procedure integration will be necessary to produce good code. On the other

hand, the code should still work if each procedure is compiled separately
(which would be desirable for debugging purposes). A middle-of-the-road

approach would be to block-compile a set of functions, and compile separate

entry points to certain function for interpreted and compiled calls.

(5) While debugging, it may be desirable to be able to examine the
environment structures created by compiled code. This probably will have to
be a kind of deus ex machina rather than an integral part of the system, but
in any case there must be enough information to determine where things are.

Environments created by compiled code will not contain the names of the
variables, since they are not logically necessary. Instead, the compiler can,
for each LAMBDA expression, create a description, suitable for interpretation

by a debugging program, of the format of closures created for that LAMBDA
expression. This will be enough information to debug with. The compiler

could also theoretically output information as to what data is in which

registers when, though this would be a mountain of output. This would tie in

well with a program-understanding program; one could provide information as
to what compiled code correponds to what interpreted code, and how.

(6) One problem with constructing a compiler is deciding what language to
code the compiler itself in. As a rule of thumb, one ought to take a very dim

view of any supposedly general-purpose language which is not adequate to write
its own compiler in. Thus the proposed compiler will be constructed in some

superset of the basic LISP described above, one which can easily be

transformed by macros into the basic LISP. One advantage of this carefully
chosen minimal dialect is that an interpreter for it can be written and
debugged in only a day or two. This interpreter can then be used as a

development system for writing the machine-dependent portion of the compiler.
Thus if necessary the proposed compiler could be bootstrapped onto a new
machine easily without requiring the aid of a previously existing

implementation.

Guy L. Steele Jr. 29 LAMBDA: The Ultimate Declarative

5. Conclusions

It is appropriate to think of function calls as being a generalization
of GOTO, and thus a fundamental unconditional control construct. The

traditional attitude towards function calls as expensive operations is
unjustified, and can be alleviated by proper compilation techniques.

It is appropriate to think of LAMBDA as an environment operator, which

merely attaches new names to computational quantities and defines the extent

of the significance of these names. The attitude of assigning names to values

rather than values to names leads naturally to a uniform treatment of user and

cor ‘iler-generated variables.

These results lead naturally to techniques for compiling and
optimizing operations on procedurally defined data. This is to be compared
with other work, particularly that on actors. Here let us summarize our

comparison of actors (as implemented by PLASMA) and closures (as implemented
by SCHEME, i.e. LISP):

Closures Actors

Body of LAMBDA expression Script

Environment Set of acquaintances
Variable names Names (compiled out at reduction time)

Function invocation Invocation of explicit actors

Function return Invocation of implicit actors
Return address Implicit underlying continuation

Continuation-passing style Exclusive use of sa> and <s=
Spreading of arguments Pattern matching
Temporary (intermediate result) Name internal to implicit continuation

Let us also summarize some of the symmetries we have seen in the

functional style of programming:

Forms (Function Invocations) Functions (LAMBDA Expressions)

Evaluation Application (function invocation)
Push control stack before Push environment stack before

invoking functions which evaluating form which
produce argument values produces result value

Forms determine sequencing LAMBDA expressions determine

in time extent in space (scope)
Implicit continuation is Implicit temporary is created

created when evaluation of when return of a function
a form requires invocation requires further processing
of a function of a form

It is important to note that this last symmetry was not known to me ahead of
time; I discovered it while writing this document. Starting from the
assumption that control and environment structures exhibit great symmetry,

plus the knowledge of the existence of implicit continuations, I predicted the

existence of hidden temporaries; only then did I notice that such temporaries

do occur. I believe this demonstrates that there is something very deep and

fundamental about this symmetry, closely tied in to the distinction between

form and function. Just as the notion of actors and message-passing has

greatly clarified our ideas about control structures, so the notion of

renaming has clarified our ideas about environments.

Guy L. Steele Jr. 30 LAMBDA: The Ultimate Declarative

Appendix A. Conversion to Continuation-Passing Style

Here we present a set of functions, written in SCHEME, which convert a
. SCHEME expression from functional style to pure continuation-passing style.

{Note PLASMA CPS}

(ASET' GENTEMPNUM 0)

(DEFINE GENTEMP
(LAMBDA (X)

(IMPLODE (CONS X (EXPLODEN (ASET' GENTEMPNUM (+ GENTEMPNUM 1)))))))

GENTEMP creates a new unique symbol consisting of a given prefix and a unique
number.

(DEFINE CPS (LAMBDA (SEXPR) (SPRINTER (CPC SEXPR NIL '#CONT#))))

CPS (Continuation-Passing Style) is the main function; its argument is the
expression to be converted. It calls CPC (C-P Conversion) to do the real
work, and then calls SPRINTER to pretty-print the result, for convenience.

The symbol #CONT# is used to represent the implied continuation which is to
receive the value of the expression.

(DEFINE CPC

(LAMBDA (SEXPR ENV CONT)
(COND ((ATOM SEXPR) (CPC-ATOM SEXPR ENV CONT))

({EQ (CAR SEXPR) 'QUOTE)
(IF CONT "(,CONT ,SEXPR) SEXPR))

((EQ (CAR SEXPR) LAMBDA)
(CPC-LAMBDA SEXPR ENV CONT))

((EQ (CAR SEXPR) 'IF)
(CPC-IF SEXPR ENV CONT))

((EQ (CAR SEXPR) ‘CATCH)
(CPC-CATCH SEXPR ENV CONT))

((EQ (CAR SEXPR) 'LABELS)
(CPC-LABELS SEXPR ENV CONT))

((AND (ATOM (CAR SEXPR))
(GET (CAR SEXPR) 'AMACRO))

(CPC (FUNCALL (GET (CAR SEXPR) ‘AMACRO) SEXPR) ENV CONT))
(T (CPC-FORM SEXPR ENV CONT)))))

CPC merely dispatches to one of a number of subsidiary routines based on the

form of the expression SEXPR. ENV represents the environment in which SEXPR

will be evaluated; it is a list of the variable names. When CPS initially
calls CPC, ENV is NIL. CONT is the continuation which will receive the value
of SEXPR. The double-quote (") is like a single-quote, except that within the
quoted expression any subexpressions preceded by comma (,) are evaluated and
substituted in (also, any subexpressions preceded by atsign (@) are
substituted in a list segments). One special case handled directly by CPC is
a quoted expression; CPC also expands any SCHEME macros encountered.

Guy L. Steele Jr. 31 LAMBDA: The Ultimate Declarative

(DEFINE CPC-ATOM
(LAMBDA (SEXPR ENV CONT)

((LAMBDA (AT) (IF CONT “(,CONT ,AT) AT))
(COND ((NUMBERP SEXPR) SEXPR)

((MEMQ SEXPR ENV) SEXPR)
((GET SEXPR 'CPS-NAME))
(T (IMPLODE (CONS '% (EXPLODEN SEXPR))))))))

For convenience, CPC-ATOM will change the name of a global atom. Numbers and
atoms in the environment are not changed; otherwise, a specified name on the

property list of the given atom is used (properties defined below convert "+"

into “++", etc.); otherwise, the name is prefixed with "%". Once the name

has been converted, it is converted to a form which invokes the continuation

on the atom. (If a null continuation is supplied, the atom itself is
returned.)

(DEFINE CPC-LAMBDA

(LAMBDA (SEXPR ENV CONT)

((LAMBDA (CN)

((LAMBOA (LX) (If CONT “(CONT ,LX) LX))

"(LAMBDA (@(CADR SEXPR) ,CN)

»(CPC (CADOR SEXPR)

(APPEND (CAOR SEXPR) (CONS CN ENV))

CN))))
(GENTEMP ‘C))))

A LAMBDA expression must have an additional parameter, the continuation
supplied to its body, added to its parameter list. CN holds the name of this
generated parameter. A new LAMBDA expression is created, with CN added, and
with its body converted in an environment containing the new variables. Then
the same test for a null CONT is made as in CPC-ATOM.

(DEFINE CPC-IF
(LAMBDA (SEXPR ENV CONT)

((LAMBDA (KN)
"((LAMBDA (,KN)

(CPC (CAOR SEXPR)
ENV
((LAMBDA (PN)

"(LAMBDA (,PN)
(1 ,PN

(CPC (CADOR SEXPR)
ENV
KN)

(CPC (CADODR SEXPR)
ENV
KN))))

(GENTEMP 'P))))
,CONT))

(GENTEMP ‘K))))

First, the continuation for an IF must be given a name KN (rather, the name

held in KN; but for convenience, we will continue to use this ambiguity, for

the form of the name is indeed Kn for some number n), for it will be referred
to in two places and we wish to avoid duplicating the code. Then, the
predicate is converted to continuation-passing style, using a continuation

Guy L. Steele Jr. 32 LAMBDA: The Ultimate Declarative

which will receive thé result and call it PN. This continuation will then use
an IF to decide which converted consequent to invoke. Each consequent is

converted using continuation KN.

(DEFINE CPC-CATCH
(LAMBDA (SEXPR ENV CONT)

(({LAMBDA (EN)
"((LAMBDA (,EN)

({LAMBDA (,(CAOR SEXPR))
(CPC (CADDR SEXPR)

(CONS (CADR SEXPR) ENV)

EN))
(LAMBDA (VC) (,EN V))))

,CONT))
(GENTEMP 'E))))

This routine handles CATCH as defined in [Sussman 75], and in converting it to
continuation-passing style eliminates all occurrences of CATCH. The idea is
to give the continuation a name EN, and to bind the CATCH variable to a
continuation (LAMBDA (VC) ...) which ignores its continuation and instead
exits the catch by calling EN with its argument V. The body of the CATCH is
converted using continuation EN.

(DEFINE CPC-LABELS
(LAMBDA (SEXPR ENV CONT)

(00 ((X (CADR SEXPR) (COR X))
(Y ENV (CONS (CAAR X) Y)))

((NULL X)
(00 ((W (CAOR SEXPR) (COR W))

(Z NIL (CONS (LIST (CAAR W)
(CPC (CADAR W) Y NIL))

Z)))
((NULL W)
“(LABELS ,(REVERSE 2)

»(CPC (CADDR SEXPR) Y CONT))))))))

Here we have used DO loops as defined in MacLISP (DO is implemented as a macro

in SCHEME). There are two passes, one performed by each DO. The first pass
merely collects in Y the names of all the labelled LAMBDA expressions. The

second pass converts all the LAMBDA expressions using a null continuation and
an environment augmented by all the collected names in Y, collecting them in
Z. At the end, a new LABELS is constructed using the results in Z and a

converted LABELS body.

Guy L. Steele Jr. 33 LAMBDA: The Ultimate Declarative

(DEFINE CPC-FORM
(LAMBDA (SEXPR ENV CONT)

(LABELS ((LOOP1
(LAMBDA (X Y 2)

(IF (NULL X)
(DO ((F (REVERSE (CONS CONT Y))

(IF (NULL (CAR Z)) F
(CPC (CAR Z)

ENV
"(LAMBDA (,(CAR Y)) ,F))))

(Y Y (CDR Y))
(Z Z (CDR Z)))

((NULL Z) F))
(COND ((OR (NULL (CAR X))

(ATOM (CAR X)))
(LOOP1 (COR Xx)

(CONS (CPC (CAR X) ENV NIL) Y)
(CONS NIL Z)))

((EQ (CAAR X) 'QUOTE)
(LOOP1 (COR X)

(CONS (CAR X) Y)
(CONS NIL Z)))

((EQ (CAAR X) 'LAMBDA)
(LOOP1 (COR xX)

(CONS (CPC (CAR X) ENV NIL) Y)
(CONS NIL Z)))

(T (LOOP1 (COR X)
(CONS (GENTEMP 'T) Y)

(CONS (CAR X) Z))))))))
(LOOP1 SEXPR NIL NIL))))

This, the most complicated routine, converts forms (function calls). This
also operates in two passes. The first pass, using LOOP], uses X to step down
the expression, collecting data in Y and Z. At each step, if the next element
of X can be evaluated trivially, then it is converted with a null continuation

and added to Y, and NIL is added to Z. Otherwise, a temporary name TN for the

result of the subexpression is created and put in Y, and the subexpression

itself is put in Z. On the second pass (the DO loop), the final continuation-
passing form is constructed in F from the inside out. At each step, if the
element of Z is non-null, a new continuation must be created. (There is

actually a bug in CPC-FORM, which has to do with variables affected by side-

effects. This is easily fixed by changing LOOP] so that it generates

temporaries for variables even though variables evaluate trivially. This
would only obscure the examples presented below, however, and so this was

omitted.)

(LABELS ((BAR
(LAMBDA (DUMMY X Y)

(IF (NULL X) '|CPS ready to go!|

(BAR (PUTPROP (CAR X) (CAR Y) 'CPS-NAME)

(CDR x)

(COR Y))))))
(BAR NIL

"(+ - 8 f/ “ T NIL)

"(44 -- #8 //// ** 'T NNIL)))

Guy L. Steele Jr. 34 LAMBDA: The Ultimate Declarative

This loop sets up some properties so that "+" will translate into "++" instead
of “X%+", etc.

Now let us examine some examples of the action of CPS. First, let us

try our old friend FACT, the iterative factorial program.

(DEFINE FACT
(LAMBDA (N)

(LABELS ((FACT1 (LAMBDA (M A)
(IF (= M0) A

(FACTL (- M1) (* M A))))))
(FACTL N 1))))

Applying CPS to the LAMBDA expression for FACT yields:

(aCQNT#
(LAMBDA (N C7)

(LABELS ((FACTI
(LAMBDA (M A C10)

((LAMBDA (K11)
(x= 40

(LAMBDA (P12)
(IF P12 (K11 A)

(-- M1
(LAMBDA (113)

(*° MA

(LAMBDA (T14)
(FACT1 T13 T14 K11)))))))))

C10))))
(FACTI N 17))))

As an example of CATCH elimination, here is a routine which is a
paraphrase of the SQRT routine from [Sussman 75]:

(DEFINE SORT
(LAMBDA (X EPS)

((LAMBDA (ANS LOOPTAG)
(CATCH RETURNTAG

(BLOCK (ASET' LOOPTAG (CATCH M M))
(IF ---

(RETURNTAG ANS)
NIL)

(ASET' ANS ===)
(LOOPTAG LOOPTAG))))

1.0

NIL)))

Here we have used "---" and "z=" as ellipses for complicated (and relatively

uninteresting) arithmetic expressions. Applying CPS to the LAMBDA expression
for SQRT yields:

Guy L. Steele Jr. 35

(#CONT#
(LAMBDA (X EPS C33)

((LAMBOA (ANS LOOPTAG C34)
((LAMBDA (£35)

((LAMBDA (RETURNTAG)
((LAMBDA (E52)

((LAMBDA (M) (E52 M))
(LAMBDA (VC) (E52 V))))

(LAMBDA (T51)
(XASET' LOOPTAG T51

(LAMBDA (137)
((LAMBDA (A B C36) (B C36))
137
(LAMBDA (C40)

((LAMBOA (K47)
((LAMBDA (P50)

(IF P50
(RETURNTAG ANS K47)
(K47 'NIL)))

%---))
(LAMBDA (142) .

((LAMBDA (A 8 C41) (8 C41))
742
(LAMBDA (C43)

(XASET' ANS %===
(LAMBDA (145)

((LAMBDA (A B C44)
(8 C44))

T45
(LAMBDA (C46)

(LOOPTAG
LOOPTAG
C46))

43))))
40))))

E35))))))
(LAMBDA (VC) (E35 V))))

C34))
1.0
NIL
C33)))

LAMBOA: The Ultimate Declarative

Note that the CATCHes have both been eliminated. It is left as an exercise
for the reader to verify that the continuation-passing version correctly

reflects the semantics of the original.

Guy L. Steele Jr. 36 LAMBDA: The Ultimate Declarative

Appendix B. Continuation-Passing with Multiple Value Return

The program of Appendix A can easily be modified to handle the

multiple-value-return construct. Here we present only the functions which

must be changed; all others are as in Appendix A.

(SETSYNTAX '/{ "MACRO
"(LAMBDA ()

(00 ((L NIL (CONS (READ) L)))
((= (TYIPEEK T) 17S) ASCII 175 is ")"
(TYI)
(LIST ‘MULTI-RETURN

(READ)
(REVERSE L))))))

(SETSYNTAX '/} 600500 NIL)

This defines the syntactic rule for reading in "{...}n" construct. A call of
the form {f xl ... xm}n is converted into the piece of list structure:

(MULTI-RETURN n f xl ... xm)

It is this which is processed by CPC-FORM below.

(DEFINE CPC
| (LAMBDA (SEXPR ENV CONT)

(COND ((ATOM SEXPR) (CPC-ATOM SEXPR ENV CONT))
((EQ (CAR SEXPR) 'QUOTE)
(IF CONT “(,CONT ,SEXPR) SEXPR))

((EQ (CAR SEXPR) ‘LAMBDA)
(CPC-LAMBDA SEXPR ENV CONT))

((EQ (CAR SEXPR) ‘IF)
 (CPC-IF SEXPR ENV CONT))

((EQ (CAR SEXPR) ‘CATCH)
(CPC-CATCH SEXPR ENV CONT))

((EQ (CAR SEXPR) ‘VALUES) ;new
(CPC-FORM (CONS CONT (COR SEXPR)) ENV NIL)) ; clause

((EQ (CAR SEXPR) ‘LABELS)
(CPC-LABELS SEXPR ENV CONT))

((AND (ATOM (CAR SEXPR))
(GET (CAR SEXPR) ‘AMACRO))

(CPC (FUNCALL (GET (CAR SEXPR) 'AMACRO) SEXPR) ENV CONT))
(T (CPC-FORM SEXPR ENV CONT)))))

The only change here is the test marked “new clause"; it checks for the
VALUES construct. It calls CPC-FORM in such a way that the continuation is

given all the specified values as its arguments. The third argument of NIL to
CPC-FORM means that the first argument has no extra implicit continuation.

Guy L. Steele Jr. 37 LAMBDA: The Ultimate Declarative

(DEFINE CPC-FORM
(LAMBDA (SEXPR ENV CONT)

(LABELS ((LOOP1
(LAMBDA (X Y Z)

(IF (NULL X)
(DO ((F (REVERSE ((LAMBDA (Q)

(IF CONT (CONS CONT Q) Q))
(APPLY 'APPEND Y)))

(1F (NULL (CAR Z))
F

(CPC (CAR Z)

ENV
"(LAMBDA ,(REVERSE (CAR Y)) .F))))

(Y ¥ (COR Y))
(Z 2 (COR 2Z)))

((NULL Z) F))

(COND ((OR (NULL (CAR X))
(ATOM (CAR X)))

(LOOP1 (COR X)
(CONS (LIST (CPC (CAR X) ENV NIL)) Y)
(CONS NIL Z)))

((EQ (CAAR X) 'QUOTE)
(LOOP1 (COR Xx)

(CONS (LIST (CAR X)) Y)
(CONS NIL Z)))

((EQ (CAAR X) 'LAMBDA)
(LOOP1 (COR x)

(CONS (LIST (CPC (CAR X) ENV NIL)) Y)
(CONS NIL Z)))

((EQ (CAAR X) ‘MULTI-RETURN)
(DO ((V NIL (CONS (GENTEMP 'V) V))

(J (CADAR X) (- J 1)))

((= J 0)
(LOOP1 (CDR Xx)

(CONS V Y)
(CONS (CADDAR X) Z)))))

(T (LOOP (COR xX)
(CONS (LIST (GENTEMP 'T)) Y)
(CONS (CAR X) Z))))))))

(LOOP1 SEXPR NIL NIL))))

This function has been changed radically to accomodate MULTI-RETURN. The

conceptual alterations are that CONT may be NIL (meaning no explicit

continuation, because SEXPR already contains one), and that each element of Y
is now a list of temporary names or constants, and not just a single element

(hence the use of APPEND). There is also a new case in the COND for MULTI-
RETURN.

Guy L. Steele Jr. 38 LAMBDA: The Ultimate Declarative

As an example, here is the example used in the text, processed by this
codified version of CPS:

(CPS ‘(LIST {FOO 5)2 (+ {FOO 4}2) {FOO 3)2))

(XFOO 5 (LAMBDA (V1 V2)

(%FOO 4 (LAMBDA (V6 V7)
(++ V6 V7

(LAMBDA (T3)

(XFOO 3 (LAMBDA (V4 V5)

(SLIST V1 V2 T3 V4 V5 #CONT#)))))))))

The only differences between this result and the one in the text is that the

continuation-passing versions of LIST and “+" were used, and that the variable

names were chosen differently.

ee
La
ie
.

a
n
d
a
.

Guy L. Steele Jr. 39 LAMBDA: The Ultimate Declarative

Notes

{Note Debugging}

As every machine-language programmer of a stack machine knows, the

extra address on the stack is not entirely useless because it contains some

redundant information about the history of the process. This information is
provided by standard LISP systems in the form of a "backtrace". [McCarthy 62]
[Moon 74] [Teitelman 74] This information may give some clues as to "how it
got there". One may compare this to the "jump program counter" hardware

feature supplied on some machines (notably the PDP-10's at MIT [Holloway 70])
which saves the contents of the program counter before each jump instruction.

{Note Expensive Procedures}

Fateman comments on this difficulty in [Fateman 73]: "...'the
frequency and generality of function calling in LISP' is a high cost only in
inappropriately designed computers (or poorly designed LISP systems). To
illustrate this, we ran the following program in FORTRAN ... [execution time
2.22 sec] ... We then transcribed it into LISP, and achieved the following

results: ... [execution time 1.81 sec] ...
“The point we wish to make is that compiled properly, LISP may be as

efficient a vehicle for conveying algorithms, even numerical ones, as any

other higher-level language, e.g. FORTRAN. An examination of the machine
code produced by the two compilations shows that the inner-loop arithmetic
compilations are virtually identical, but that LISP subroutine calls are less

expensive."

Auslander and Strong discuss in [Auslander 76] a technique for
“removing recursion" from PL/I programs which LISP programmers will recognize

aS a source-to-source semi-compilation. The technique essentially consists of

of introducing an auxiliary array to serve as a stack (though the cited paper

manages in the example to use an already existing array by means of a non-

trivial subterfuge), and transforming procedure calls into GOTO's plus

appropriate stack manipulations to simulate return addresses. What is

astounding is that this simple trick shortened the size of the example code by
8% and shortened the run time by a whopping 40%! They make the reason clear:
"The implementation of the recursive stack costs PL/I 336 bytes per level of
recursive call ..." The GOTO's, on the other hand, presumably compile into
Single branch instructions, and the stack manipulations are just a few
arithmetic instructions.

Even more astounding, particularly in the light of existing compiler
technology for LISP and other languages, is that Auslander and Strong do not

advocate fixing the PL/I compiler to compile procedure calls using their
techniques (as LISP compilers have, to some extent, for years). Instead, they

say: "These techniques can be applied to a program without an understanding

of its purpose. However, they are complex enough so that we are inclined to
teach them as tools for programmers rather than try to mechanize them as an
option in an optimizing compiler." The bulk of their tranformations are well
within the capability of an optimizing compiler. The problem is that
historically procedure calls have received little attention from those who
design optimizing compilers; Auslander and Strong now suggest that, since

this is the case, we should rewrite all procedure calls into other constructs

that the compiler understands better! This seems to defeat the entire purpose

of having a high-level language.

Guy L. Steele Jr. 40 LAMBDA: The Ultimate Oeclarative

On pages 8-9 of Dijkstra's excellent book (Dijkstra 76] he says: "In
a recent educational text addressed to the PL/I programmer one can find the
strong advice to avoid procedure calls as much as possible ‘because they make
the program so inefficient’. In view of the fact that the procedure is one of
PL/I's main vehicles for expressing structure, this is a terrible advice, so
terrible that I can hardly call the text in question ‘educational'. If you
are convinced of the usefulness of the procedure concept and are surrounded by

implementations in which the overhead of the procedure mechanism imposes too

great a penalty, then blame these inadequate implementations instead of
raising them to the leved of standards!"

{Note GCD(111,259)}

This marvelous passage occurs on page 4 of [Dijkstra 76]:
“Instead of considering the single problem of how to compute the

GCD(111,259), we have generalized the problem and have regarded this as a
specific instance of the wider class of problems of how to compute GCD(X,Y).
It is worthwhile to point out that we could have generalized the problem of
computing GCD(111,259) in a different way: we could have regarded the task as
a specific instance of a wider class of tasks, such as the computation of

GCD(111,259), SCM(111,259), 1118259, 111+259, 111/259, 111-259, 111299, the
day of the week of the 1llth day of the 259th year B.C., etc. This would have
given rise to a 'lll-and-259 processor’ and in order to let that produce the

originally desired answer, we should have had to give the request 'GCD,
please' as its input! ...

“In other words, when asked to produce one or more results, it is

usual to generalize the problem and to consider these results as specific

instances of a wider class. But it is no good just to say that everything is
special case of something more general! If we want to follow such an approach
we have two obligations:

1. We have to be quite specific as to how we generalize ...

2. We have to choose ('invent' if you wish) a generalization which is

helpful to our purpose."

{Note No IF-THEN-ELSE}

The IF-THEN-ELSE construct can be expressed rather clumsily in terms

of sequencing and WHILE-DO by introducing a control variable; this is

described by Bob Haas in [Presser 75]. A general discussion of the relative
complexities of various sets of control structures appears in [Lipton 76].

{Note PLASMA CPS}

Hewitt has performed similar experiments on PLASMA programs

(Hewitt 76], by converting PLASMA programs to a form which uses only ss> and

<s= transmission arrows. A subsequent uniform replacement of these arrows by
=> and “= »reserves the semantics of the programs.

{Note PLASMA Reduction}

Since this was written, there were two changes to the PLASMA

implementation. The first, in mid-summer, was a change in terminology, in

Guy L. Steele Jr. 41 LAMBDA: The Ultimate Declarative

which the "reduction" prepass began to be referred to as a "compilation". The
second, in August, was the excision of reduction from the PLASMA
implementation, evidently because the size of the code was becoming
unmanageable. [Hewitt 76] [McLennan 76] It is unfortunate that this
experiment in semi-incremental compilation could not be continued.

{Note PLASMA Registers}

In fact, the current implementation of PLASMA happens to work in this

way, Since the implicit continuations are handled just like any other actor.

However, it does not presently take much advantage of this fact since there
are no constructs defined to create multiple-argument continuations.

{Note PLASMA Sugar}

PLASMA, for example, provides such sugar in abundance. Many

"standard" control and data operations are provided and defined in terms of
actor transmissions. Indeed, the user need not be aware of the semantics of
actors at all; there is enough sugar to hide completely what is really going
on.

{Note Return Address}

There is actually a third quantity passed to BAR, namely the return
address; this is not given an explicit name by either BAR or its caller.
Instead, the functional notation of LISP leaves the handling of the return
address entirely implicit. Later, in the discussion of continuations, the

return address will be given an explicit name jusf like any other passed
parameter.

{Note Slice Both Ways}

One may also try slicing the matrix up in both directions, so that

each entry may be specified as a separate module. This has been tried in

REDUCE, for example. ([Griss 76] It can lead to a rather disjointed style of
programnming, however; in practice, one tends to group routines which all
fall in a single row or column of the operations matrix.

{Note Turing Machines} .

Compare this with the basic action of a Turing machine, which is to
use two parameters (the current state and the symbol under the tape head) to

index a matrix of actions to take.

Guy L. Steele Jr. 42 LAMBDA: The Ultimate Declarative

References

[Allen 72]
Allen, Frances E., and Cocke, John. “A Catalogue of Optimizing
Transformations.“ In Rustin, Randall (ed.), Design and Optimization
of Compilers. Proc. Courant Comp. Sci. Symp. 5. Prentice-Hall
(Englewood Cliffs, N.J., 1972).

[Allen 76]
Allen, Frances E., and Cocke, John. “A Program Data Flow Analysis

Procedure." Comm. ACM 19, 3 (March 1976), 137-147.

{Auslander 76]
Auslander, M.A., and Strong, H.R. Systematic Recursion Removal.

Report RC 5841 (#25283) IBM T.J. Watson Research Center (Yorktown
Heights, New York, February 1976).

{Bobrow 73] .
Bobrow, Daniel G. and Wegbreit, Ben. "A Model and Stack

Implementation of Multiple Environments." CACM 16, 10 (October 1973)
pp. 591-603.

(Campbell 74]
Campbell, R.H., and Habermann, A.N. The Specification of Process
Synchronization by Path Expressions. Technical Report 55. Comp.
Lab., U. Newcastle upon Tyne (January 1974).

[Church 41]
Church, Alonzo. The Calculi of Lambda Conversion. Annals of

Mathematics Studies Number 6. Princeton University Press (Princeton,
1941). Reprinted by Klaus Reprint Corp. (New York, 1965).

(Dijkstra 67]
Dijkstra, Edsger W. "Recursive Programming." In Rosen, Saul (ed.),
Programming Systems and Languages. McGraw-Hill (New York, 1967).

[Dijkstra 76]
Dijkstra, Edsger W. A_Discipline of Programming. Prentice-Hall
(Englewood CLiffs, N.J., 1976).

{Fateman 73]
Fateman, Richard J. “Reply to an Editorial.“ SIGSAM Bulletin 25

(March 1973), 9-1Ll.

{Forte 67}
Forte, Allen. SNOBOL3 Primer. The MIT Press (Cambridge, 1967).

(Galley 75]
Calley, S.W. and Pfister, Greg. The MDL Language. Programming
Technology Division Document SYS.11.01. Project MAC, MIT (Cambridge,

November 1975).

Guy L. Steele Jr. 43 LAMBDA: The Ultimate Declarative

(Griss 76]

Griss, Martin L. "The Definition and Use of Data Structures in

REDUCE.“ Proc. ACM Symposium on Symbolic and Algebraic Computation
(August 1976).

{Hauck 68]
Hauck, E.A., and Dent, B.A. “Burroughs' B6500/B7500 Stack Mechanism."

Proc. AFIPS Conference Vol. 32 (1968).

{Hewitt 73]
Hewitt, Carl. “Planner.” In Project MAC Progress Report X (July 72-
July 73). MIT Project MAC (Cambridge, 1973), 199-230.

[Hewitt 76]
Hewitt, Carl. Personal communications and talks (1975-76).

{Hoare 74]
Hoare, C.A.R. “Monitors: an Operating System Structuring Concept."
Comm. ACM 17, 10 (October 1974).

(Holloway 70]

Holloway, J. PDP-10 Paging Device. Hardware Memo 2. MIT AI Lab

(Cambridge, February 1970).

[Johnsson 75]
Johnsson, Richard Karl. An Approach to Global Register Allocation.
Ph.D. Thesis. Carnegie-Mellon University (Pittsburgh, December 1975).

{Knight 74]
Knight, Tom. The CONS microprocessor. Artificial Intelligence
Working Paper 80, MIT (Cambridge, November 1974).

[Lipton 76]
Lipton, R.J., Eisenstat, S.C., and DeMillo, R.A. “Space and Time
Heirarchies for Classes of Control Structures and Data Structures."
Journal ACM 23, 4 (October 1976), 720-732.

[Liskov 74]
Liskov, Barbara, and Zilles, Stephen. “Programming with Abstract Data
Types." Proc. Symp. on Very High Level Languages. SIGPLAN Notices,
April 1974.

{Liskov 76]
Liskov, Barbara, et al. CLU Design Notes. MIT Lab. for Computer
Science (Cambridge, 1973-1976). :

[McCarthy 60] |
McCarthy, John. “Recursive functions of symbolic expressions and
their computation by machine - I." Comm. ACM 3, 4 (April 1960), 184-
195.

{McCarthy 62]
McCarthy, John, et al. LISP 1.5 Programmer's Manual. The MIT Press
(Cambridge, 1962).

eee nl ne Ua RR nt A

Guy L. Steele Jr. 44 LAMBDA: The Ultimate Declarative

[McDermott 74]
McDermott, Drew V. and Sussman, Gerald Jay. The CONNIVER Reference

' Manual. AI Memo 295a. MIT AI Lab (Cambridge, January 1974).

{McLennan 76]
McLennan, Marilyn. Private communication, 1976.

(MITRLE 62]
COMIT Programmers Reference Manual. MIT Research Laboratory of
Electronics. The MIT Press (Cambridge, 1962).

[Moon 74]
Moon, David A. MACLISP Reference Manual, Revision 0. Project MAC,
MIT (Cambridge, April 1974).

[Moses 70] |
Moses, Joel. The Function of FUNCTION in LISP. AI Memo 199, MIT AI
Lab (Cambridge, June 1970). .

[Pratt 76]

Pratt, Vaughan R. CGOL - An Alternative External Representation for
LISP Users. AI Working Paper 121. MIT AI Lab (Cambridge, March 1976).

[Presser 75]
Presser, Leon. “Structured Languages.“ Proc. National Computer
Conference 1975. Reprinted in SIGPLAN Notices 10, 7 (July 1975), 22-
24. |

{Reynolds 72]
Reynolds, John C. “Definitional Interpreters for Higher Order
Programming Languages." ACM Conference Proceedings 1972.

i
[Smith 75]

Smith, Brian C. and Hewitt, Carl. A PLASMA Primer (draft). MIT Al
Lab (Cambridge, October 1975).

(Snyder 75]
Snyder, Alan. A Portable Compiler for the Language C. MAC TR-149.
Project MAC, MIT (Cambridge, May 1975).

[Steele 76]
, Steele, Guy Lewis Jr., and Sussman, Gerald Jay. LAMBDA: The Ultimate

Imperative. Al Lab Memo 353. MIT (Cambridge, March 1976). .

(Stoy 74]

Stoy, Joseph. The Scott-Strachey Approach to the Mathematical
Semantics of Programming Languages. Project MAC Report. MIT
(Cambridge, December 1974). |

[Sussman 71]
Sussman, Gerald Jay, Winograd, Terry, and Charniak, Eugene. Micro-
PLANNER Reference Manual. AI Memo 203A. MIT AI Lab (Cambridge,
December 1971}.

oe te Ne geek hea ell A A Tl aie CR EE wt aE | eee oe

Guy L. Steele Jr. 45 LAMBDA: The Ultimate Declarative

{Sussman 75]
Sussman, Gerald Jay, and Steele, Guy L. Jr. SCHEME: An Interpreter
for Extended Lambda Calculus. AI Lab Memo 349. MIT (Cambridge,
December 1975).

[Teitelman 74}

Teitelman, Warren. InterLISP Reference Manual. Xerox Palo Alto
Research Center (Palo Alto, 1974).

[Wegbreit 74]
Wegbreit, Ben, et al. ECL Programmer's Manual. Technical Report 23-
74. Center for Research in Computing Technology, Harvard U.
(Cambridge, December 1974).

(Wulf 71]
Wulf, W.A., Russell, D.B., and Habermann, A.N. "BLISS: A Language

for Systems Programming." Comm. ACM 14, 12 (December 1971), 780-790.

{Wulf 72)
Wulf, William A. "Systems for Systems Implementors -- Some
Experiences from BLISS." Proc. AFIPS 1972 FJCC. AFIPS Press
(Montvale, N.J., 1972).

[Wulf 75] |
Wulf, William A., et al. The Design of an Optimizing Compiler.
American Elsevier (New York, 1975).

[Yngve 72]
Yngve, Victor H. Computer Programming with COMIT II. The MIT Press
(Cambridge, 1972).

a
y

