
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
ARTIFICIAL INTELLIGENCE LABORATORY 

AI Memo 443 October 1977 

DEBUNKING THE "EXPENSIVE PROCEDURE CALL" MYTH 

or, PROCEDURE CALL IMPLEMENTATIONS CONSIDERED HARMFUL 

or, LAMBDA: THE ULTIMATE GOTO 

by 

Guy Lewis Steele Jr. * 

Abstract: 
Folklore states that GOTO statements are “cheap", while procedure 

calls are “expensive". This myth is largely a result of poorly designed 

language implementations. The historical growth of this myth is considered. 
Both theoretical ideas and an existing implementation are discussed which 
debunk this myth. It is shown that the unrestricted use of procedure calls 

permits great stylistic freedom. In particular, any flowchart can be written 
as a "structured" program without introducing extra variables. The difficulty 
with the GOTO statement and the procedure call is characterized as a conflict 
between abstract programming concepts and concrete language constructs. 

This is an annotated version of a paper to be presented at the ACM National 

Conference (ACM '77), Seattle, Washington, October 1977. 

Keywords: procedure calls, subroutine calls, structured programming, 

programming style, compilers, optimization 

This report describes research done at the Artificial Intelligence Laboratory 

of the Massachusetts Institute of Technology. Support for the laboratory's 

artificial intelligence research is provided in part by the Advanced Research 
Projects Agency of the Department of Defense under Office of Naval Research 
contract N00014-75-C-0643. 

* NSF Fellow 

 



Guy L. Steele Jr. 1 Debunking the “Expensive ...° Myth 

Introduction 

For the past five to ten years (depending on how you count) the 

computing community has been embroiled in debate over “structured programming" 
and, as a special case, the GOTO statement. On the one hand, many authors 

have observed that programs written without GOTOs are often more perspicuous 
than programs written with GOTOs by the same programmer. That is, the 

avoidance of GOTOs is a discipline which has been observed to produce programs 

which are easier to understand and maintain. 

On the other hand, a certain portion of the computing community has 

rebelled at this discipline. There are several reasons for this rebellion. 

Among these are: 
(1) Some programmers fear that their expressive power or style will be 
cramped if GOTO is taken away from them. This is true in such contemporary 
languages as FORTRAN, but in more powerful languages such as ALGOL, PL/I, 
COBOL, and PASCAL the point is somewhat more debatable. Yourdon comments: 

“Many programmers feel that programming without the GO-TO statement would 

be awkward, tedious and cumbersome. For the most part, this complaint is 

due to force of habit." [You75,178] In all fairness, it should be pointed 
out that GOTO is a basic, universal primitive with which (in conjunction 
with a conditional) almost any other control construct can be synthesized 
if the language designer neglected to include it. {Note Omniscient 

Implementors}) A good example of this is the CASE statement. 

(2) Some programmers feel that the imposed discipline doesn't make any 

difference, because one can write incomprehensible programs without GOTO. 

This piece of logic is slightly false, for while avoiding GOTO does not 
guarantee comprehensibility, it often does increase the probability of 

producing comprehensible code, given our current cultural biases in 

programming style. 

(3) There is some feeling that GOTO is a “cheap" statement, while other 

constructs (DO, CASE, etc.) are more "expensive". Everyone knows that a 

GOTO gets compiled into one machine instruction (some kind of branch), 

while DO produces many instructions. The difficulty here is a misplaced 
sense of what is “efficient"; and despite the fact that current 
practitioners of programming discipline tell us not to worry about 
efficiency, we nevertheless do, at some low unconscious level, whenever we 

write code. Yourdon tells of the plight of programmers “whose managers 

have specifically forbidden them to use such statements because of the 
overhead involved in subroutine-calling statements." [You75,177] 

These misplaced feelings of efficiency are felt for other programming 
language constructs as well, and subtly influence our programming style. The 
example I wish to consider here is the procedure call. Everyone knows that, 

unlike GOTO statements, procedure calls are "expensive". Indeed, these 

feeling are not unjustified, given past and current programming language 

implementations. 
Because procedure calls are "expensive", we tend to avoid using them 

in our code. Unfortunately, this produces a detrimental effect on our 
programming style, for what Dijkstra said of PL/I holds true of almost any 

language: “the procedure is one of [the] main vehicles for expressing 
structure". [Dij76,8] Recently practitioners of programming discipline have 
advised us not to be afraid to use procedure calls, as the readability they 
afford is worth the inefficiency. This is like saying that cars with square 
wheels are all right because transportation is worth a bumpy ride: we really 

ought instead to concentrate on improving our wheels. 

I would like to suggest here that procedure calls have been given a



Guy L. Steele Jr. 2 Debunking the “Expensive ..." Myth 

"bad press" for a number of reasons. There is no reason that procedure calls 

must be expensive. I intend to demonstrate here the following points: 

(A) Procedure calls are, from a theoretical point of view, glorified GOTO 

statements; this view leads to interesting compilation techniques which 

can save space and time. 
(B) Procedure calls are in fact quite fast when implemented properly. 

(C) Procedure calls have received a bad reputation for a variety of 
historical reasons. 

(D) As a result, we have been advising programmers to adjust their 

programming style to compensate for poor implementations (or, 

alternatively, not to adjust but to ignore the poorness of the 

implementation), while giving little thought to improving these 

implementations. . 
(E) Procedure calls, implemented properly and used freely, allow a 
stylistic freedom far greater than (and largely inclusive of) that afforded 
by GOTO. Any flowchart can be implemented as a "structured" program 

without introducing any extra variables. 

(F) Much of our difficulty with procedure calls and with GOTO statements 
is that we have a restricted view of the relationship between programming 

concepts and language constructs. 

A. Procedure Calls as GOTO Statements 

In studying the nature of procedure calls, it is appropriate to study 

the LISP language. LISP, more than any other language, uses procedure calls 
as the primary means of expression; in particular, the arbitrary distinction 
between built-in operators (like multiplication) and user functions is almost 
completely nonexistent. What would appear in FORTRAN as 

FUNCTION QUAD(A,B,C) 
QUAD = (-B + SQRT(B**2 - 4*A*C)) / (2*A) 
RETURN 
END 

is in (one dialect of) LISP: 

(DEFINE (QUAD A B C) 
(/ (+ (- B) 

(SQRT (- (*% B 2) (* 4A C)))) 

(® 2 A))) 

In this way most computations (other than conditionals) can easily be 
expressed in terms of function calls of the form 

(F Xi X2.... Xn) 

LISP is an expression language, in that every program is a function which 

returns a value (but this value may be ignored - many programs produce 

interesting side effects and then return NIL). It differs from other 

expression languages such as BLISS [Wul71] [Wul75], however, in its uniformity 
of notation. 

The usual way to implement function calls in LISP is by using a stack. 

When a function is called, a return address is pushed onto the stack; when a 

function is done, it pops a return address and goes there (after stashing the 

value to be returned in a register). This is in fact how procedure calls are



Guy L. Steele Jr. 3 Debunking the “Expensive ..." Myth 

implemented in many languages. 

Let us consider the execution of a call on the LISP function BAR: 

(DEFINE (BAR X Y) 
(F (GX) (H Y))) 

BAR calls G on X, H on Y, and then F on the two results, returning the result 
of calling F. 

For concreteness, we will express the compiled code in a modified form 
of PDP-10 machine language, using these instructions: 

JUMP x Branch to (i.e. GOTO) location x. 
PUSHJ x Push the location of the PUSHJ, plus 1, on the stack, 

then branch to location x. 

POPJ Pop an address from the stack and branch there. 

The code for BAR might look something like this: 

BAR : <set up arguments for G> 
PUSHJ G 

BARI: <save result from G@)> 

<set up arguments for H> 

PUSHJ H 
BAR2: <use results from G and H for F> 

PUSHJ F 
BAR3: POPJ 

We have introduced the labels BARI, BARZ, BAR3 to aid the exposition. Note 

that there are no instructions between the PUSHJ F and the POPJ; we shall 

justify this below. 
On arrival at BAR, the arguments X and Y are presumably in registers 

or some other appropriate place, and a return address (say FOOS) is on the 

stack. After we execute the PUSHJ G, the stack will look like this: 

BARI 
FOOS 

G may call other functions, and the stack will go up and down, but eventually 
it will put a value in the result register and do a POPJ, returning to BARI. 
This leaves the stack like this: 

FOOS 

In a similar manner, the PUSHJ H will push BAR2 on the stack, and H will 
eventually pop it when it exits. The same is true of the PUSHJ F and BAR3. 

When F returns to BAR3 with a value in the result register, the POPJ at BAR3 

is performed, returning to FOO5. Since BAR was to return the result of calling 

F, the correct value is in the result register for FOO5. 
Notice that during the execution of F the stack looked like this: 

BAR3 
FOO5S



Guy L. Steele Jr. 4 Debunking the “Expensive ..." Myth 

Suppose that at the end of BAR we changed the sequence 

PUSHJ F to JUMP F 
BAR3:  POPJ 

Then on arrival at the JUMP the stack would look like this: 

F005 
oes 

Instead of a PUSHJ to push BAR3, we have a JUMP to F. Thus on arrival at F, 

the stack has only FOO5 on top. When F is done, it will return to FOOS 
instead of BAR3. But this is all right! F has put the correct value in the 

result register, and this value will be transmitted to FOO5, with the stack 

properly adjusted. All that has changed is the useless pushing of BAR3, and 

the encoding of a procedure call as a JUMP (that is, a GOTO!). 
This approach is quite general. The idea is obscured by algebraic 

syntax, but if we rewrite a program in LISP notation, it is clear that the 
last thing that program does is a procedure call of some kind. To prove this, 
we note that the outermost construct in the program body must fall into one of 
a limited number of cases: 

® A call to an "intrinsic" function which is compiled open. In this case 
that function is simply compiled open. That function may compile open as 
one or more arithmetic instructions followed by a POPJ, or else it must 
recursively fall into some other case. 
* A call to an external function. In this case, as argued above, we can 
simply JUMP to the new function, as there is no need to return to the 

caller. 
® A conditional. The argument applies recursively to the branches of the 
conditional. 
® A sequential block. The argument applies recursively to the last 

component of the block. 

* A looping construct. The argument applies recursively to the expression 

which gives the value of the loop (which may be assumed to fall into the 

first case if the value is to be ignored). 

Other constructs are handled similarly. In this way, if the last thing a 

procedure does is call another (external) procedure, that call can be compiled 
as a GOTO. Such a call is called tail-recursive, because the call appears to 

be recursive, but is not, since it appears at the tail end of the caller. 

This approach can be made even more uniform by compiling every 

procedure call as a GOTO. The idea is that a return address is pushed on 

commencement of the evaluation of an argument, rather than application of a 

function. This provides a uniform compilation discipline. For example, 
consider the BAR function used above: 

(DEFINE (BAR X Y) 
(F (GX) (H Y))) 

In order to compile the body, we must first compile the argument forms (G X) 
and (H Y). Since (G X) is an argument form, we push a return address, then 
set up the arguments for G, then call G. (H Y) is treated similarly. Now that 

the arguments for F are available, we set them up and call F:



Guy L. Steele Jr. 5 Debunking the “Expensive ...*° Myth 

BAR: PUSH [BAR] ] 
<set up arguments for G> 
JUMP G 

BAR1: <save result from G> 

PUSH [BAR2Z] 

<set up arguments for H> 

JUMP H 
BARZ: <use results from G and H for F> 

JUMP F 

We did not. push a return address for F since the call to F is not an argument 

form. Notice that this uniform discipline lends itself to passing arguments 
on the stack, above the return address. The called procedure is then 

responsible for popping the arguments. On the other hand, if argument passing 

does not use the stack, we can permute the PUSH of the return address with the 

argument set-up code: 

BAR: <set up arguments for G> 

PUSH [BAR] ] 

JUMP G 

BARI: <save result from G> 
<set up arguments for HD 
PUSH [BAR2 ] 

JUMP H 
BARZ: <use results from G and H for F> 

JUMP F 

If our machine has a PUSHJ instruction, then a peephole optimization [McK65] 
can now transform the PUSH/JUMP sequence into a single PUSHJ instruction. 
Thus we see that a procedure call can be uniformly treated as a GOTO, with the 

PUSHJ instruction considered an optimization (rather than vice versa!). 

There are a couple of difficulties with this idea. One is that the 

stack is often used to hold information other than return addresses, such as 

stack-allocated data structures and intermediate results. This is no problem, 

as it turns out; it is merely necessary to clean up the stack just before 

calling F, rather than just after calling F; then the original PUSHJ F and the 

POPJ will be consecutive, and so can be expressed as a JUMP F. {Note Shuffle 

Arguments} 
This leads to a second difficulty, which is that some languages would 

allow F to refer globally to stack-allocated structures within BAR, such as 

the dynamic values of X and Y. In this case we cannot clean up the stack 
until after calling F. There is, however, some evidence [Wul73] that such 
global variables are as "harmful" as GOTO statements; in any case it is a 
good idea to minimize their use, and to define variables to be lexical in 
scope by default. It turns out that in most programming languages (COBOL, 

PL/I, FORTRAN, and LISP in particular) the distinction between lexical and 
dynamic scoping doesn't matter most of the time anyway. We should leave the 

compiler free to produce the best possible code; only in cases where 
structures are explicitly declared to be dynamically referenced should the 
compiler be forced to leave them on the stack in an otherwise tail-recursive 

situation. 

In general, procedure calls may be usefully thought of as GOTO 
Statements which also pass parameters, and can be uniformly encoded as JUMP 

instructions. This is a simple, universal technique, to be contrasted with 

the more powerful recursion-removal techniques such as those in [Dar76]. Our 
approach results in all tail-recursive procedure calls being compiled as



Guy L. Steele Jr. 6 Debunking the “Expensive ..." Myth 

iterative code, almost without even trying, for it is more a matter of the 

code generation strategy than of a specific attempt to remove recursions. 
(For more discussion of this, see [Ste76b]. For an interesting comparison 
between GOTO and the APL execute operator, see [Syk77].) 

B. Procedure Calls Can be Fast 

The above examples have shown procedure calls encoded as a simple 

JUMP, or at worst as a PUSHJ. These simple instructions are not time- 

consuming, even on computers which must simulate PUSHJ because it is not a 
primitive instruction. What then makes procedure calls so expensive? 

The answer seems to be that most implementations are rather 
thoughtless or careless in this regard. It is usual for a compiler to slap 

Standard "prologue" and "epilogue" code around every procedure; this code 

typically sets up complex procedure frame structures, allocates all declared 
variables, and sometimes even saves and restores all registers. Auslander and 

Strong [Aus76] report that one simple procedure call, compiled by the OS/360 
PL/I optimizing compiler, pushes 336 bytes onto the stack! Yourdon [You75,98] 
reports that on a 360/50 a PL/I procedure call costs 198 microseconds. It is 
no wonder that programmers feel that procedure calls are slow - they are! 

That is, they are slow as currently implemented. Unfortunately, our 
thinking has generally been colored to the point where we simply assume that 

all procedure calls are inherently slow. Even SIGSAM Bulletin, a journal 

contributed to in large part by LISP programmers, said in an editorial 

[Je-72]: 
"... one might expect CAMAL, SAC-1, ALTRAN, and TRIGMAN to run the 
fastest, because they make efficient use of special-purpose data structures 

and because they are written either in FORTRAN or machine language; and 

present versions of MACSYMA, REDUCE, and SCRATCHPAD to run slower -- 

because of their more general expression handling ability and because of 
the frequency and generality of function calling in LISP." 

In that same editorial comparative running times were given for the systems, 
and indeed the LISP-based systems were five to ten times slower than the 
others -- except MACSYMA, which was comparable to the FORTRAN and machine- 

language systems! Clearly this contradicts the cited intuitive belief about 

procedure calls. 

A reply by Fateman [Fat73] further emphasized this point. In actual 
timing tests conducted on numerical code using the MacLISP compiler and the 

then current DEC FORTRAN compiler, the MacLISP code was faster! Fateman 
comments: 

",.. ‘the frequency and generality of function calling in LISP' is a high 

cost only in inappropriately designed computers (or poorly designed LISP 
systems). ... The point we wish to make is that compiled properly, LISP 

may be as efficient a vehicle for conveying algorithms, even numerical 

ones, as any other higher-level language, e.g. FORTRAN. An examination of 

the machine code produced by the two compilations shows that the inner-loop 

arithmetic compilations are virtually identical, but that LISP subroutine 
calls are less expensive." 

(For a discussion of the techniques used to achieve FORTRAN-like arithmetic 

ability in LISP, see [Ste77b].)



Guy L. Steele Jr. 7 Debunking the “Expensive ..." Myth 

C. Why Procedure Calls Have a Bad Reputation 

The very notion of "procedure call" in a programming context was only 
worked out painfully after computers had already existed for some time. 
Indeed, the idea of automatically linked library procedures met with 
considerable opposition when first proposed. [Hop73] Since procedure calling 
instructions were not planned ahead of time in the way that arithmetic, 

conditional, and branch operations were, one would assume they were 

implemented on early computers in a rather clumsy fashion. While the basic 

arithmetic and conditional jump instructions have changed little in nature 

over the years, one can trace an evolution of special instructions used for 

procedure calls. Machines before 1960 (for example the IBM 1620 and 704) 
typically had only one instruction (if any) for subroutine calling, which 
saved the instruction counter in a register or in the first memory location of 

the called subroutine. The PDP-1 had three instructions which were all 

variants on this theme. The IBM 360 had only one such instruction (with two 

addressing modes), but the programmer had the additional choice of which 

register to store the program counter into. As far as I know offhand, stack 

instructions did not generally appear in non-stack-oriented machines until the 

mid-1960's, in such machines as the PDP-6, which in addition to PUSHJ offered 

three other subroutine-calling instructions; in retrospect, this seems to 

have been more out of uncertainty as to which would be used than out of 

necessity for a variety of instructions, for only two of the four are used at 

all extensively now on the PDP-10 (I am ignoring the “UUO" mechanism as not 

being a general subroutine-calling device). The PDP-11 (1970 or so) is the 
earliest machine I know of which was not essentially stack oriented (as some 

early Burroughs machines were) but which provided only a stack-pushing 
subroutine call instruction. 

The interesting thing is that all of these examples have attempted to 

compress the procedure call operation into a single instruction. As may be 

inferred from the discussion above and in [Ste76b], this isn't necessarily the 
right way to do it. The procedure call may conceptually be divided into three 
phases: push a return address if necessary, set up arguments, go to called 

procedure. (Those familiar with spaghetti stacks [Bob73] will recognize this 
sequence as "create a frame, set up the arguments in the frame, go to called 

procedure".) It is important to note that the first step naturally comes 

first, and that it is conditional (but for lexically scoped programs this 

condition can be determined at compile time for any given procedure call as 

described above). The mistake that we make is to attempt to combine the first 

and third steps unconditionally into a single, universal instruction. The 

result is that the return address is always pushed whether it is necessary or 

not. . 
(It is appropriate to note here that the procedure call instruction 

might not itself push the return address onto the stack. It might put it into 

a register, in which case that register's previous contents must first be 
pushed, in general, as there are only a finite number of registers. Another 
case, often used in FORTRAN implementations, is that every procedure has a 

location reserved in memory for holding the return address for that procedure. 

This does not permit recursion, and wastes memory space compared to the use of 

a stack, because if recursion is not permitted the total stack space could not 

exceed the number of distinct procedures anyway.) 
Compiler writers have often simplified their job at the expense of the 

procedure call by adopting certain standard protocols. One of these is that 
the called procedure should save all registers that it uses. This is in turn 

often simplified to "save all registers". It is seldom the case that all of 

these registers actually need to be saved; indeed, in statement-oriented



Guy L. Steele Jr. 8 Debunking the "Expensive ..." Myth 

languages such as FORTRAN with little global optimization by the compiler, 

often no registers need be saved across a procedure call! Thus this 

convention can only lead to unnecessary extra running time, which gets charged 
to the poor procedure call. (This convention does have the virtue of helping 
to isolate the effects of buggy compiler output; but this feature is not 
without cost.) 

The great speed of compiled MacLISP procedure calls is primarily due 

to its taking the inverse approach: the caller is responsible for saving any 

registers that it will need after calling another procedure. It might be 

thought that this would lead to a much greater code size than the other 
convention, but this is offset by three effects. One is that, as noted above, 

few registers actually need to be saved in practice. Another is that the 

compiler can know which registers are not destroyed by built-in functions and 

avoid saving such registers unnecessarily. (This can be compared with knowing 

which registers are used by the out-of-line "intrinsic" functions in a FORTRAN 
implementation; or, for that matter, knowing that certain instructions 
clobber certain registers, such as DIVIDE producing both a quotient and a 
remainder.) The third is that the architecture of the PDP-10, while not 
essentially stack-oriented, does not make references to stack values unduly 

difficult; thus it is often just as easy to keep a variable on the stack 

rather than in a register in the first place. 

At the source-language level, there are other factors which contribute 
to the procedure call's poor reputation. Nearly all algebraic computer 
languages draw a syntactic distinction between operators and user functions, 
if not also a semantic distinction. Often built-in functions are also 
distinguished in some silly way from user functions, even though they are used 
in syntactically similar ways. As an example, you cannot pass "+" as an 

external function argument in FORTRAN, even though it is mathematically a 

perfectly good function of two arguments; similarly you cannot pass a 
Statement function, even though there is no syntactic difficulty as there is 
for "+", [ANS76,8.7/15.4.3] You can pass an intrinsic function as an 
argument, unless it is one of the MIN/MAX series. [ANS76,8.8/15.3.2] PL/I 
built-in functions can return array or structure values, but not user-defined 

functions. [IBM70b,162] Even as enlightened a language as APL does not 
permit, in current implementations, a user function to be used within the 

reduction or inner/outer product constructions. Such decisions are 
occasionally questioned, but most people accept them on the grounds of 
"efficiency". This is absurd. There is no reason one cannot accept the 

general case, and handle important special cases specially. For example, if a 

user should try to pass a statement function or intrinsic function as an 

argument in FORTRAN, the compiler could jolly well provide a reference to an 
EXTERNAL version of that routine, while continuing to use the internal version 

(if it is in fact compiled as a distinct version) where applicable. 
Even if we accept such arbitrary semantic distinctions in our 

languages, there remain the syntactic differences. Most languages require 
user functions to be referenced in a rather awkward manner, and subroutines 

(value-less procedures) in even more awkward ways. FORTRAN requires 

subroutines to be invoked using the keyword "CALL". COBOL is even worse: it 

uses the longer keyword "PERFORM" for internal subroutines, and two keywords 

"CALL ... USING" for external subroutines. [IBM70a] Moreover, for many years 
it took three statements to call an external procedure: 

ENTER LINKAGE. 
CALL FOO USING ARG1 ARG2 ARG3. 
ENTER COBOL.



Guy L. Steele Jr. 9 Debunking the “Expensive ..." Myth 

[ IBM68] [DEC69] (One notable exception to this mess is LISP. There are also 
some extensible algebraic languages available, such as EL/1 [Weg71] [Weg74]; 
many of these are in fact implemented in a LISP-like manner beneath a veneer 

of ALGOL-like syntax.) It is generally true that we tend to believe that the 

expense of a programming construct is proportional to the amount of writer's 

cramp it causes us (by a "belief" I mean here an unconscious tendency rather 
than a fervent conviction). Indeed, this is not a bad psychological principle 
for language designers to keep in mind. We think of addition as cheap partly 
because we can notate it with a single character: "+". Even if we believe 
that a construct is expensive, we will often prefer it to a cheaper one if it 

will cut our writing effort in half. This is a lesson that practitioners of 

programming discipline have been trying to sell us, but it is a good one only 

if our programming languages are designed to cooperate with our natural 
tendency toward brevity. 

In [Dij76,xvii] Dijkstra comments: 
*"... ait therefore hurts me to see the semantics of the repetitive 
construct 

‘while B do S' 

defined as that of the call 

‘whiledo(B,S)' 

of the recursive procedure (described in ALGOL 60 syntax): 

procedure whiledo(condition, statement) ; 
begin if condition then begin statement; 

whiledo(condition, statement) end 
end " 

It hurts me too, partly because Dijkstra here uses call-by-name to an 

indefinite number of levels, but even more because the syntax of ALGOL 60 

makes the example twice as frightening as it really is. The LISP version 

(( LABEL LOOP 
(LAMBDA () (IF (NOT B) 

(PROGN S (LOOP)))))) 

is at least slightly less awesome to me (though of course it is still more 
awesome than simply "while B do S"). {Note Step Variables} 

As an additional defense of the procedure call, it should be pointed 

out that it constitutes a universal construct when properly implemented. The 

practitioners of programming discipline point with pride to such theorems as 

that of Boehm and Jacopini [Boe66], showing that any program can be written 
using their favored constructs. Such theorems have recently been ballyhooed 
about to the point of absurdity: 

“Structured programming is based on the mathematically proven Structure 
Theorem." [Nei76] 

It has even been demonstrated, as a mathematical curiosity, that IF-THEN-ELSE 
can be dispensed with. [Pre75] It ought not be forgotten, however, that 
procedure calls can easily simulate sequencing, conditionals, and repetition, 
while the converse is decidedly not true. Even without completely solving the 

so-called FUNARG problem [Mos70], a surprising variety of tricks can be played 
with procedure calls, including dynamic binding and iteration. If the FUNARG 
problem is solved, additional tricks are easily played, such as escape 

 



Guy L. Steele Jr. 10 Debunking the “Expensive ..." Myth 

expressions, call-by-name, procedural data types, etc. The interested reader 

is referred to [Ste76a] and [Ste76b] for some examples of how this is done. 

D. What Are We Doing About It? 

Up to now, we have spent more time ignoring or circumventing the 
problem than solving it. Yourdon says "In most cases, a modular approach 
should not require more than 5-10% extra CPU time; this seems to be a 
reasonable price to pay..." [You75,99] I would suggest that this price is 
totally unreasonable when the technology (or, more accurately, the design 
philosophy) exists to reduce it! 

There has been some mathematical work done on recursion removal 
‘(Str71j] [Dar76] which is aimed both at converting procedure calls to GOTO 
statements and at transforming programs into other forms requiring less 

recursion. Some of this work is both mathematically interesting and 

practically applicable. Sometimes, however, it has gone up a garden path 

under the influence of the "expensive procedure call" myth. One example is a 
paper by Auslander and Strong [Aus76] which describes a technique for removing 
recursions from PL/I programs. This involves a set of source-to-source 
transformations which convert PL/I function calls into GOTO statements. Extra 

Stacks are introduced in the form of arrays (though in their example they use 

an already existing array by means of an extremely clever trick) which are 

used to contain saved values of variables and return addresses. To put it 

quite simply (though they do not), they compile the PL/I program into another 
PL/I program which is more like machine language, and which the real PL/I 
compiler can therefore process more easily. They report that this technique 
improves run time by 40%, and space used per level of recursion from 336 bytes 
to 9, a 97% saving! 

This seems impressive until we realize that their transformations are 

almost entirely straightforward and mechanical and could easily be made a part 

of the PL/I compiler, and furthermore that they are essentially techniques 

which have been used by the MacLISP compiler and others for almost a decade: 

turning procedure calls into GOTO when possible, and avoiding pushing variable 
values unless necessary! Then we are impressed only by the inefficiency of 

this so-called "optimizing" PL/I compiler! 
What is more, Auslander and Strong conclude: 

“These techniques can be applied to a program without an understanding of 
its purpose. However, they are complex enough so that we are inclined to 
teach them as tools for programmers rather than try to mechanize them as an 

option in an optimizing compiler." 
In other words, we are now so afraid of procedure calls that, rather than fix 

our compilers, we wish to teach programmers complex techniques for using GOTO 

to circumvent the shortcomings of our compilers! Such a desire is completely 

outrageous. Not only does it violate the philosophical principles of clarity 

in language design and programming style we have slowly been forced to accept, 

but it is demonstrably ridiculous, because while the complete generality of 
these techniques has perhaps not been implemented in a compiler, a good part 

of it has, and has worked for eight to ten years at least. Such is the 
ludicrous position we have come to. 

 



Guy L. Steele Jr. ll Debunking the “Expensive ..." Myth 

E. The Expressive Power of Procedure Calls 

Here we shall consider an example of how expressive procedure calls 

can be when used freely. The example is taken from Yourdon [You75,233]; he 
implies that the program was an actual one in use. He suggests that, rather 

than using many flag variables to indicate various conditions within a 

program, one should use a single variable which encodes the state of the 

program. The motivation behind this is that one should also draw a state 

diagram showing the valid transitions between states; the programmer is 
encouraged to think of his program as a finite-state automaton. In this way 
one can avoid the common error of producing an invalid combination of flag 
values. The state diagram for Yourdon's example is reproduced here. 

  
The 128 possible combinations of seven independent flags have been reduced to 

23 permissible states and the legal transitions among then. 

The program itself is to be implemented using two variables OLD-STATE 

and NEW-STATE and a computed-GOTO or CASE statement. The main program 
dispatches to the module designated by NEW-STATE. The module can then check 
OLD-STATE to be sure the transition was valid. For example, module 14 would 

ensure that OLD-STATE held 11 or 16. When module 14 is done, it must store 14 

into OLD-STATE and set NEW-STATE to the next state, and then branch back to 

the computed GOTO or CASE. It is assumed, though not stated, that all 
variables common to several modules are declared in an outer environment 
accessible to the modules. 

We shall modify this set-up slightly to make it more foolproof. The 

first problem is that every module must contain code to manipulate OLD-STATE 

and NEW-STATE, and it is easy to forget to include this code. We shall 

perform this work within the CASE statement itself; this collects the 

transition information into one place. In order to avoid branching to the 
CASE statement, we shall embed the CASE statement in a loop. To terminate the 
loop, we will allow state 0 to represent the exit state. Finally, we shall 
rename the variables NEW-STATE and OLD-STATE to PROGRAM-COUNTER and OLD-PC. 
The resulting code looks like this:



Guy L. Steele Jr. 12 Debunking the “Expensive ..." Myth 

UNTIL PROGRAM-COUNTER = 0 DO 
CASE PROGRAM-COUNTER OF 

1: BEGIN 
IF NOT (OLD-PC = 3 

OR OLD-PC = 7 
OR OLD-PC = 8) 

THEN ERROR; 
OLD-PC := PROGRAM-COUNTER; 
PERFORM MODULE1; 

END; 
2: eee 

23: BEGIN 
IF NOT (OLD-PC = 20 

OR OLD-PC = 21) 
THEN ERROR; 

OLD-PC := PROGRAM-COUNTER; 
PERFORM MODULE23; 

END; 

ENDCASE ; 

The code for each module must end with a statement that assigns a new 
value to PROGRAM-COUNTER. The use of a number to identify the next module to 
execute obscures the code, so let us assume that we can use symbolic names 
(defined by a PARAMETER statement, for example). Let us also assume the 
trivial syntactic sugar: 

JUMP x means PROGRAM-COUNTER := x 

Then at the end of each module we can write a JUMP statement to the next 

module. For example: 

PROCEDURE MODULE23; 
BEGIN 

<do processing); 

IF <testl> THEN JUMP MODULE10 
ELSE IF <test2> THEN JUMP MODULE15 
ELSE JUMP MODULEZ0; 

END; 

Let us pause for a few observations. First, the outer loop of our 
program may be compared to a hardware CPU, and the modules to the instructions 
of that CPU. It has a program counter which takes us from instruction to 
instruction. (For an example of this style of programming in LISP, see 
{Sus75].) Second, our nice program has become a rat's nest of JUMP statements 
(which might look more familiar had we used the keyword GOTO instead of JUMP). 
This is not at all surprising, since the structure of our program merely 

reflects the structure of our problem as exhibited in the state-transition 
diagram, and that too is a rat's nest. Third, our attempt to improve the 

program by using a nice, structured approach has resulted in the effective use 

of GOTO all over the place! 

We note that the use of symbolic names in JUMP statement reduces the 

probability of errors in describing state transitions, and so we may feel 
confident in removing the error-checking code from the main loop. (Moreover, 
a cross-indexing program can find all the references to each module for us, 

which could not easily be done when numbers were used.) We furthermore can



Guy L. Steele Jr. 13 Debunking the "Expensive ..." Myth 

eliminate the outer loop and CASE statement entirely; all that would be 
needed is GOTO statements at the end of each module, linking them together. 
This will speed up the program by eliminating the PROGRAM-COUNTER variable, 

without appreciably altering the structure of the program. Unfortunately, 
this produces a rat's nest of true GOTO statements, which is not structured. 

This points up to some extent the ultimate futility of the Boehn- 

Jacopini theorem. We can certainly express all programs in a structured form 
by introducing flag variables, but the preceding series of reasonable 
transformations merely renders it unstructured again, demonstrating that we 

had not really made the program structured in nature, but only in form. 

There is another way out. Let us not use GOTO statements to jump 

between modules, and let us not use flag variables to signal what are 

effectively GOTO statements to an outer control loop. Instead, let us 
consider what a single module does: it performs its bit of processing, and 

then invokes or otherwise designates another module to complete processing. 
Suppose therefore that at the end of every module we had a procedure call to 
the next module: 

PROCEDURE MODULE23; 
BEGIN 

<do processing>; 

IF <testl> THEN PERFORM MODULE10 
ELSE IF <test2> THEN PERFORM MODULE15 
ELSE PERFORM MODULE20; 

END; 

where we might as well have written "CALL" for "PERFORM". 
This will certainly do what we want; if MODULE23 calls MODULE10, then 

MODULE10 will carry on, calling other modules in the process, and eventually 

the program will complete. It is also "structured"; the only constructs used 

are sequencing, possibly conditionals, and procedure calls. It uses no GOTO 

Statements. There is also an additional bonus: if MODULE23 wants to pass 
some information to MODULE10, it can pass them as parameters rather than 
having to use global variables. This can help prevent conflicting usages of 
global variables among disjoint module sets. 

From this example we can induce the following theorem: 

Any flowchart can be written as a program which uses only sequencing, 

conditionals, and procedure calls. 

This theorem is not new; it appears in McCarthy's 1960 paper. [McC60] It is 
quite easy to prove. We assume without loss of generality that the boxes of 
the flowchart are of two sorts: process boxes with one exit, and conditional 
boxes with two. A process box may contain any single-exit computation 
whatsoever (which may be built up from sequencing, conditional, and while-do 

loops, for example). A conditional may contain a predicate which decides 
which of two exits to take. 

For each box in the flowchart we construct a procedure. If a box A is 
a process box whose exit branch leads to box B, then the procedure for A is: 

PROCEDURE A; BEGIN <processing>; CALL B END; 

If a box C is a conditional box whose exit branches lead to boxes D and E, the 
the procedure for C is: 

PROCEDURE C; IF <predicate> THEN CALL D ELSE CALL E; 

 



Guy L. Steele Jr. 14 Debunking the “Expensive ..." Myth 

Every module is "structured" in form; moreover, the modules are not 

necessarily as tiny in size as the examples indicate, since a process box may 

contain an arbitrarily large one-in/one-out program. 
There are several possible objections to such a style of programming: 

(1) It requires recursion to implement loops in the flowchart. 
x That's right. If your programming language won't support recursion 

(e.g. most FORTRAN implementations), you can't use this particular 
"structured, modular approach". 

(2) Procedure calls are expensive. 
®* They shouldn't be! 

(3) The chain of procedure calls will keep pushing stack, and the stack will 

overflow. 

x This is true of current programming language implementations, but it 
has been shown above that such implementations use far more stack than 
necessary. If tail-recursive procedure calls are compiled as JUMP 
instructions, then this problem does not arise. 

(4) This style of programming is unnatural: "That's not what procedures are 
for!" 

®* This is largely a matter of taste. I have written a number of mediun- 

sized programs in this style (using a dialect of LISP) and find it quite 

natural for certain purposes. It accomodates itself well to “state- 

transition" kinds of programs. It also permits one to create non- 
standard looping constructs which are one-in/one-out, but which have 

complex relationships among the variables being stepped. 

An additional observation should be made, of course: in the example 
above, the use of procedure calls hasn't endowed the program with any more 
structure than the use of flag variables or PROGRAM-COUNTER did, compared with 
the GOTO version. All it has done is possibly make the code more palatable. 

This may be a useful psychological illusion, but it is as much a myth as the 

belief that procedure calls are inherently expensive. 

F. Procedure Calls and Modularity 

The primary role which the procedure call plays in the current 
philosophy of programming discipline is as the agent of modularity. 
Similarly, the primary role played by GOTO is as the agent of tangled 
flowgraphs. . 

I would like to suggest that our difficulties in dealing with 

programming and programming languages stem in part from a confusion between 
the abstract notions of program organization and the concrete embodiment of 
these notions as programming language constructs. In order to simplify our 

thinking we have attempted to enforce a one-to-one mapping between these two 

sets, and it doesn't work very well. For example, we decree that procedures 

are the method of producing modularity; that WHILE-DO loops are the way to 
iterate; that IF-THEN-ELSE is the way to produce conditionals; that GOTO is 
the way to produce peculiar program structures. 

The fact is that this just isn't so. Consider the notion of 

modularity, which is indeed a useful concept for organizing programs. While 

procedure calls are indeed a method of modularizing programs, there are other 

methods. The PL/I %INCLUDE construct or the COBOL COPY construct are one 
alternative. Another is the "PRINLEVEL" feature in some LISP systems, which 
allows you to print the overall structure of a program while suppressing the 

detail of computations below a certain level of nesting. A third example (due 

to R. Zippel) is the common FORTRAN trick of breaking up a single complex 

assignment statement into several smaller ones:



Guy L. Steele Jr. 15 Debunking the "Expensive ..."% Myth 

FOO = F(G(A,B,C,D) + H(A,B,C), G(C,D,A,B) 

1 - H(C,D,A), G(D,C,B,A) * H(D,C,B)) 

becomes 

FOO! = G(A,B,C,D) + H(A,B,C) 
FOoOZ = G(C,D,A,B) - H(C,D,A) 
FOO3 = G(D,C,B,A) * H(D,C,B) . 
FOO = F(FOO1, FOO2, F003) 

If someone had asked me whether assignment statements were an agent of 

modularity in programming languages, I should certainly have replied in the 

negative before seeing this example. 

Similarly, consider the notion of iteration, another useful concept in 

organizing programs. We are all familiar with the use of WHILE-DO and its 

variants, and also with the use of IF-THEN-ELSE and GOTO to achieve the same 

purpose. But, as shown earlier, procedure calls can be an agent of iteration. 
While I would hesitate to write 

procedure whiledo(condition, statement) ; 
begin if condition then 

begin statement; 

. whiledo( condition, statement) 

end 
end; 

whiledo(B,S); 

for “WHILE B DO S", I would not hesitate to write 

real procedure sqrt(arg); 
value arg; real arg; 

begin 

real procedure sqrtl(approx); 
value approx; real approx; 
if abs(arg - approx*approx) < epsilon 

then approx 

else sqrtl((approx + arg/approx)/2); 
sqrtl(arg/2); 

end; 

knowing, if necessary, that it could be compiled as an iteration rather than 

as a stack-pushing recursion. Of course, I would prefer not to have to write 

the "value" declarations, and might prefer some other notation, such as LISP 
notation, but the essential idea is the same. 

It is even possible to use procedure calls to implement conditional 
expressions, though this has heretofore been largely a curiosity for students 

of lambda calculus. [Chu41] Similarly, many assignment statements can be 
modelled and even implemented through the use of procedure calls. I have 

written two LISP compilers which use procedure calls to implement all 

assignments and iterations within the compiler. [Ste77a] I have used these 
compilers to compile themselves, and there seems to have been no demonstrable 

sacrifice of speed due to the use of procedure calls. Moreover, the code, 

totalling some seventy pages of source text, has been extremely easy to modify 
and maintain. 

The important point is that for each important programming concept 

which we have found useful -- modularity, iteration, assignment, conditionals



Guy L. Steele Jr. 16 Debunking the “Expensive ..." Myth 

-- there may exist more than one programming language construct which can 

embody that concept in a reasonably natural manner. Furthermore, it sometimes 
requires more than one construct to properly embody a given concept. For 
example, WHILE-DO would be utterly useless in expressing iteration if some 

form of assignment statement (or other side effect) were not also used! 

In understanding (a piece of) a program it is necessary to determine 

not only what construct is being used, but the concept it is intended to 

express. While we may prefer to think of a procedure call as meaning “go do 

this other module and then come back", this is only one possible 
interpretation. We must realize that there are situations where coming back 

doesn't matter (i.e. the tail-recursive cases), and these situations may be 

exploited. Just as a concept such as modularity may be expressed by diverse 
constructs, so may a language construct be interpreted in various ways, some 
of which may lead to superior compilation techniques. {Note Various 

Optimizations} One example of this is the tail-recursive procedure call; 
another is the logical expression occurring in the predicate of a conditional, 

which does not actually have to produce a Boolean value when compiled (this is 
called "anchor pointing" in [Al1172]). 

It is not unreasonable to want to be able to infer the intent of a 
piece of code from the particular construct used to express it. If only GOTO 

is used to express all control structure, it is hard to identify the 

conceptually important notions of conditional, iteration, and escape occurring 

in the program. It is important that alternative modes of expression exist; 

but the mere banishing of one abused alternative is unlikely of itself to 

cause correct usage of the others. Instead, a language should be so designed 

that one is encouraged to use a construct if, and only if, it is appropriate; 

it most also provide enough constructs to cover all reasonable programming 

concepts. Otherwise, programmers will merely misuse the constructs they are 

given (and most programmers are very good at this!). The structure of a 
program is dictated largely by the structure of the problem. If the problem 
solution is best expressed as a finite-state automaton, for example, then no 

amount of structured camouflage will help that fact. 

This is the essential frustration we have experienced with GOTO. We 
discovered that GOTO was often being used even in situations where more 
appropriate and expressive constructs were available, and that it was being 

used for all sorts of purposes we hadn't anticipated, and so we sought to 
eliminate unwanted concepts and programming styles by banning a construct. 
This is as fruitless as eliminating iteration by banning DO-loops would be 
(people would just use GOTO or procedure calls), or eliminating recursion by 
banning procedure calls (people would, and do, simulate it by using an array 
as a stack). We need to get a better grasp on organizational concepts and 

their relationship to the individual constructs which make up our languages. 
Mian 

Conclusions 

Procedure calls are demonstrably not inherently as inefficient as 

computing folklore would lead us to believe. There are implementations of 
higher-level programming languages in which procedure calls are almost as 
cheap as GOTO statements. 

Not all procedure calls need push a return address. "“Tail-recursive" 
procedure calls (those occurring at the end of a procedure) can be compiled 

almost as if they were simple GOTO statements. In fact, procedure calls can 

uniformly be treated as GOTO statements which pass parameters, with return 

addresses being pushed at a conceptually different point (the commencement of 

argument evaluation). Such a technique reduces the amount of stack space



Guy L. Steele Jr. 17 Debunking the “Expensive ...*% Myth 

needed, provided lexical scoping is used (as in ALGOL) or a subset of lexical 
scoping (as is largely true of FORTRAN and COBOL). Even languages with 
dynamic scoping rules, such as APL and some LISP dialects, can use this 
technique in situations where dynamic references are not involved. 

Procedure calls permit an extraordinarily powerful style of 

programming which, even though it is completely "structured", includes most 

rat's nests of GOTO statements as a subset. This style merely involves 
writing a procedure call where one would ordinarily write a GOTO at the end of 
a procedure. (The technique will not reproduce the "escape expression" effect 
of writing a GOTO from inside a loop to outside the loop, however.) This 

style is sufficiently powerful to represent any flowchart without introducing 

flag variables or GOTO statements. Furthermore, this style of programming is 

a natural way to write certain kinds of commonly occurring programs. The use 

of this style does not depend on procedure calls being cheap or being compiled 
as tail-recursive branches, though if they are so compiled running time is 

reduced and less stack is consumed, which are desirable characteristics apart 
from the issue of style. 

We might wonder why such rat's nests are not written using procedure 

calls in practice, when they are certainly possible and violate no rules of 

"structured" programming. The answer is probably that GOTO statements, being 

"cheap", are used freely enough to produce rat's nests, while procedure calls, 

being "expensive", are used sparingly. We therefore come to the paradoxical 

conclusion that improving the implementation of procedure calls is a mixed 
blessing; we can improve our programs both in time and space, but we may 

bring on the same problems we had with GOTO by encouraging the use of 

procedure calls in stylistically diverse ways. We could simply ignore the 
whole thing, and go on letting procedure calls be expensive, in order to 

discourage their use; but this would not be intellectually honest. It is 

appropriate thaf we should have a healthy respect for procedure calls, and use 
them sparingly; but we should respect them because they are powerful, and not 
because they are “expensive". 

Acknowledgements 

Discussions with Mike Genesereth, Richard Stallman, and Richard Zippel 
illuminated many key points. Johan DeKleer, Jon Doyle, Tom Knight, and 

Richard Greenblatt also provided useful comments. Gerry Sussman was, as 
always, a great source of enlightenment. 

Carl Hewitt and Richard Stallman provided additional useful comments 
which led to the notes, which were added after final submission of the paper 
to ACM '77. 

 



Guy L. Steele Jr. 18 Debunking the "Expensive ..."% Myth 

Notes 

{Note Omniscient Implementors} 

One can argue quite strongly that there are so large a number 
(possibly infinite) of distinct useful control constructs that no one language 
could embody them all, and that therefore no language designer should be so 
conceited as to think he has encompassed all desirable constructions in a 

given language. By this reasoning, the omission of CASE, or Dahl loops, or 

event constructions, or whatever else is not a matter of neglect, but of 
necessity: you just can't foresee them all. 

(This brings out a serious flaw in the present theory of structured 
programming; by assuming that all programs can conveniently be written using 

only certain structures, it implicitly assumes that the problems to be solved 

by these programs have solutions which can be decomposed using these 

structures. We have never seen any justification advanced for this latter 

assumption; and indeed, there are many counterexamples, such as Yourdon's 

“finite-state machine" program mentioned in the text.) 

Until a much more advanced theory of programming is devised, designers 

of practical languages are well advised to leave in "ugly hooks" like GOTO, 

even if also discouraging their use except in emergencies. After all, using 

GOTO to simulate a peculiar control construct is probably preferable to a 

convoluted perversion of a more specialized construct. 

{Note Shuffle Arguments} 
To elucidate this point further, suppose that function arguments are 

passed on the stack (above the return address). Then, using a true stack 

discipline plus tail-recursion, if there are intermediate results or other 
data above that return address, the arguments to be passed must be moved down 

over this other data so that they will be in the correct position. This is 

particularly tricky because these positions are probably also where the 
arguments passed to you were stored. For example, suppose A calls B, and B 
calls C tail-recursively. Then A passes a return address R and arguments to 

B, and B wishes to pass R and different arguments to C. B must replace its 

arguments from A with the new ones for C. This entails some shuffling of the 
stack positions. 

The need to shuffle stack positions can be alleviated by passing 

arguments through registers, but this in turn usually requires shuffling of 

registers. Another way out is to use a more general form of stack, such as 

the so-called "spaghetti" [Bob73] or "macaroni" [Ste77c] stacks. Under such a 
scheme there is no need to shuffle old arguments away so that new arguments to 

be passed may occupy their positions; instead, each stack frame has a pointer 

to the next one, and two stack frames may both point to a third. Thus B would 

build a new stack frame F‘' pointing to the one G containing R; B's arguments 

remain in frame F, which also points to G. On calling C, F' is passed to C and 
F is discarded. 

{Note Step Variables} 
A far more important point not mentioned in the main text is that 

procedures not only can easily express the control structure of various kinds 
of loops, but also provide a natural way to express the stepping of the 
variables. Consider the loop for "iterative factorial" written in terms of a 
LISP LABEL construct: 

 



Guy L. Steele Jr. 19 Debunking the "Expensive ...* Myth 

((LABEL LOOP 
(LAMBDA (M A) 

(IF (= M 0) 
A 
(LOOP (- M1) (* MA))))) 

N 1) 

Compare this with the Algol version: 

begin 

A := 1; 

for M := N step -1 until 0 do 
A: A*® 4M; 

end 
As it happens, in the Algol version we could absorb the stepping of one of the 

variables into a for construction. However, the nature of the loop is that 
two variables are stepped, and the Algol version makes one of them very hard 

to see! The stepping must be expressed through a side-effect (assignment) to 

a variable global to the loop. The LISP version has identical semantics but 

proceeds without explicit side-effect, and expresses the stepping of the two 

variables in the same manner. (Cf. the PLASMA version given in [Hew77].) 
Procedure calls also allow one to express escapes and non-standard 

loops. Consider the table-search example from [Knu74], expressed here in 
terms of procedure calls: 

procedure search(a,b,n,key); 
begin 

procedure search loop(i); 

if in then 
begin 

n:=enel; 
a[n]:=key; 
b[n}:=1 

end 
else if aLiJ=key then 

b[ij:=b{i]+1 
else search loop(i+l); 

search loop(1) 

end 

  

The structure of the algorithm to be performed is a loop with two possible 

exit points. This is easily expressed by procedure calls, because we can 

specify for each branch of the if-then-else whether or not to take another 
cycle of the loop. (In fact, we can argue for this style on the basis of an 

important primitive principle: any notation should accentuate the unusual and 

make unobtrusive the usual. Now for a loop there are two cases when the body 
is done: take another cycle, or exit the loop. Now exiting the loop is the 

unusual case at run time, because we expect to iterate many times for each 

time a loop is exited; this leads us to design loop syntaxes which accentuate 

exit conditions. We may ponder, however, the fact that textually there will 

be one or more iteration points and one or more exit points. In the case of 

while-do, there is one of each. If we want to have while-do with multiple 
exits, then we should accentuate the looping action, and de-emphasize the 

exiting action. This occurs in the version of “search loop" given above. ) 

An additional advantage of the procedural mode of expression is that



Guy L. Steele Jr. 20 Debunking the "Expensive ..." Myth 

procedure entry points are ideal places to make assertions about the state of 

the process. The procedure header lists the variable quantities of interest; 

in the case of a loop expressed in terms of procedure calls (as above), the 
procediure header mentions explicitly all the variables to be stepped by each 
cycle of the loop. 

{Note Various Optimizations} 

Other research has attacked the "expense" of procedure calls from 

other directions; notable successes have been achieved with the techniques of 
procedure integration ([{A1172] [Atk76] [Sch77] and many others) and recursion 
removal ({Str71] [Aus76] [Dar76]). Much of this effort has been apparently 
motivated by the notion that procedure calls are expensive and should be done 

away with in some way. Complementing this is the idea that procedure calls 

are indeed valuable for their expressive power, and they should be retained 

and compensated for rather than banned entirely. 
We take the slightly different point of view that procedure calls are 

valuable, but that they do not map one-to-one to the various low-level 

primitives made available on existing hardware. A given procedure call may, 

depending on context, be mapped to any one of a number of low-level 

implementations, some of which are markedly more efficient than others. Up to 
now, most "optimizing" compilers have had knowledge about the many equivalent 

ways of compiling arithmetic or array-indexing expressions and how to choose 

the most efficient, but have had only a single, most general method of 

compiling procedure calls per se. 

What we have tried to stress in the first half of this paper is that 

this most general method is often much more general than necessary, even for a 

universal method. We have described another method which is also semantically 

universal, but which is more efficient and just as easy for a compiler to deal 

with. We believe that the psychological effect of this new method will be the 

most important, for it does away with the automatic reflexive thought that 

"procedure calls always return". (Imagine, for example, that we had always 

thought of GOTO as branching forward and never backward, under the influence 

of old paper-tape machines. Until we had dispelled this notion, could we ever 

have seen the abstract pattern of while-do?) Once we realize that procedure 
calls are semantically a superset of GOTO, we are freed to exploit a far more 
expressive style. It then becomes our task to analyze this style, and to 
isolate from it important special cases, just as from the maze of GOTO 
patterns we have isolated such important structures as while-do. 

Special techniques for compiling these special cases are not mere 

tricks; they reflect the possibility that the programmer had just such a 
special case in mind when he wrote the code, but was forced (by the 

“graininess" of the language) to use a more general piece of syntax to express 

it than he might have liked. While the program as a whole will reflect the 
originally intended concept, it is unlikely that the syntactic decomposition 
of the program will correspond in any precise way to the semantic 

decomposition of the concept. The compiler writer must realize that what the 

programmer writes is not always precisely what he wants, but only the closest 

expression thereof permitted by the language. ("I know you believe you 

understand what you think I said. But I am not sure you realize that what you 
heard is not what I meant." -- Anon.) The compiler writer must therefore 
avoid a monistic interpretation of the language definition, and try to 
determine from a given program the best of all possible intentions and produce 
code accordingly.



Guy L. Steele Jr. 21 Debunking the "Expensive ..." Myth 

References 

[Al1172] Allen, Frances E., and Cocke, John. "A Catalogue of Optimizing 

Transformations." In Rustin, Randall (ed.), Design and Optimization of 
Compilers. Proc. Courant Comp. Sci. Symp. 5. Prentice-Hall (Englewood 

Cliffs, N.J., 1972). 
[ANS76] American National Standards Institute. Draft proposed ANS FORTRAN 

(BSR_X3.9). Reprinted as SIGPLAN Notices 11, 3 (March 1976). 
{Atk76] Atkinson, Russell R. Optimization Techniques for a Structured 

Programming Language. S.M. Thesis. MIT (Cambridge, 1976). 

{Aus76] Auslander, M.A., and Strong, H.R. Systematic Recursion Removal. 

Report RC 5841 (#25283) IBM T.J. Watson Research Center (Yorktown Heights, 

New York, February 1976). 
[Bob73] Bobrow, Daniel G. and Wegbreit, Ben. "A Model and Stack 

Implementation of Multiple Environments." Comm. ACM 16, 10 (October 1973) 
pp. 591-603. 

[Boe66] Boehm, Corrado, and Jacopini, Guiseppe. "Flow Diagrams, Turing 

Machines and Languages with Only Two Formation Rules." Comm. ACM 9, 5 

(May 1966), 366-371. 
(Chu41] Church, Alonzo. The Calculi of Lambda Conversion. Annals of 

Mathematics Studies Number 6. Princeton University Press (Princeton, 

1941). Reprinted by Klaus Reprint Corp. (New York, 1965). 
(Dar76] Darlington, J., and Burstall, R.M. "A System which Automatically 

Improves Programs." Acta Informatica 6 (1976), 41-60. 

[DEC69] Digital Equipment Corporation. PDP-10 COBOL Language Programmer's 

Reference Manual. DEC-10-KC1A-D (Maynard, Mass., 1969). 
([Dij76] Dijkstra, Edsger W. A Discipline of Programming. Prentice-Hall 

(Englewood Cliffs, N.J., 1976). 
(Fat73] Fateman, Richard J. "Reply to an Editorial." SIGSAM Bulletin 25 

(March 1973), 9-11. 
(Hew77] Hewitt, Carl. "Viewing Control Structures as Patterns of Passing 

Messages." AI Journal 8, 3 (June 1977), 323-364. 

{Hop73] Hopper, Captain Grace Murray. In "An Interview with Captain Grace 

Murray Hopper, USNR". Computing (October 10, 1973). Reprinted in SIGPLAN 
Notices 9, 1 (January 1974), 3-6. 

{IBM68] International Business Machines. IBM System/360 Operating System 
COBOL Language. Form C28-6516-8. Ninth Edition (November 1968). 

CIBM70a] International Business Machines. IBM System/360 Operating System 
American National Standard COBOL. Form GC28-6396-2. Third edition (June 
1970). 

[IBM70b] International Business Machines. IBM System/360 Operating System 
PL/I (F) Language Reference Manual. Form GC28-8201-3. Revised (November 
1970). 

[Jen72] Jenks, Richard D., and Griesmer, James H. "Editor's Comment." SIGSAM 

Bulletin No. 24 (October 1972), 2-3. 

[Knu74] Knuth, Donald E. "Structured Programming with GO TO statements." 
Computing Surveys 6, 4 (December 1974). 

[McC60] McCarthy, John. "Recursive functions of symbolic expressions and 

their computation by machine - I." Comm. ACM 3, 4 (April 1960), 184-195. 
[McK65] McKeeman, W.M. "“Peephole optimization." Comm. ACM 8, 7 (July 1965), 

443-444, 
[Mos70] Moses, Joel. The Function of FUNCTION in LISP. AI Memo 199, MIT AI 

Lab (Cambridge, June 1970). 

 



Guy L. Steele Jr. 22 Debunking the “Expensive ..." Myth 

{[Nei76] Neighbors, Michael A. "Assuring Software Reliability." Computer 
Decisions 8, 12 (December 1976), 44-46. 

{[Pre75] Presser, Leon. "Structured Languages.” Proc. National Computer 
Conference 1975. Reprinted in SIGPLAN Notices 10, 7 (July 1975), 22-24. 

[Sch77] Scheifler, Robert W. "An Analysis of Inline Substitution for a 

Structured Programming Language." Comm. ACM 20, 9 (September 1977), 647- 

654. 
{Ste76a] Steele, Guy Lewis Jr., and Sussman, Gerald Jay. LAMBDA: The 

Ultimate Imperative. AI Memo 353. MIT AI Lab (Cambridge, March 1976). 
[Ste76b] Steele, Guy Lewis Jr. LAMBDA: The Ultimate Declarative. AI Memo 

379. MIT AI Lab (Cambridge, November 1976). 
{[Ste77a] Steele, Guy Lewis Jr. Compiler Optimization Based on Viewing LAMBDA 

as RENAME plus GOTO. S.M. Thesis. MIT AI Lab (Cambridge, May 1977). 
[Ste77b] Steele, Guy Lewis Jr. "Fast Arithmetic in MacLISP." Proc. 1977 

MACSYMA Users' Conference. NASA Sci. and Tech. Info. Office 
(Washington, D.C., July 1977), 215-224. 

[Ste77c] Steele, Guy Lewis Jr. "Macaroni is Better than Spaghetti." Proc. 

AI and Programming Languages Conf. (Rochester, New York, August 1977). 
SIGPLAN Notices 12, 8, SIGART Newsletter 64 (August 1977), 60-66. 

[Str71] Strong, H.R., Jr. “Translating Recursion Equations into Flow Charts." 
Journal of Computer and System Sciences 5, 3 (June 1971), 254-285. 

[Sus75] Sussman, Gerald Jay, and Steele, Guy Lewis Jr. SCHEME: An 

Interpreter for Extended Lambda Calculus. AI Memo 349. MIT AI Lab 
(Cambridge, December 1975). 

[Syk77] Sykes, Roy A., Jr. "Whizbang of the Month: Branching and Iteration." 

Scientific Time Sharing Corporation News 2, 10 (Bethesda, Maryland, 

January-February 1977), 5-6. 
{Weg71] Wegbreit, Ben. "The ECL Programming System." Proc. AFIPS 1971 FJCC, 

Vol. 39. AFIPS Press, Montvale, N.J. pp. 253-262. 
(Weg74] Wegbreit, Ben, et al. ECL Programmer's Manual. Technical Report 23- 

74. Center for Research in Computing Technology, Harvard U. (Cambridge, 
December 1974). 

([Wul71] Wulf, W.A., Russell, D.B., and Habermann, A.N. "BLISS: A Language 

for Systems Programming." Comm. ACM 14, 12 (December 1971), 780-790. 
[Wul73] Wulf, William A., and Shaw, Mary. "Global Variable Considered 

Harmful." SIGPLAN Notices 8, 2 (February 1973), 28-34. 

(Wul75] Wulf, William A., et al. The Design of an Optimizing Compiler. 
American Elsevier (New York, 1975). 

[You75] Yourdon, Edward. Techniques of Program Structure and Design. 
Prentice-Hall (Englewood Cliffs, N.J., 1975). 

 


