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Introduction 

Modularity 

The entities constructed by programming are extremely complex. 

Accurate construction of large programs would be impossible without 

specific technigues for controlling this complexity. Most such techniques 

are based on finding ways to decompose a problem into almost independently 

solvable subproblems, allowing a programmer to concentrate on _ one 

subproblem at a time, ignoring the others. When the subproblems are 

solved, the programmer must be able to combine the solutions with a minimum 

of unanticipated interactions. To the extent that a decomposition succeeds 

in breaking a programming problem into manageable pieces, we say that the 

resulting program is modular; each part of the solution is called a 

module. Well-designed programming languages provide features which support 

the construction of modular programs. 

One decomposition strategy is the packaging of common patterns of 

the use of a language. For example, in Algol a for loop captures a common 

pattern of if and goto statements. Packages of common patterns are not 

necessarily merely abbreviations to save’ typing. While ae simple 

abbreviation has little abstraction power because a user must know what the 

abbreviation expands into, a good package encapsulates a higher level 

concept which has meaning independent of its implementation. Once a 

package is constructed the programmer can use it directly, without regard 

for the details it contains, precisely because it corresponds to a single 
notion he uses in dealing with the programming problem. 

A package is most useful if its behavior is independent of the 

context of its use, thus reducing possible interference with other 

packages. such a package is called referentially transparent. 

Intuitively, referential transparency requires that the meanings of parts 

of a program be apparent and not change, so that such meanings can be 

reliably depended upon. In particular, names internal to one module should 

not affect or be affected by other modules — the external behavior of a 

module should be independent of the choice of names for its local 

identifiers. 

To make a modular program, it is often necessary to think of a 

computational process as having state. In such cases, if the state can be 

naturally divided into independent parts, an important decomposition may be 

the division of the program into pieces which separately deal with the 

parts of the state. 

We will discuss various stylistic techniques for achieving 

modularity. One would expect these techniques to complement each other. 

We will instead discover that they can come into conflict. Pushing one to 

an extreme in a: language can seriously compromise others. 
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LISP-like Languages 
  

Of the hundreds or thousands of computer languages which have been 

invented, there is one particular family of languages whose common ancestor 

was the original LISP, developed by McCarthy and others in the late 1950's. 

[LISP History] These languages are generally characterized by a simple, 

fully parenthesized ("Cambridge Polish") syntax; the ability to manipulate 

general, linked-list data structures; a standard representation for 

programs of the language in terms of these structures; and an interactive 

programming system based on an interpreter for the standard representation. 

Examples of such languages are LISP 1.5 [LISP 1.5M], MacLISP [Moon], 

InterLISP [Teitelman], CONNIVER [McDermott and Sussman], QA4 [Rulifson], 

PLASMA [Smith and Hewitt] [Hewitt and Smith], and SCHEME [SCHEME] [Revised 

Report]. We will call this family the LISP-like languages. 

The various members of this family differ in some interesting and 

often subtle ways. These differences have a profound impact on the styles 

of programming each may encourage or support. We will explore some of 

these differences by examining a series of small ("toy") evaluators which 

exhibit these differences without the clutter of "extra features" provided 

in real, production versions of LISP-like language systems. 

The series of evaluators to be considered partially constitute a 

reconstruction of what we believe to be the paths along which the family 

evolved. These paths can be explained after the fact by viewing the 

historical changes to the language as being guided by the requirements of 

various aspects of modularity. . 

  

Structure of the Paper 

Our discussion is divided into several parts, which form a linear 

progression. In addition, there are numerous large digressions which 

explore interesting side developments. These digressions are placed at the 

end as notes, cross-referenced to and from the text. 

We exhibit a large number of LISP interpreters whose code differs 

from one to another in small ways (though their behavior differs greatly! ). 

In order to avoid writing identical pieces of code over and over, each 

figure exhibits only routines which differ, and also contains cross- 

references to preceding figures from which missing routines for that figure 

are to be drawn. 

Part Zero introduces the restricted dialect of the LISP language in 

which most of our examples are written. It also discusses the basic 

structure of an interpreter, and exhibits a meta-circular interpreter for 

the language. 

Part One introduces procedural data as an abstraction mechanism, 
and considers its impact on variable scoping disciplines in the language. 

We are forced through a series of such disciplines as unexpected 

interactions are uncovered and fixed. Interpreters are exhibited for 

dynamic scoping and lexical scoping. 

Part Two considers the problems associated with the decomposition
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of state. Side effects are introduced as a mechanism for effecting such 

decompositions. We find that the notion of side effect is inextricably 

wound up with the notion of identity. Dynamic scoping is retrospectively 

viewed as a restricted kind of side effect. 

With this we summarize and conclude with many tantalizing questions 

yet unanswered. 

In Part Three (in a Separate paper) we will find that the 

introduction of side effects forces the issue of the order of evaluation of 

expressions. We will contrast call-by-name and its variants with call-by- 

value, and discuss how these control disciplines arise as a consequence of 

different models of. packaging. In particular, call-by-name' arises 

naturally from the syntactic nature of the Algol 60 copy rule. As before, 

many little interpreters for these disciplines will be exhibited. . 

In Part Four we will be led to generalize the notion of a syntactic 

package. We will discuss meta-procedures, which deal with’ the 

representations of procedures. The distinction between a procedure and its 

representation will be more carefully considered. Macro processors, 

algebraic simplifiers, and compilers will be considered as meta-procedures. = 

Various interpreters, compilers, and simplifiers will be exhibited.
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Part Zero 

LISP and Interpreters 
  

Recursion Equations 

Contrary to popular belief, LISP was not originally derived from 

Church's A-calculus [Church] [LISP History]. The earliest LISP did not 

have a well-defined notion of free variables or procedural objects. Early 

LISP programs were similar to recursion equations, defining functions on 

symbolic expressions ("S-expressions"). They differed from the equations 

of pure recursive function theory [Kleene] by introducing the conditional 

expression construction (often called the "McCarthy conditional"), to avoid 

"nattern-directed invocation". That is, in recursive function theory one 

would define the factorial function by the following two equations: 

factorial(0) = 1 

factorial(successor(x)) = successor(x) * factorial(x) 

In early LISP, however, one would have written: 

factorial[x] = [x=0 > 1; T- x*factorial[x-1]] 

where "[a + b; T ~ c]" essentially means "if a then b else c". The 

recursive function theory version depends on selecting which of two 

equations to use by matching the argument to the left-hand sides (such a 

discipline is actually used in the PROLOG language [Warren]); the early 

LISP version represents this decision as a conditional expression. 

The theory of recursion equations deals with functions over the 

natural numbers. In LISP, however, one is interested in being able to 

manipulate algebraic expressions, programs, and other symbolic expressions 

as data structures. While such expressions can be encoded as numbers 

(using the technique of "arithmetization" developed by Kurt Godel), such an 

encoding is not very convenient. Instead, a new kind of data called "S- . 

expressions” (for "symbolic expressions") is introduced specifically to 

provide convenient encodings. S-expressions can be defined by a set of 

formal inductive axioms analogous to the Peano postulates used to define 

natural numbers. Here we will give only an informal and incomplete 

definition of S-expressions; for a more complete description, see {Note S- 

expression Postulates and Notation}. 

For our purposes we will need only the special cases of S- 

expressions called atoms and lists. An atom is an "indivisible" data. 

object, which we denote by writing a string of letters and digits; if only 

digits are used, then the atom is considered to be a number. Many special 

characters such as "-" and "+" are considered to be letters; we will see 

below that it is not necessary to specially reserve them for use as 

operator symbols. A list is a (possibly empty) sequence of S-expressions, 

notated by writing the S-expressions in order, between a set of parentheses



Steele and Sussman 5 The Art of the Interpreter 

and separated by spaces. A list of the atoms "FOO", "43", and "BAR" would 

be written "(FOO 43 BAR)". Notice that the definition of a list is 

recurSive. For example, 

(DEFINE (SECOND X) (CAR (CDR X))) 

is a list of three things: the atomic symbol DEFINE, a list of the two 

atomic symbols SEconD and x, and another list of two other things. 

We can use S-expressions to represent algebraic expressions by 

using "Cambridge Polish" notation, essentially a parenthesized version of 

prefix Polish notation. Numeric constants are encoded as numeric atoms; 

variables are encoded as non-numeric atoms (which henceforth we will call 

atomic symbols); and procedure invocations are encoded as lists, where the 

first element of the list represents the procedure and the rest represent 

the arguments. For example, the algebraic expression “axb+c*d" can be 

represented as "(+ (* ab) (* cd))". Notice that LISP does not need the 

usual precedence rules concerning whether multiplication or addition is 

performed first; the parentheses explicitly define the order. Also, all 

procedure invocations have a uniform syntax, no matter how many arguments 

are involved. Infix, superscript, and subscript notations are not used; 

thus the expression "Jy (xe) would be written "(J p (+ (* x 2) 1))". 

To encode a conditional expression 

CP, > €)3 Pp, > €)3 ++. 3 Py > Oy] 

(which means to evaluate the predicates P, in order until a true one is 

found, at which point the value of e, is taken to be'the value of the 

conditional) we write the S-expression 

(COND (p, e,) (py ey) --. (p, @,)) 
n 

We can now encode sets of LISP recursion equations as_ S- 

expressions. For the equation 

factorial[x] = [x=0 > 1; T ~ x*factorial[x-1]] 

we write the S-expression 

(DEFINE (FACTORIAL X) 

(COND ((= X 0) 1) 

(T (* X (FACTORIAL (- X 1)))))) 

(We could also have written 

(DEFINE (FACTORIAL X) (COND ({= 

X 0) 1) (T (® X (FACTORIAL (- X 

1)))))) 

but we conventionally lay out S-expressions so that they are easy to read.)
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We now have a complete encoding for algebraic expressions and LISP 

recursion equations in the form of S-expressions. Suppose that we now want 

to write a LISP program which will take such an S-expression and perform 

some useful operation on it, such as determining the value of an algebraic 

expression. We need some procedures for distinguishing, decomposing, and 

constructing S-expressions. . 

The predicate atom, when applied to an S-expression, produces true 

when given an atom and false otherwise. The empty list is considered to be 

an atom. The predicate nutt is true of only the empty list; its argument 

need not be a list, but may be any S-expression. The predicate NumBERP iS 

true of numbers and false of atomic symbols and lists. The predicate cq, 

when applied to two atomic symbols, is true if the two atomic symbols are 

identical. It is false when applied to an atomic symbol and any other S- 

expression. (We have not defined EQ on two lists yet; this will not 

become important, or even meaningful, until we discuss side effects.) 

The decomposition operators for lists are traditionally called car 

and cor for historical reasons. [LISP History] car extracts the first 

element of a list, while cork produces a list containing all elements but 

the first. Because compositions of car and cor are commonly used in LISP, 

an abbreviation is provided: all the C's and R's in the middle can be 

squeezed out. For example, "(coR (CDR (CAR (COR X))))" can be written as 

~"(CDDADR xX)". 

The construction operator cons, given an S-expression and a list, 

produces a new list whose car is the S-expression and whose cdr is the 

list. The operator LIsSt can take any number of arguments (a special 

feature), and produces a list of its arguments. 

We can now write some interesting programs in LISP to deal with S- 

expressions. For example, we can write a predicate equaL, which determines 

whether two S-expressions have the same CAR-coR structure: 

(DEFINE (EQUAL X Y) 

(COND ((NUMBERP X) 

(COND ({NUMBERP Y) (= X Y)) 

(TNIL))) | 
((ATOM X) (EQ X Y)) 

((ATOM Y) NIL) 

((EQUAL (CAR X) (CAR Y)) 

(EQUAL (COR X) (CDR Y))))) 

Here we have used the standard names T and Nit to represent true and false. 

(Traditionally Nit is also considered to be the empty list, but we will 

avoid this here, writing "()" for the empty list.) 

Because LISP programs are represented as LISP data structures (S- 

expressions), there is a difficulty with representing constants. For 

example, suppose we want to determine whether or not the value of the 

variable x is the atomic symbol "Foo". We might try writing: 

(EQ X FOO)
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This doesn't work. The occurrence of "foo" does not refer to the atomic 

symbol Foo as a constant; it is treated as a variable, just as "Xx" is. 

The essential problem is that we want to be able to write any S- 

expression as a constant in a program, but some S-expressions must be used 

to represent other things, such as variables and procedure invocations. To 

solve this problem we invent a new notation: (QUOTE x) in a program 

represents the constant S-expression x. {Note quote Mapping} Thus we can 

write our test as "(EQ x (QUOTE FOO))". Similarly, 

(EQUAL X (LIST Y Z)) 

constructs a list from the values of Y and z, and compares the result to 

the value of x, while 

(EQUAL X (QUOTE (LIST ¥ Z))) 

compares the value of x to the constant S-expression "(LIST y Zz)". Because 

the Quote construction is used so frequently in LISP, we use an abbreviated 

notation: "'rFoo" is equivalent to "(quote Foo)". This is only a notational 

convenience; the two notations denote the same S-expression. (S- 

expressions are not character strings, but data objects with a certain 

structure. We use character strings to notate S-expressions on paper, but 

we can use other notations as well, such as little boxes and arrews. We | 

can and do allow several different character strings to denote the same S- 

expression. ) | : 

An Interpreter for LISP Recursion Equations 

We now have enough machinery to begin our examination of the 

genetic history of LISP. We first present a complete interpreter for LISP 

recursion equations. The language interpreted is a dialect of LISP which 

allows no free variables except for names of primitive or defined 

procedures, and no definitions of procedures within other procedures. 

The driver loop reads in definitions of procedures of the form: 

(DEFINE (F ABC ...) <expression in ABC... andf GH ...>) 

and saves’. them. It can also read in requests to apply some defined 

procedure to some arguments (or, more’ generally, to evaluate any 

expression), in which case it prints the resulting value. An expression 

may consist of variable references, constants (numbers and quoted s- 

expressions), procedure calls, and conditional expressions (conn). The 

defined procedures may refer to each other and to initially supplied 

primitive procedures (such as CAR, CONS, etc.). Definitions may contain 

"forward references", as long as all necessary definitions are present at 

the time of a request for a computation. The interpreter itself is 

presented here as a set of such definitions, and so is meta-circular. 

The language is intended to be evaluated in applicative order; 
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that is, all arguments to a procedure are fully evaluated before an attempt 

is made to apply the procedure to the arguments. (It is necessary to state 

this explicitly here, as it is not inherent in the form of the meta- 

“circular definition. See [Reynolds] for an explication of this problem. ) 

The driver loop (see Figure 1) is conceptually started by a request 

to invoke oORIVER with no arguments. Its task is to first print the message 

"LITHP ITH LITHTENING" (a tradition of sorts) and then invoke ORIVER-LOOP. 

The expression. <THE-PRIMITIVE-PROCEDURES> iS intended to represent a constant 

list structure, containing definitions of primitive procedures, to be 

supplied to ORIVER-LOOP. 

  

(DEFINE (DRIVER) 

(DRIVER-LOOP <THE-PRIMITIVE-PROCEDURES> (PRINT ‘|LITHP ITH LITHTENING|))) 

(DEFINE (DRIVER-LOOP PROCEDURES HUNOZ) 

(DRIVER-LOOP-1 PROCEDURES (READ)))— 

(DEFINE (DRIVER-LOOP-1 PROCEDURES FORM) 

(COND ((ATOM FORM) 

(DRIVER-LOOP PROCEDURES (PRINT (EVAL FORM '() PROCEDURES)))) 

((EQ (CAR FORM) 'DEFINE) 

(DRIVER-LOOP (BIND (LIST (CAADR FORM)) 

(LIST (LIST (CDADR FORM) (CADDR FORM))) 

PROCEDURES) 

(PRINT (CAADR FORM)))) 

(T (DRIVER-LOOP PROCEDURES (PRINT (EVAL FORM '() PROCEDURES)))))) 

Figure 1] 

Top Level Driver Loop for a Recursion Equations Interpreter     
  

DRIVER-LOOP reads an S-expression from the input stream and passes 

it, along with the current procedure definitions, to oDRIVER-LOoOP-1. This 

procedure in turn determines whether the input S-expression is a 

definition. If it is, then it uses BIND (described below) to produce an. 

augmented set of procedure definitions, prints the name of the defined 

procedure, and calls oORIVER-LOoP to repeat the process. The augmented set of 

procedures is passed to oDRIVER-LooP, and so the variable procepures always 

contains all the accumulated definitions ever read. If the input S- 

expression is not a definition, then it is given to the evaluator eval, 

whose purpose is’ to determine the values of expressions. {Note Value 

Quibble} The set of currently defined procedures is also passed to EVAL. 

The process carried on by the driver loop is often called the "top 

level";. all user programs and requests are run "under" it. The growing 

set of procedure definitions is called the "top-level environment"; this 

environment changes in the course of the user interaction, and contains the 

State of the machine as perceived by the user. It is within this 

environment that user programs are executed.
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(DEFINE (EVAL EXP ENV PROCEDURES) 

(COND ((ATOM EXP) 

(COND ((EQ EXP 'NIL) 'NIL) 

((EQ EXP 'T) 'T) 

((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 

((EQ (CAR EXP) ‘QUOTE) 

(CADR EXP)) 

((EQ (CAR EXP) 'COND) 

(EVCOND (CDR EXP) ENV PROCEDURES) ) 

(T (APPLY (VALUE (CAR EXP) PROCEDURES) 

(EVLIS (CDR EXP) ENV PROCEDURES) 

PROCEDURES )))) 

(DEFINE (APPLY FUN ARGS PROCEDURES) 

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS)) 

(T (EVAL (CADR FUN) 

(BIND (CAR FUN) ARGS '()) 

PROCEDURES)))) 

(DEFINE (EVCOND CLAUSES ENV PROCEDURES) 

(COND ((NULL CLAUSES) (ERROR)) 

((EVAL (CAAR CLAUSES) ENV PROCEDURES) 

(EVAL (CADAR CLAUSES) ENV PROCEDURES )) 

(T (EVCOND (COR CLAUSES) ENV PROCEDURES )))) 

(DEFINE (EVLIS ARGLIST ENV PROCEDURES) 

(COND ({NULL ARGLIST) '()) 

(T (CONS (EVAL (CAR ARGLIST) ENV PROCEDURES) 

(EVLIS (CDR ARGLIST) ENV PROCEDURES))))) 

Figure 2 

Evaluator for a Recursion Equations Interpreter     
  

The evaluator proper (see Figure 2) is divided into two conceptual 

components: EVAL and APPLY. EVAL Classifies expressions and directs their 

evaluation. Simple expressions (such as constants and variables) can be 

evaluated directly. For the complex case of procedure’ invocations 

(technically called "“combinations"), eval looks up the procedure 

definition, recursively evaluates the arguments (using eEVLIS), and then 

calls APPLY. APPLY classifies procedures and directs their application. 

Simple procedures (primitive operators) are applied directly. For the 

complex case of user-defined procedures, aApPpLY uses BIND to build an 

environment, a kind of symbol table, associating the formal parameters from 

the procedure definition with the actual argument values provided by EVAL. 

The body of the procedure definition is then passed to EvAL, along with the 

environment just constructed, which is used to determine the values of
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variables occurring in the body. 

In more detail, EvAL iS a case analysis on the structure of the S- 

expression exp. If it is an atom, there are several subcases. The special 

atoms T and Nit are defined to evaluate to T and nit (this is strictly for 

convenience, because they are used as truth values). Similarly, for 

convenience numeric atoms evaluate to themselves. (These cases could be 

eliminated by requiring the user to write lots of quote forms: 'T, ‘NIL, 

'43, etc. This would have been quite inconvenient in early LISP, before 

the "'" notation had been introduced; one would have had to write (QUOTE 

43), etc.) Atomic symbols, however, encode variables; the value | 

associated with that symbol is extracted from the environment ENv using the 

function value (see below). . 

If the expression to be evaluated is not atomic, then it may be a 

quote form, a cond form, or a combination. For a Quote form, EVAL extracts 

the S-expression constant using caprR. Conditionals are handled by -evcono, 

which calls Eval on a predicate expression; if the predicate is true, 

EVCOND evaluates the corresponding result expression (by calling eva, of 

course); if the predicate is false, evconn calls itself to test the 

predicate of the next clause of the cond body. For combinations, the 

procedure is obtained, the arguments evaluated (using EVLIS), and APPLY 

called as described earlier. Notice that value is used to get the 

procedure definition from the set PRoceDURES; we can do this because, as an 

engineering trick, we arrange for ENV and PROCEDURES to have the same 

Structure, because they are both symbol tables. 

EVLIS is a simple recursive function which calls EvaAt on successive 

arguments in ARGLIST and produces a list of the values in order. 

APPLY distinguishes two kinds of procedures: primitive and user- 

defined. For now we avoid describing the precise implementation of 

primitive procedures by assuming the existence of a predicate primop which 

is true only of primitive procedures, and a function PRimMoP-APPLY which deals 

with the application of such primitive procedures. (See {Note Primitive 

Operators} for the details of a possible implementation of prRimMop and pPRIMOP- 

APPLY. ) We consider primitive procedures to be a kind of atomic S- 

expression other -than numbers and atomic symbols; we define no particular 

written notation for them here. However, primitive procedures are not to 

be confused with the atomic symbols used as their names. The result of 

(VALUE 'CAR PROCEDURES) is not the atomic symbol car, but rather some bizarre 

object which is meaningful only to PRIMOP-APPLY. 

User-defined procedures are represented here as lists. These lists 

are constructed by DRIVER-LooP-1. The car of the list is the list of formal 

parameters, and the cadr is the body of the definition.
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(DEFINE (BIND VARS ARGS ENV) 
(COND ((= (LENGTH VARS) (LENGTH ARGS)) 

(CONS (CONS VARS ARGS) ENV)) 
(T (ERROR)))) 

(DEFINE (VALUE NAME ENV) 

(VALUE) NAME (LOOKUP NAME ENV))) 

(DEFINE (VALUE NAME SLOT) 

(COND ((EQ SLOT '&UNBOUND) (ERROR)) 

(T (CAR SLOT)))) 

(DEFINE (LOOKUP NAME ENV) 

(COND ((NULL ENV) '&UNBOUND) 

(T (LOOKUP1 NAME (CAAR ENV) (CDAR ENV) ENV)))) 

(DEFINE (LOOKUP1 NAME VARS VALS ENV) 
(COND ((NULL VARS) (LOOKUP NAME (COR ENV))) 

((EQ NAME (CAR VARS)) VALS) 
(T (LOOKUP] NAME (COR VARS) (COR VALS) ENV)))) 

Figure 3 

Utility Routines for Maintaining Environments     
  

The interpreter uses several utility procedures for maintaining 

symbol tables (see Figure 3). <A symbol table is represented as a list of 

buckets; each bucket is a list whose car is a list of names and whose cdr 

is a list of corresponding values. {Note This ain't A-lists} If a variable 

name occurs in more than one bucket, the leftmost such bucket has priority; 

in this way new symbol definitions added to the front of the list can 

supersede old ones. 

BIND takes a list of names, a list of values, and a symbol table, 

and produces a new symbol table which is the old one augmented by an extra 

bucket containing the new set of associations. (It ‘also performs a.useful 

error check — LENGTH returns the length of a list.) 

VALUE iS essentially an interface to Lookup. We define it because 

later, in Part Three, we will want to use different versions of: VALUE] 

without changing the underlying algorithm in tooxup. The check for auUNBOUND 

catches incorrect references to undefined variables. . 

Lookup takes a name and a symbol table, and returns that portion of 

a bucket whose car is the associated value. (This definition will be more 

useful later than one in which the value itself is returned.) 

Note carefully the use of the variable  proceoures in the 

interpreter. When DRIVER-LOOP-1 calls EVAL it passes the current list of 

defined procedures (both primitive and user-defined). oriver-Loop-1 is the 

only routine which augments the value of procepures, and this value is only
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used in -evaAL, when it is passed to va.ue. However, all of the routines 

APPLY, EVCOND, and €vtiS have to know about procepures, and dutifully pass it 

along so that it may be eventually used by eval. The set of definitions 

must be passed along because there iS no provision for free variables or 

side effects; there is no way to have "memory" or "state" other than in 

passed variables. The absence of free variables effectively causes our 

language to be referentially transparent. However, we sense a disturbing 

lack of modularity in the use of procedures (and, to a lesser extent, in the 

use of ENV — look at evcono and evits). We will return to this point later. 

Our recursion equations language has no special iteration or 

looping constructs, such as the Algol for statement or the FORTRAN DO loop. 

All loops are constructed by arranging for recursive procedures to call 

themselves or each other. For example, evcond (see Figure 2) iterates over 

the clauses of a conp by calling itself on successive "tails" of the list 

of clauses. Now such recursive calls may strike the reader familiar with 

other languages (such as Algol, FORTRAN, PL/I, etc.) on an intuitive level 

as being rather inefficient for implementing real programs. Even granted 

that calls might be made fast, they would seem to consume space in the form 

of return addresses and other control information. Examination of the 

recursion equations evaluator will show, however, that this phenomenon does 

not have to occur. This is because no extra information is saved if there 

is nothing left to do on return from a recursive call. See [SCHEME] and 

[Debunking] for a more thorough discussion of this.
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Part One 

Variable Scoping Disciplines 

Procedures as Data 
  

The simple LISP described in Part Zero can be a pleasant medium for 

encoding rather complex algorithms, including those of symbolic 

mathematics. Often lists are used for representing such structures as the 

set of coefficients of a polynomial or coordinates of a space vector. Many 

problems require one to perform an operation on each element of a list and 

produce a new list of the results. For example, it may be useful to make a 

list of the squares of each of the elements in a vector. We would write 

this as follows: 

(DEFINE (SQUARELIST L) 

(COND ((NULL L) '()) 

(T (CONS (SQUARE (CAR L)) 

(SQUARELIST (CDR L)))))) 

We find ourselves writing this pattern over and over again: 

(DEFINE (fLIST L) 

(COND ((NULL L) '()) 

(T (CONS (fF (CAR L)) 
(FLIST (COR L)))))) 

where f is a function defined on the elements of our list. It would be 

nice to be able to define an entity of the programming language which would 

capture this abstract pattern. The "obvious" solution is to write the 

variable function as a functional variable which can be accepted as an 

argument: 

(DEFINE (MAPCAR F L) 

(COND ((NULL L) '()) 

(T (CONS (F (CAR L)) 

(MAPCAR F (CDR L)))))) 

(mMapcaR is the traditional name of this abstraction.) Using this we could 

Say: 

(MAPCAR SQUARE '(1 2 3)) 

Unfortunately, this will not work in our recursion equations interpreter. 

Why not? 

The essence of the problem is that our interpreter segregates 

procedures from other kinds of objects. We refer to F as a procedure but 

it was passed in as a variable. Procedures are only looked up in the
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PROCEDURES Symbol table, but variables are bound in env. Moreover, in the 

call to mapcaR, SQUARE is used aS a variable, which is looked up in env, but 

its definition is only available in PROCEDURES. 

Let's merge the two symbol tables... How could that hurt? 

  

(DEFINE (DRIVER-LOOP-1 ENV FORM) 

(COND ((ATOM FORM) 

(DRIVER-LOOP ENV (PRINT (EVAL FORM ENV)))) 

((EQ (CAR FORM) 'DEFINE) 

(DRIVER-LOOP (BIND (LIST (CAADR FORM)) 

(LIST (LIST '&PROCEDURE (CDADR FORM) (CADOR FORM))) 

ENV) 

(PRINT (CAADR FORM)))) 

(T (DRIVER-LOOP ENV (PRINT (EVAL FORM ENV)))))) 

For DRIVER-LOOP see Figure l. 

For €vAL see Figure 5. 

For BING see Figure 3. 

Figure 4 

Modified Driver Loop for Treating Procedures as Objects     
  

We will eliminate procepures, and use ENV to contain both procedures 

and other objects. The driver loop requires no particular changes (see 

Figure 4), except for eliminating the argument ‘() in the calls to EvAL. We 

will change the name PROCEDURES to ENV throughout as well, but of course that 

isn't logically necessary, because our language is referentially. 

transparent. (Snicker!) (Note evatquote} 

(We have introduced a funny object aproceoure which we use to flag 

procedural objects. In the previous interpreter it was impossible for the 

user to request application of an object which was not either a primitive 

operator or a procedure produced by a DEFINE form. Now that procedures 

mingle freely with other data objects, it is desirable to be able to 

distinguish them, e.g. for error checking in appty. We also have some 

deeper motivations having to do with avoiding the confusion of a procedure 

with its textual representation, but we do not want to deal with this issue 

yet.) 

To fix up the evaluator, we eliminate all occurrences of PROCEDURES. 

In EVAL, where the name of a procedure in a combination is looked up, we 

change it to perform the lookup in eNv. Finally, there is a problem in 

APPLY: if the call to eval to evaluate the body is simply 

(EVAL (CADDR FUN) 

(BIND (CADR FUN) ARGS '())) 

then the new ENV given to EVAL does not have the procedure definitions in 

it. Moreover, APPLY does not even have access to an environment which
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contains the procedure definitions (because its parameter PROCEDURES was 

deleted)! We can easily fix this. When apety is called from EvAL, ENV can 

be passed along (as proceouRES used to be), and the call to EVAL from APPLY 

can be changed to 

(EVAL (CADDR FUN) 

(BIND (CADR FUN) ARGS ENV)) 

In this way the environment passed to EVAL will contain the new variable 

bindings added to the old environment containing the procedure definitions. 

(See Figure 5.) This is indeed a good characteristic: if the name of a 

defined procedure is used as a local variable (procedural or otherwise), 

the new binding takes precedence locally, temporarily superseding the 

global definition.
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(DEFINE (EVAL EXP ENV) 

(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 

((EQ (CAR EXP) 'QUOTE) 

(CADR EXP)) 

((EQ (CAR EXP) 'COND) 

(EVCOND (CDR EXP) ENV)) 

(T (APPLY (VALUE (CAR EXP) ENV) 

(EVLIS (CDR EXP) ENV) 

ENV)))) 

(DEFINE (APPLY FUN ARGS ENV) 

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS)) 

((EQ (CAR FUN) '&PROCEDURE ) 

(EVAL (CADDR FUN) 

(BIND (CADR FUN) ARGS ENV))) 

(T (ERROR)))) 

(DEFINE (EVCOND CLAUSES ENV) 

(COND ((NULL CLAUSES) (ERROR)) 

((EVAL (CAAR CLAUSES) ENV) 

(EVAL (CADAR CLAUSES) ENV)) 

(T (EVCOND (COR CLAUSES) ENV)))) 

(DEFINE (EVLIS ARGLIST ENV) 

(COND ((NULL ARGLIST) '()) 

(T (CONS (EVAL (CAR ARGLIST) ENV) 

(EVLIS (CDR ARGLIST) ENV))))) 

For vaLUE and BIND see Figure 3. 

Figure 5 

Evaluator for Treating Procedures as Objects     
  

Another good thing about this version of the interpreter is that 

the gross non-modularity of the scattered occurrences of proceourREesS has 

disappeared. The problem has not been solved, of course, but we certainly 

feel relieved that the particular manifestation has been removed! 

By the way, we also eliminated the explicit tests for 1 and Nit in 

EVAL, assuming that we can simply put their initial values in the initial 
environment provided by oORIVER. 

An interesting property of this interpreter is that free variables 

now have been given a meaning, though we originally did not intend this. 

Indeed, in the original recursion equations interpreter, there were free 

variables in a sense: all procedural variables were free (but they could 

be used only in operator position in a combination). In our new
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interpreter, thanks to the merging of the procedural and variable 

environments, we may have not only bound procedure names, but also free 

variable names, for after all the two kinds of names are now one. 

This interpreter differs in only small details from the one in LISP 

1.5 [LISP 1.5M]. Both have dynamically scoped free variables (we will 

elaborate on this point later). We might note that the reference to VALUE 

in EVAL when computing the first argument for appLy can be replaced by a 

reference to eEvAL; this does the same thing if a variable appears in the 

operator position of a combination, and allows the additional . general 

ability to use any expression to compute the procedure. This difference in 

fact appears in the LISP 1.5 interpreter. There are other’ slight 

differences, such as the representation of primitive operators and the 

handling of procedures which are not primitive or user-defined. Aside from 

these, the greatest difference between our interpreter and LISP 1.5's is 

the use of lambda notation. This we will meet in the next section.
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Local Procedures 
  

We now have the ability to define and use the mapcaR procedure. 

After some more experience in programming, however, we find that, having 

abstracted the common pattern from our loops, that the remaining part (the 

functional argument) tends to be different for each invocation of MaAPCAR. 

Unfortunately, our language for all practical purposes requires that we use 

a name to refer to the functional arguments, because the only way we have 

to denote new procedures is to DEFINE names for them. We soon tire of 

thinking up new ‘unique names for trivial procedures: 

(DEFINE (FOOBAR-43 X) (* (+ X 4) 3)) 

.. (MAPCAR FOOBAR-43 L) 

We run the risk of name conflicts; also, it would be nice to be able to 

write the procedure definition at the single point of use. . 

More abstractly, given that procedures have become referenceable 

objects in the language, it would be nice to have a notation for them as 

objects, or rather a way to write an S-expression in code that would 

evaluate to a procedure. LISP [LISP 1M] adapted such a notation from the 

A-calculus of Alonzo Church [Church]: 

(LAMBDA <variables> <body>) 

Comparing this with the DEFINE notation, we see that it has the same parts: 

a keyword so that it can be recognized; a list of parameters; and a body. 

The only difference is the omission of an irrelevant name. It is just the 

right thing. 

Given this, we can simply write 

(MAPCAR (LAMBDA (xX) (* X X)) L) 

rather than having to define SQuARE aS a Separate procedure. An additional 

benefit is that this notation makes it very easy for a compiler to examine 

this code and produce an efficient iterative implementation, because all 

the relevant code is present locally (assuming the compiler knows about 

MAPCAR). | ) 
Installing this notation requires only a two-line change in EVAL 

(see Figure 6).
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(DEFINE (EVAL EXP ENV) 

(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 

((EQ (CAR EXP) 'QUOTE) 

(CADR EXP)) 

((EQ (CAR EXP) 'COND) 

(EVCOND (CDR EXP) ENV)) 

((EQ (CAR EXP) 'LAMBDA) 

(CONS '&PROCEDURE (COR EXP))) 

(T (APPLY (EVAL (CAR EXP) ENV) 

(EVLIS (CDR EXP) ENV) 

ENV)))) 

For vaALuE see Figure 3. 

For APPLY, EVCOND, and EVLIS see Figure 5. 

Figure 6 

Evaluator for LamMBDpA-notation (Dynamically Scoped)     
  

(The reader might have noticed that all Eval does for a LAMBDA- 

expression is replace the word LaAmMeoA with the word apProceoure, and that we 

could avoid that work by uniformly using LAMBDA instead of &PROCEDURE as the 

flag for a procedural object. Given then that EVAL on a LAMBDA-expression 

is an identity operation, we can eliminate the handling of LAMBDA in EVAL 

merely by requiring the user to write ‘(LAMBDA ...) instead of (LAMBDA ...). 

Although the implementors of most LISPs have in fact done just this ever 

since LISP 1, it is a very bad idea. EVAL iS supposed to process 

expressions and produce their values, and the fact that it might be 

implemented as an identity operation is no business of the user. The 

confusion between: a procedural object and an expression having that object 

as its value will lead to serious trouble. (Imagine confusing 15 with 

(+ 7 8), and trying to take the car of the former instead of the latter, or 

trying to add 3 to the latter instead of the former!) The quoted Lamsoda- 

expression engineering trick discourages the implementation of a 

referentially transparent LISP. In Part Four we will see the extreme 

difficulties for a LISP compiler (or other program-understander) caused by 

the blatant destruction of referential transparency. {Note quote Shafts 

the Compiler}) 

The ability to use free variables and local procedures gives us 

additional freedom to express interesting procedures. For example, we can 

define a procedure scaALt which multiplies a vector of arbitrary length by a 

scalar. If the vector is represented as a list of components, then we can 

use MAPCAR and a local procedure with a free variable:
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(DEFINE (SCALE S V) 

(MAPCAR (LAMBDA (X) (* X S)) 

v)) 

Everything would be just peachy keen, except for one small glitch. 

suppose that the programmer who wrote scaLe for some reason chose the name tL 

rather than s to represent the scatar: 

(DEFINE (SCALE L V) | 

(MAPCAR (LAMBDA (X) (* X L)) > 

V)) 

Although the version with s works, the version with t does not work. This 

happens because mapcaR also uses the name Lt for one of its arguments (that 

is, a "local" variable). The reference to L in the LamspA-expression in 

SCALE refers to the t bound in mapcaR and not to the one bound by Sscate. In 

general, free variable references in one procedure refer to the bindings of 

variables in other procedures higher up in the chain of calls. This 

discipline is called dynamic scoping of variables, because the connection 

between binding - and reference is established dynamically, changing as 

different procedures are executed. 

That the behavior of the SCALE program depends on the choice of 

names for its local variables is a violation of referential transparency. 

The modularity of the mapcar abstraction has been destroyed, because no one 

can use that abstraction without understanding the details of its 

implementation. This is the famous "“FUNARG problem" [Moses] [LISP 

History ]. . 

If we are to avoid such conflicts between different uses of the 

same name, we must arrange our language so that the choice of names locally 

Cannot have global repercussions. More. specifically, we must have the 

ability to bind a variable in such a way that it will have a truly local 

meaning (though in general we might not want all variables to be strictly 

local — we will consider later the possibility of having several types of 

variables).
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Lexical Scoping 
  

We now construct an interpreter in which all variables have 

strictly local usage. This discipline is called lexical scoping of 

variables, and has been used in many programming languages, including Algol 

60 [Naur]. The term "lexical" refers to the fact that all references to a 

local variable binding are textually apparent in the program. The term 

static binding is also used, indicating that the connection between binding 

and reference is unchanging at run time. 

The difficulty in scale is that the body of the taAmspaA-expression 

(* XL) is evaluated using the env which was available to evat (and so passed 

to apply) when it was working on the body of marcaR. But we want the (* x L) 

to be evaluated using the ENV which was available when the body of SCALE was 

being evaluated. somehow we must arrange for this environment to be 

available for evaluating (* XL). 

The correct environment was available at the time the  LAMBDA- 

expression wasS evaluated to produce a &proceoure-object. Why not just tack 

the environment at that point onto the end of the aproceourE-object so that 

it can be used when the procedure is applied? 

This is in fact the right thing to do. The object we want to give © 

to mapcaR must be not just the text describing the computation to be 

performed, but also the meanings of the free variables referenced in that 

text. Only the combination of the two can correctly specify the 

computation which reflects the complete meaning of the abstract function to 

be mapped. This is the first place where we find it crucial to distinguish 

the three ideas: (1) The program — the text describing a procedure, e.g. 

in the form of an S-expression; (2) The procedure which is executed'by the. 

computer; and (3) The mathematical function or other conceptual operation 

computed by the execution of the procedure. 

To install lexical scoping in our interpreter, we must change the. 

treatment of LAmBpA-expressions in EVAL to make the current environment ENV 

part of the aPprRoceDURE-object. We say that the procedure is closed in the 

current environment, and the &PROCEDURE-object is therefore called a closure 

of the procedure, or a closed procedure. We must also change app_y to bind 

the new variable-value associations onto the environment in the &PROCEODURE- 

object, rather than onto that passed by EvAL. When we have done this, we 

see that in fact the environment passed by eval is not used, so we can 

eliminate the parameter env from the definition of apply, and change the 

invocation of apepLty that occurs in EvaL. Thus, while the handling of LAmBDA- 

expressions has become more complicated, the handling of ENV has been 

correspondingly simplified. (See Figure 7.) 

Had we previously adopted the trick described in the preceding 

section, wherein the user was required to write ‘(LAMBDA ...) rather than 

(LAMBDA ...), it would have been more difficult to adjust the interpreter to 

accommodate lexical scoping — it would have involved a large change rather 

than a small tweak. (The change from dynamic scoping to lexical scoping 

  

  

‘does involve a gross change of programming style, and this is undoubtedly 

why, once dynamic scoping had historically become the standard discipline, 

the guotation problem was never cleared up. We will see later that dynamic
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scoping is a valuable technique for producing modularity, but we see no 

virtue at all in the confusion produced by quoted tamppA-expressions. While 

quoted LameoA-expressions do produce dynamic scoping, the support of dynamic 

scoping does not depend on the quotation of Lamapa-expressions. ) 

While lexical scoping solves our problems of referential 

transparency, we will see later that we must in turn pay a large price for 

it — but it is not a price of run-time efficiency (contrary to popular 

belief )! 

  

(DEFINE (EVAL EXP ENV) 

(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 

((EQ (CAR EXP) 'QUOTE) 

(CADR EXP)) 

((EQ (CAR EXP) 'LAMBDA) 

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV)) 

((EQ (CAR EXP) 'COND) 

(EVCOND (COR EXP) ENV)) 

(T (APPLY (EVAL (CAR EXP) ENV) 

(EVLIS (CDR EXP) ENV))))) 

(DEFINE (APPLY FUN ARGS) 

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS)) 

((EQ (CAR FUN) '&PROCEDURE ) 

(EVAL (CADDR FUN) 

(BIND (CADR FUN) ARGS (CADDDR FUN)))) 

(T (ERROR)))) 

For VALUE and BIND see Figure 3. 

For e€VvcoNnD and e€vtis see Figure 5. 

Figure 7 

Evaluator for Lexically Scoped Lamsova-notation     
  

Let's see what we have bought. One thing we can do is generalize 

MAPCAR. After yet. more programming experience we find that we write many 

MAPCAR-like procedures. For example, we might need a kind of mapcar where 

the function F always returns a list, and we want to produce not a list of 

the lists, but the concatenation of the lists. We might also want to take 

the sum or the product of all the numbers in a list, or the sum of the cars 

of all elements in a list. The general pattern is that we look at each _ 

element of a list, do something to it, and then somehow combine the results 

of all these elementwise operations. Another application might be to check 

for duplicates in a list; for each element we want to see whether another 

copy follows it in the list. We further generalize the pattern to look at 

successive trailing segments of the list; we can always take the car to 

4
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get a single element. 

We could simply add more procedural parameters to MAPCAR: 

(DEFINE (MAP F OP ID L) 

(COND ((NULL L) 10) 

| (T (OP (FL) 
(MAP F OP ID (COR L)))))) 

| Using this, we can make a copy of the list Lt: 

(MAP CAR CONS '() L) 

We can simulate (MAPCAR FL): 

(MAP (LAMBDA (XxX) (F (CAR X))) CONS '() L) 

Indeed, we can write: 

(QEF INE (MAPCAR F L) 

(MAP (LAMBDA (X) (F (CAR X))) CONS '() L)) 

We can sum the elements of L: 

(MAP CAR + 0 L) 

We can take the product of the elements of L: 

(MAP CAR * 11) 

We can count the pairs of duplicate elements of L: 

(MAP (LAMBDA (xX) X) 

(LAMBDA (Y N) (COND ((MEMBER (CAR Y) (COR Y)) 

(+ N 1)) 

(7 N))) 
0 

L) 

If we have occasion to take the sum over lots of lists in different 

places, we might want to package the operation "sum over list" — we get 

awfully tired of writing "car +o". We can write: 

(DEFINE (MAPGEN F OP ID) 

(LAMBDA (L) (MAP F OP ID L))) 

The result of (MAPGEN CAR + 0) we might call sum — it is a procedure of one 

argument which will sum the elements of a list. The reason we wrote a 

procedure to construct sum, rather than just writing: 
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(DEFINE (SUM L) 

(MAP CAR + 0 L)) 

is that MAPGEN Serves as a generalized constructor of such procedures, thus 

capturing an interesting abstraction — we might call the result of (MAPGEN 

CAR * 1), for example, PRodUCT, and so on. . 

What is interesting about this is that we can write procedures 

which construct other procedures. This is not to be confused with the 

ability to construct S-expression representations. of procedures; that 

ability is shared by all of the interpreters we have examined. The ability 

to construct procedures was not available in the dynamically scoped 

interpreter. In solving the violation of referential transparency we seem 

to have stumbled across a source of additional abstractive power. While 

the map example may seem strained, this example is quite natural: given a 

numerical function, to produce a new function which numerically 

approximates the derivative of the first. 

(DEFINE (DERIVATIVE F AX) 

(LAMBDA (X) 

(/ (- (F (+ X &X)) 

(F X)) 

\X))) 

Notice that this is not a symbolic process dealing with the representation 

of F. The DERIVATIVE procedure knows nothing about the internal structure of 

F. All it does is construct a new procedure which uses F only by invoking 

it. The program DERIVATIVE captures (in approximation) the abstraction of 

"derivative" as a mapping from the space of numerical (and reasonably well- 

behaved!) functions to itself. 

The ability to define procedures which construct other procedures 

is powerful. We,.can use it to construct procedures which behave like data 

objects. For example, since the only constraints which cons must (so far) 

obey are the algebraic identities: 

(CAR (CONS a 6)) = ao and (coR (CONS ao G)) = B. 

the value of (cons a @) can be thought of as a procedure which produces a or 

G on demand (cf. [Hewitt and Smith] [Fischer]). We can write this as 

follows: . 

(DEFINE (CONS A D0) 

(LAMBDA (M) 

(COND ((= M0) A) 

({(= M1) D)))) 

(DEFINE (CAR X) (X 0)) 

(DEFINE (CDR X) (X 1))
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Here we have envisioned the value of (cons a B) as a vector of two elements, 

with zero-origin indexing. However, this definition of CONS makes use of 

the primitive operator =. We can define the “primitive operators" CONS, 

CAR, and coR without using another primitive operator at all! Following 

[Church], we write: 

(DEFINE (CONS A D) 

(LAMBDA (M) (M A D))) 

(DEFINE (CAR X) 

(X (LAMBDA (A D) A))) 

(DEFINE (COR X) 

(X (LAMBDA (A D) D))) 

Rather than using 0 and 1 (i.e. data objects) as selectors, we instead use 

(LAMBDA (A D) A) and (LAMBDA (A D) OD) (i.e. procedures). 

We can think of the LamapaA-expression which appears as the body of 

the definition of DERIVATIVE or of CONS aS a prototype for new procedures. 

When DERIVATIVE. or CONS is called, this prototype is instantiated as a 

closure, with certain variables free to the prototype bound to the 

arguments given to the constructor. 

At this point it looks like we have solved all our problems. We 

Started with a referentially transparent but expressively weak language. 

We augmented it with procedural objects and a notation for them in order to 

capture certain notions of abstraction and modularity. In doing this we 

lost the referential transparency. We have now regained it, and in the 

process uncovered even more powerful abstraction capabilities. 

Top Levels versus Referential Transparency 

"The Three Laws of Thermodynamics: 

1. You can't win. 

2. You can't break even. 

3. You can't get out of the game." 

— Unknown 

There is no free lunch. We have ignored a necessary change to the 

top level driver loop. We have changed the format of aproceouRE-objects. 

DRIVER-LOOP-1 constructs  aprocegure-objects; it must be rewritten to 

accommodate the change. We must include an environment in each such 

object. The obvious fix is shown in Figure 8.
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(DEFINE (DRIVER-LOOP-1 ENV FORM) 

(COND ((ATOM FORM) 

(DRIVER-LOOP ENV (PRINT (EVAL FORM ENV)))) 

((EQ (CAR FORM) 'DEFINE) 

(DRIVER-LOOP (BIND (LIST (CAADR FORM)) 

(LIST (LIST '&PROCEDURE 

(CDADR FORM) 

(CADDR FORM) 

ENV)) 
ENV) 

(PRINT (CAADR FORM)))) 

(T (DRIVER-LOOP ENV (PRINT (EVAL FORM ENV)))))) 

For DRIVER-LOOP see Figure 1. 

For BIND see Figure 3. 

For EVAL see Figure 7. 

Figure 8 

Modified Driver Loop for Lexically Scoped LAmMB0A-notation     
  

It doesn't work. This patch does put the finishing touch on the 

preservation of referential transparency. It does it so well, that each 

new definition can only refer to previously defined names! We have lost 

the ability to make forward references. We can't redefine a procedure 

which had a bug in it and expect old references to use the new definition. 

In fact, we cannot uSe DEFINE to make a recursive procedure. {Note Y- 

operator} The a&proceourE-object for each defined procedure contains an 

environment having only the previously defined procedures. 

We are finally confronted with the fact that we have been seeking 

the impossible. We have tried to attain complete referential transparency 

(in the expectation that modularity would be enhanced), while trying also 

to retain the notion of an incremental, interactive top-level loop for 

reading definitions. But the very existence of such a top level inherently 

constitutes a violation of referential transparency. A piece of code can 

be read in which refers to an as yet undefined identifier (the name of a 

procedure, for example), and then later a definition for that identifier 

read in (thereby altering the meaning of the reference). | 

If we stubbornly insist on maintaining absolute referential 

transparency in our language, we are forced to eliminate the incremental 

top level loop. A program must be constructed monolithically. We must 

read in all our procedure definitions at once, close them all together, and 

then take one or more shots at running them. (This is the way many Algol 

implementations work; development of large systems can be very difficult 

if parts cannot be separately constructed and compiled.) We are forced to 

give up interactive debugging, because we cannot redefine erroneous 

procedures easily. We are forced to give up incremental compilation of 

separate modules.
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We have thrown the baby out with the bath water. The very purpose 

of referential transparency is to permit programs to be divided into parts 

so that each part can be separately specified without a description of its 

implementation. The desirable result is that pieces can be separately 

written and debugged. {Note Debugging} 

On the other hand, if we give up absolute referential transparency, 

we can fix the top level loop. The basic problem is that we really want 

procedures defined at top level to be able to refer to procedures defined 

later. The problem with pure lexical scoping is that the aproceoureE-objects 

are created too early, when the desired environment is not yet available. 

We must arrange for them to be constructed at a later time. We could 

simply use the environment in use by the caller at the time of invocation 

(reverting to dynamic scoping). But dynamic scoping would lose a great 

deal of referential transparency and abstractive power. Procedures must 

not be allowed to refer to variables internal to other procedures, but only 

to top-level variables existing at the time they are called. Therefore 

only the future top-level environment is to be included in the &sPROCEODURE- 

object when it is eventually constructed. In this way free variable 

references will be dynamic only with respect to the top-level environment. 

Considering our dynamically-scoped interpreter above (see Figure 

5), we would be led to: modify apply again, to combine the best properties 

of the dynamically and lexically scoped interpreters. Indeed, the two 

kinds of function can easily coexist. We borrow the code involving the 

passing of pProceoures (including the pbriver-Loop, modified to initialize env to 

PROCEDURES) from the recursion-equations interpreter (Figures 1 and 2), the 

code for using this top-level environment from the dynamically-scoped 

interpreter (Figure 5), and the code for constructing saproceoure-objects for 

LAMBDA-expressions from the lexically- scoped interpreter (Figure 7). . The 

result appears in Figure 9.
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(DEFINE (EVAL EXP ENV PROCEDURES) 

(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 

((EQ (CAR EXP) 'QUOTE) 

(CADR EXP)) 

((EQ (CAR EXP) 'LAMBDA) 

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV)) 

((EQ (CAR EXP) 'COND) 

(EVCOND (CDR EXP) ENV PROCEDURES) ) 

(T (APPLY (EVAL (CAR EXP) ENV PROCEDURES) 

(EVLIS (COR EXP) ENV PROCEDURES) 

PROCEDURES)))) . 

(DEFINE (APPLY FUN ARGS PROCEDURES) 

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS) ) 

((EQ (CAR FUN) '&PROCEDURE ) 

(EVAL (CADDR FUN) 

(BIND (CADR FUN) ARGS (CADDDR FUN)) 

PROCEDURES ) ) 

(T (EVAL (CADR FUN) 

(BIND (CAR FUN) ARGS PROCEDURES) 

PROCEOURES)))) 

(DEFINE (ORIVER-LOOP-1 PROCEOURES FORM) 

(COND ((ATOM FORM) 

(DRIVER-LOOP PROCEDURES 

(PRINT (EVAL FORM PROCEDURES PROCEDURES) ))) 

({EQ (CAR FORM) 'DEFINE) 

(DRIVER-LOOP (BIND (LIST (CAADR FORM)) 

(LIST (LIST (CDADR FORM) (CADDR FORM))) 

PROCEDURES) 

(PRINT (CAADR FORM)))) 

(T (ORIVER-LOOP PROCEDURES 

(PRINT (EVAL FORM PROCEDURES PROCEOURES)))))) 

For ODRIVER-LOOP See Figure 1. 

For VALUE and BIND see Figure 3. 

For EVCOND and EVLIS see Figure 2. 

Figure 9 

An Evaluator for Local Lexical Scoping 

and Dynamic Top-Level References       

Ugh bletch, pProceoures is back! Also, there are two kinds of user- 

defined procedural objects floating around. There happens to be another 

way to fix the top level, which yields additional flavor. We note that
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during any one processing cycle of EVAL/APPLY, PROCEDURES remains constant. 

We can thus choose to associate the top level environment with a top-level 

procedure at a time earlier than invocation time in appLy. We also note 

that Lookup! will have its hands on the top-level environment anyway just 

before it locates the definition of a top-level procedure. Exploiting this 

idea yields an alternate solution. {Note Lasers} 

In the new driver (see Figure 10) loop we no longer use BIND to 

augment the top-level environment whenever a new definition is made. We 

instead have all of the top-level definitions in one frame of the 

environment. When a new definition is to be made we extract the list of 

names and the list of values for the old definitions from the old 

environment and make a new top-level environment with the lists of names 

and values separately augmented. 

Instead of creating spProceoure-objects, this driver loop creates 

&LABELEO-objects, which have the same format except that they contain no 

environment. A &laBELEo-object is purely internal and can never be seen by 

a user program. When LookuPpi encounters such an object as the value of a 

variable, it immediately creates the corresponding sprocepuRE-object, using 

the environment at hand, which turns out to be the top-level environment.
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(DEFINE (DRIVER-LOOP-1 ENV FORM) 

(COND ((ATOM FORM) 

(DRIVER-LOOP ENV (PRINT (EVAL FORM ENV)))) 

((EQ (CAR FORM) 'DEFINE) 

(DRIVER-LOOP (LIST (CONS (CONS (CAADR FORM) (CAAR ENV)) 

(CONS (LIST '&LABELED 

(COADR FORM) 

(CADDR FORM)) 

(CDAR ENV)))) 
(PRINT (CAADR FORM)))) 

(T (DRIVER-LOOP ENV (PRINT (EVAL FORM ENV)))))) 

(DEFINE (LOOKUP1 NAME VARS VALS ENV) 

(COND ((NULL VARS) 

(LOOKUP NAME (CDR ENV))) 

((EQ NAME (CAR VARS)) 

(COND ((ATOM (CAR VALS)) VALS) 

((EQ (CAAR VALS) '&LABELED). 

(LIST '&PROCEDURE (CADAR VALS) (CADDAR VALS) ENV)) 

(T VALS))) 

(T (LOOKUP1 NAME (COR VARS) (COR VALS) ENV)))) 

_ For pRiveR-Loop see Figure 1. 

For Lookup see Figure 3. 

For eval see Figure 7. 

Figure 10 

An Alternative Solution for Local Lexical Scoping 

and Dynamic Top-Level References 

(Modified Top-Level Driver Loop and Environment Lookup)     
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Part Two 

State 

Decomposition of State 
  

We saw in Part One that an interactive top-level loop necessarily 

violates referential transparency. We wish to deal with the computer as an 

entity with state, which changes over time by interacting with a user. In 

particular, we want the computer to change over time by accumulating 

procedure definitions. 

Just as the user wishes to think of the computer as having ‘state, 

he may find it conceptually convenient to organize a program similarly: 

one part may deal with another part having state. Often programs are 

written for the purpose of analyzing or simulating a physical system. If 

modules of the program are to reflect the conceptual divisions of the 

physical system, then the program modules may well need to have independent 

state variables. Thus the notion of state is not just a programming trick, 

but may be required by the nature of the problem domain. . 

A simpler example of the use of state involves the use of a pseudo- 

random number generator. A LISP version of one might be: 

(DEFINE (RANDOM SEED) 

(({LAMBDA (Z) 

(COND ((> Z 0) Z) 

(T (+ Z -32768.)))) 

(* SEED 899.))) 

This version of ‘RANDOM uses the power-residue method for a 16-bit two's- 

complement number representation; the value produced is a pseudo-random 

integer, and also is the seed for the next call. The caller of RANDOM is 

required to save this value and supply it on the next call to RANDOM. 

This fact is unfortunate. The caller really has no interest in the 

workings of RaAnooM, and would much prefer to simply call it as "(RANDOM)", 

for example, and get back a random number — because this would reflect 

most precisely the abstract notion of "random number generator". Such a 

generator would have to have state. 

Suppose we are willing to live with this nuisance. Consider now 

building some larger program using RANDOM. Many levels up, the programmer 

who writes some high-level routine. very likely does not care at all that a 

low-level routine uses RANDOM; he may not even know about the existence of 

that routine. However, if the state of the pseudo-random number generator 

is to be preserved, that programmer will have to deal with some state 

quantity he knows nothing about, for the sake of a program ten levels 

removed from his thinking. Just as proceoures had to be passed all around 

for the sake of eval in Figure 2, so the state of RANDOM must be passed up 

and down and all around by programs which don't really care. This clearly 

violates our principle of modularity. (For an example of how bad this can



o
e
 

Steele and Sussman 32 The Art of the Interpreter 

get, see {Note Gaussian}. ) 

As another example, suppose that George writes mapcarR, and Harry 

uses it. Harry complains that mapcar is too slow. George then decides to 

collect some statistics about the use of mapcar, such as the number of times 

called, the average length of the second argument, and so on. He first 

writes an experimental mapcarR to count number of calls: 

(DEFINE (MAPCAR F LN) 

(CONS (OLOMAPCAR FL) (+ .N 1))) 

(DEFINE (OLDMAPCAR F L) 

(COND ((NULL L) '()) 

(T (CONS (F (CAR L)) 

(OLDMAPCAR F (COR L)))))) 

and asks Harry to use it for a while in his program. "I had to add an 

extra argument to keep track of the count," says George, "and in order to 

_return both the result and the count, I had to cons them together. Please 

rewrite your program to keep track of the count and pass it on from one 

call on mapcarR to the next." Harry's reply is "unprintable". 

Now Bruce comes along and asks Harry how to use Harry's program. 

Harry says, "Just write (DIFFERENTIATE EXP VAR N), where Exp is the expression 

to be differentiated, var is the variable with respect to which to 

differentiate, and nN is George's statistics counter — but that may go away 

next week." Bruce gives Harry a funny look, then goes away and writes his 

OWN DIFFERENTIATE, uSing George's documentation for the old mapcarR, of course, 

unaware that the new one has been installed... 

George's new mapcaR conceptually has state. The state information 

should be local to the definition of mapcar, because that information is not 

anyone else's business, and George has no business requiring everyone else — 

to keep track of it for him. George and Harry and Bruce all wish George 

had a way to maintain local state information in mapcar. 

Side Effects and Local State 
  

Traditionally local state is maintained through some sort of "side 

effect". We can always avoid the use of side effects if we are willing to 

pass all state variables around.. AS we have seen, this requires a 

monolithic conception of the program structure. If we wish to break a 

program up into independent modules, each with local state information, we 

must seek another method. 

We claim that any such method effectively constitutes a side 

effect. If a module has hidden state, then its behavior can potentially 

change over time. 

If only one module in the system has local state, then we can hide 

the side effect by making it the top-level module of the system, as we have 

done for oRIvVER-LooP. (For an example of this, see {Note Weber}.) If more 

than one module has state, however, then each may perceive changes in the
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other's behavior. This the essence of side effect. 

The concept of side effect is induced by particular choices of 

boundaries between parts of a larger system. If a system boundary encloses 

all processes of interest (the system is closed), we need no concept of 

side effect to describe that system as a whole in vacuo. If, however, we 

wish to make an abstraction by dividing the system into modules more than 

one of which has independent state, then we have by this action created the 

concept of side effect. 

We are forced to introduce side effects as a technique for 

constructing modular’ systems. But side effects violate referential 

transparency by altering the meanings of expressions; we expect (+ 3 4) 

always to mean the same thing, but we cannot say the same for (+ 3 (RANDOM)). 

Two techniques for achieving modularity have come into direct conflict. 

The most common form of side effect in programming languages is the 

assignment statement, which alters the meaning of a variable. LISP 

provides this notion in the seta construct: 

(SETO X 43) 

returns 43, and as a side effect alters the meaning of x so that subsequent 

references will obtain 43 also. 

With this, George can now write: 

(DEFINE (MAPCAR F L) 

(MAPCAR] F L (SETQ N (+ N 1)))) 

(DEFINE (MAPCAR] F L HUNOZ) 

(OLDMAPCAR F L)) 

There are still some minor problems here. The function mapcaRi and the 

variable HuUNOZ are used solely to throw away the value of the SeT9o form. It 

is so common to use seETQ only for its side effect that another 

construction, PROGN, is very useful: 

(PROGN a ey) 

evaluates each of the forms e, in order, throwing away the values of all 

but the last one. Notice that we specifically require them to be evaluated 

in order; this concept did not occur in the specification of our earlier 

interpreters, because it was not necessary in the absence of side effects. 

Similarly, it was not useful to be able to throw away values in the absence 

of side effects. (We did throw away a value in DRIVER-LOOP, but that was one 

which resulted from calling PRINT, which of course is assumed to have a 

side effect!) Using procn, George can write: 

(DEFINE (MAPCAR F L) 

(PROGN (SETQ N (+ N 1)) 

(OLDMAPCAR F L)))
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There remains the problem of the global variable N, which Harry or Bruce. 

might stumble across by accident. George has to have some handle to get at 

the statistics counter, and any handle George can use intentionally, Bruce 

and Harry can use accidentally. One thing that George can do is rename N 

to MAPCAR-STATISTICS-COUNTER, and warn Bruce and Harry not to use a global 

variable with that name. This is still better than the original situation 

— at least now Bruce and Harry need not change their programs, and it is 

George's responsibility to find a name which does not conflict. {Note Can 

George do better?} 

In the case of RANDOM, where the state information is truly local in 

that no one wants to access it except its owner, we can combine the use of 

lexical scoping and of side effects to manipulate a completely hidden state 

variable. For example, suppose we want several independent pseudo-random 

number generators, initialized with different seeds. We can make a pseudo- 

random number generator generator as follows: 

(DEFINE (RGEN SEED) 

(LAMBDA () (PROGN (SETQ SEED 

((LAMBDA (Z) (COND ((> Z 0) Z) 

. (T (+ Z -32768.)))) 

(* SEED 899.))) 

SEED))) 

Each call to rctn delivers as its value a new pseudo-random number 

generator which is an instance of the prototype described by the LamBoa- 

expression which is the body of rGEeN. Each one has a state variable which 

is its seed. The state of each instance is distinct from that of every 

other instance. This gives one the power of the own variables of ALGOL 60° 

without any additional mechanism. © 

Side Effects in the Interpreter 

In order to write a simple interpreter which implements the side 

effect seta, we will postulate the existence of two side effect operators 

which alter S-expressions: 

(RPLACA X Y) and = (RPLACO X Y) 

return the value of x (which must not be atomic), but as a side effect 

alters x so that its car or cdr, respectively, is the value of y. (The 

introduction of operators which modify S-expressions causes a number of 

nasty problems, which we will consider presently.) We will use _ these 

operators to alter the structure of the environment ENV. We modify Evat to 

recognize the setg construct (see Figure 11). On seeing "seTQ" in the 

"operator position" of the expression, eval dispatches to eEvseto, after 

recursively evaluating the value to be assigned. EVSETQ uses LOOKUP to find 

the effective binding of the variable mentioned in the settgo. If there is 

such a binding, rRptacA is used to change the value associated with the
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variable. If there is no such binding, then the intent is to initialize a 

top-level variable; EV-TOP-LEVEL-SETQ locates the top-level environment 

(which is always at the end of any environment) and creates a new binding 

by altering the environment structure. 

We also modify EVAL to recognize PROGN.. EVPROGN iS a tail-recursive 

loop which evaluates each subform of the procn form in turn, throwing away 

each value but the last. {Note progn Wizardry}
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(DEFINE (EVAL EXP ENV) 

(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 

((EQ (CAR EXP) 'QUOTE) 

(CADR EXP)) 

((EQ (CAR EXP) 'LAMBOA) 

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV)) 

((EQ (CAR EXP) 'SETQ) 

(EVSETQ (CADR EXP) (EVAL (CADDR EXP) ENV) ENV)) 

((EQ (CAR EXP) 'PROGN) 

(EVPROGN (CDR EXP) ENV NIL)) 

((EQ (CAR EXP) 'COND) 

(EVCOND (CDR EXP) ENV)) 

(T (APPLY (EVAL (CAR EXP) ENV) 

(EVLIS (COR EXP) ENV))))) 

(DEFINE (EVSETQ VAR VAL ENV) 

((LAMBDA (SLOT) 

(COND ((EQ SLOT '&UNBOUND) 

(EV-TOP-LEVEL-SETQ VAR VAL ENV)) 

(T (CAR (RPLACA SLOT VAL))))) 

(LOOKUP VAR ENV))) 

(DEFINE (EV-TOP-LEVEL-SETQ VAR VAL ENV) 

(COND ((NULL (COR ENV)) . 

(CADAR (RPLACA ENV 

(CONS (CONS VAR (CAAR ENV)) 

(CONS VAL (CDAR ENV)))))) 

(T (EV-TOP-LEVEL-SETQ VAR VAL (COR ENV))))) 

(DEFINE (EVPROGN EXPS ENV HUNOZ) 

(COND ((NULL (COR EXPS)) (EVAL (CAR EXPS) ENV)) . 

(T (EVPROGN (CDR EXPS) ENV (EVAL (CAR EXPS) ENV))))) 

For VALUE, LOOKUP, and BIND see Figure 3. 

For e€VCOND and EVLIS see Figure 5. 

For apply see Figure 7. 

For Lookup, see Figure 10 (not Figure 3). 

Figure 11 

Evaluator with User Side Effects (Assignment to Variables)   
   



  

Steele and Sussman 37 The Art of the Interpreter 

Because EVSETQ can be used to initialize new top-level variables, it 

is convenient for ORIVER-LOOP-1 to call evseTg when defining a new function 

(see Figure 12). Unlike the oriver-Ltoop-1 of Figure 10, this one has no 

special knowledge about the structure of environments; as before, such 

knowledge is hidden in environment specialists such as BIND, VALUE, and now 

EVSETQ. (The value of EvSETQ is not used, but thrown away; we introduce an 

extra throwaway parameter into the definition of oRIverR-LooP for this 

purpose. ) 

  

(DEFINE (DRIVER) 

(DRIVER-LOOP <THE-PRIMITIVE-PROCEDURES> 

NIL 

(PRINT '|LITHP ITH LITHTENING]))) 

(DEFINE (DRIVER-LOOP ENV HUNOZ HUKAIRZ) 

(DRIVER-LOOP-1 ENV (READ))) 

(DEFINE (DRIVER-LOOP-1 ENV FORM) 
(COND ((ATOM FORM) 

(DRIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV)))) 
((EQ (CAR FORM) 'DEFINE) 
(DRIVER-LOOP ENV 

(EVSETQ (CAADR FORM) 
(LIST '&LABELED 

(CDADR FORM) 
(CADDR FORM)) 

ENV) 
(PRINT (CAADR FORM)))) 

(T (DRIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV)))))) 

For EVSETQ see Figure lil. 

Figure 12 

Driver Loop for Evaluator with User Side Effects 

(Assignment to Variables)       

(Once we have side effects, we don't really need the &lLABELED device 

to permit incremental definition of recursive functions; we can just 

perform a side effect on the top-level environment. We left the ataBeLed 

device in Figure 12 for continuity with the previous examples. "Real" LISP 

Systems use the side effect method. See {Note Driver Loop with Side 

Effects}, and also {Note LabeLS with Side Effects}. )
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Equipotency of SETQ and RPLACA 

‘We pulled a fast one when we introduced rpLacA and rptaco for the 
sake of implementing seto (though we actually only used rptacaA). We used a 

Side effect to define the implementation of side effects. While this makes 

a fine meta-circular description, it doesn't constitute a definition of 

side effects founded on the original meta-circular recursion equations 

interpreter. 

We could implement an interpreter which would define a side effect 

without itself using side effects. Such a definition would encapsulate the 

entire state of the user's data structures into a single interpreter data 

structure which is passed around by a top-level loop. Constructing such an 

interpreter would involve turning a regular interpreter inside out (in much 

the same way GAUSSIAN was everted in {Note Weber}). This is extremely 

difficult and lengthy, and the module boundaries within the interpreter are 

so destroyed that the resulting interpreter is nearly impossible to 

understand. We will spare the reader the details. 

We settle for a meta-circular description of side effects. Now 

that we have seen how to implement seta in terms of RPLACA and RPLACOD, we can 

also do the reverse, completing the meta-circle (see Figure 13). We use 

the procedural version of cons shown earlier, modified to provide two 

"setting procedures" sa and sp, which provide the ability to alter the car 

and cdr. 

  

(DEFINE (CONS A D) 

(LAMBDA (M) 

(M AD (LAMBDA (Z) (SETQ A Z)) (LAMBDA (Z) (SETQ D Z))))) 

(DEFINE (CAR X) 

(% (LAMBDA (A DSA SD) A)) 

(DEFINE (COR X) 

(X (LAMBDA (A D SA SD) D)) 

(DEFINE (RPLACA-X Y) 

(X (LAMBDA (A D SA SD) 

(PROGN (SA Y) X)))) 

(DEFINE (RPLACD X Y) 

(% (LAMBDA (A D SA SD) 

(PROGN (SD Y) X)))) 

Figure 13 

Procedural (“Actors-like") Implementation of cons and Friends     
  

We originally introduced side effects such as setg to help us build 

modules such as RANDOM which have local state. Now, using the technique of
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constructing procedures, we find that cons can be viewed as a constructor 

of modules, just aS MAPGEN waS. CONS constructs modules ("cons cells") 

which use seta to maintain a local state. 

Side Effects and Equality 
  

"Things are seldom what they seem, 

Skim milk masquerades as cream..." 

— Gilbert and Sullivan 

(H.M.S. Pinafore) 

"Plus ca change, plus c'est la méme chose." 

— Alphonse Karr 

Our descriptions of SeTg and Rptaca, both informal and meta- 

circular, are imprecise. They admit a number of drastically different 

interpretations of the behavior of the system. We would all agree that for 

RPLACA to mean anything at all like what we want, the expression: 

  

(( LAMBDA (xX) 

(PROGN (RPLACA X 'Z) 

(CAR X))) 

(CONS 'A '(B C))) 

Puzzle #1       

should evaluate to z. But what about this case: 

  

((LAMBDA (X Y) 
(PROGN (RPLACA X 'Z) 

(CAR Y))) 
(CONS 'A '(B C)) 
(CONS 'A '(B C))) 

Puzzle #2       

Should this evaluate to a or 2? Nearly all LISP systems would produce A, 

but there are arguments for both possibilities. Similarly, should this:
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((LAMBDA (X) 

((LAMBDA (U V) 

(PROGN (RPLACA U 'Z) 

(CAR V))) 

x X)) 

(CONS 'A '(B C))) 

Puzzle #3     
  

evaluate to A or 2? Again there are arguments for both possibilities. 

Before we can meaningfully consider these questions, we must have a 

more precise notion of what we mean by "RPLACA”. Let us review its 

description: 

If x has as its value a non-atomic S-expression, and we 

evaluate the expression (RPLACAX Y), then after this 

evaluation, the value of the expression (CAR xX) is Y. 

This description depends upon a critical assumption. We have a notion of a 

thing which is the value of x, such that several references to the variable 

X all refer to the same thing. But what the #}#@ do we mean by "same"?? 

The concept of side effect is inseparable from the notion of 

equality/identity/sameness. The only way one can observationally determine . 

that a side effect has occurred is when the same object behaves in two 

different ways at different times. {Note rptaca Can Alter car’ Instead) 

Conversely, the only way one can determine that two objects are the same is 

to perform a side effect on one and look for an appropriate change in the 

behavior of the other. 
In order to determine the answers to the Puzzles above, we must 

determine what properties are required of “sameness”. There may be 

different points of view regarding sameness, which may lead to different 

answers to the Puzzles. 

If we agree that the answer to Puzzle #1 is 2z, then we have 

implicitly adopted the notion of consistency of variable reference, because 

we have referred to the variable x twice. As a property of the sameness 

predicate =, we write: (=x x). We can say that referring to a variable 

does not make a copy of its value (because if it did, the erpiaca in 

Puzzle #1 would have changed only a copy of .the value of x, and (CAR x) 

would extract the car of a different copy, producing A). 

Given this, and given that we accept the interpreter of Figure 11 

and believe in its meta-circularity, we are forced to conclude that the 

answer to Puzzle #3 is also z. We must consider all access paths and show 

that no copying can occur which would allow the answer to be a. The meta- 

circularity requires that any property of the interpreted language also 

hold for the text of the interpreter, and vice versa. The answer to 

Puzzle #1 requires that variable references not produce implicit copies, 

and so neither can variable references in the text of the interpreter.
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(Consistent with this, our particular interpreter has no explicit code in 

Lookup which specifies copying.) The other place in Puzzle #3 where copying 

might occur is in the binding of uv and v. Examining the text of our 

particular meta-circular interpreter shows that BIND also has no explicit 

code for copying. There remains the possibility that binding does 

implicitly copy in the text of the meta-circular interpreter; this would 

consistently cause copying in the bindings of the interpreted code, because 

ENV would be copied whenever bound in the text of the interpreter. This, 

however, would cause the answer to Puzzle #1 to be A, because ENV is bound 

at other places which would cause incorrect copying. We therefore conclude 

that no implicit copying can occur, and so the answer to Puzzle #3 is Z. 

We emphasize that this result rests on our acceptance of a 

particular class of meta-circular interpreters. (These interpreters, 

however, closely model what real LISP systems do.) There are other 

languages which do implicitly copy structured values when’ binding 

variables, such as Algol 60 when using call-by-value. For such a language, 

the answer to Puzzle #3 would be a (if we represented the list (A BC) as an 

Algol 60 array, for example), even though the answer to Puzzle #1 would 

still be z. 

One can argue both for and against copying during binding on the 

basis of modularity. Copying isolates the caller from the called routine 

by preventing the called routine from performing under-the-table side- 

effects on the caller's data objects. Not copying allows data objects to 

encapsulate independent pieces of state which can be operated on by low- 

level routines whose details need not be understood by their caller (an 

example of such a data object is the symbol table of an assembler, with its 

insertion and lookup routines). | 

We now consider Puzzle #2. If we accept that binding and variable 

referencing do not makes copies, then Puzzle #2 is a question about the 

nature of cons: if cons is called twice with arguments which are the same, 

are the two results the same? (Note that this is the inverse of Postulate 

4 for S-expressions in {Note S-expression Postulates and Notation}. ) If 

the answer is consistently a (as in most real LISP systems), then cons must 

generate a new object every time it is called. (It must produce different 

results if the two sets of arguments differ, and an answer of A_ to 

Puzzle #2 requires different results if the two sets of arguments are the 

same. ) CONS perforce contains a side effect. Calls to it are not 

referentially transparent. 

The other possibility, given that variable binding and variable 

referencing do not make copies, is that the answer to Puzzle #2 is z. In 

this case, cons of the same arguments must always produce the same result. 

This choice leads to galloping non-modularity of data structures without 

compensation. suppose, for example, we represent arrays as lists of 

numbers (a reasonable LISP representation), and want to alter the last 

element of one such array (uSing RPLACA). Under this scheme, all arrays 

whatsoever with the same last element would be magically altered! A 

language with such characteristics would be extremely difficult to control. 

Supposing now that binding does make copies as in Algol 60, the 

answer to Puzzle #2 must be a. Here it does not matter whether cons of the
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same arguments produces the same result, since the bindings of x and Y will 

make copies anyway. We may, however, consider this variant: 

  

(PROGN (RPLACA (CONS 'A '(B C)) 'Z) 

(CAR (CONS 'A '(B C)))) 

Puzzle #2a     
  

Here we have simply substituted the expressions (CONS 'A '(8 C)) for 

the occurrences of x and y. If conS always returns the same object for the 

same inputs, then Puzzle #2 and Puzzle #2a have different answers if 

bindings copy, but may have the same answers if bindings do not copy (they 

may not have the same answer if CONS notices that we have pulled the rug 

out from under it and produces a new version because the old one was | 

changed! ). There is also a quibble as to whether the passing of an 

argument to RPLACA in itself constitutes a binding — if so, RPLACA must be 

completely ineffectual, because it always receives a copy! We must then 

regard RPLACA as a built-in system primitive; the user would have no way to 

define such a thing. This would be most unfortunate. 

We have examined many of the design decisions for the meaning of 

RPLACA, CONS, and equality. If side effects are to be usable at all, the. 

references to things denoted by variables must not make copies of those 

things. If the user is to be able to write procedures which produce 

lasting side effects on their arguments (as system-supplied primitive 

operators do), then there must be a variable binding mechanism which does 

not make copies. (LISP's binding mechanism in fact does not copy. Algol 

60's call-by-value mechanism does copy structured data, but its call-by- 

name mechanism does not; we will study this in Part Three.) If the 

variable binding (or assignment) mechanism does not make copies, then cons 

must generate a new, distinct object on each call. 

The reader may have noted that we have been talking in circles for 

the last several paragraphs: in attempting to elucidate the meaning of 

sameness, we have discussed side effects, and in so doing used the word 

"same" nearly every other sentence. The point is that it is not possible 

to define them separately; The meanings of "equality" and "side effect" 

Simultaneously constrain each. other. With this in mind, we will 

investigate the choice of a primitive equality predicate. 

The equality predicate we choose should be sufficiently finely 

grained to distinguish any two objects which have potentially distinct 

behavior, yet should not be so finely grained as to distinguish entities 

which otherwise would have the same behavior. Thus we have two desiderata: 

[1] Two objects which are_ observed to _ behave 

differently must not be equal. 

[2] Conversely, we would like two objects which are 

adjudged unequal to exhibit differing behaviors under 

suitable circumstances.
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Any useful equality predicate must satisfy [1]. Unfortunately, satisfying 

[2] also may be too difficult; the equivalence of behavior for procedural 

objects is an unsolvable problem. We are thus forced to settle for an 

equality predicate which may make more distinctions than are strictly 

necessary. . 

LISP has two standard equality predicates: EQUAL and €Q. We 

exhibited a definition of Equal in Part Zero. In Part Zero we also gave a 

description of £0, but defined it only on atoms; LISP usually extends €Q 

to all S-expressions in such a way as to distinguish the results of 

different calls to cons (regardless of the arguments given to cons). 

Variable references and variable binding "preserve eEQqness". 

In the absence of erptaca ("pure LISP"), £€o and EQUAL both satisfy 

desideratum [1]. equaL, however, makes fewer unnecessary distinctions than 

EQ. By desideratum [2], equal is therefore preferred to £9. (The technique 

of “hash-consing" [Goto] can be used in this situation to make £€Q and EQUAL 

effectively the same.) 

In the presence of side effects such as RPLACA, EQUAL fails to make 

sufficiently many distinctions. Each call to cons produces’ distinct 

objects, which equal may fail to distinguish. In this case, eEQuAL fails 

desideratum [1]. Thus, in the presence of RPLACA, £Q is the preferred 

equality predicate. | 
In summary, indeed "the more things change, the more they remain 

the same". Two distinct objects may look the same because one masquerades 

as the other; they can be operationally distinguished only by purposely 

altering the behavior of just one of them. Thus the ability to decide 

whether two objects are the same is directly correlated with the ability to 

perform side effects on them. 

Dynamic Scoping as a State-Decomposition Discipline 

As we saw in the preceding section, side effects can become rather 

complicated. To help keep this complexity under control, we ought to 

abstract and package common patterns of their use. . 
Suppose we have a procedure PRINT-NUMBER Which prints numbers: 

(DEFINE (PRINT-NUMBER N) 

((LAMBDA (Q R) 

(COND ((ZEROP Q) (PRINT-DIGIT R)) 

(T (PROGN (PRINT-NUMBER Q) 

(PRINT-DIGIT R))))) 
(/ N10.) 

(REMAINDER N 10.))) 
~ 

Now people find this program very useful and use it in all their programs. 

Normally we want to print numbers in radix 10 (decimal), but 

occaSionally (for example, in a debugging aid) we want to print numbers in: 

other radices, such as 8 or 16. One might generalize the PRINT-NUMBER 

program to take the radix as an extra argument:
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(DEFINE (PRINT-NUMBER N RADIX) 

((LAMBDA (Q R) 

, (COND ((ZEROP Q) (PRINT-DIGIT R)) 

(T (PROGN (PRINT-NUMBER Q) 

(PRINT-DIGIT R))))) 

(/ N RADIX) 

(REMAINDER N RADIX))) 

Of course, then everyone who useS PRINT-NUMBER must supply the radix. This 

is mildly annoying, because most of the time one wants decimal printing, 

and one tires of writing "10." all the time. One might write another 

program for most people to use: 

(DEFINE (PRINT-10 N) 

(PRINT-NUMBER N 10.)) 

This example is simple, but a real PRINT procedure in a real LISP system 

may be controlled by dozens of parameters like RADIX: format parameters 

for printing floating-point numbers, which file to print to, file-dependent 

format parameters such as line width and page length, file-dependent 

processing routines (e.g. scrolling for display terminals), abbreviation 

format parameters for S-expressions, etc. All these extra parameters to 

PRINT are really determined by the larger context in which PRINT is used, 

but this context is usually not determined by the immediate caller of 

PRINT. A program which generates and prints successive prime numbers 

should not have to deal with the complexities of output files; in 

particular, one does not want to have to rewrite the program just to direct 

the output to a line printer instead of a disk file. Context decisions are 

usually made at a much higher level (perhaps interactively by the user). 

Therefore the solution of using procedures like PRINT-10 iS not acceptable; 

such procedures only serve as abbreviations, binding the many parameters to 

constants at too low a decision level. 

Another idea is to pass the extra parameters for print control 

through the intermediate levels of the program. But this violates the 

modularity of the intermediate modules, which generally have no interest in 

PRINT'S screwy parameters. On the other hand, an occasional intermediate 

module will be interested in dealing with a few of the parameters (but 

probably not all of them!). We would like a mechanism for dealing with 

only the parameters of interest, without having to deal with all of them 

all of the time. 

Side effects can do the job. We can make all the parameters 

globally available variables (in the top-level environment), initialized to 

reasonable default values, and invite all interested parties to perform 

SETQ aS necessary. This technique has disadvantages. If every program 

just changes the parameters at will, then each program must re-set all the 

parameters (even the ones not of interest) for its own uses of PRINT. This 

is even worse than just passing PRINT all the parameters! 

We can require a convention whereby the parameters normally have 

their initial default values, and any program which modifies a parameter
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must eventually restore it to its previous value.. For example, a procedure 

to print in octal might look like: 

(DEFINE (PRINT-8 N) 

((LAMBDA (OLDRADIX) 

(PROGN (SETQ RADIX 8) 

(PRINT-NUMBER N) 

-(SETQ RADIX OLDRADIX))) 

RADIX)) 

This convention allows PRINT-8 to locally alter the radix, in a manner 

transparent to its caller; it does not interfere with the way in which its 

caller may be using PRINT. 

This convention is a standard pattern of use. It is a stack 

discipline on the values of rapix (or whatever other variables). We would 

like to capture this pattern as an abstraction in our language. 

Surprise! We have seen this abstraction before: dynamically 

scoped variables behave in precisely this way. Dynamically scoped 

variables conceptually have a built-in side effect — we took advantage of 

this at the end of Part One to fix the problem with the top-level loop. 

Binding a dynamically scoped variable such as RADIX can be said to cause a 

side effect because it alters the behavior of a (superficially) unrelated 

procedure such as PRINT in a referentially opaque manner. Such binding is 

a particularly structured kind of side effect, because it guarantees that 

the side effect will be properly undone when the binder has finished 

executing. Thus with dynamic scoping we could write: 

(DEFINE (PRINT-8 N) 
(({LAMBDA (RADIX) 

(PRINT-NUMBER N)) 

8)) 

We saw in Part One that, precisely because dynamically scoped 

variables are referentially opaque, we do not want all variables to be 

dynamically scoped. But we have newly rediscovered dynamic variables in 

another context and found them desirable. We therefore consider an inter- 

preter which supplies both lexical and dynamic variables (see Figure 14). 

Here we have merged the dynamically scoped variable evaluator 

(Figure 5) with the lexically scoped evaluator (Figure 11). We changed 

APPLY to have an extra case, wherein an "open. LAmMBDA-expression" is 

effectively closed at the time of its application using the environment of 

its caller. Eval is changed to once again supply the environment to apply. 

This interpreter is almost identical to that of LISP 1.5 [LISP 1.5M], with. 

the difference that we write simply (LamapA ...) to get a closed procedure 

where in LISP 1.5 one must write (FUNCTION (LAMBDA ...)); in both cases one 

must write ‘(LAMBDA ...) to get an open LAmMBDA-expression.
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(DEFINE (EVAL EXP ENV) 
(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 
((EQ (CAR EXP) 'QUOTE) 
(CADR EXP)) 

((EQ (CAR EXP) 'LAMBDA) 
(LIST '&PROCEDURE (CADR EXP) (CADDR EXP) ENV)) 

((EQ (CAR EXP) 'SETQ) 
(EVSETQ (CADR EXP) (EVAL (CADDR EXP) ENV) ENV)) 

((EQ (CAR EXP) 'PROGN) 
(EVPROGN (CDR EXP) ENV NIL)) 

((EQ (CAR EXP) 'COND) 
(EVCOND (CDR EXP) ENV)) 

(T (APPLY (EVAL (CAR EXP) ENV) 
(EVLIS (COR EXP) ENV) 

ENV)))) 

(DEFINE (APPLY FUN ARGS ENV) 

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS)) 

((EQ (CAR FUN) '&PROCEDURE ) 

(EVAL (CADOR FUN) 

(BIND (CADR FUN) ARGS (CADDOR FUN)))) 

((EQ (CAR FUN) 'LAMBDA) 

(EVAL (CADOR FUN) 

(BIND (CADR FUN) ARGS ENV))) 

(T (ERROR)))) 

For VALUE, LOOKUP, and BIND see Figure 3. 

For €VCOND and EVLIS see see Figure 5. 

For vLookuel see Figure 10 (not Figure 3). 

Figure 14 

Interpreter with Both Open and Closed Procedures       

Although this is the tradition, it doesn't work very well. The 

problem is that the lexical variables are not really lexical. Although 

lexical references cannot incorrectly refer to dynamically intended 

bindings, the reverse is not true. Dynamic variable references can be 

captured by bindings intended to be strictly lexical. 

For example, we might want to write a procedure which packages up 

information about dealing with RaoIx: 

(DEFINE (RADIX-10 FUN) 

((LAMBDA (RADIX) (FUN)) 

10.))
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This is more general than PRINT-10 in that'it allows us to wrap a binding of 

RADIX around any piece of code, not just a call to PRINT. (In a more 

realistic example, we might package up the bindings of a dozen parameters 

in a similar manner.) . 

There are two possibilities: should the argument to RADIX-10 be a 

closed procedure or an open LaAmMBDA-expression? If closed: 

(DEFINE (DO-SOMETHING-INTERESTING X FUN) 

(RADIX-10 (LAMBDA () (FORMAT-HAIR 'FOO (CADR X) FUN)))) 

(FORMAT-HAIR takes several arguments, one of them a procedure and presumably 

Calls PRINT at some level), then the binding of RADIX in RADIX-10 will not be 

apparent to PRINT, because the environment of the call to FORMAT-HAIR is that 

of the closed procedure, which in turn is that of the call to RADIx-10 

Within  DO-SOMETHING- INTERESTING. Thus it fails to work at all. If the 

argument to RADIX-10 is left open: 

(DEFINE (DO-SOMETHING-INTERESTING X FUN) 

(RADIX-10 '(LAMBDA () (FORMAT-HAIR 'FOO (CADR X) FUN))))~ 

then this fails to work at all because of a variable naming conflict with 

FUN. The third argument passed to FORMAT-HAIR Will evaluate to the argument 

which was passed to RADIX-10, namely the quoted lambda expression. This is 

similar to the mapcar bug that originally got us thinking about lexical 

scoping in Part One. 

A solution to this problem is to maintain separate environments for 

lexical and dynamic variables; this will guarantee that the two kinds 

cannot interfere with each other. This will require a special syntax for 

distinguishing references to and bindings of the two kinds of variables. 

We will choose to encode lexical variables as atomic symbols, as before, 

and dynamic variables as lists of the form (byYnaMIC x), where x is the name 

of the dynamic variable. (This choice is completely arbitrary. We could 

have chosen to encode the two kinds as (LEXICAL x) and x; or aS (LEXICAL x) 

and (DYNAMIC x), leaving atomic symbols as such free to encode yet something 

else; but we have chosen this because in practice most variable 

references, even in a purely dynamically scoped LISP, are lexical, or can 

be considered so.) . | 
In our new interpreter (see Figure 15) we call the two environments 

ENV (lexical) and oenv (dynamic). The syntax of LamespA-expressions is 

extended to accommodate two kinds of bindings; for example, 

(LAMBDA (X Y (DYNAMIC Z) W) ...) 

takes four arguments, and binds the parameters x, Y, and Ww lexically, and z 

dynamically. Using this syntax, we could write RADIX-10 in this way: 

(DEFINE (RADIX-10 FUN) 

((LAMBDA ((DYNAMIC RADIX)) (FUN)) 

10.))
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‘ 

The code for PRINT-NUMBER would then be written: 

(DEFINE (PRINT-NUMBER N) 

((LAMBDA (Q R) 

. (COND ((ZEROP Q) (PRINT-DIGIT R))- 

(T (PROGN (PRINT-NUMBER Q) 

(PRINT-DIGIT R))))) 

(/ N (DYNAMIC RADIX) ) 

(REMAINDER N (DYNAMIC RADIX)))) 

Most of the extra complexity in Figure 15 is devoted to the parsing of 

LAMBDA-expression binding lists upon application by app.y-proceoure. (For the 

sake of brevity we have omitted the parts of the interpreter which deal 

with seta and PROGN; they could easily be re-inserted. )
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(DEFINE (EVAL EXP ENV DENV) 
(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 
(1 (VALUE EXP ENV)))) 

((EQ (CAR EXP) QUOTE) (CADR EXP)) 
((EQ (CAR EXP) 'LAMBDA) | 
(LIST '&PROCEDURE (CADR EXP) (CADDR EXP) ENV)) 

((EQ (CAR EXP) 'COND) 
(EVCOND (CDR EXP) ENV DENV)) 

((EQ (CAR EXP) 'DYNAMIC) (VALUE (CADR EXP) DENV)) 
(7 (APPLY (EVAL (CAR EXP) ENV DENV) 

(EVLIS (COR EXP) ENV DENV) 

DENV)))) 

(DEFINE (APPLY FUN ARGS DENV) 

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS DENV)) 

((EQ (CAR FUN) '&PROCEDURE) 

(APPLY-PROCEDURE (CADR FUN) ARGS '() "() "() '() 

(CADDDR FUN) DENV (CADDR FUN))) 

(T (ERROR)))) 

(DEFINE (APPLY-PROCEDURE VARS ARGS LVARS LARGS DVARS DARGS ENV DENV BODY) 

(COND ((NULL VARS) . 

(COND ((NULL ARGS) 

(EVAL BODY 

(BIND LVARS LARGS ENV) 

(BIND DVARS DARGS DENV))) 

(T (ERROR)))) | 
((NULL ARGS) (ERROR)) 

(({ATOM (CAR VARS)) 

(APPLY-PROCEDURE (CDR VARS) (COR ARGS) 

(CONS (CAR VARS) LVARS) (CONS (CAR ARGS) LARGS) 

DVARS DARGS 

ENV DENV BODY)) 

((EQ (CAAR VARS) 'DYNAMIC) 

(APPLY-PROCEDURE (COR VARS) (COR ARGS) 

LVARS LARGS 

(CONS (CAR VARS) DVARS) (CONS (CAR ARGS) DARGS) 

ENV DENV BODY) ) 

(T (ERROR)))) 

For EvCcOND and EvVLIS see Figure 2. 

For VALUE, BIND, and tooxup see Figure 3. 

For vtooxupi see Figure 10. 

Figure 15 . 

Interpreter with Separate Lexical and Dynamic Variables     
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Dynamic scoping provides an important abstraction for dealing with 

side effects in a controlled way. <A low-level procedure may have state 

variables which are not of interest to intermediate routines, but which 

must be controlled at a high level. Dynamic scoping allows any procedure 

to get access to parts of the state when necessary, but permits most 

procedures to ignore the existence of the state variables. The existence 

of many dynamic variables permits the decomposition of the state in such a 

way that only the part of interest need be dealt with. 

If dynamic variables are integrated with the lexical environment, 

intractable dilemmas are encountered. (We have not considered here all 

possible such integration schemes, but the authors have found = such 

difficulties with every such scheme they have examined.) We have therefore 

presented an interpreter in which environments for the two kinds of 

variable are separated.



Steele and Sussman 51 The Art of the Interpreter 

Summary 

We examined the effects of various language design decisions on the 

programming styles available to a user of the language, with particular 

emphasis on the ability to incrementally construct modular systems. At 

each step we exhibited an interactive meta-circular interpreter for the 

language under consideration. Each new interpreter was the result of an 

incremental change to the previous interpreter. 

We started with a simple interpreter for LISP recursion equations. 

In order to capture certain abstractions we were forced to introduce 

procedural data. This in turn forced consideration of the meanings of free 

variables in a= procedure, for. the simplest extension unexpectedly 

introduced dynamic scoping of variables. 

We were compelled to turn from dynamic scoping to lexical scoping 

to preserve the integrity of procedural abstractions. The referentially 

transparent language thus obtained is richer than expected. It allows the 

definition of procedures which construct other procedures by instantiation 

of a prototype. Unfortunately, we found that complete referential 

transparency in a language makes it impossible to construct an interactive 

interface to the interpreter. But such an interface is necessary to 

satisfy another requirement of modular construction: that parts of a 

program can be independently defined, replaced, and debugged. We were 

forced to give up absolute referential transparency to admit an interactive 

interface. 

The problems of the interactive interface led us to consider the 

notion of state as a dimension of abstraction. Just as we didn't want to 

have textually monolithic programs, we wanted to avoid programs which 

manipulate a monolithic representation of the state. The decomposition of 

the state of a system into several independent parts induces the notion of 

a side effect. Side effects only make sense relative to a definition of 

-equality on the space of data objects. But the definition of equality 

itself depends simultaneously on the notion of side effect. Only a few of 

the choices of equality predicate and. side effect notion are consistent 

with the requirements of modular construction. 

The introduction of side effects is inconsistent with referential 

transparency. But since both are important to support modular construction 

we must accept an engineering trade-off between them. We were led to look 

for controlled patterns of side effects which can be easily understood and 

safely applied. We discovered that one such pattern is equivalent to the 

use of dynamically scoped variables we discussed earlier. We investigated 

how to construct a system which integrates lexical and dynamic scoping in a 

smooth way. 

There are many issues yet to be explored. The introduction of side 

effects raises questions about order of evaluation. An interesting order 

provided by Algol 60 is call-by-name. This discipline, so unlike LISP's, 

is induced from a different notion of procedure, expressed as the "copy 

rule". This idea is a syntactic one, and so differs in flavor from the
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procedural ideas embodied by the interpreters we have presented. 

Consideration of syntactic transformations leads to the notion of meta- 

procedures, such as macros, compilers, and simplifiers. We will explore 

all of this in Parts Three and Four. : 
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Notes 

{Can George do better?} Page 34 

The problem here is that George needs access to the statistics 

counter without giving that access to anyone else. As described in the 

next example George can make the counter an own variable, but how can he 

get access to it? One idea is that George can define mapcAR in the 

following manner: 

(({ LAMBDA (N) 

(PROGN (SETQ MAPCAR 

(LAMBDA (F L) 

(PROGN (SETQ N (+ N 1)) 

(OLDMAPCAR F L)))) 

(LAMBDA () N))) 

0) 

This expression defines mapcaR by setging (See {Note Driver Loop with Side 

Effects}.) it to an appropriate procedure. It then returns, as a value, 

an anonymous procedure which accesses the value of the statistics counter. 

If George saves this value and uses it to get at the counter when he needs 

it, he will have isolated it completely from everyone else! 

{Debugging} Page 27 

It has been suggested that it is possible always to write correct 

programs. Such a situation would eliminate the need for debugging. The 

problem with this idea is that a crucial part of the problem-solving 

Strategy is. the decomposition of problems into presumably independent 

subproblems. There is no guarantee that this is possible in general, but 

even when it is not possible, there are often general strategies for 

approximating a solution to a problem by composing the solutions to almost 

independent. subproblems. Often one can make progress on the solution to a 

hard problem by considering the solution of a simplified version of the 

problem which is similar in some essential aspect to the original one but 

which differs from it in detail. Once the solutions to the subproblems are 

obtained, they must be fitted together, and the details of the interactions 

smoothed out. The fixing of unanticipated interactions is debugging. 

Even in those cases where a decomposition into completely 

independent subproblems is possible, it is not always feasible. In order 

to be sure that the solutions to the subproblems are really independent it 

is necessary to understand both the problem-~ and the possible 

implementations and interactions of subsolutions so completely that one 

must effectively solve the entire problem before choosing the correct 

decomposition. This compromises the decomposition strategy.
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{Driver Loop with Side Effects} | Pages 37, 53, 59 

This driver loop (Figure Nl) is similar to the one in Figure 8 

(which didn't work). This one does work because, although top-level 

procedure definitions are closed in the current top-level environment, that 

  

(DEFINE (DRIVER-LOOP-1 ENV FORM) 

(COND (( ATOM FORM) 

(ORIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV)))) 

({EQ (CAR FORM) 'DEFINE) 

(ORIVER-LOOP ENV 

(EVSETQ (CAADR FORM) 

(LIST '&PROCEDURE 

(CDADR FORM) 

(CADDR FORM) 

ENV) 

ENV) 

(PRINT (CAADR FORM)))) 

(T (DRIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV)))))) 

For €val and EvsetTg see Figure ll. 

For LookuPl1 see Figure 3 (not Figure 10, despite Figure 11!). 

Figure Nl 

Implementation of oriver-Loop Using Side Effects      
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{ EVALQUOTE } Page 14 

The top level of LISP 1 [LISP 1M] and LISP 1.5 [LISP 1.5M] actually 

was not at all like the one presented here. Rather than reading one S- 

expression and giving it to EvAL, it read two S-expressions and gave them 

to appty. Such a top level is called an EvaLquote top level (see Figure N2). 

  

(DEFINE (DRIVER-LOOP-1 PROCEDURES FORM1) 

(ORIVER-LOOP-2 PROCEDURES FORM] (READ))) 

(DEFINE (DRIVER-LOOP-2 PROCEDURES FORM) FORM2) 
(COND ((EQ FORM] ‘DEFINE) 

(DRIVER-LOOP (BIND (LIST (CAAR FORM2)) 
(LIST (LIST '&PROCEDURE (CDAR FORM2) (CADR FORM2))) 
PROCEDURES) 

(PRINT (CAAR FORM2)))) 
(T (DRIVER-LOOP PROCEDURES 

(PRINT (APPLY FORM] FORM2 PROCEDURES)))))) 

For DRIVER-LOOP see Figure 1. 

For apPtyY see Figure 2. 

For BIND see Figure 3. 

Figure N2 

Driver Loop for an EvALQuoTeE Top Level       

This driver loop is somewhat nicer than the one in Figure 1, 

because the one in Figure ] had an essentially useless condo clause. The 

case of typing an atom was not useful, because there were no top-level 

values for variables. Once we introduce procedural objects, this is no 

longer true. But EVALQUOTE requires an inconsistency of notation: at the 

top level one must write CAR((A . 68)), Whereas in the middle of a program 

one would write (cAR '(A . B)). 

The notion of evaiquote also has some theoretical motivation, if one 

thinks of LISP as a universal machine akin to a universal Turing machine. 

In this model one takes a description of a machine to be simulated and a 

description of its input data, and gives them to the universal machine to 

process. In LISP, the universal machine is aApPLy.
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{Gaussian} Pages 32, 68 

A typical example of the use of a pseudo-random number generator is 

to construct a generator for pseudo-random numbers with a Gaussian 

distribution by adding up a large number of uniformly distributed pseudo- 

random numbers. We would like to write it in roughly as in Figure N3. 

  

(DEFINE (GAUSSIAN) 

(WEBER 0 43)) 

(DEFINE (WEBER X N) 

(COND ((= N 0) X) 

(T (WEBER (+ X (RANDOM)) (- N 1))))) 

Figure N3 

"Gaussian" Pseudo-Random Number Generator       

This code should add up 43 pseudo-random numbers obtained by calling’ RANDOM. | 

We cannot write such a RANDOM without side effects, however. We can arrange 

to pass the seed around, as in Figure N4. 

  

(DEFINE (GAUSSIAN SEED) 

(WEBER 0 43 SEED)) 

(DEFINE (WEBER X N SEED) 

(COND ((= N 0) (CONS X SEED)) 

(T ((LAMBOA (NEWSEED) 

(WEBER (+ X NEWSEED) (- N 1) NEWSEED)) 

(RANDOM SEED))))) 

Figure N4 

"Gaussian" Pseudo-Random Number Generator, Passing SEED       

This is much more complicated. The user of GAUSSIAN muSt maintain the seed. 

Moreover, GAUSSIAN and WEBER each need to return two values; here we cons 

them together, and the user must take them apart.
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{LABELS } Pages 29, 59 

This technique can be generalized to allow the definition of 

recursive local procedures. (Although the Y-operator discussed in {Note Y- 

operator} can be used to implement recursive local procedures, it is 

extremely painful to construct several mutually recursive procedures. 

Although mutually recursive procedures can be theoretically eliminated (by 

procedure integration), this process destroys the conceptual structure of 

the program. ) 

Consider writing a procedure to construct the reverse of a given 

list: 

(DEFINE (REVERSE L) 

(REVERSEL L '())) 

(DEFINE (REVERSE] OLD NEW) 

(COND ((NULL OLD) NEW) 

(T (REVERSEL (COR OLD) (CONS (CAR OLD) NEW))))) 

The procedure REVERSE] 1S irrelevant to the outside world; we would like to 

hide it inside REVERSE. 
Let us invent a new construction to permit the definition of local 

procedure definitions with names: 

(LABELS (CCF, Ya. “a2 | body, ) 

((f, Yo Yoo wae) body,) 

((f, Yn “ne wee) body,)) 

body) 

means the value of body when evaluated in an environment where’ the 

specified procedure definitions are available. For example: 

(DEFINE (REVERSE L) 

(LABELS (((REVERSE1 OLD NEW) 

(COND ((NULL OLD) NEW) 

(T (REVERSE1] (COR OLD) (CONS (CAR OLD) NEW)))))) 

(REVERSE L '()))) 

The same trick works for LABELS as for the top level: when tooxupl has found 

a LABELS-defined function, it has the correct environment in hand for 

constructing a &PRrocenurE-object. We need only add a test in eval for the 

LABELS construct, and arrange for the appropriate &taseLeo-objects to be 

constructed (see Figure N5). .
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(DEFINE (EVAL EXP ENV) 

(COND ((ATOM EXP) 

(COND ((NUMBERP EXP) EXP) 

(T (VALUE EXP ENV)))) 

((EQ (CAR EXP) 'QUOTE) 

(CADR EXP)) 

- ((EQ (CAR EXP) 'LAMBDA) 

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV)) 

((EQ (CAR EXP) 'LABELS) 

(EVLABELS (CADR EXP) EXP '() '() ENV)) 

((EQ (CAR EXP) 'COND) | 

(EVCOND (COR EXP) ENV)) 

(T (APPLY (EVAL (CAR EXP) ENV) 

(EVLIS (COR EXP) ENV))))) 

(DEFINE (EVLABELS DEFINITIONS EXP NAMES FNS ENV) 

(COND ((NULL DEFINITIONS) . 

(EVAL (CADOR EXP) (BIND NAMES FNS ENV))) 

(T (EVLABELS (COR DEFINITIONS) 

EXP 

(CONS (CAAAR DEFINITIONS) NAMES) 

(CONS (LIST '&LABELED 

(COAAR DEFINITIONS) 

(CADAR DEFINITIONS)) 

FNS) 

ENV)))) 

For VALUE, LOOKUP, and BIND see Figure 3. 

For EVCOND and EVLIS see Figure 5. 

For APPLY see Figure 7. 

For tooxup1 see Figure 10 (not Figure 3). 

Figure N5 

An Evaluator For Local Lexical Scoping, 

Dynamic Top-Level References, 

and Local Definition of Recursive Procedures 

   



Steele and Sussman _ 59 The Art of the Interpreter 

{LABELS with Side Effects} “Page 37 

This implementation of tapeLs (see Figure N6) applies the technique 

of {Note Driver Loop with Side Effects} to the implementation of LABELS in 

{Note tases}. This is in fact how tasets (or its cousin LABEL) is usually 

implemented in "real" LISP systems. 

  

(DEFINE (EVLABELS DEFINITIONS EXP NAMES FNS ENV) 

(COND ((NULL DEFINITIONS) | 
(EVLABELS-CLOSE (CADR EXP) EXP NIL (BIND NAMES FNS ENV))) 

(T (EVLABELS (COR DEFINITIONS) 

"EXP 

(CONS (CAAR DEFINITIONS) NAMES) 

(CONS '&UNASSIGNEO FNS) 

ENV)))) 

(DEFINE (EVLABELS-CLOSE DEFINITIONS EXP VALS ENV) 

(COND ((NULL DEFINITIONS) 

(EVLABELS-CLOBBER NIL EXP (COAR ENV) VALS ENV)) 

(T (EVLABELS-CLOSE (COR DEFINITIONS) 

EXP 

(CONS (LIST '&PROCEQURE 

, (CDAAR DEFINITIONS) 

(CADAR DEFINITIONS ) 

ENV) 

VALS) 

ENV)))) 

(DEFINE (EVLABELS-CLOBBER HUNOZ EXP SLOTS VALS ENV) 

(COND ((NULL VALS) 

(EVAL (CADDR EXP) ENV)) 

(T (EVLABELS-CLOBBER (RPLACA SLOTS (CAR VALS)) 

EXP 

(CDR SLOTS) 

(CDR VALS) 

ENV)))) 

For €VAL and EVSETQ see Figure 11. 

For LookuPl] see Figure 3 (not Figure 10, despite Figure 11!). 

Figure N6 

Implementation of LaBeLs Using Side Effects     
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{Primitive Operators} Page 10 

A primitive operator might be a very complicated object in a "real" 

LISP implementation; it would probably have machine-language code within 

it. We are not interested in the details of a particular host machine 

here; we wish only to present a simple meta-circular definition of pRimop 

and PRIMoP-APPLY. We will notate the procedural object which is the value of 

caR (say) in the initial top-level environment <THE-PRIMITIVE-PROCEDURES> aS 

"acar"., This object has no interesting properties except that it is EQ to 

itself and not to any other object. The initial top-level environment 
therefore looks like: 

(( (CAR COR EQ ATOM NULL NUMBERP + - * ...) 

&CAR &CDR &EQ &ATOM &NULL &NUMBERP &+ &- &* ...)) 

Given this, we can define PRIMOP and PRIMOP-APPLY aS in Figure N7. 

  

(DEFINE (PRIMOP FUN) 

(COND ((EQ FUN '&CAR) T) 

(CEQ FUN '&COR) T) 

((EQ FUN '&EQ) T) 

((EQ FUN '&ATOM) T) 

((EQ FUN '&NULL) T) 

((EQ FUN '&NUMBERP) T) 

({EQ FUN '&+) T) 

((EQ FUN '&-) T) 

((EQ FUN '&*) T) 

(T NIL))) 

(DEFINE (PRIMOP-APPLY FUN ARGS) 

(COND ((EQ FUN '&CAR) (CAR (CAR ARGS))) 

({EQ FUN '&COR) (COR (CAR ARGS))) 

((EQ FUN '&EQ) (EQ (CAR ARGS) (CADR ARGS))) 

((EQ FUN '&ATOM) (ATOM (CAR ARGS))) 

((EQ FUN '&NULL) (NULL (CAR ARGS))) 

((EQ FUN '&NUMBERP) (NUMBERP (CAR ARGS))) 

((EQ FUN '&+) (+ (CAR ARGS) (CADR ARGS))) 

((EQ FUN '&-) (- (CAR ARGS) (CADR ARGS))) 

((EQ FUN '&%&) (* (CAR ARGS) (CADR ARGS))) 

(T (ERROR)))) 

Figure N7 

Meta-Circular Definition of PRIMOP and PRIMOP-APPLY     
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{PROGN Wizardry} Page 35 

We defined EvprogN in the way shown in Figure 11 rather than in this 

"more obvious" way: 

(DEFINE (EVPROGN EXPS ENV LASTVAL) 

(COND ((NULL EXPS) LASTVAL) 

(T (EVPROGN (COR EXPS) ENV (EVAL (CAR EXPS) ENV))))) 

for a technical reason: we would like the tail-recursive properties of the 

code being interpreted to be reflected in the interpretation process. We 

specifically want recursive calls as the last subform of a proGN form to be 

tail-recursive if the procn form itself is in a tail-recursive situation. 

For example, we might write a loop such as: 

(DEFINE (PRINTLOOP x) 

(COND ((= X 0) 'BLASTOFF) 

(T (PROGN (PRINT X) 

(PRINTLOOP (- X 1)))))) 

We would like this loop to be iterative, but it can be iterative only if 

the recursive call to PRINTLOOP is tail-recursive. Our point is that if the 

"obvious" version of EVPROGN is used in the interpreter, then interpretation 

of PRINTLOOP will not be tail-recursive because of the "stacking up of EVPROGN 

frames" (the last call to eval from EvpROGN is not tail-recursive). This is 

unnecessary because EvPROGN does nothing with the last value but return it 

anyway. 

By the way, the use of PROGN in a COND clause as shown above in 

PRINTLOOP iS a very common Situation, as is the use of a PROGN as the body of 

a procedure (cf. George's last experimental version of MaPcarR). As a 

convenience, most real LISP implementations define extended versions of COND 

and tampoa which implicitly treat clauses (resp. bodies) as proGn forms (see 

Figure N8). This allows us to write such things as: 

(DEFINE (PRINTLOOP xX) 

(SLEEP 1) 

(COND ((= X 0) 'BLASTOFF) 

(T (PRINT X) 

(PRINTLOOP (- X 1)))))



Steele and Sussman 62 The Art of the Interpreter 

  

(DEFINE (EVCOND CLAUSES ENV) 

(COND ((NULL CLAUSES) (ERROR)) 

((EVAL (CAAR CLAUSES) ENV) 

(EVPROGN (CDAR CLAUSES) ENV NIL)) 

(T (EVCOND (CDR CLAUSES) ENV)))) 

(DEFINE (APPLY FUN ARGS) 

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS)) 

((EQ (CAR FUN) '&PROCEDURE ) 

(EVPROGN (CODR FUN) 

(BIND (CADR FUN) ARGS (CADODR FUN)) 

NIL)) 

(T (ERROR)))) 

For €VAL and EvprROGN see Figure 1]. 

Figure N8 

Treating conn Clauses and Procedure Bodies as Implicit PROGN Forms       
  

Finally, we note that PROGN iS unnecessary except as a programming 

convenience. Because the language'is defined to be executed in applicative 

order (cf. {Note Normal Order Loses} in [Revised Report]), we can force 

the sequencing of evaluation, as well as throw away unwanted values, by 

using LaAMBOA-expressions. We first note that 

(PROGN @, ey +++ Oy yg ey) =  (PROGN e, (PROGN Oy vee (PROGN en} ey) .e» )) 

so that we need worry only about PROGN with two subforms: 

(PROGN e, e =  ((LAMBDA (HUNOZ F) (F)) 1&2) * 

f) 
(LAMBDA () e,)) 

(see [Imperative] and [Revised Report]).
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{quote Mapping} | Page 7 

What the quote notation. achieves is a simple mapping of the entire 

set of S-expressions into a subset of itself; this mapping is trivially 

invertible. This is necessary in order to leave some S-expressions left 

over to represent other things. 

This idea may be applied to natural numbers as well. We can 

"quote" a number by doubling it. In this way every even number represents 

half of itself, just as the S-expression (quote o) represents the S- 

expression in its cadr. This leaves all the odd numbers for other 

purposes. For example, we can define an ordered set of variables and let | 

3% encode the n'th variable, for N>1i0. We can also let 3) mean COND, 3° mean 

LaMena, etc. We can then encode a procedure call as §'7%11%13%... where f is 

the encoding of the procedure and x, y, z, ... are the encodings of the 

arguments; cond forms and LAMBDA-expressions can be similarly encoded. For 

example, 7 | 

(COND (( NULL A) 3) (T 6)) 

might be encoded as the number 

1421 319 
7 48 78) 053 712, 1 (5 

53 7f5 

In this manner we can encode all of the LISP language as natural numbers. 

This is an example of the technique of “Godelization". 

{quote Shafts the Compiler} Page 19 

We emphasize that it is not the presence of dynamically scoped 

variables which makes standard LISP difficult for compilers, but the very 

fact that the Lamepa-expressions are quoted. It is impossible in general to 

determine whether a quoted S-expression is intended to be code or just some 

constant data. Most LISP systems provide another kind of quote called 

FUNCTION. In LISP J [LISP 1M] and LISP 1.5 [LISP 1.5M] this used to produce 

FUNARG Objects (we call them aproceourE objects), but in more recent LISP 

systems [Moon] [Teitelman] an ordinary FuUNCTION-expression has been made 

equivalent to a quoted expression, serving only as a flag to the compiler 

that the quoted expression is intended as code. However, the introduction 

of the "'" notation for quoted expressions has led many programmers to 

prefer the use of Quote to FUNCTION for reasons of conciseness. This in turn 

has required changes to the compiler to specially recognize standard 

situations where this is used (e.g. the functional argument to mapcar), but 

this patch doesn't solve the problem generally.
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{RPLACA Can Alter car Instead} Page 40 

We have implicitly thought of the RPLACA operation as modifying a 

cons so as to have a different car. However, there is an interpretation in 

which RPLACA is thought of as modifying the car operator. Taking the car of 

an object always involves both the car operator and the object. When we 

perform an RPLACA on object denoted by Foo, all we can say is that the value 

of (CAR FOO) may have changed. It is not necessarily clear what aspect of 

that expression has changed. Using this idea, we can express RPLACA in 

terms of sSETQ aS in Figure N9. Note that we depend on EQ to distinguish 

different results of CONS. 

  

(DEFINE (RPLACA X Y) 

(PROGN ((LAMBDA (OLDCAR) 

(SETQ CAR 

(LAMBDA (Z) 

(COND ((EQ Z X) Y) 

(T (OLOCAR X)))))) 

CAR) 

X)) 

Figure N9 

RPLACA in Terms of SETQ Which Modifies CAR     
 



Steele and Sussman 65 The Art of the Interpreter 

{S-expression Postulates and Notation} Pages 4, 41 

s-expressions form a number system analogous to that for the 

natural numbers. Each can be used to encode arbitrary strings of symbols 

by means of "GOdelization", but the S-expression encoding is usually far 

more convenient than the numerical encoding. 

We repeat here the informal characterization of Peano's postulates 

and the analogous postulates for S-expressions from [Levin]: 

The Postulates of Arithmetic 

Zero is a number. 

The successor of a number is a number. 

Zero is not the successor of any number. 

No two numbers have the same successor. 

(Induction Principle) Any property which is true for zero, and 

is such that if it is true for some number it is also true for 

the successor of that number, it is true for all numbers. 

om 
W
 DN 

ee 
go 

Zero is notated as 0, and the successor of any number wn is notated 

as N'. AS a convenience we define alternative notations for numbers other 

than zero, such as decimal place-value notation. Thus for orrttrtttttete we 

often write 13. 

The Postulates for S-expressions 

Atoms are S-expressions. 

The cons of any two S-expressions is an S-expression. 

An atom is not the cons of any two S-expressions.. 

If « differs from 6, or if y differs from &, then cons of a 

and y differs from cons of @ and &. 

5. (Induction Principle) Any property which is true of all atoms, 

and is such that if it is true for two S-expressions it is also 

true for their cons, is true for all S-expressions. 

  

om 
GW 
0
 

Atoms are notated as strings of letters and digits. The cons of 

two S-expressions a and @ is notated (a . @). AS a convenience, we define 

alternative notations for some commonly used forms of S-expression, such as 

list notation. The atom NIL is called the “empty list"; we write it 

as (). If (a @ ¥ ...&) is (the notation for) a list nm (where the "..." is 

meant aS a meta-syntactic ellipsis), then the cons of « and nm is written 

(e « B ¥ ...&). We also define quotation notation, in. which (quote a) is 

written as ‘a. 

(This definition of S-expressions applies to "pure LISP", which has 

no side effects. In Part Two, when the RPLACA and RPLACD operators are 

introduced, the phrase "the cons of" will not be well-defined. )
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{This ain't A-lists} Page 11 

Our symbol table routines are not the same as those in LISP 1.5. 

Their behavior is approximately the same, but the data structures involved 

differ. The LISP 1.5 routines (PpAIRLIS and assoc) use the traditional 

"association list" format: - 

  
    

  

                ee ee ) 

oe v2 |@2 v3 [/e3] jvy{er] vsTEs] Ve (EC 
      
    

Our routines (BIND and Lookup), besides having nicer names, are more 

efficient because the number of conses performed to bind a given number of 

variables is usually smaller (we arrange for the environment structure to 

share the variable lists already contained in LamspA-expressions). Morever, 

the environment is organized into "frames" or "contours", which will be of 

some utility later. The environment is represented in this form: 

  

  
  

    
TJ        

  

    
  

  
      

  

    

  

  

+e? Par-t of 

LAMBDA -2 xpression
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{Value Quibble} Page 8 

"Did he ever return? 

No, he never returned, 

And his fate is still unlearned..." 

~— The Man Who Never Returned 

(Charlie on the NTA) 
  

  

We said "eval's purpose is to determine the values of expressions". 

But what is the value of the expression (DRIVER)? It is certainly not an 

illegal or useless expression to evaluate, yet it has no value. The 

purpose of the expression is to cause a certain process to be evolved; it 

is an “infinite loop", which never returns. This process includes side 

effects (READ and PRINT) through which it interacts with the user. This 

Situation arises because the system of interest is broken into two parts 

with independent state: the computer and the user. We will have more to 

say about this later. .
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{Weber } Pages 32, 38 

To continue our GAUSSIAN example (see {Note Gaussian}), we can try 

to remove the side-effect from RANDOM while avoiding the passing around of 

SEEO by pushing RANDOM up to the top level (see Figure N10).  RANDOM-DRIVER 

takes a function F and an initial seed (reminiscent of <THE-PRIMITIVE- 

PROCEDURES>), and continually stuffs random numbers into F. Each call to F 

must produce a new Ff (a kind of continuation [Reynolds]). Using this, we 

can arrange for numbers with a "Gaussian" distribution to be generated. 

  

(DEFINE (RANDOM-DRIVER F SEED) 

(( LAMBDA (NEWSEED) 

(RANDOM-DRIVER (F NEWSEED) NEWSEED)) 

(( LAMBDA (Z) 

(COND ((> Z 0) Z) 

(T (+ Z -32768.)))) 

(* SEEN 899.)))) 

(DEFINE (GAUSSIAN G) 

(WEBER 0 43 G)) 

(DEFINE (WEBER XN H) 

(COND ((= N 0) (H X)) 

(T (LAMBDA (R) 

(WEBER (+ XR) (- N 1) H))))) 

(DEFINE (ORIVER USERFN INITSEED) 

(RANDOM-DRIVER (GAUSSIAN USERFN) INITSEED)) 

Figure N10 

"Gaussian" Pseudo-Random Number Generator without Passing seep Around       

In this way, a uSer function can be provided to oRIVER (along with the 

initial seed), and the user function will have "Gaussian" numbers stuffed 

into it. For example: 

(DEFINE (PR) (PROGN (PRINT R) P)) 

(DRIVER P 11) 

will print an interminable sequence of “Gaussian” numbers. Notice the 

structure of the program: the RANDOM procedure calls GAUSSIAN, which in turn 

calls the user procedure. We have completely everted the overall system. 

The more layers in the original system piled on top of GAUSSIAN, the more — 

layers will appear inside-out in this version. ' . 

Now there are two other funny things about this. One is that we 

had to use a side effect (print) to get the answer out; the other is that
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it's hard to make it stop! These problems are related. The structure of 

RANDOM-DRIVER iS an infinite loop, as with all drivers. Because RANDOM-DRIVER 

never returns a value, there is no way to get an answer out without a side- 

effect like PRINT. 

We can arrange to signal RANDOM-DRIVER that no more values are 

desired, and to return a value (see Figure N11). 

  

(DEFINE (RANDOM-DRIVER F SEED) 

(COND ((CAR F) (COR F)) 

(T ((LAMBDA (NEWSEED) 

_ (RANDOM-DRIVER ((CDR F) NEWSEED) NEWSEED)) 

((LAMBDA (Z) 

(COND ((> Z 0) Z) 

(1 (+ Z -32768.)))) 

(* SEED 899.)))))) 

(DEFINE (GAUSSIAN G) 

(WEBER 0 43 G)) 

(DEFINE (WEBER X N H) 

(COND ((= N 0) (H X)) 

(T (CONS NIL 

(LAMBDA (R) 

(WEBER (+ X R) (- N 1) H)))))) 

(DEFINE (DRIVER USERFN) 

(RANDOM-DRIVER (GAUSSIAN USERFN) 43)) 

Figure Nll 

"Gaussian" Random-Number Generator "Top Level" without Side Effects       

Using this new definition, we can write: 

(DEFINE (PR) (CONS T R)) 

(DRIVER P 11) 

which eventually returns one "Gaussian" number. (Doing something with more 

than one "Gaussian" number takes a little more work...) 

Notice that in order to make this work, RANDOM-DRIVER had to know an 

awful lot about its functional argument; a fairly complicated protocol had 

to be developed for handshaking. We might argue that this exercise, while 

it has indeed removed all obvious side effects, has somewhat tarnished the 

modularity of the RANDOM program. In any case, the structure of our final 

program is not exactly what we had in mind when we started.
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{Y-operator} Pages 26, 57 

While the interpreter of Figure 8 cannot DEFINE recursive 

procedures, it is possible to define recursive procedures by using a 

variant of the “paradoxical combinator", also known as the Y-operator: 

(DEFINE (Y F). 

((LAMBDA (G) 

(LAMBDA (Xx) 

({F (G G)) X))) 
(LAMBDA (G) 

(LAMBDA (X) 

((F (G G)) X))))) 

Using this we define the doubly-recursive algorithm for computing the 

Fibonacci function: 

(DEFINE (FIB K) 

((Y (LAMBDA (F) 

(LAMBDA (N) 

(COND ((= N 0) 1) 

((= N 1) 1) 

AT G+ CF (- NAY) (CF (- N 2)))))))) 

K)) 

That this manages to work is truly remarkable. Notice that this is almost 

identical to the LtaseL construct which was actually introduced by LISP 1, 

though at the time it was invented the implementors didn't realize this 

correspondence [LISP History].
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