
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
ARTIFICIAL INTELLIGENCE LABORATORY 

AI Memo 379 November 1976 

LAMBDA 

THE ULTIMATE DECLARATIVE 

by 

Guy Lewis Steele Jr. * 

Abstract: 

In this paper, a sequel to LAMBDA: The Ultimate Imperative, a new 

view of LAMBDA as a renaming operator is presented and contrasted with the 

usual functional view taken by LISP. This view, combined with the view of 
function invocation as a kind of generalized GOTO, leads to several new 
insights into the nature of the LISP evaluation mechanism and the symmetry 
between form and function, evaluation and application, and control and 
environment. It also complements Hewitt's actors theory nicely, explaining 
the intent of environment manipulation as cleanly, generally, and intuitively 
as the actors theory explains control structures. The relationship between 
functional and continuation-passing styles of programming is also clarified. 

This view of LAMBDA leads directly to a number of specific techniques 
for use by an optimizing compiler: 
(1) Temporary locations and user-declared variables may be allocated in a 

uniform manner. 
(2) Procedurally defined data structures may compile into code as good as 

' would be expected for data defined by the more usual declarative means. 

(3) Lambda-calculus-theoretic models of such constructs as GOTO, DO loops, 
call-by-name, etc. may be used directly as macros, the expansion of which 

may then compile into code as good as that produced by compilers which are 

designed especially to handle GOTO, DO, etc. . 

The necessary characteristics of such a compiler designed according to this 

philosophy are discussed. Such a compiler is to be built in the near future 

-asS a testing ground for these ideas. 

Keywords: environments, lambda-calculus, procedurally defined data, data 
types, optimizing compilers, control structures, function invocation, 
temporary variables, continuation passing, actors, lexical scoping, 
dynamic binding 

This report describes research done at the Artificial Intelligence Laboratory 

of the Massachusetts Institute of Technology. Support for the laboratory's 

artificial intelligence research is provided in part by the Advanced Research 
Projects Agency of the Department of Defense under Office of Naval Research 
contract N0Q0014-75-C-0643. 

x NSF Fellow



Contents 

  

  

  

  

  

  

  

  

  

  

  

  

  

1. A Different View of LAMBDA 1 

1.1. Primitive Operations in Programming Languages l 
1.2. Function Invocation: The Ultimate Imperative 2 

1.3. LAMBDA as a Renaming Operator 7 
1.4. An Example: Compiling a Simple Function 8 
1.5. Who Pops the Return Address? ll 

2. Lexical and Dynamic Binding 12 

3. LAMBDA, Actors, and Continuations 16 

3.1. Actors = Closures (mod Syntax) 16 
3.2. The Procedural View of Data Types 20 

4. Some Proposed Organization for a Compiler 25 
4.1. Basic Issues 25 

4.2. Some Side Issues 27 

5. Conclusions 29 

Appendix A. Conversion to Continuation-Passing Style 30 
Appendix B. Continuation-Passing with Multiple Value Return 36 

Notes | 39 
References 42 

Acknowledgements 
  

Thanks are due to Gerald Sussman, Carl Hewitt, Allen Brown, Jon Doyle, 
Richard Stallman, and Richard Zippel for discussing the issues 

presented here and for proofreading various drafts of the document. 

An earlier version of this document was submitted in April 1976 
to the Department of Electrical Engineering and Computer Science at MIT 
in the form of a proposal for research towards a Master's Thesis.



Guy L. Steele Jr. 1 LAMBDA: The Ultimate Declarative 

1. A Different View of LAMBDA 

Historically, LAMBDA expressions in LISP have been viewed as 
functions: objects which, when applied ordered sets of arguments, yield 
Single values. These single values typically then become arguments for yet 
other functions. The consistent use of functions in LISP leads to what is 
called the applicative programming style. Here we discuss a more general 

view, of which the functional view will turn out to be a special case. We 

will consider a new interpretation of LAMBDA as an environment operator which 

performs the primitive declarative operation of renaming a quantity, and we 
will consider a function call to be a primitive unconditional imperative 

operator which includes GOTO as a special case. (In an earlier paper 
{Steele 76] we described LAMBDA as “the ultimate imperative". Here we assert 
that this was unfortunately misleading, for it is function invocation which is 

imperative. ) 

1.1. Primitive Operations in Programming Languages 

What are the primitive operations common to all high-level programming 
languages? It is the data manipulation primitives which most clearly 
differentiate high-level languages: FORTRAN has numbers, characters, and 
arrays; PL/I has strings and structures as well; LISP has list cells and 
atomic symbols. All have, however, similar notions of control structures and 
of variables. 

If we ignore the various data types and data manipulation primitives, 
we find that only a few primitive ideas are left. Some of these are: 

Transfer of control 

Environment operations 

Side effects 

Process synchronization 

Transfer of control may be subdivided into conditional and unconditional 

transfers. Environment operations include binding of variables on function 
entry, declaration of local variables, and so on. Side effects include not 
only modifications to data structures, but altering of global variables and 
input/output. Process synchronization includes such issues as resource 
allocation and passing of information between processes in a consistent 

manner. 
Large numbers of primitive constructs are provided in contemporary 

programming languages for these purposes. The following short catalog is by 

no means complete, but only representative: 

Transfer of control 

Sequential blocks 

GOTO 
IF -THEN-ELSE 
WHILE-DO, REPEAT-UNTIL, and other loops 

CASE 
SELECT 
EXIT (also known as ESCAPE or CATCH/THROW) 
Decision tables
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Environment operations 
Formal procedure parameters 
Declarations within blocks 
Assignments to local variables 
Pattern matching 

Side effects 
Assignments to global (or COMMON) variables 
Input/output 
Assignments to array elements 
Assignments to other data structures 

Process synchronization 
Semaphores 

Critical regions 

Monitors 

Path expressions 

Often attempts are made to reduce the number of operations of each type to 
some minimal set. Thus, for example, there have been proofs that sequential 
blocks, IF-THEN-ELSE, and WHILE-DO form a complete set of control operations. 
One can even do without IF-THEN-ELSE, though the technique for eliminating it 
seems to produce more rather than less complexity. {Note No IF-THEN-ELSE} A 
minimal set should contain primitives which are not only universal but also 
easy to describe, simple to implement, and capable of describing more complex 
constructs in a straightforward manner. This is why the semaphore is still 
commonly used; its simplicity makes it is easy to describe as well as 
implement, and it can be used to describe more complex synchronization 
operators. The expositors of monitors and path expressions, for example, go 

to great lengths to describe them in terms of semaphores [Hoare 74] 

(Campbell 74]; but it would be difficult to describe either of these "“high- 
level" synchronization constructs in terms of the other. 

With the criteria of simplicity, universality, and expressive power in 

mind, let us consider some choices for sets of control and environment 

operators. Side effects and process synchronization will not be treated 

further in this paper. 

1.2. Function Invocation: The Ultimate Imperative 

The essential characteristic of a control operator is that it 
transfers control. It may do this in a more or less disciplined way, but this 

discipline is generally more conceptual than actual; to put it another way, 

"down underneath, DO, CASE, and SELECT all compile into IFs and GOTOs". This 
is why many people resist the elimination of GOTO from high-level languages; 
just as the semaphore seems to be a fundamental synchronization primitive, so 
the GOTO seems to be a fundamental control primitive from which, together with 
IF, any more complex one can be constructed if necessary. (There has been a 
recent controversy over the nested IF-THEN-ELSE as well. Alternatives such as 
repetitions of tests or decision tables have been examined. However, there is 

no denying that IF-THEN-ELSE seems to be the simplest conditional control 
operato~ c2sily capable of expressing all others.) 

One of the difficulties of using GOTO, however, is that to communicate 
information from the code gone from to the code gone to it is necessary to use 

global variables. This was a fundamental difficulty with the CONNIVER 

language [McDermott 74], for example; while CONNIVER allowed great 
flexibility in its control structures, the passing around of data was so 
undisciplined as to be completely unmanageable. It would be nice if we had
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some primitive which passed some data along while performing a GOTO. 

It turns out that almost every high-level programming language already 
has such a primitive: the function call! This construct is almost always 
completely ignored by those who catalog control constructs; whether it is 
because function calling is taken for granted, or because it is not considered 

a true control construct, I do not know. One might suspect that there is a 

bias against function calling because it is typically implemented as a 

complex, slow operation, often involving much saving of registers, allocation 
of temporary storage, etc. {Note Expensive Procedures} 

Let us consider the claim that a function invocation is equivalent to 

a GOTO which passes some data. But what about the traditional view of a 

function call which expects a returned value? The standard scenario for a 
function call runs something like this: 

[1] Calculate the arguments and put them where the function expects to 
find then. 

{2] Call the function, saving a return address (on the PDP-10, for 
example, a PUSHJ instruction is used, which transfers control to 

the function after saving a return address on a pushdown stack). 

[3] The function calculates a value and puts it where its caller can 
get it. 

[4] The function returns to the saved address, throwing the saved 
address away (on the PDP-10, this is done with a POPJ instruction, 
which pops an address off the stack and jumps to that address). 

It would appear that the saved return address is necessary to the scenario. 
If we always compile a function invocation as a pure GOTO instead, how can the 
function know where to return? 

To answer this we must consider carefully the steps logically required 
in order to compute the value of a function applied to a set of arguments. 
Suppose we have a function BAR defined as: 

(DEFINE BAR 
(LAMBDA (X Y) 

(F (GX) (H Y)))) 

In a typical LISP implementation, when we arrive at the code for BAR we expect 
to have two computed quantities, the arguments, plus a return address, 
probably on the control stack. Once we have entered BAR and given the names X 

and Y to the arguments, we must invoke the three functions denoted by F, G, 
and H. When we invoke G or H, it is necessary to supply a return address, 

because we must eventually return to the code in BAR to complete the 

computation by invoking F. But we do not have to supply a return address to F; 

we can merely perform a GOTO, and F will inherit the return address originally 

supplied to BAR. 
Let us simulate the behavior of a PDP-10 pushdown stack to see why 

this is true. If we consistently used PUSHJ for calling a function and POPJ 

for returning from one, then the code for BAR, F, G, and H would look 
something like this:
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BAR: eee F: eee 
PUSHJ G POPJ 

BARI: eee 

PUSHJ H G: eee 
BAR2: cee POPJ 

PUSHJ F 
BAR3: POPJ H: 

POPJ 

We have labeled not only the entry points to the functions, but also a few key 
points within BAR, for expository purposes. We are justified in putting no 
ellipsis between the PUSHJ F and the POPJ in BAR, because we assume that no 
Cleanup other than the POPJ is necessary, and because the value returned by F 

(in the assumed RESULT register) will be returned from BAR also. 
Let us depict a pushdown stack as a list growing towards the right. 

On arrival at BAR, the caller of BAR has left a return address on the stack. 

--, “return address for BAR> 

On executing the PUSHJ G, we enter the function G after leaving a return 
address BAR] on the stack: 

--, “return address for BAR>, BARI 

The function G may call other functions in turn, adding other return addresses 

to the stack, but these other functions will pop them again on exit, and so on 

arrival at the POPJ in G the stack is the same. The POPJ pops the address 
BAR1 and jumps there, leaving the stack like this: 

..-, “return address for BAR> 

In a similar manner, the address BARZ is pushed when H is called, and H pops 
this address on exit. The same is true of F and BAR3. On return from F, the 

POPJ in BAR is executed, and the return address supplied by BAR‘'s caller is 
popped and jumped to. 

Notice that during the execution of F the stack looks like this: 

.-, “return address for BAR>, BAR3, ... 

Suppose that at the end of BAR we replaced the PUSHJ F, POPJ by GOTO F. Then 

on arrival at the GOTO the stack would look like this: 

--, “return address for BARD 

The stack would look this way on arrival at the POPJ in F, and so F would pop 

this return address and return to BAR's caller. The net effect is as before. 

The value returned by F has been returned to BAR's caller, and the stack was 
left the same. The only difference was that one fewer stack slot was consumed 
during the execution of F, because we did not push the address BAR3. 

Thus we see that F may be invoked in a manner different from the way 
in which G and H are invoked. This fact is somewhat disturbing. We would 

like our function invocation mechanism to be uniform, not only for aesthetic 

reasons, but so that functions may be compiled separately and linked up at run 

time with a minimum of special-case interfacing. Uniformity is achieved in 
some LISPs by always using PUSHJ and never GOTO, but this is at the expense of 

using more stack space than logically necessary. At the end of every function
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X the sequence “PUSHJ Y; POPJ" will occur, where Y is the last function 
invoked by X, requiring a logically unnecessary return address pointing to a 
POPJ. {Note Debugging} 

An alternate approach is suggested by the implementation of the SCHEME 
interpreter. [Sussman 75] We note that the textual difference between the 

calls on F and G is that the call on G is nested as an argument to another 

function call, whereas the call to F is not. This suggests that we save a 
return address on the stack when we begin to evaluate a form (function call) 
which is to provide an argument for another function, rather than when we 

invoke the function. (The SCHEME interpreter works in exactly this way.) 
This discipline produces a rather elegant symmetry: evaluation of forms 
(function invocation) pushes additional control stack, and application of 
functions (function entry and the consequent binding of variables) pushes 

additional environment stack. Thus for BAR we would compile approximately the 
following code: 

BAR: PUSH [BAR] ] ssave return address for (G X) 
<set up arguments for G> 
GOTO G ;call function G 

BARI: <save result of @ ; 
PUSH [ BAR2} ;save return address for (H Y) 
<set up arguments for H> 

GOTO H © ;call function H 

BARZ: <set up arguments for F> 
GOTO F scall function F 

The instruction PUSH [X] pushes the address X on the stack. Note that no code 

appears in BAR which ever pops a return address off the stack; it pushes 

return addresses for G and H, but G and H are responsible for popping then, 
and BAR passes its own return address implicitly to F without popping it. 
This point is extremely important, and we shall return to it later. 

Those familiar with the MacLISP compiler will recognize the code of 
the previous example as being similar to the “LSUBR" calling convention. 
Under this convention, more than just return addresses are kept on the control 

stack; a function receives its arguments on the stack, above the return 

address. Thus, when BAR is entered, there are (at least) three items on the 
Stack: the last argument, Y, is on top; below that, the previous (and in 

fact first) one, X; and below that, the return address. The complete code 
for BAR might look like this: 

BAR: PUSH ([BAR1 J ssave return address for (G x) 
PUSH -2(P) s;push a copy of X 
GOTO G scall function G 

BARI: PUSH RESULT sresult of G is in RESULT register 
PUSH [BAR2] s;save return address for (H Y) 
PUSH -2(P) spush a copy of Y : 

GOTO H scall function H a 
BAR2: POP -2(P) ;clobber X with result of G 

MOVEM RESULT, (P) sclobber Y with result of H 

GOTO F ;call function F 

(There is some tricky code at point BAR2: on return from H the stack looks 
like: 

.-, “return address for BAR>, X, Y, <result from G>
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After the POP instruction, the stack looks like: 

--, “return address for BARD, <result from G>, Y 

That is, the top item of the stack has replaced the one two below it. After 
the MOVEM (move to memory) instruction: 

--, “return address for BARD, <result from G>, <result from H> 

which is exactly the correct setup for calling F. Let us not here go into the 
issue of how such clever code might be generated, but merely recognize the 
fact that it gets the stack into the necesssary condition for calling F.) 

Suppose that the saving of a return address and the setting up of 
arguments were commutative operations. (This is not true of the LSUBR calling 
convention, because both operations use the stack; but it is true of the SUBR 

convention, where the arguments are "spread" [McCarthy 62] [Moon 74] in 
registers, and the return address on the stack.) Then we may permute the code 

as follows (from the original example): 

BAR: <set up arguments for G in registers> 

PUSH [BAR1] ;save return address for (G X) 
GOTO G ;call function G 

BARI: <save result of G> 

<set up arguments for H in registers> 

PUSH [BAR2] ;save return address for (H Y) 
GOTO H ;call function H 

BAR2: <set up arguments for F in registers> 

GOTO F scall function F 

As it happens, the PDP-10 provides an instruction, PUSHJ, defined as follows: 

PUSH [L1] 

GOTO G is the same as PUSHJ G 

Ll: Ll: 

except that the PUSHJ takes less code. Thus we may write the code as: 

BAR: <set up arguments for G in registers> 

PUSHJ G ;save return address, call G 

<save result of G> 

<set up arguments for H in registers> 

PUSHJ H ;save return address, call H 
<set up arguments for F in registers) 
GOTO F ;call function F 

This is why PUSHJ (and similar instructions on other machines, whether they 

save the return adress on a stack, in a register, or in a memory location) 

works as a subroutine call, and, by extension, why up to now many people have 

thought of pushing the return address at function call time rather than at 

form evaluation time. The use of GOTO to call a function “tail-recursively" 
(known around MIT as the "JRST hack", from the PDP-10 instruction: for GOTO, 
though the hack itself it dates back to the PDP-1) is in fact not just a hack, 
but rather the most uniform method for invoking functions. PUSHJ is not a 
function calling primitive per se, therefore, but rather an optimization of 

this general approach.
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1.3. LAMBDA as a Renaming Operator 

Environment operators also take various forms. The most common are 

assignment to local variables and binding of arguments to functions, but there 

are others, such as pattern-matching operators (as in COMIT [MITRLE 62] 
CY¥ngve 72], SNOBOL [Forte 67], MICRO-PLANNER [Sussman 71], CONNIVER 
(McDermott 74], and PLASMA [Smith 75]). It is usual to think of these 
operators as altering the contents of a named location, or of causing the 

value associated with a name to be changed. 

In understanding the action of an environment operator it may be more 

fruitful to take a different point of view, which is that the value involved 

is given a new (additional) name. If the name had previously been used to 

denote another quantity, then that former use is shadowed; but this is not 

necessarily an essential property of an environment operator, for we can often 
use alpha-conversion ("uniquization" of variable names) to avoid such 
shadowing. It is not the names which are important to the computation, but 

rather the quantities; hence it is appropriate to focus on the quantities and 

think of them as having one or more names over time, rather than thinking of a 

name as having one or more values over time. 

Consider our previous example involving BAR. On entry to BAR two 

quantities are passed, either in registers or on the stack. Within BAR these 

quantities are known as X and Y, and may be referred to by those names. In 

other environments these quantities may be known by other names; if the code 

in BAR's caller were (BAR W (+ X 3)), then the first quantity is known as W 

and the second has no explicit name. {Note Return Address} On entry to BAR, 
however, the LAMBDA assigns the names X and Y to these two quantities. The 

fact that X means something else to BAR's caller is of no significance, since 

these names are for BAR's use only. Thus the LAMBDA not only assigns names, 

but determines the extent of their significance (their scope). Note an 

interesting symmetry here: control constructs determine constraints in time 

(sequencing) in a program, while environment operators determine constraints 

in space (textual extent, or scope). 

One way in which the renaming view of LAMBDA may be useful is in 
allocation of temporaries in a compiler. Suppose that we use a targeting and 
preferencing scheme similar to that described by in [Wulf 75] and 
[Johnsson 75]. Under such a scheme, the names used in a program are 
partitioned by the compiler into sets called “preference classes". The 

grouping of several names into the same set indicates that it is preferable, 

other things being equal, to have the quantities referred to by those names 

reside in the same memory location at run time; this may occur because the 

names refer to the same quantity or to related quantities (such as X and X+¢l). 

A set may also have a specified target, a particular memory location which is 

preferable to any other for holding quantities named by members of the set. 
As an example, consider the following code skeleton: 

((LAMBDA (A B) <body>) (+ X Y) (* Z W)) 

Suppose that within the compiler the names Tl and T2 have been assigned to the 

temporary quantities resulting from the addition and multiplication. Then to 

process the "binding" of A and B we need only add A to the preference class of 

Tl, and B to the preference class of T2. This will have the effect of causing 

A and Tl to refer to the same location, wherever that may be; similarly B and 

T2 will refer to the same location. If Tl is saved on a stack and T2 winds up 
in a register, fine; references to A and B within the <body> will 
automatically have this information. 

On the other hand, suppose that <body> is (FOO 1 A B), where FOO is a
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built-in function which takes its arguments in registers 1, 2, and 3. Then 

A's preference class will be targeted on register 2, and B's on register 3 

(since these are the only uses of A and B within <body>); this will cause Tl 

and T2 to have the same respective targets, and at the outer level an attempt 

will be made to perform the addition in register 2 and the multiplication in 
register 3. This general scheme will produce much better code than a scheme 
which says that all LAMBDA expressions must, like the function FOO, take their 
arguments in certain registers. Note too that no code whatsoever is generated 

for the variable bindings as such; the fact that we assign names to the 
results of the expressions (+ X Y) and (® ZW) rather than writing 

(FOO 1 (* ZW) (+ X Y)) 

makes no difference at all, which is as it should be. Thus, compiler 
temporaries and simple user variables are treated on a completely equal basis. 
This idea was used in [Johnsson 75], but without any explanation of why such 
equal treatment is justified. Here we have some indication that there is 
conceptually no difference between a user variable and a compiler-generated 
temporary. This claim will be made more explicit later in the discussion of 
continuation-passing. Names are merely a convenient textual device for 

indicating the various places in a program where a computed quantity is 

referred to. If we could, say, draw arrows instead, as in a data flow 
diagram, we would not need to write names. In any case, names are eliminated 

at compile time, and so by run time the distinction between user names and the 

compiler's generated names has been lost. 

Thus, at the low level, we may view LAMBDA as a renaming operation 
which has more to do with the internal workings of the compiler (or the 
interpreter), and with a notation for indicating where quantities are referred 

to, than with the semantics as such of the computation to be performed by the 

progran. 

1.4. An Example: Compiling a Simple Function 

One of the important consequences of the view of LAMBDA and function 

calls presented above is that programs written in a style based on the lambda- 
calculus-theoretic models of higher-level constructs such as DO loops (see 
[Stoy 74] [Steele 76]) will be correctly compiled. As an example, consider 
this iterative factorial function: 

(DEFINE FACT 
(LAMBDA (N) 

(LABELS ((FACT1 
(LAMBDA (M A) 

(IF (2 M0) A 
(FACT1 (- M 1) 

(* M A)))))) 
(FACT1 N 1)))) 

Let us step through a complete compilation process for this function, based on 

the ideas we have seen. (This scenario is intended only to exemplify certain 
ideas, and does not reflect entirely accurately the targeting and preferencing 

techniques described in [Wulf 75] and [Johnsson 75].) 
First, let us assign names to all the intermediate quantities 

(temporaries) which will arise:



Guy L. Steele Jr. 9 LAMBDA: The Ultimate Declarative 

(DEFINE FACT 
(LAMBDA (N) 

Tls(LABELS ((FACT1 
(LAMBDA (M A) 

T2a(IF T3a(> M0) A 

T4a(FACT1 T5a(- M 1) 

Toa(* M A)))))) 
T7a(FACT1 N 1)))) 

We have attached a name Tl-T7 to all the function calls in the definition; 
these names refer to the quantities which will result from these function 
calls. 

Now let us place the names in preference classes. Since N is used 

only once, as an argument to FACT1, which will call that argument M, N and M 

belong in the same class; T5 also belongs to this class for the same reason. 

Tl, T2, T4, and T7 belong in the same class because they are.all names, in 

effect, for the result of FACT] or FACT. T6 and A belong in the same class, 
because T6 is an argument to FACT1; TZ and A belong in the same class, because 
A is one possible result of the IF. T3 is in a class by itself. 

{M, N, T5} 
{A, Tl, T2, T4, T6, T7} 

{T3} 

A fairly complicated analysis of the "lifetimes" of these quantities shows 
that M and T5 must coexist simultaneously (while calculating T6), and so they 
cannot really be assigned the same memory location. Hence we must split T5 
off into a class of its own after all. 

Let us suppose that we prefer to target the result of a global 

function into register RESULT, and the single argument to a function into 

register ARG. (FACT1, which is not a global function, is not subject to these 
preferences.) Then we have: 

{M, N} target ARG (by virtue of N) 

{T5} 
{A, Tl, T2, T4, T6, T7} target RESULT (by virtue of Tl) 

{T3} 

T3, on the other hand, will need no memory location (a property of the PDP-10 
instruction set). Thus we might get this assignment of locations: 

{M, N} ARG 
{T5} Rl 
{A, Tl, T2, T4, 16, T7} RESULT 

where Rl is an arbitrarily chosen register. 
We now really have two functions to compile, FACT and FACT1. Up to 

now we have used the renaming properties of LAMBDA to assign registers; now 
we use the GOTO property of function calls to construct this code skeleton:
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FACT: <set up arguments for FACTI1> 

GOTO FACT1 3;call FACT1 

FACT1: <if quantity names M is non-zero go to FACTIA> 
<return quantity named A in register RESULT> 

POPJ 

FACTIA: <do subtraction and multiplication> 
GOTO FACT1 ;FACT1 calling itself 

Filling in the arithmetic operations and register assignments gives: 

33; On arrival here, quantity named N is in register ARG. 

FACT: MOVEI RESULT, 1 ;N already in ARG; set up 1 
GOTO FACT1 scall FACT1 

33; On arrival here, quantity named M is in ARG, 

$33 and quantity named A is in RESULT. 

FACT1: JUMPN ARG,FACTIA 
POPJ sA is already in RESULT! 

FACTLA: MOVE R1,ARG smust do subtraction in Rl 

SUBI R1,1 
IMUL RESULT, ARG ;do multiplication 
MOVE ARG,R1 snow put result of subtraction in ARG 
GOTO FACT1 sFACT1 calling itself 

This code, while not perfect, is not bad. The major deficiency, which is the 

use of Rl, is easily cured if the compiler could know at some level that the 
subtraction and multiplication can be interchanged (for neither has side 
effects which would affect the other), producing: 

FACTIA: IMUL RESULT, ARG 
SUBI ARG,1 
GOTO FACTI 

Similarly, the sequence: 

GOTO FACT] 

FACT1: 

could be optimized by removing the GOTO. These tricks, however, are known by 
any current reasonably sophisticated optimizing compiler. 

What is more important is the philosophy taken in interpreting the 
meaning of the program during the compilation process. The structure of this 

compiled code is a loop, not a nested sequence of stack-pushing function 

calls. Like the SCHEME interpreter or the various PLASMA implementations, a 

compiler based on these ideas would correctly reflect the semantics of lambda- 

calculus-based models of high-level constructs.
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1.5. Who Pops the Return Address? 

Earlier we showed a translation of BAR into “machine language", and 
noted that there was no code which explicitly popped a return address; the 
buck was always passed to another function (F, G, or H). This may seem 

surprising at first, but it is in fact a necessary consequence of our view of 

function calls as "GOTOs with a message". We will show by induction that only 

primitive functions not expressible in our language (SCHEME) perform POPJ; 
indeed, only this nature of the primitives determines the fact that our 
language is functionally oriented! 

What is the last thing performed by a function? Consider the 

definition of one: 

(DEFINE FUN (LAMBDA (Xl X2 ... XN) <body>)) 

Now <body> must be a form in our language. There are several cases: 

[1] Constant, variable, or closure. In this case we actually compiled 
a POPJ in the case of FACT above, but we could view constants, 

variables, and closures (in general, things which “evaluate 
trivially" in the sense described in [Steele 76]) as functions of 
zero arguments if we wished, and so GOTO a place which would get 
the value of the constant, variable, or closure into RESULT. This 
place would inherit the return address, and so our function need 

not pop it. Alternatively, we may view constants, etc. as 

primitives, the same way we regard integer addition as a primitive 

_ (note that CTA2 above required a POPJ, since we had “open-coded" 
the addition primitive). 

[2] (IF <pred> <expl> <exp2>). In this case the last thing our 
function does is the last thing <expl> or <exp2> does, and so we 

appeal to this analysis inductively. 

[3] (LABELS <defns> <exp>). In this case the last thing our function 
does is the last thing <exp> does. This may involve invoking a 

function defined in the LABELS, but we can consider them to be 
separate functions for our purposes here. 

[4] A function call. In this case the function called will inherit 
the return address. 

Since these are all the cases, we must conclude that our function never pops 

its return address! But it must get popped at some point so that the final 
value may be returned. 

Or must it? If we examine the four cases again and analyze the 
recursive argument, it becomes clear that the last thing a function that we 
define in SCHEME eventually does is invoke another function. The functions we 
define therefore cannot cause a return address to be popped. It is, rather, 

the primitive, built-in operators of the language which pop return addresses. 

These primitives cannot be directly expressed in the language itself (or, more 

accurately, there is some basis set of them which cannot be expressed). It is 

the constants (which we may temporarily regard as zero-argument functions), 
the arithmetic operators, and so forth which pop the return address. (One 

might note that in the compilation of CURRIED-TRIPLE-ADD above, a POPJ 
appeared only at the point the primitive "+" function was open-coded as ADD 

instructions. )
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2. Lexical and Dynamic Binding 

The examples of the previous section, by using only local variables, 
avoided the question of whether variables are lexically or dynamically scoped. 

In this section we will-see that lexical scoping is necessary in order to 
reflect the semantics of lambda-calculus-based models. We might well ask, 
then, if LISP was originally based on lambda calculus, why do most current 

LISP systems employ dynamic binding rather than lexical? 

The primary reason seems to be the introduction of stack hardware at 

about the time of early LISP development. (This was not pure cause and 

effect; rather, each phenomenon influenced the other.) The point is that a 

dynamic bindings stack parallels the control stack in structure. If one has 
an escape operator [Reynolds 72] (also known as CATCH [Moon 74] or EXIT 
[Wulf 71] (Wulf 72]) then the “control stack" may be, in general, a tree 
structure, just as the introduction of FUNARGs requires that the environment 

be tree-structured. [Moses 70] If these operators are forbidden, or only 
implemented in the “downward" sense (in the same way that ALGOL provides 

“downward funarg" (procedure arguments to functions) but not "upward funarg" 
(procedure-valued functions)) as they historically have been in most non-toy 

LISP systems, then hardware stack instructions can always be used for function 
calling and environment binding. Since the introduction of stack hardware 
(e.g. in the PDP-6), most improvements to LISP's variable binding methods have 
therefore started with dynamic binding and then tried to patch it up. 

MacLISP [Moon 74] uses the so-called shallow access scheme, in which 
the current value of a variable is in a fixed location, and old values are on 
a stack. The advantage of this technique is that variables can be accessed 

using only a single memory reference. When code is compiled, variables are 

divided into two classes: special variables are kept in their usual fixed 

locations, while local variables are kept wherever convenient, at the 
compiler's discretion, saving time over the relatively expensive special 

binding mechanism. 

InterLISP [Teitelman 74] (before spaghetti stacks) used a deep access 
scheme, in which it was necessary to look up on the bindings stack to find 
variable bindings; if a variable was not bound on the stack, the its global 
value cell was checked. The cost of the stack search was ameliorated by 
looking up, on entry to a function, the locations of variables needed by that 
function. The advantage of this scheme is that the “top level" value of a 

variable is easily accessed, since it is always in the variable's value cell. 

(InterLISP also divides variables into two classes for purposes of 

compilation; only special variables need be looked up on the bindings stack.) 

Two other notable techniques are the use of value cells as a cache for 
a deep dynamic access scheme, and “spaghetti stacks" [Bobrow 73], which 

attempt to allow the user to choose between static and dynamic binding. The 

problem with the latter is that they are so general that it is difficult for 
the compiler to optimize anything; also, they do not completely solve the 

problem of choosing between static and dynamic binding. For example, the GEN- 
SQRT-OF -GIVEN-EXTRA-TOLERANCE function given in [Steele 76] cannot be handled 

properly with spaghetti stacks in the straightforward way. The difficulty is 
that there is only one access link for each frame, while there are 
conceptually two distinct access methods, namely lexical and dynamic. 

Unfortunately, dynamic binding creates two difficulties. One is the 
well-known "“FUNARG" problem [Moses 70]; the essence of this problem is that 

lexical scoping is desired for functional arguments. The other is more 
subtle. Consider the FACT example above. If we were to use dynamic binding, 
then every time around the FACT] loop it would be necessary to bind M and A on 

a stack. Thus the binding stack would grow arbitrarily deep as we went around
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the loop many times. 

It might be argued that a compiler might notice that the old values of 

M and A can never be referenced, and so might avoid pushing M and A onto a 

Stack. This is true of this special case, but is undecidable in general, 
given that the compiler may not be in a position to examine all the functions 
called by the function being compiled. Let us consider our BAR example above: 

(DEFINE BAR 
(LAMBDA (X Y) 

(F (GX) (H Y)))) 

Under dynamic binding, F might refer to the variables X and Y bound by BAR. 

Hence we must push X and Y onto the bindings stack before calling F, and we 
must also pop them back off when F returns. It is the latter operation that 
causes difficulties. We cannot merely GOTO F any more; we must provide to F 

the return address of a routine which will pop X and Y and then return from 

BAR. F cannot inherit BAR's return address, because the unbinding operation 

must occur between the return from F and the return from BAR. 
Thus, if we are to adhere to the view proposed earlier of LAMBDA and 

function calls, we are compelled to accept lexical scoping of variables. This 

will solve our two objections to dynamic binding, but there are two objections 
to lexical scoping to be answered. The first is whether it will be inherently 

less efficient than dynamic binding (particularly given that we know so much 

about how to implement the latter!); the second is whether we should abandon 

dynamic binding, inasmuch as it has certain useful applications. 
ALGOL implementors have used lexical scoping for many years, and have 

evolved techniques for handling it efficiently, in particular the device known 
as the display. [Dijkstra 67] Some machines have even had special hardware 
for this purpose [Hauck 68], just as PDP-6's and PDP-10's have special 
hardware which aids dynamic binding. The important point is that even if deep 

access is used, it is not necessary to search for a variable's binding as it 

is for dynamic binding, since the binding must occur at a fixed place relative 
to the current environment. The display is in fact simply a double-indexing 
scheme for accessing a binding in constant time. It is not difficult to see 
that search is unnecessary if we consider that the binding appears lexically 
in a fixed place relative to the reference to the variable; a compiler can 

determine the appropriate offset at compile time. Furthermore, the "access 

depth" of a lexical variable is equal to the number of closures which contain 
it, and in typical programs this depth is small (less than 5). . 

In an optimizing compiler for lexically scoped LISP it would not 
necessary to create environment structures in a standard form. Local 

variables could be kept in any available registers if desired. It would not 

necessary to interface these environment structures to the interpreter. 

Because the scoping would be strictly lexical, a reference to a variable in a 

compiled environment structure must occur in compiled code appearing within 
the LAMBDA that bound the variable, and so no interpreted reference could 
refer to such a variable. Similarly, no compiled variable reference could 

refer to an environment structure created by the interpreter. (An exception 

to this argument is the case of writing an interactive debugging package, but 

that will be discussed later. This problem can be fixed in any case if the 

compiler outputs an appropriate map of variable locations for use by the 
debugger. ) 

Consider this extension of a classic example of the use of closures: 

(DEFINE CURRIED-TRIPLE-ADD 
(LAMBDA (X)
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(LAMBDA (Y) 
(LAMBDA (Z) (+ X ¥Y Z))))) 

Using a very simple-minded approach, let us represent a closure as a vector 

whose first element is a pointer to the code and whose succeeding elements are 

all the quantities needed by that closure. We will write a vector as [x0, xl, 
--, X<n-1>]. Let us also assume that when a closed function is called the 

Closure itself is in register CLOSURE. (This is convenient anyway on a PDP- 

10, since one can call the closure by doing an indexed GOTO, such as 

GOTO @(CLOSURE), where @ means indirection through the first element of the 

vector.) Let us use the LSUBR calling convention described earlier for 

passing arguments. Finally, let there be a series of functions nCLOSE which 

create closure vectors of n elements, each taking its arguments in reverse 

order for convenience (the argument on top of the stack becomes element 0 of 

the vector.) Then the code might look like this: 

CTA: PUSH [CTA1] 3X is on stack; add address of code 
GOTO 2CLOSE screate closure [CTAl, X] 

CTAL: PUSH CLOSURE snow address of [CTAl, X] is in CLOSURE 
PUSH [CTA2] ;Y¥ was on stack on entry 
GOTO 3CLOSE sreturn closure [CTAZ, [CTAl, X], Y] 

CTAZd: POP RESULT ;pop Z into result 
ADD RESULT,2(CLOSURE)  ;add in Y (using commutativity, etc.) 
MOVE TEMP, 1( CLOSURE) ;fetch pointer to outer closure 
ADD RESULT, 1( TEMP) ;add in X 
POPJ ;return sum in RESULT 

Admittedly this does not compare favorably with uncurried addition, but the 

point is to illustrate how easily closures can be produced and accessed. If 

several variables had been closed in the outer closure rather than just X, 

then one might endeavor in CTA2Z to fetch the outer closure pointer only once, 

just as in ALGOL one loads a display slot only once and then uses it many 

times to access the variables in that contour. 

A point to note is that it is not necessary to divide lexically scoped 
variables into two classes for compilation purposes; the compiler can always 
determine whether a variable is referred to globally or not. Furthermore, 
when creating a closure (i.e. a FUNARG), the compiler can determine precisely 
what. variables are needed by the closure and include only those variables in 

the data structure for the closure, if it thinks that would be more efficient. 

For example, consider the following code skeleton: 

(LAMBDA (A BC DE) 

(LAMBDA (FG)... Bu... Euce Hess) vee) 

It is quite clear that H is a global variable and so must be "special", 
whereas B and E are local (though global to the inner LAMBDA). When the 
compiler creates code to close the inner LAMBDA expression, the closure need 

only include the variables B and E, and not A, C, or D. The latter variables 
in fact can be kept in registers; only B and E need be:kept in a semi- 

permanent data structure, and even then only if the inner closure is actually 

created. 

Hewitt [Hewitt 76] has mentioned this idea repeatedly, saying actors 
are distinguished from LISP closures in that actor closures contain precisely
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those "acquaintances" which are necessary for the actor closure to run, 
whereas LISP closures may contain arbitrary numbers of unnecessary variable 
bindings. This indeed is an extremely important point to us here, but he 
failed to discuss two aspects of this idea: 

(1) Hewitt spoke in the context of interpreters and other “incremental” 

implementations rather than of full-blown compilers. In an 

interpreter it is much more convenient to use a uniform closure 

method than to run around determining which variables are actually 
needed for the closure. In fact, to do this efficiently in PLASMA, 

it is necessary to perform a “reduction” pre-pass on the expression, 
which is essentially a semi-compilation of the code; it is perhaps 

unfair to compare a compiler to an interpreter. {Note PLASMA 

Reduction} In any case, the semantics of the language are 

unaffected; it doesn't matter that extra variable bindings are 

present if they are not referred to. Thus this is an efficiency 

question only, a question of what a compiler can do to save storage, 
and not a question of semantics. 

(2) It is not always more efficient to create minimal closures! 
Consider the following case: 

(LAMBDA (A B C D) 

(LAMBDA () A. B...) 
(LAMBDA () A. C ...) 
(LAMBDA () ... A. D...) 
(LAMBDA () ... B. C’...) 
(LAMBDA () B. D...) 
(LAMBDA () ... C. D...) ...) 

The six closures, if each created minimally, will together contain 
twelve variable bindings; but if they shared the single environment 

containing A, B, C, and D as in a LISP interpreter, there would be 
only four bindings. Thus PLASMA may in certain cases take more 

storage with its closure strategy rather than less. On the other 
hand, suppose five of the closures are used immediately and then 
discarded, and only the sixth survives indefinitely. Then in the 
long run, PLASMA's strategy would do better! 

The moral is that neither strategy is guaranteed to be the more efficient in 
any absolute sense, since the efficiency can be made a function of the 

behavior of the user's program, not just of the textual form of the progran. 

The compiler should be prepared to make a decision as to which is more 
efficient (and in some simple and common cases such a choicé can be made 

correctly), and perhaps to accept advice from the user in the form of 

declarations. 
It seems, then, that if these ideas are brought to bear, lexical 

binding need not be expensive. This leaves the question of whether to abandon 

dynamic binding completely. Steele and Sussman [Steele 76] demonstrate 
Clearly the technique for simulating dynamic binding in a lexically scoped 
language; they also make a case for separating the two kinds of variables and 
having two completely distinct binding mechanisms, exhibiting a programming 
example which cannot be coded easily using only dynamic binding or only 
lexical scoping. The two mechanisms naturally require different compilation 

techniques (one difference is that fluid-variables, unlike static ones, are 

somewhat tied down to particular locations or search mechanisms because it 

cannot generally be determined at compile time who will reference a variable 

when), but they are each so valuable in certain contexts that in a general-
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purpose programming language it would be foolish to abandon either. 

3. LAMBDA, Actors, and Continuations 

_ Suppose that we choose a set of primitive operators which are not 
functions. This will surely produce a radical change in our style of 

programming, but, by the argument of the previous section, it will not change 
our interpretation of LAMBDA and function calling. A comparison between our 

view of LAMBDA and the notion of actors as presented by Hewitt will motivate 
the choice of a certain set of non-functional primitives which lead to the so- 

called “continuation-passing" style. 

3.1. Actors # Closures (mod Syntax) 

In [Sussman 75] Sussman and Steele note that actors (other than those 

which embody side effects and synchronization) and closures of LAMBDA 

expressions are isomorphic in their behavior. Smith and Hewitt [Smith 75] 
describe an actor as a combination of a script (code to be executed) and a set 
of acquaintances (computational quantities available to the code). A LISP 
closure in like manner is a combination of a body of code and a set of 
variable bindings (or, using our idea of renaming, a set of computational 
quantities with (possibly implicitly) associated names). Hewitt [Hewitt 76] 
has challenged this isomorphism, saying that closures may contain unnecessary 
quantities, but I have already dealt with this issue above. 

Let us therefore examine this isomorphism more closely. We have noted 
above that it is more accurate to think of the caller of a LAMBDA as 
performing a GOTO rather than the LAMBDA itself. It is the operation of 
invocation that is the transfer of control. This transfer of control is 
similar to the transfer of control from one actor to another. 

In the actors model, when control is passed from one actor to another, 
more than a GOTO is performed. A computed quantity, the message, is passed to 
the invoked actor. This corresponds to the set of arguments passed to a 

LAMBDA expression. Now if we wish to regard the actor/LAMBDA expression as a 
black box, then we need not be concerned with the renaming operation; all we 

care about is that an answer eventually comes out. We do not care that the 

LAMBDA expression will "spread" the set of arguments out and assign names to 

various quantities. In fact, there are times when the caller may not wish to 
think of the argument set as a set of distinct values; this attitude is 
reflected in the APPLY primitive of LISP, and in the FEXPR calling convention. 
The actors model points out that, at the interface of caller and callee, we 
may usefully think of the argument set as a single entity. 

In the actors model, one important element of the standard message is 

the continuation. This is equivalent to the notion of return address in a 
LISP system (more accurately, the continuation is equivalent to the return 
address plus all the quantities which will be needed by the code at that 
address). We do not normally think of the return address as an argument to a 
LAMBDA expression, because standard LISP notation suppresses that fact. 

On the one hand, though, Steele and Sussman [Steele 76] point out that 
it is possible to write LISP code in such a manner that return addresses are 
passed explicitly. (This style corresponds to the use in PLASMA of s=> and 

<== to the exclusion of #>, <=, and functional notation.) When code is 

written in this “continuation-passing style“, no implicit return addresses are 

ever created on the control stack. All that is necessary to write code 
entirely in this style is that continuation-passing primitives be available.
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The reason LISP is so function-oriented is that all the primitives (CAR, CONS, 
+, etc.) are functions, expecting return addresses on the stack. The stack 
is simply a conventional place to pass.some (or all) of the arguments. If, 
for example, we consider the LSUBR argument-passing convention described 
earlier, it is easy to think of the return address as being the "zeroth" 

argument, for it is passed on the stack just below arguments 1 through n. 

On the other hand, the PLASMA language, while based on actor 

semantics, has a number of abbreviations which allow the user to ignore the 

continuation portion of a message in the same way he would in LISP. When the 

user writes in PLASMA what would be a function invocation in LISP, the PLASMA 

interpreter automatically supplies an “underlying continuation" which is 
passed in a standard component of the message packet. This is analogous to 
the way the LISP system automatically supplies a return address in a standard 
place (the control stack). (Hewitt [Hewitt 76] has expressed doubt as to 
whether these underlying continuations can themselves be represented 

explicitly as LAMBDA expressions. My impression is that he sees a potential 

infinite regression of underlying continuations. If the underlying 

continuations are written in pure continuation-passing style as defined in 
[Steele 76], however, this problem does not arise.) 

Let us define a convenient set of continuation-passing primitives. 
Following the convention used in [Steele 76], we will let the last argument(s) 

to such a primitive be the continuation(s), where a continuation is simply a 

"function" of values delivered by the primitive. 

(++ a bc) delivers the sum of a and b to the continuation c. 
(-- abc) delivers the difference of a and b to the continuation c. 

(** ab c) delivers the product of a and b to the continuation c. 
(** abc) delivers a raised to the power b to the continuation c. 
(%= ab c) delivers T to continuation c if a and b are arithmetically 

equal, and otherwise NIL. 

(== abcd) invokes continuation c if a and b are arithmetically equal, 
and otherwise continuation d (c and d receive no values from 

Note that predicates may usefully be defined in at least two ways. The 
predicate %= is analogous to a functional predicate in LISP, in that it 

delivers a truth value to its continuation, while == actually implements a 

conditional control primitive. 

Thus far in our comparison of closures and actors we have focused on 
aspects of control. Now let us consider the manipulation of environments. 

When an actor is invoked, it receives a message. It is convenient to assign 

names to parts of this message for future reference within the script. This 

is done by pattern matching in PLASMA, and by "spreading" in LISP. This 
assignment of names is a matter purely internal to the workings of the 
actor/LAMBDA expression; the outside world should not be affected by which 
names are used. (This corresponds indirectly to the notion of referential 

transparency. ) 
In discussing control we noted that on invoking a function the LISP 

and PLASMA interpreters create an implicit underlying continuation, a return 

address. This is a hidden creation of a control operation. Are there any 
hidden environment operations? 

The hidden control operation occurs just before invocation of a 
function. We might expect, by symmetry, a hidden environment operation to 
occur on return from the function. This is in fact the case. The underlying 
continuation, itself an actor, will assign one or more hidden names to the 
contents of the message it receives. If the actor originally invoked was a
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function, then the message is the returned valua” of the function. Consider 

this example, taken from [Steele 76]: : 

(- (* B 2) (* 4A C)) 

When the function "*" is invoked, the message to it contains three items: 

the value of B, the value of 2, and the implicit continuation. When it 
returns, the implicit continuation saves the returned value in some internal 

named place, then invokes the function "*". The message to "*" contains four 

items: the values of 4, A, and C, and a second implicit continuation. This 

continuation contains the internal place where the value from "*" was saved! 

When "%" returns, the continuation then calls "-", giving it the saved result 

from "*", the result freshly obtained from "*", and whatever continuation was 

given for the evaluation of the entire expression; "-" will deliver its 
result to that (inherited) continuation. 

This is all made more clear by writing the example out in pure 
continuation-passing style, using our continuation-passing primitives: 

(** B2 

(LAMBDA (X) 
(** 4 AC 

(LAMBDA (Y) 
(-- X Y <the-inherited-continuation>))))) 

Here X and Y are the explicit names for intermediate quantities which were 
hidden before by the function-calling syntax. We use LAMBDA to express the 
continuations passed to "**" and "**", These LAMBDA expressions are not 
functions; they never return values, but rather merely invoke more 
continuation-passing primitives. However, the interpretation of a LAMBDA 
expression is as before: when invoked, the arguments are assigned the 

additional names specified in the LAMBDA variables list, and then the body of 
the LAMBDA expression is executed. 

In the context of a compiler, the intermediate quantities passed to 
the continuations are usually known as "“temporaries", or are kept in places 

called temporaries. Usually the temporaries are mentioned in the context of 

the problem of allocating them. The present analysis indicates that they are 
just like names assigned by the user; they are different only in that the 

user is relieved by the syntax of a functional language of having to mention 

their names explicitly. This is made even more clear by considering two 

extremes. In assembly language, there are no implicitly named quantities; 

every time one is used, its name (be it a register name, a memory location, or 

whatever) must be mentioned. On the other hand, in a data flow language (e.g. 
some of the AMBIT series) it is possible to draw arrows and never mention 
Names at all. 

By considering temporaries as just another kind of name (or 

alternatively, user names to be just another kind of temporary), the example 

of allocation of temporaries given earlier may be understood on a firmer 

theoretical level. Furthermore, greater understanding of this uniformity may 

lead to advances in language design. Let us consider two examples. 

rivst, we may notice that the underlying continuations in LISP and 
PLASMA take only one argument: the returned value. Why are there not 

implicit continuations of more than one argument? The answer is that this 

characteristic is imposed by the syntax and set of primitives provided in 

functional languages. Suppose we were to augment LISP as follows (this is not 

a serious proposal for a language extension, but only an example):
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(1) Wherever n consecutive arguments might be written in a function 
call, one may instead write ({f xl... xmjn, where n is a 
positive integer. The "function" f must return n values, which 
are used as n arguments in the function call. 

(2) The primitive (values xl ... xn) returns its n arguments as its 
n values. Thus writing "{values xl ... xn}n" is the same as 
writing "xl... xn” as arguments in a function call. 

Then we might write code such as: 

(DEFINE FOO 
(LAMBDA (A) 

(VALUES (* A 2) (* A 3)))) 

(LIST {FOO 5}2 (+ {FOO 4}2) {FOO 3}2) 

Evaluating the second form produces (25 125 80 9 27). When FOO is invoked, it 
is provided an implicit continuation which expects two arguments, i.e. two 
returned values from FOO. We need VALUES as a primitive in order to be able 

to return several values. (We could imagine syntactic sugar for this, such as 
(LAMBDA (A) (* A 2) (* A 3)), but it is no more than sugar.) When (* A 2) 
and (* A 3) have been evaluated, FOO does a GOTO to VALUES, whereupon VALUES 
inherits the two-argument continuation given to FOO. Thus the LAMBDA 
expression for FOO never needs to know how many arguments its continuation 

takes; that is a matter for the primitives to decide. 

All this suggests our second example, namely a way to return multiple 
values from a function without all the extra syntax and primitives. All that 
is necessary is to use explicit continuation-passing. Thus the above example 
might be written: 

(DEFINE FOO 
(LAMBDA (A CONT) 

(CONT (* A 2) (* A 3)))) 

(FOO 5 (LAMBDA (X1 X2) 
(FOO 4 (LAMBDA (Yl Y2) 

((LAMBDA (X3) 
(FOO 7 (LAMBDA (X4 X5) 

(LIST X1 X2 X3 X4 X5)))) 
(+ Yl Y2)))))) 

Here we have used a mixture of functional and continuation-passing styles, 

employing only enough of the latter to express the multiple values returned by 
FOO. The implicit continuations for the evaluation of the arguments to LIST 
and “+" (and their implicit temporaries Xl, X2, X3, X4, X5, Yl, and Y2) have 
been made explicit. While one might see how to implement multiple-value- 
return in an interpreter on the basis of the first example (by augmenting the 

interpreter to handle the new “primitives"), the second makes it clear how to 
compile it without introducing new primitives at the low level. (Appendix A 

presents a program which converts ordinary SCHEME programs to pure 

continuation-passing style; Appendix B presents a modification to this 

program which handles the multiple-value-return construct.) Furthermore, by 

using the same mechanism to compile both function calls and multiple value 

returns, the multiple values will get returned in registers in the same way 

arguments might be passed, without the need for any additional machinery. 
{Note PLASMA Registers}
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3.2. The Procedural View of Data Types 

Up to now we have concentrated on LAMBDA and function calling as 
environment and control primitives. Based on the actor approach, we will see 
that a certain amount of useful data manipulation can be expressed in terms of 
LAMBDA expressions. If compiled well enough, such data manipulation would be 
no more costly than code generated by special-case compiler routines. Thus, 

yet one more programming construct could be handled by this general 

compilation mechanism, making the compiler yet more uniforn. . 

The procedural approach to data type behavior has been developing for 

Many years. Typical of languages of the early 1970's with such ideas are ECL 
{Wegbreit 74] and MUDDLE [Galley 75]. Each allows certain characteristics of 
a data type to be expressed as an arbitrary procedure. Specifically, ECL 
allows the behavior of the creation, assignment, coercion, subscripting, and 

printing operations to be procedurally specified; MUDDLE allows procedural 

specification of the methods for evaluation and application of objects. The 

pieces of data are still thought of as objects, however, and there are 

mechanisms for defeating the procedural specifications by "lowering" a data 

type to a more primitive type (such mechanisms are necessary for use by the 

behavior specification procedures themselves). One problem with (feature 
of??) the lowering mechanism is that any procedure, not just one controlling 

the behavior of a data type, can use the lowering primitive and so defeat the 
data type functions. 

The next step in this direction is the idea that the notion of a data 
type is meaningful only in terms of the operations that can be performed on 
it; that is, all that one can do with an object is give it to one of a 
defined set of procedures which know how to operate on that data type. This 
notion is exemplified in the CLU language. [Liskov 74] [Liskov 76] Associated 
with a data type is a cluster of procedures; only those procedures can 

manipulate the data type. Unfortunately, a “lowering” ("rep") mechanism is 
still needed within the cluster so that cluster procedures can get at the 

“underlying representation" of a data object. The definition of this 
mechanism causes certain problems. CLU at least solves the problem of 
indiscriminate use of the mechanism, by restricting its use to the cluster 
procedures. 

Carrying this notion still further, Hewitt has proposed the notion of 
"actors". [Hewitt 73] Rather than dichotomizing the world into data objects 

and procedures, he suggests that only procedures are meaningful; each “data 

object" actually embodies all the operations on itself as a procedure. The 

only operation one can perform on an object is to invoke its procedure. There 

is no problem of “lowering” the data type to an underlying representation, 

because an object of the data type does not exist as such to be lowered. In 

this way the integrity of a data type is much more easily preserved. (While 

some people object to having to use this model of data types in writing their 
programs, there is no reason it cannot be hidden with syntactic sugar. {Note 
PLASMA Sugar} There is much to be said for it as a formal model of data type 

behavior, but as a practical programming tool it is not always conceptually 

convenient.) 

Let us consider abstractly (though not rigorously) the motivation for 
the notion of data types. Typically we have an object X and want to perform 

some operation F on it. Suppose that F is a non-primitive operator; then it 

must decide what set of primitive actions to perform. Let such decisions made 

by F partition its domain into classes, such that all objects in a class cause 
the same set of primitive actions to occur when given to F. One may then
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define the data type of X with respect to F to be the class into which F's 
decisions place X. By extension, one may let F range over some set of 

operations with similar domains, and let the union of their decisions 
determine the classes. Loosely speaking, then, a data type is a class of 
objects which may be operated on in a uniform manner. The notion of data 

types provides a simple conceptual way to classify an object for the purposes 

of deciding how to operate on it. 

Now let uS approach the problem from another direction. Consider a 

prototypical function call (F X). (We may consider a function call of more 
than one argument to be equivalent to (F (LIST X1 ... Xn)) for our purposes 
here.) When executed, this function call is to be elaborated into some series 

of more primitive operations. It may help to think of execution as a mapping 

from the product space of the sets of operators and operands to the space of 
sequences of more primitive operations. Such a mapping can be expressed as a 
matrix. For example: 

Operation 

TYPE PRINT ATOM FIRST CAR 
Operand 
0 RET(FIXNUM) TYO("0") RET(T) ERROR ERROR vee 

43 RET(FIXNUM) TYO("4") RET(T) ERROR ERROR eee 
TYO("3") 

(A B) RET(LIST)  TYO(“(*) RET(NIL) RET(A) RET(A) eee 
TYO("A") 
TYO(" ") 
TYO("B") 

TYO(")") 

(1] RET(VECTOR) TYO("[") RET(NIL) RET(1) RET(1) 
TYO("1") 

TYO("J") 

Legend: TYO outputs a character; RET returns a value. 

Now it would be completely impractical to specify this matrix explicitly in 
its entirety. It is convenient to lump all FIXNUM objects, for example, into 

one class, and provide a matrix entry under PRINT which is less efficient for 

any one application but which works for all such objects. That is, rather 

than having a separate entry for each FIXNUM under PRINT which knows exactly 
what characters to output, we have some algorithm which generates digits 

arithmetically. (Similarly, for lists and vectors we have an algorithm which 

knows how to print subcomponents in a general manner.) We say that 0 and 43, 
or [1 2] and [4 5 6], have the same type because almost all operations which 

apply to both can use the same set of primitive actions, appropriately chosen. 

Operators may similarly lumped together; for example, in many LISP 
implementations CAR will get the first element of any composite data object, 

lumping in such operators as FIRST of a vector or an array. 
It is hard to think of natural examples of operator lumping since it 

seldom occurs in practice. Historically, the tendency has been to break up 

the matrix by columns. All the entries for TYPE are lumped together, all 
those for PRINT, and so on. When one invents a new operator, one merely 

writes a routine encoding the new column of entries; such a routine typically
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begins with a dispatch on the data type of its argument. When one invents a 

new data type, however, it is necessary to change every routine a little bit 

to incorporate the new row entry. 
The procedural approach to data types includes, in effect, a 

Suggestion that the matrix be sliced up by rows instead of columns. The 
result of this is to group all the operations for a single data type together. 

This of course yields the inverse problem: adding a new data type is easy, 

but adding a new generic operator is difficult because many data type routines 

must be changed. {Note Slice Both Ways} 
The important point, however, is that the data type of an object 

provides a way of selecting a row of the operations matrix. Whether this 
selection is represented as a procedure, a symbol, or a set of bits does not 
concern us. When combined with a column selector (choice of operator), it 
determines what set of actions to undertake. {Note Turing Machines} 

Hewitt has pointed out that non-primitive actors can be made to 

implement data structures such as queues and list cells. It is shown in 

[Sussman 75] that the PLASMA expression (from [Smith 75]): 

[CONS = 

(s> [=A =B] 

(CASES 
(a> FIRST? 

A) 
(2> REST? 

B) 
(a> LIST? 

YES)))] 

may be written in terms of LAMBDA expressions: 

(DEFINE CONS 
(LAMBDA (A B) 

(LAMBDA (M) 
(IF (EQ M 'FIRST?) A 

(IF (EQ M 'REST?) B 
(IF (EQ M ‘LIST?) ‘YES 

(ERROR ...))))))) 

(For some reason, Hewitt seems to prefer FIRST? and REST? to CAR and CDR.) 
There are two points to note here. One is that what we normally think 

of as a data structure (a list cell) has been implemented by means of a 
closure; the result of CONS is a closure of the piece of code 
(LAMBDA (M) ...) and the environment containing A and B. The other is that 
the body of the code is essentially a decision proecedure for selecting a 
column of our operations matrix. This suggests a pretty symmetry: we may 

either first determine an operator and then submit an object-specifier to the 

row-selection procedure for that operator, or first determine an operand and 

submit an operator-specifier to the column-selection procedure for that 

operand. 

This kind of definition has been well Known to lambda-calculus 
theoreticians for years; examples of it occur in Church's monograph. 
{Church 41] It has generally not been used as a practical definition technique 

in optimizing compilers, however. Hewitt has promoted this idea in PLASMA, 
but he has only described an interpreter implementation with no clues as to 

how to compile it. Moreover, no one seems to have stated the inverse 

implication, namely, that the way to approach the problem of compiling
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closures is to think of them as data structures, with all structures produced 
by closing a given LAMBDA expression being thought of as having the same data 
type. Up to now closures have generally been thought of as expensive beasts 
to implement in a programming language; however, thinking of them in terms of 

data types should make them appear much less frightening. Consider this 
definition of CAR: 

(DEFINE CAR 
(LAMBDA (CELL) 

(CELL 'FIRST?))) 

Now consider this code fragment: 

(( LAMBDA (FOO) 

(CAR FOO) 

(CONS zi’ 'ZAP)) 

It may appear that this must compile into extremely poor code if we use the 

procedural definition of a list cell given above. However, at the point where 
the result of the CONS is given to CAR, the compiler can be made to output a 
HLRZ instruction and no more, just as if the MacLISP NCOMPLR optimizing 
compiler [Moon 74] had seen (CAR FOO) or the ECL compiler [Wegbreit 74] had 
seen "FOO.LEFT". All that is required is some knowledge that FOO was created 
by CONS (that is, we must know FOO's “data type"), plus standard optimization 
techniques such as procedure integration, constants folding, and dead code 
elimination. The idea is to recognize that FOO names a closure of two data 

items with the code of the inner LAMBDA expression in CONS; this could be 

done either by declaration or by flow analysis. Integrating this LAMBDA 
expression as well as the definition of CAR into our code fragment yields: 

((LAMBDA (FOO) 

(( LAMBDA (CELL) (CELL ‘FIRST?)) 
(LAMBDA (M) ;in FOO 

(IF (EQ M 'FIRST?) A 
(IF (EQ M 'REST?) B 

(IF (EQ M 'LIST?) 'YES 
(ERROR ...)))))) 

oe) 
(CONS ‘ZIP ‘ZAP)) 

The comment "in FOO" means that any free variables in the expression are meant 

to refer to quantities in the closure FOO. Notice that we do not take 
advantage of the explicit appearance of 'ZIP and 'ZAP as arguments to CONS, 
though we might do so in practice; our purpose here is to illustrate the more 

general case where we know that FOO names some result of CONS but we don't 
know which one. 

Integrating (LAMBDA (M) ...) into (LAMBDA (CELL) ...) and then 
substituting through the argument FIRST? yields:
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(( LAMBDA (FOO) 

(IF (EQ 'FIRST? 'FIRST?) A sin FOO 
wee) 

we) 

(CONS 'ZIP 'ZAP)) 

Standard constants folding and dead code elimination leads to: 

(( LAMBDA (FOO) 

A sin FOO 

wee) 
(CONS 'ZIP 'ZAP)) 

Now the compiler presumably knows the format of the closures produced by CONS; 
all it needs to do is generate the instruction(s) to fetch the quantity named 

A out of the closure FOO. If, for example, closures are represented as 

vectors (as assumed above in the CURRIED-TRIPLE-ADD example) it would in fact 
take only one instruction on a PDP-10, just as it would for MacLISP. 

All this may sound rather complicated, but these are all well-known 

optimization techniques (see [Allen 72], for example), which happen not to 
have been applied before in this context. The one tricky point is keeping 

track of environments correctly (as with the "in FOO" comment above). All 
kinds of heterogeneous data structures may be created in this way in terms of 

LAMBDA expressions; no separate primitive creation or selection operators are 

necessary. A certain amount of data type analysis will be necessary to carry 

this out. In this context, data type analysis would consist of determining of 
what LAMBDA expression a given data object is the closure. This may be 

determined by global data flow analysis (for example, the recent Allen and 
Cocke algorithm [Allen 76] might be applicable here), or by user-supplied 
declarations. 

If data structures are specified in these terms, it is left up to the 
compiler to determine a good representation for these structures. If done 
properly, there is no reason why the creation of a list cell using CONS as 
above should not actually perform precisely the same storage allocation as 
might occur in ECL at the low level. In any case, the compiler should know 
something about designing and packing data structures. (Some work has been 
done on this already in the ECL system [Wegbreit 74], for example.) 

One might object that this technique cannot quite produce the 
efficiency of MacLISP in performing CONS, since a standard MacLISP list cell 
contains only two pointers, while the LAMBDA version would produce a cell 
containing the two pointers plus a pointer to the code for the LAMBDA 
expression. In a sense this is true; it is necessary to have a pointer to 
the code. However, we need not actually have a pointer to the code in the 

closure; all that is necessary is that we be able to locate the code given 

the object. Standard LISP systems typically encode this information in other 

ways, Calling it the data type. Remembering the operations matrix described 

earlier, we may think of the code as the data type of the closure; all either 
does is provide a row selector for the matrix. Current systems such as ECL 

and MUVDLE which allow definition of arbitrary numbers of data types have 

indeed found it necessary to store a full pointer, more or less, to describe 

the data type of an object. In special cases, however, ECL can compress a 
data type to only a few bits. There is no reason why a sufficiently clever 
compiler could not use equally clever encodings of the data type, including 
the technique of encoding the data type in the address of the closure much as
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the “Bibop" version of MacLISP does. [Moon 74] 
In any case, we can see that the use of closures to define data types 

need not be expensive. Once again, LAMBDA seems to provide a uniform and 

general method which is, as always, subject to clever optimizations in special 

cases. 

4. Some Proposed Organization for a Compiler 

In order to test some of the ideas suggested above in a practical 
context, I propose to construct a working, highly optimizing compiler for a 

small dialect of LISP. The resulting code should be able to run on a PDP-10 
in the MacLISP run-time environment. (The compiler should also be modularized 
so that code for another machine could be generated, but I do not propose to 

incorporate any complex and general machine description facility such as that 

of Snyder [Snyder 75].) 

4.1. Basic Issues 

The compiler will need to perform a large amount of global data flow 
and data type analysis; much of this can be based on the approach used by 
Wulf in the BLISS-11 compiler [Wulf 75], augmented by some general flow-graph 
analysis scheme. (The BLISS-11 flow analysis is not sufficiently general in 

that it only analyzes single functions, and within a function the only control 
constructs are conditionals, loops, and block exits.) 

For the allocation of registers and temporaries I propose to use a 

modification of BLISS-1ll's preferencing and targeting scheme. This will be 
tempered by the attitude towards LAMBDA-binding described earlier, namely that 
it is merely a renaming operation. Thus, no variable is considered to have a 

specific location or “home"; assignment to a variable should cause no motion 

of data, but merely reorganize the compiler's idea of where the quantity 

involved is located at that point in the code. (At any point in the code a 

quantity may have several names, and may also have several homes, by which I 

mean physical copies in the runtime machine environment. For example, a 

quantity may happen to reside in two different registers at some point; there 

is no a priori reason for either one to be considered THE original copy of 

that quantity to be preserved for the future.) Data structures are another 
Matter; assignment to a component must actually modify the component. This 

is the purpose of introducing the ASET primitive, since simple SETQ's as used 
in LISP PROG statements can be simulated by using LAMBDA expressions (see 

[Steele 76]). (On the other hand, the modification to the component need not 

happen immediately, as long as it happens soon enough that some other process, 

if any cannot detect that the assignment did not happen immediately. ) 

The essential set of primitives will include the following: 

LAMBDA, LABELS, IF 

ASET (perhaps restricted to a quoted first argument, i.e. ASETQ) 

EQ 

These by themselves constitute an extremely rich domain for optimization! As 

~ shown above and in [Steele 76], they effectively encompass data structure 

creation, access, and modification; a host of control structures, including 

non-local exits; and a variety of parameter-passing disciplines, including 
call-by-name, call-by-need, and fluid variables. In fact, one of the great 
assets of this approach is that such constructs can be written as macros and 

used in both an interpreter and compiler; because the base language is
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essentially a lexically scoped LISP, the lambda-calculus-theoretic models of 

such constructs may be used almost directly to write such macros. Indeed, a 
library of such macros already exists for the SCHEME interpreter. 

If time permits, extensions may be made to handle integers (strictly 

speaking, integers mod 235, ) and these operations on then: 

+ addition 

- subtraction 

x multiplication 

fT} division 
\ remainder 
MAX, MIN maximum and minimum 

BOOLE bit-wise boolean operations 

LSH logical shifting 

<, >, = relationals 

The compiler will need to contain the following kinds of knowledge in 
great detail: 

Knowledge about the behavior of LAMBDA expressions and closures, in 

particular how environments nest and interact, and how procedure 

integration works. For example, in the situation: 

(LABELS ((FOO (LAMBDA () ... (BAR))) 
(BAR (LAMBDA () ...))) 

.--) 

the compiler should be able to realize that FOO and BAR run in the 
same environment (since each adds no variables to the outer 
environment), and so the call to BAR in FOO can compile as if it 
were a GOTO, with no adjustment in environment necessary. If that 
is the only call on BAR, then no GOTO is needed; the code for BAR 
may simply follow (or be integrated into) FOO. 

Knowledge about how to construct data structures in the run-time 

environment. In MacLISP, this will imply using the built-in CONS 

and other low-level storage allocation primitives. 

Knowledge about how primitives can be compiled into machine code, or if 
they are run-time routines, with what conventions they are invoked. 

Knowledge about optimization of machine code, for example that a certain 
combination of PUSH and JRST can be combined into PUSHJ. 

Each kind of knowledge should be represented as modularly as possible. It 
should not be necessary to change fifteen routines in the compiler just to 

install a new arithmetic primitive. 

Although I propose to construct only the lower-level portion of the 

compiler, plus the necessary macros to provide standard LISP features such as 

COND and PROG, one could easily imagine constructing an ALGOL compiler, for 
example, by providing a parser plus the necessary macros as a front end. 
Indeed, by using CGOL [Pratt 76] for our parser we could create an ALGOL-like 
language quite easily, which could include such non-LISP features as multiple- 

value-return and call-by-name. 
Tats possibility indicates that a carefully chosen small dialect of 

LISP would we a good UNCOL (UNiversal Computer-Oriented Language), that is, a 
good intermediate compilation language. The reason for trying to develop a 
good UNCOL is to solve the "m*n" problem compiler-builders face. If one has m 
programming languages and n machines, then it takes m*n compilers to compile 

each language for each machine; but it would require only m+n compilers if 

one had m language-to-UNCOL compilers and n UNCOL-to-machine compilers. Up to
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now the UNCOL idea has failed; the usual problem is that proposed UNCOLS are 

not sufficiently general. I suspect that this is because they tend to be too 
low-level, too much like machine language. I believe that LAMBDA expressions, 

combining the most primitive control operator (GOTO) with the most primitive 

environment operator (renaming) put LISP at a low enough level to make a good 
UNCOL, yet at a high enough level to be completely machine independent. 

It should be noted that a compiler which uses LAMBDA expressions 

internally does not have to be for a LISP-like language. The features of LISP 

as an UNCOL which interest me are the environment and control primitives, 

because they can be used easily to simulate the environment and control 

structures of most high-level languages. 

4.2. Some Side Issues 

In this section we discuss briefly some issues which are not directly 
relevant to LAMBDA expressions, but which will impinge on the design of a 
compiler. These are: 

(1) Order of argument evaluation (as opposed to order of evaluation, 
which is to be applicative order). 

(2) Analysis of side effects and their interactions. 
(3) Declarations versus compile-time analysis. 
(4) Block compilation (in the InterLISP sense); i.e., inter-function 

optimization. 

(5) Debugging; in particular, the ability to walk around environment 

structures and examine their contents. 

(6) Bootstrapping. 

Because these are side issues, we will merely consider an easy way out for 
each, realizing that the compiler should be designed so as to allow for more 
complex ways of handling them later. 

(1) The two standard choices for order of argument evaluation are "left to 
right" and "doesn't matter". Most LISP systems use the former convention; 
most languages with infix syntax, notably BLISS [Wulf 75], use the latter. If 
the latter is chosen, there is the matter of whether the compiler will enforce 
it by warning the user if he tries to depend on some ordering; if the former 

is chosen, there is the matter of determining whether the compiler can perform 

optimizations which depend on permuting the order. In either of these cases 

an analysis of side-effect interactions among arguments is necessary, and once 
we have decided to perform such an analysis, the choice of convention is not 

too important. 

(2) Analysis of side effects is desirable not only between arguments in a 
Single function call, but at all levels. For example, if a copy of a variable 

is in a register, then it need not be re-fetched unless an assignment has 

occurred. Similarly, if CONS as above were extended to have an RPLACA 
message, we would like to know whether sending a given cell an RPLACA message 
will require re-transmission of a CAR message. The easy approach is to assume 

that an unknown function changes everything, and not to attempt optimization 
across calls to unknown functions. Other increasingly clever approaches 

include: 
Declaration of whether a function can produce side effects or not. 

Declaration of what kinds of arguments to a function produce side 

effects.
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Declaration of classes of side effects. Thus an RPLACA causes previous 
CAR operations to become invalid, but not simple variable fetches or 
GETs. 

Declarations of classes of side effects as a function of certain objects 
and/or arguments. Thus (PUTPROP x y z) invalidates all previous GET 
operations; (PUTPROP x y 'ZAP) invalidates (GET x 'ZAP) and 
(GET x y), but not (GET x 'ZIP). Neither one invalidates (CAR FOO), 
probably. Similarly (RPLACA FOO) does not invalidate (CAR FIE) if 
it can be determined that FOO and FIE are distinct objects. 

Naturally, anything described above as being declared could sometimes also be 
determined by a clever compile-time analysis. 

(3) As for the issue of declarations versus analysis itself, probably both 
should be available. One might envision first implementing a declaration 

scheme which can be used to make the thing go, and then adding analysis 
routines afterwards. The analysis routines should merely create declarations 

in the same way the user can; this would allow uniformity of processing and 
extensibility of design. 

(4) Block compilation might be necessary for production of very efficient 
code, though this will of course depend on the style of programming. If many 
data structures are defined in the actor-like style described above, much 
procedure integration will be necessary to produce good code. On the other 

hand, the code should still work if each procedure is compiled separately 
(which would be desirable for debugging purposes). A middle-of-the-road 

approach would be to block-compile a set of functions, and compile separate 

entry points to certain function for interpreted and compiled calls. 

(5) While debugging, it may be desirable to be able to examine the 
environment structures created by compiled code. This probably will have to 
be a kind of deus ex machina rather than an integral part of the system, but 
in any case there must be enough information to determine where things are. 

Environments created by compiled code will not contain the names of the 
variables, since they are not logically necessary. Instead, the compiler can, 
for each LAMBDA expression, create a description, suitable for interpretation 

by a debugging program, of the format of closures created for that LAMBDA 
expression. This will be enough information to debug with. The compiler 

could also theoretically output information as to what data is in which 

registers when, though this would be a mountain of output. This would tie in 

well with a program-understanding program; one could provide information as 
to what compiled code correponds to what interpreted code, and how. 

(6) One problem with constructing a compiler is deciding what language to 
code the compiler itself in. As a rule of thumb, one ought to take a very dim 

view of any supposedly general-purpose language which is not adequate to write 
its own compiler in. Thus the proposed compiler will be constructed in some 

superset of the basic LISP described above, one which can easily be 

transformed by macros into the basic LISP. One advantage of this carefully 
chosen minimal dialect is that an interpreter for it can be written and 
debugged in only a day or two. This interpreter can then be used as a 

development system for writing the machine-dependent portion of the compiler. 
Thus if necessary the proposed compiler could be bootstrapped onto a new 
machine easily without requiring the aid of a previously existing 

implementation.
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5. Conclusions 

It is appropriate to think of function calls as being a generalization 
of GOTO, and thus a fundamental unconditional control construct. The 

traditional attitude towards function calls as expensive operations is 
unjustified, and can be alleviated by proper compilation techniques. 

It is appropriate to think of LAMBDA as an environment operator, which 

merely attaches new names to computational quantities and defines the extent 

of the significance of these names. The attitude of assigning names to values 

rather than values to names leads naturally to a uniform treatment of user and 

cor ‘iler-generated variables. 

These results lead naturally to techniques for compiling and 
optimizing operations on procedurally defined data. This is to be compared 
with other work, particularly that on actors. Here let us summarize our 

comparison of actors (as implemented by PLASMA) and closures (as implemented 
by SCHEME, i.e. LISP): 

Closures Actors 

Body of LAMBDA expression Script 

Environment Set of acquaintances 
Variable names Names (compiled out at reduction time) 

Function invocation Invocation of explicit actors 

Function return Invocation of implicit actors 
Return address Implicit underlying continuation 

Continuation-passing style Exclusive use of sa> and <s= 
Spreading of arguments Pattern matching 
Temporary (intermediate result) Name internal to implicit continuation 

Let us also summarize some of the symmetries we have seen in the 

functional style of programming: 

Forms (Function Invocations) Functions (LAMBDA Expressions) 
    

Evaluation Application (function invocation) 
Push control stack before Push environment stack before 

invoking functions which evaluating form which 
produce argument values produces result value 

Forms determine sequencing LAMBDA expressions determine 

in time extent in space (scope) 
Implicit continuation is Implicit temporary is created 

created when evaluation of when return of a function 
a form requires invocation requires further processing 
of a function of a form 

It is important to note that this last symmetry was not known to me ahead of 
time; I discovered it while writing this document. Starting from the 
assumption that control and environment structures exhibit great symmetry, 

plus the knowledge of the existence of implicit continuations, I predicted the 

existence of hidden temporaries; only then did I notice that such temporaries 

do occur. I believe this demonstrates that there is something very deep and 

fundamental about this symmetry, closely tied in to the distinction between 

form and function. Just as the notion of actors and message-passing has 

greatly clarified our ideas about control structures, so the notion of 

renaming has clarified our ideas about environments.
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Appendix A. Conversion to Continuation-Passing Style 

Here we present a set of functions, written in SCHEME, which convert a 
. SCHEME expression from functional style to pure continuation-passing style. 

{Note PLASMA CPS} 

(ASET' GENTEMPNUM 0) 

(DEFINE GENTEMP 
(LAMBDA (X) 

(IMPLODE (CONS X (EXPLODEN (ASET' GENTEMPNUM (+ GENTEMPNUM 1))))))) 

GENTEMP creates a new unique symbol consisting of a given prefix and a unique 
number. 

(DEFINE CPS (LAMBDA (SEXPR) (SPRINTER (CPC SEXPR NIL '#CONT#)))) 

CPS (Continuation-Passing Style) is the main function; its argument is the 
expression to be converted. It calls CPC (C-P Conversion) to do the real 
work, and then calls SPRINTER to pretty-print the result, for convenience. 

The symbol #CONT# is used to represent the implied continuation which is to 
receive the value of the expression. 

(DEFINE CPC 

(LAMBDA (SEXPR ENV CONT) 
(COND ((ATOM SEXPR) (CPC-ATOM SEXPR ENV CONT)) 

({EQ (CAR SEXPR) 'QUOTE) 
(IF CONT "(,CONT ,SEXPR) SEXPR)) 

((EQ (CAR SEXPR) LAMBDA) 
(CPC-LAMBDA SEXPR ENV CONT)) 

((EQ (CAR SEXPR) 'IF) 
(CPC-IF SEXPR ENV CONT)) 

((EQ (CAR SEXPR) ‘CATCH) 
(CPC-CATCH SEXPR ENV CONT)) 

((EQ (CAR SEXPR) 'LABELS) 
(CPC-LABELS SEXPR ENV CONT)) 

((AND (ATOM (CAR SEXPR)) 
(GET (CAR SEXPR) 'AMACRO)) 

(CPC (FUNCALL (GET (CAR SEXPR) ‘AMACRO) SEXPR) ENV CONT)) 
(T (CPC-FORM SEXPR ENV CONT))))) 

CPC merely dispatches to one of a number of subsidiary routines based on the 

form of the expression SEXPR. ENV represents the environment in which SEXPR 

will be evaluated; it is a list of the variable names. When CPS initially 
calls CPC, ENV is NIL. CONT is the continuation which will receive the value 
of SEXPR. The double-quote (") is like a single-quote, except that within the 
quoted expression any subexpressions preceded by comma (,) are evaluated and 
substituted in (also, any subexpressions preceded by atsign (@) are 
substituted in a list segments). One special case handled directly by CPC is 
a quoted expression; CPC also expands any SCHEME macros encountered.
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(DEFINE CPC-ATOM 
(LAMBDA (SEXPR ENV CONT) 

((LAMBDA (AT) (IF CONT “(,CONT ,AT) AT)) 
(COND ((NUMBERP SEXPR) SEXPR) 

((MEMQ SEXPR ENV) SEXPR) 
((GET SEXPR 'CPS-NAME)) 
(T (IMPLODE (CONS '% (EXPLODEN SEXPR)))))))) 

For convenience, CPC-ATOM will change the name of a global atom. Numbers and 
atoms in the environment are not changed; otherwise, a specified name on the 

property list of the given atom is used (properties defined below convert "+" 

into “++", etc.); otherwise, the name is prefixed with "%". Once the name 

has been converted, it is converted to a form which invokes the continuation 

on the atom. (If a null continuation is supplied, the atom itself is 
returned. ) 

(DEFINE CPC-LAMBDA 

(LAMBDA (SEXPR ENV CONT) 

((LAMBDA (CN) 

((LAMBOA (LX) (If CONT “(CONT ,LX) LX)) 

"(LAMBDA (@(CADR SEXPR) ,CN) 

»(CPC (CADOR SEXPR) 

(APPEND (CAOR SEXPR) (CONS CN ENV)) 

CN)))) 
(GENTEMP ‘C)))) 

A LAMBDA expression must have an additional parameter, the continuation 
supplied to its body, added to its parameter list. CN holds the name of this 
generated parameter. A new LAMBDA expression is created, with CN added, and 
with its body converted in an environment containing the new variables. Then 
the same test for a null CONT is made as in CPC-ATOM. 

(DEFINE CPC-IF 
(LAMBDA (SEXPR ENV CONT) 

((LAMBDA (KN) 
"((LAMBDA (,KN) 

(CPC (CAOR SEXPR) 
ENV 
((LAMBDA (PN) 

"(LAMBDA (,PN) 
(1 ,PN 

(CPC (CADOR SEXPR) 
ENV 
KN) 

(CPC (CADODR SEXPR) 
ENV 
KN)))) 

(GENTEMP 'P)))) 
,CONT)) 

(GENTEMP ‘K)))) 

First, the continuation for an IF must be given a name KN (rather, the name 

held in KN; but for convenience, we will continue to use this ambiguity, for 

the form of the name is indeed Kn for some number n), for it will be referred 
to in two places and we wish to avoid duplicating the code. Then, the 
predicate is converted to continuation-passing style, using a continuation
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which will receive thé result and call it PN. This continuation will then use 
an IF to decide which converted consequent to invoke. Each consequent is 

converted using continuation KN. 

(DEFINE CPC-CATCH 
(LAMBDA (SEXPR ENV CONT) 

(({LAMBDA (EN) 
"((LAMBDA (,EN) 

({LAMBDA (,(CAOR SEXPR)) 
(CPC (CADDR SEXPR) 

(CONS (CADR SEXPR) ENV) 

EN)) 
(LAMBDA (VC) (,EN V)))) 

,CONT)) 
(GENTEMP 'E)))) 

This routine handles CATCH as defined in [Sussman 75], and in converting it to 
continuation-passing style eliminates all occurrences of CATCH. The idea is 
to give the continuation a name EN, and to bind the CATCH variable to a 
continuation (LAMBDA (VC) ...) which ignores its continuation and instead 
exits the catch by calling EN with its argument V. The body of the CATCH is 
converted using continuation EN. 

(DEFINE CPC-LABELS 
(LAMBDA (SEXPR ENV CONT) 

(00 ((X (CADR SEXPR) (COR X)) 
(Y ENV (CONS (CAAR X) Y))) 

((NULL X) 
(00 ((W (CAOR SEXPR) (COR W)) 

(Z NIL (CONS (LIST (CAAR W) 
(CPC (CADAR W) Y NIL)) 

Z))) 
((NULL W) 
“(LABELS ,(REVERSE 2) 

»(CPC (CADDR SEXPR) Y CONT)))))))) 

Here we have used DO loops as defined in MacLISP (DO is implemented as a macro 

in SCHEME). There are two passes, one performed by each DO. The first pass 
merely collects in Y the names of all the labelled LAMBDA expressions. The 

second pass converts all the LAMBDA expressions using a null continuation and 
an environment augmented by all the collected names in Y, collecting them in 
Z. At the end, a new LABELS is constructed using the results in Z and a 

converted LABELS body.
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(DEFINE CPC-FORM 
(LAMBDA (SEXPR ENV CONT) 

(LABELS ((LOOP1 
(LAMBDA (X Y 2) 

(IF (NULL X) 
(DO ((F (REVERSE (CONS CONT Y)) 

(IF (NULL (CAR Z)) F 
(CPC (CAR Z) 

ENV 
"(LAMBDA (,(CAR Y)) ,F)))) 

(Y Y (CDR Y)) 
(Z Z (CDR Z))) 

((NULL Z) F)) 
(COND ((OR (NULL (CAR X)) 

(ATOM (CAR X))) 
(LOOP1 (COR Xx) 

(CONS (CPC (CAR X) ENV NIL) Y) 
(CONS NIL Z))) 

((EQ (CAAR X) 'QUOTE) 
(LOOP1 (COR X) 

(CONS (CAR X) Y) 
(CONS NIL Z))) 

((EQ (CAAR X) 'LAMBDA) 
(LOOP1 (COR xX) 

(CONS (CPC (CAR X) ENV NIL) Y) 
(CONS NIL Z))) 

(T (LOOP1 (COR X) 
(CONS (GENTEMP 'T) Y) 

(CONS (CAR X) Z)))))))) 
(LOOP1 SEXPR NIL NIL)))) 

This, the most complicated routine, converts forms (function calls). This 
also operates in two passes. The first pass, using LOOP], uses X to step down 
the expression, collecting data in Y and Z. At each step, if the next element 
of X can be evaluated trivially, then it is converted with a null continuation 

and added to Y, and NIL is added to Z. Otherwise, a temporary name TN for the 

result of the subexpression is created and put in Y, and the subexpression 

itself is put in Z. On the second pass (the DO loop), the final continuation- 
passing form is constructed in F from the inside out. At each step, if the 
element of Z is non-null, a new continuation must be created. (There is 

actually a bug in CPC-FORM, which has to do with variables affected by side- 

effects. This is easily fixed by changing LOOP] so that it generates 

temporaries for variables even though variables evaluate trivially. This 
would only obscure the examples presented below, however, and so this was 

omitted. ) 

(LABELS ((BAR 
(LAMBDA (DUMMY X Y) 

(IF (NULL X) '|CPS ready to go!| 

(BAR (PUTPROP (CAR X) (CAR Y) 'CPS-NAME) 

(CDR x) 

(COR Y)))))) 
(BAR NIL 

"(+ - 8 f/ “ T NIL) 

"(44 -- #8 //// ** 'T NNIL)))
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This loop sets up some properties so that "+" will translate into "++" instead 
of “X%+", etc. 

Now let us examine some examples of the action of CPS. First, let us 

try our old friend FACT, the iterative factorial program. 

(DEFINE FACT 
(LAMBDA (N) 

(LABELS ((FACT1 (LAMBDA (M A) 
(IF (= M0) A 

(FACTL (- M1) (* M A)))))) 
(FACTL N 1)))) 

Applying CPS to the LAMBDA expression for FACT yields: 

(aCQNT# 
(LAMBDA (N C7) 

(LABELS ((FACTI 
(LAMBDA (M A C10) 

((LAMBDA (K11) 
(x= 40 

(LAMBDA (P12) 
(IF P12 (K11 A) 

(-- M1 
(LAMBDA (113) 

(*° MA 

(LAMBDA (T14) 
(FACT1 T13 T14 K11))))))))) 

C10)))) 
(FACTI N 17)))) 

As an example of CATCH elimination, here is a routine which is a 
paraphrase of the SQRT routine from [Sussman 75]: 

(DEFINE SORT 
(LAMBDA (X EPS) 

( (LAMBDA (ANS LOOPTAG) 
(CATCH RETURNTAG 

(BLOCK (ASET' LOOPTAG (CATCH M M)) 
(IF --- 

(RETURNTAG ANS) 
NIL) 

(ASET' ANS ===) 
(LOOPTAG LOOPTAG)))) 

1.0 

NIL))) 

Here we have used "---" and "z=" as ellipses for complicated (and relatively 

uninteresting) arithmetic expressions. Applying CPS to the LAMBDA expression 
for SQRT yields:
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(#CONT# 
(LAMBDA (X EPS C33) 

((LAMBOA (ANS LOOPTAG C34) 
((LAMBDA (£35) 

((LAMBDA (RETURNTAG) 
((LAMBDA (E52) 

((LAMBDA (M) (E52 M)) 
(LAMBDA (VC) (E52 V)))) 

(LAMBDA (T51) 
(XASET' LOOPTAG T51 

(LAMBDA (137) 
((LAMBDA (A B C36) (B C36)) 
137 
(LAMBDA (C40) 

((LAMBOA (K47) 
((LAMBDA (P50) 

(IF P50 
(RETURNTAG ANS K47) 
(K47 'NIL))) 

%---)) 
(LAMBDA (142) . 

((LAMBDA (A 8 C41) (8 C41)) 
742 
(LAMBDA (C43) 

(XASET' ANS %=== 
(LAMBDA (145) 

((LAMBDA (A B C44) 
(8 C44)) 

T45 
(LAMBDA (C46) 

(LOOPTAG 
LOOPTAG 
C46)) 

43)))) 
40)))) 

E35)))))) 
(LAMBDA (VC) (E35 V)))) 

C34)) 
1.0 
NIL 
C33))) 

LAMBOA: The Ultimate Declarative 

Note that the CATCHes have both been eliminated. It is left as an exercise 
for the reader to verify that the continuation-passing version correctly 

reflects the semantics of the original.
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Appendix B. Continuation-Passing with Multiple Value Return 

The program of Appendix A can easily be modified to handle the 

multiple-value-return construct. Here we present only the functions which 

must be changed; all others are as in Appendix A. 

(SETSYNTAX '/{ "MACRO 
"(LAMBDA () 

(00 ((L NIL (CONS (READ) L))) 
((= (TYIPEEK T) 17S) ASCII 175 is ")" 
(TYI) 
(LIST ‘MULTI-RETURN 

(READ) 
(REVERSE L)))))) 

(SETSYNTAX '/} 600500 NIL) 

This defines the syntactic rule for reading in "{...}n" construct. A call of 
the form {f xl ... xm}n is converted into the piece of list structure: 

(MULTI-RETURN n f xl ... xm) 

It is this which is processed by CPC-FORM below. 

(DEFINE CPC 
| (LAMBDA (SEXPR ENV CONT) 

(COND ((ATOM SEXPR) (CPC-ATOM SEXPR ENV CONT)) 
((EQ (CAR SEXPR) 'QUOTE) 
(IF CONT “(,CONT ,SEXPR) SEXPR)) 

((EQ (CAR SEXPR) ‘LAMBDA) 
(CPC-LAMBDA SEXPR ENV CONT)) 

((EQ (CAR SEXPR) ‘IF) 
 (CPC-IF SEXPR ENV CONT)) 

((EQ (CAR SEXPR) ‘CATCH) 
(CPC-CATCH SEXPR ENV CONT)) 

((EQ (CAR SEXPR) ‘VALUES) ;new 
(CPC-FORM (CONS CONT (COR SEXPR)) ENV NIL)) ; clause 

((EQ (CAR SEXPR) ‘LABELS) 
(CPC-LABELS SEXPR ENV CONT)) 

((AND (ATOM (CAR SEXPR)) 
(GET (CAR SEXPR) ‘AMACRO)) 

(CPC (FUNCALL (GET (CAR SEXPR) 'AMACRO) SEXPR) ENV CONT)) 
(T (CPC-FORM SEXPR ENV CONT))))) 

The only change here is the test marked “new clause"; it checks for the 
VALUES construct. It calls CPC-FORM in such a way that the continuation is 

given all the specified values as its arguments. The third argument of NIL to 
CPC-FORM means that the first argument has no extra implicit continuation.
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(DEFINE CPC-FORM 
(LAMBDA (SEXPR ENV CONT) 

(LABELS ((LOOP1 
(LAMBDA (X Y Z) 

(IF (NULL X) 
(DO ((F (REVERSE ((LAMBDA (Q) 

(IF CONT (CONS CONT Q) Q)) 
(APPLY 'APPEND Y))) 

(1F (NULL (CAR Z)) 
F 

(CPC (CAR Z) 

ENV 
"(LAMBDA ,(REVERSE (CAR Y)) .F)))) 

(Y ¥ (COR Y)) 
(Z 2 (COR 2Z))) 

((NULL Z) F)) 

(COND ((OR (NULL (CAR X)) 
(ATOM (CAR X))) 

(LOOP1 (COR X) 
(CONS (LIST (CPC (CAR X) ENV NIL)) Y) 
(CONS NIL Z))) 

((EQ (CAAR X) 'QUOTE) 
(LOOP1 (COR Xx) 

(CONS (LIST (CAR X)) Y) 
(CONS NIL Z))) 

((EQ (CAAR X) 'LAMBDA) 
(LOOP1 (COR x) 

(CONS (LIST (CPC (CAR X) ENV NIL)) Y) 
(CONS NIL Z))) 

((EQ (CAAR X) ‘MULTI-RETURN) 
(DO ((V NIL (CONS (GENTEMP 'V) V)) 

(J (CADAR X) (- J 1))) 

((= J 0) 
(LOOP1 (CDR Xx) 

(CONS V Y) 
(CONS (CADDAR X) Z))))) 

(T (LOOP (COR xX) 
(CONS (LIST (GENTEMP 'T)) Y) 
(CONS (CAR X) Z)))))))) 

(LOOP1 SEXPR NIL NIL)))) 

This function has been changed radically to accomodate MULTI-RETURN. The 

conceptual alterations are that CONT may be NIL (meaning no explicit 

continuation, because SEXPR already contains one), and that each element of Y 
is now a list of temporary names or constants, and not just a single element 

(hence the use of APPEND). There is also a new case in the COND for MULTI- 
RETURN.



Guy L. Steele Jr. 38 LAMBDA: The Ultimate Declarative 

As an example, here is the example used in the text, processed by this 
codified version of CPS: 

(CPS ‘(LIST {FOO 5)2 (+ {FOO 4}2) {FOO 3)2)) 

(XFOO 5 (LAMBDA (V1 V2) 

(%FOO 4 (LAMBDA (V6 V7) 
(++ V6 V7 

(LAMBDA (T3) 

(XFOO 3 (LAMBDA (V4 V5) 

(SLIST V1 V2 T3 V4 V5 #CONT#))))))))) 

The only differences between this result and the one in the text is that the 

continuation-passing versions of LIST and “+" were used, and that the variable 

names were chosen differently.
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Notes 

{Note Debugging} 

As every machine-language programmer of a stack machine knows, the 

extra address on the stack is not entirely useless because it contains some 

redundant information about the history of the process. This information is 
provided by standard LISP systems in the form of a "backtrace". [McCarthy 62] 
[Moon 74] [Teitelman 74] This information may give some clues as to "how it 
got there". One may compare this to the "jump program counter" hardware 

feature supplied on some machines (notably the PDP-10's at MIT [Holloway 70]) 
which saves the contents of the program counter before each jump instruction. 

{Note Expensive Procedures} 

Fateman comments on this difficulty in [Fateman 73]: "...'the 
frequency and generality of function calling in LISP' is a high cost only in 
inappropriately designed computers (or poorly designed LISP systems). To 
illustrate this, we ran the following program in FORTRAN ... [execution time 
2.22 sec] ... We then transcribed it into LISP, and achieved the following 

results: ... [execution time 1.81 sec] ... 
“The point we wish to make is that compiled properly, LISP may be as 

efficient a vehicle for conveying algorithms, even numerical ones, as any 

other higher-level language, e.g. FORTRAN. An examination of the machine 
code produced by the two compilations shows that the inner-loop arithmetic 
compilations are virtually identical, but that LISP subroutine calls are less 

expensive." 

Auslander and Strong discuss in [Auslander 76] a technique for 
“removing recursion" from PL/I programs which LISP programmers will recognize 

aS a source-to-source semi-compilation. The technique essentially consists of 

of introducing an auxiliary array to serve as a stack (though the cited paper 

manages in the example to use an already existing array by means of a non- 

trivial subterfuge), and transforming procedure calls into GOTO's plus 

appropriate stack manipulations to simulate return addresses. What is 

astounding is that this simple trick shortened the size of the example code by 
8% and shortened the run time by a whopping 40%! They make the reason clear: 
"The implementation of the recursive stack costs PL/I 336 bytes per level of 
recursive call ..." The GOTO's, on the other hand, presumably compile into 
Single branch instructions, and the stack manipulations are just a few 
arithmetic instructions. 

Even more astounding, particularly in the light of existing compiler 
technology for LISP and other languages, is that Auslander and Strong do not 

advocate fixing the PL/I compiler to compile procedure calls using their 
techniques (as LISP compilers have, to some extent, for years). Instead, they 

say: "These techniques can be applied to a program without an understanding 

of its purpose. However, they are complex enough so that we are inclined to 
teach them as tools for programmers rather than try to mechanize them as an 
option in an optimizing compiler." The bulk of their tranformations are well 
within the capability of an optimizing compiler. The problem is that 
historically procedure calls have received little attention from those who 
design optimizing compilers; Auslander and Strong now suggest that, since 

this is the case, we should rewrite all procedure calls into other constructs 

that the compiler understands better! This seems to defeat the entire purpose 

of having a high-level language.
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On pages 8-9 of Dijkstra's excellent book (Dijkstra 76] he says: "In 
a recent educational text addressed to the PL/I programmer one can find the 
strong advice to avoid procedure calls as much as possible ‘because they make 
the program so inefficient’. In view of the fact that the procedure is one of 
PL/I's main vehicles for expressing structure, this is a terrible advice, so 
terrible that I can hardly call the text in question ‘educational'. If you 
are convinced of the usefulness of the procedure concept and are surrounded by 

implementations in which the overhead of the procedure mechanism imposes too 

great a penalty, then blame these inadequate implementations instead of 
raising them to the leved of standards!" 

{Note GCD(111,259)} 

This marvelous passage occurs on page 4 of [Dijkstra 76]: 
“Instead of considering the single problem of how to compute the 

GCD(111,259), we have generalized the problem and have regarded this as a 
specific instance of the wider class of problems of how to compute GCD(X,Y). 
It is worthwhile to point out that we could have generalized the problem of 
computing GCD(111,259) in a different way: we could have regarded the task as 
a specific instance of a wider class of tasks, such as the computation of 

GCD(111,259), SCM(111,259), 1118259, 111+259, 111/259, 111-259, 111299, the 
day of the week of the 1llth day of the 259th year B.C., etc. This would have 
given rise to a 'lll-and-259 processor’ and in order to let that produce the 

originally desired answer, we should have had to give the request 'GCD, 
please' as its input! ... 

“In other words, when asked to produce one or more results, it is 

usual to generalize the problem and to consider these results as specific 

instances of a wider class. But it is no good just to say that everything is 
special case of something more general! If we want to follow such an approach 
we have two obligations: 

1. We have to be quite specific as to how we generalize ... 

2. We have to choose ('invent' if you wish) a generalization which is 

helpful to our purpose." 

{Note No IF-THEN-ELSE} 

The IF-THEN-ELSE construct can be expressed rather clumsily in terms 

of sequencing and WHILE-DO by introducing a control variable; this is 

described by Bob Haas in [Presser 75]. A general discussion of the relative 
complexities of various sets of control structures appears in [Lipton 76]. 

{Note PLASMA CPS} 

Hewitt has performed similar experiments on PLASMA programs 

(Hewitt 76], by converting PLASMA programs to a form which uses only ss> and 

<s= transmission arrows. A subsequent uniform replacement of these arrows by 
=> and “= »reserves the semantics of the programs. 

{Note PLASMA Reduction} 

Since this was written, there were two changes to the PLASMA 

implementation. The first, in mid-summer, was a change in terminology, in
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which the "reduction" prepass began to be referred to as a "compilation". The 
second, in August, was the excision of reduction from the PLASMA 
implementation, evidently because the size of the code was becoming 
unmanageable. [Hewitt 76] [McLennan 76] It is unfortunate that this 
experiment in semi-incremental compilation could not be continued. 

{Note PLASMA Registers} 

In fact, the current implementation of PLASMA happens to work in this 

way, Since the implicit continuations are handled just like any other actor. 

However, it does not presently take much advantage of this fact since there 
are no constructs defined to create multiple-argument continuations. 

{Note PLASMA Sugar} 

PLASMA, for example, provides such sugar in abundance. Many 

"standard" control and data operations are provided and defined in terms of 
actor transmissions. Indeed, the user need not be aware of the semantics of 
actors at all; there is enough sugar to hide completely what is really going 
on. 

{Note Return Address} 

There is actually a third quantity passed to BAR, namely the return 
address; this is not given an explicit name by either BAR or its caller. 
Instead, the functional notation of LISP leaves the handling of the return 
address entirely implicit. Later, in the discussion of continuations, the 

return address will be given an explicit name jusf like any other passed 
parameter. 

{Note Slice Both Ways} 

One may also try slicing the matrix up in both directions, so that 

each entry may be specified as a separate module. This has been tried in 

REDUCE, for example. ([Griss 76] It can lead to a rather disjointed style of 
programnming, however; in practice, one tends to group routines which all 
fall in a single row or column of the operations matrix. 

{Note Turing Machines} . 

Compare this with the basic action of a Turing machine, which is to 
use two parameters (the current state and the symbol under the tape head) to 

index a matrix of actions to take.
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