

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo No. 453 May 1978

The Art of the Interpreter

or, The Modularity Complex
(Parts Zero, One, and Two)

by

Guy Lewis Steele Jr.* and Gerald Jay Sussman*™

Abstract:

We examine the effects of various language design decisions on the

programming styles available to a user of the language, with particular

emphasis on the ability to incrementally construct modular systems. At

each step we exhibit an interactive meta-circular interpreter for the

language under consideration. Each new interpreter is the result of an

incremental change to a previous interpreter.

We explore the consequences of various variable binding disciplines

and the introduction of side effects. We find that dynamic scoping is

unsuitable for constructing procedural abstractions, but has another role |

as an agent of modularity, being a structured form of side effect. More

general side effects are also found to be necessary to promote modular

style. We find that the notion of side effect and the notion of equality

(object tdentity) are mutually constraining; to define one is to define

the other.

The interpreters we exhibit are all written in a simple dialect of

LISP, and all implement LISP-like languages. A subset of these inter-

preters constitute a partial historical reconstruction of the actual

evolution of LISP.

Keywords: abstraction, actors, applicative order, bindings, control struc-

tures, debugging, dynamic scoping, environments, fluid variables, FUNARG

problem, functional objects, interactive programming, lambda-calculus,

lexical scoping, LISP, modularity, procedural data, recursion equations,

referential transparency, SCHEME, side effects, static scoping, struc-

tured programming

This report describes research done at the Artificial Intelligence

Laboratory of the Massachusetts Institute of Technology. Support for the

laboratory's artificial intelligence research is provided in part by the

Advanced Research Projects Agency of the Department of Defense under Office

of Naval Research contract N00014-75-C-0643.

* NSF Fellow xx Jolly Good Fellow

©)Massachusetts Institute of

Technology 1978

Contents

Introduction

Modularity

LISP-like Languages

Structure of the Paper

Part Zero — LISP and Interpreters

Recursion Equations

An Interpreter for LISP Recursion Equations

Part One — Variable Scoping Disciplines

Procedures as Data

Local Procedures

Lexical Scoping

Top Levels versus Referential Transparency

Part Two — State

Decomposition of State

Side Effects and Local State

Side Effects in the Interpreter

Equipotency of SETQ and RPLACA

Side Effects. and Equality

Dynamic Scoping as a State-Decomposition Discipline

Summary
Acknowledgements

Notes.

{Can George do Better?}

{Debugging}

{Driver Loop with Side Effects}

{ EVALQUOTE }

{Gaussian}

{LABELS }

{LABELS with Side Effects}

{Primitive Operators}

{proGgn Wizardry}

{QUOTE Mapping}

{quote Shafts the Compiler}

{RPLAcA Can Alter car Instead}

{S-expression Postulates and Notation}

{This ain't A-lists}

{Value Quibble}

{Weber }

{Y-operator}

References

Steele and Sussman 1 The Art of the Interpreter

Introduction

Modularity

The entities constructed by programming are extremely complex.

Accurate construction of large programs would be impossible without

specific technigues for controlling this complexity. Most such techniques

are based on finding ways to decompose a problem into almost independently

solvable subproblems, allowing a programmer to concentrate on _ one

subproblem at a time, ignoring the others. When the subproblems are

solved, the programmer must be able to combine the solutions with a minimum

of unanticipated interactions. To the extent that a decomposition succeeds

in breaking a programming problem into manageable pieces, we say that the

resulting program is modular; each part of the solution is called a

module. Well-designed programming languages provide features which support

the construction of modular programs.

One decomposition strategy is the packaging of common patterns of

the use of a language. For example, in Algol a for loop captures a common

pattern of if and goto statements. Packages of common patterns are not

necessarily merely abbreviations to save’ typing. While ae simple

abbreviation has little abstraction power because a user must know what the

abbreviation expands into, a good package encapsulates a higher level

concept which has meaning independent of its implementation. Once a

package is constructed the programmer can use it directly, without regard

for the details it contains, precisely because it corresponds to a single
notion he uses in dealing with the programming problem.

A package is most useful if its behavior is independent of the

context of its use, thus reducing possible interference with other

packages. such a package is called referentially transparent.

Intuitively, referential transparency requires that the meanings of parts

of a program be apparent and not change, so that such meanings can be

reliably depended upon. In particular, names internal to one module should

not affect or be affected by other modules — the external behavior of a

module should be independent of the choice of names for its local

identifiers.

To make a modular program, it is often necessary to think of a

computational process as having state. In such cases, if the state can be

naturally divided into independent parts, an important decomposition may be

the division of the program into pieces which separately deal with the

parts of the state.

We will discuss various stylistic techniques for achieving

modularity. One would expect these techniques to complement each other.

We will instead discover that they can come into conflict. Pushing one to

an extreme in a: language can seriously compromise others.

Steele and Sussman 2 The Art of the Interpreter

LISP-like Languages

Of the hundreds or thousands of computer languages which have been

invented, there is one particular family of languages whose common ancestor

was the original LISP, developed by McCarthy and others in the late 1950's.

[LISP History] These languages are generally characterized by a simple,

fully parenthesized ("Cambridge Polish") syntax; the ability to manipulate

general, linked-list data structures; a standard representation for

programs of the language in terms of these structures; and an interactive

programming system based on an interpreter for the standard representation.

Examples of such languages are LISP 1.5 [LISP 1.5M], MacLISP [Moon],

InterLISP [Teitelman], CONNIVER [McDermott and Sussman], QA4 [Rulifson],

PLASMA [Smith and Hewitt] [Hewitt and Smith], and SCHEME [SCHEME] [Revised

Report]. We will call this family the LISP-like languages.

The various members of this family differ in some interesting and

often subtle ways. These differences have a profound impact on the styles

of programming each may encourage or support. We will explore some of

these differences by examining a series of small ("toy") evaluators which

exhibit these differences without the clutter of "extra features" provided

in real, production versions of LISP-like language systems.

The series of evaluators to be considered partially constitute a

reconstruction of what we believe to be the paths along which the family

evolved. These paths can be explained after the fact by viewing the

historical changes to the language as being guided by the requirements of

various aspects of modularity. .

Structure of the Paper

Our discussion is divided into several parts, which form a linear

progression. In addition, there are numerous large digressions which

explore interesting side developments. These digressions are placed at the

end as notes, cross-referenced to and from the text.

We exhibit a large number of LISP interpreters whose code differs

from one to another in small ways (though their behavior differs greatly!).

In order to avoid writing identical pieces of code over and over, each

figure exhibits only routines which differ, and also contains cross-

references to preceding figures from which missing routines for that figure

are to be drawn.

Part Zero introduces the restricted dialect of the LISP language in

which most of our examples are written. It also discusses the basic

structure of an interpreter, and exhibits a meta-circular interpreter for

the language.

Part One introduces procedural data as an abstraction mechanism,
and considers its impact on variable scoping disciplines in the language.

We are forced through a series of such disciplines as unexpected

interactions are uncovered and fixed. Interpreters are exhibited for

dynamic scoping and lexical scoping.

Part Two considers the problems associated with the decomposition

Steele and Sussman 3 The Art of the Interpreter

of state. Side effects are introduced as a mechanism for effecting such

decompositions. We find that the notion of side effect is inextricably

wound up with the notion of identity. Dynamic scoping is retrospectively

viewed as a restricted kind of side effect.

With this we summarize and conclude with many tantalizing questions

yet unanswered.

In Part Three (in a Separate paper) we will find that the

introduction of side effects forces the issue of the order of evaluation of

expressions. We will contrast call-by-name and its variants with call-by-

value, and discuss how these control disciplines arise as a consequence of

different models of. packaging. In particular, call-by-name' arises

naturally from the syntactic nature of the Algol 60 copy rule. As before,

many little interpreters for these disciplines will be exhibited. .

In Part Four we will be led to generalize the notion of a syntactic

package. We will discuss meta-procedures, which deal with’ the

representations of procedures. The distinction between a procedure and its

representation will be more carefully considered. Macro processors,

algebraic simplifiers, and compilers will be considered as meta-procedures. =

Various interpreters, compilers, and simplifiers will be exhibited.

Steele and Sussman 4 The Art of the Interpreter

Part Zero

LISP and Interpreters

Recursion Equations

Contrary to popular belief, LISP was not originally derived from

Church's A-calculus [Church] [LISP History]. The earliest LISP did not

have a well-defined notion of free variables or procedural objects. Early

LISP programs were similar to recursion equations, defining functions on

symbolic expressions ("S-expressions"). They differed from the equations

of pure recursive function theory [Kleene] by introducing the conditional

expression construction (often called the "McCarthy conditional"), to avoid

"nattern-directed invocation". That is, in recursive function theory one

would define the factorial function by the following two equations:

factorial(0) = 1

factorial(successor(x)) = successor(x) * factorial(x)

In early LISP, however, one would have written:

factorial[x] = [x=0 > 1; T- x*factorial[x-1]]

where "[a + b; T ~ c]" essentially means "if a then b else c". The

recursive function theory version depends on selecting which of two

equations to use by matching the argument to the left-hand sides (such a

discipline is actually used in the PROLOG language [Warren]); the early

LISP version represents this decision as a conditional expression.

The theory of recursion equations deals with functions over the

natural numbers. In LISP, however, one is interested in being able to

manipulate algebraic expressions, programs, and other symbolic expressions

as data structures. While such expressions can be encoded as numbers

(using the technique of "arithmetization" developed by Kurt Godel), such an

encoding is not very convenient. Instead, a new kind of data called "S- .

expressions” (for "symbolic expressions") is introduced specifically to

provide convenient encodings. S-expressions can be defined by a set of

formal inductive axioms analogous to the Peano postulates used to define

natural numbers. Here we will give only an informal and incomplete

definition of S-expressions; for a more complete description, see {Note S-

expression Postulates and Notation}.

For our purposes we will need only the special cases of S-

expressions called atoms and lists. An atom is an "indivisible" data.

object, which we denote by writing a string of letters and digits; if only

digits are used, then the atom is considered to be a number. Many special

characters such as "-" and "+" are considered to be letters; we will see

below that it is not necessary to specially reserve them for use as

operator symbols. A list is a (possibly empty) sequence of S-expressions,

notated by writing the S-expressions in order, between a set of parentheses

Steele and Sussman 5 The Art of the Interpreter

and separated by spaces. A list of the atoms "FOO", "43", and "BAR" would

be written "(FOO 43 BAR)". Notice that the definition of a list is

recurSive. For example,

(DEFINE (SECOND X) (CAR (CDR X)))

is a list of three things: the atomic symbol DEFINE, a list of the two

atomic symbols SEconD and x, and another list of two other things.

We can use S-expressions to represent algebraic expressions by

using "Cambridge Polish" notation, essentially a parenthesized version of

prefix Polish notation. Numeric constants are encoded as numeric atoms;

variables are encoded as non-numeric atoms (which henceforth we will call

atomic symbols); and procedure invocations are encoded as lists, where the

first element of the list represents the procedure and the rest represent

the arguments. For example, the algebraic expression “axb+c*d" can be

represented as "(+ (* ab) (* cd))". Notice that LISP does not need the

usual precedence rules concerning whether multiplication or addition is

performed first; the parentheses explicitly define the order. Also, all

procedure invocations have a uniform syntax, no matter how many arguments

are involved. Infix, superscript, and subscript notations are not used;

thus the expression "Jy (xe) would be written "(J p (+ (* x 2) 1))".

To encode a conditional expression

CP, > €)3 Pp, > €)3 ++. 3 Py > Oy]

(which means to evaluate the predicates P, in order until a true one is

found, at which point the value of e, is taken to be'the value of the

conditional) we write the S-expression

(COND (p, e,) (py ey) --. (p, @,))
n

We can now encode sets of LISP recursion equations as_ S-

expressions. For the equation

factorial[x] = [x=0 > 1; T ~ x*factorial[x-1]]

we write the S-expression

(DEFINE (FACTORIAL X)

(COND ((= X 0) 1)

(T (* X (FACTORIAL (- X 1))))))

(We could also have written

(DEFINE (FACTORIAL X) (COND ({=

X 0) 1) (T (® X (FACTORIAL (- X

1))))))

but we conventionally lay out S-expressions so that they are easy to read.)

Steele and Sussman 6 The Art of the Interpreter

We now have a complete encoding for algebraic expressions and LISP

recursion equations in the form of S-expressions. Suppose that we now want

to write a LISP program which will take such an S-expression and perform

some useful operation on it, such as determining the value of an algebraic

expression. We need some procedures for distinguishing, decomposing, and

constructing S-expressions. .

The predicate atom, when applied to an S-expression, produces true

when given an atom and false otherwise. The empty list is considered to be

an atom. The predicate nutt is true of only the empty list; its argument

need not be a list, but may be any S-expression. The predicate NumBERP iS

true of numbers and false of atomic symbols and lists. The predicate cq,

when applied to two atomic symbols, is true if the two atomic symbols are

identical. It is false when applied to an atomic symbol and any other S-

expression. (We have not defined EQ on two lists yet; this will not

become important, or even meaningful, until we discuss side effects.)

The decomposition operators for lists are traditionally called car

and cor for historical reasons. [LISP History] car extracts the first

element of a list, while cork produces a list containing all elements but

the first. Because compositions of car and cor are commonly used in LISP,

an abbreviation is provided: all the C's and R's in the middle can be

squeezed out. For example, "(coR (CDR (CAR (COR X))))" can be written as

~"(CDDADR xX)".

The construction operator cons, given an S-expression and a list,

produces a new list whose car is the S-expression and whose cdr is the

list. The operator LIsSt can take any number of arguments (a special

feature), and produces a list of its arguments.

We can now write some interesting programs in LISP to deal with S-

expressions. For example, we can write a predicate equaL, which determines

whether two S-expressions have the same CAR-coR structure:

(DEFINE (EQUAL X Y)

(COND ((NUMBERP X)

(COND ({NUMBERP Y) (= X Y))

(TNIL))) |
((ATOM X) (EQ X Y))

((ATOM Y) NIL)

((EQUAL (CAR X) (CAR Y))

(EQUAL (COR X) (CDR Y)))))

Here we have used the standard names T and Nit to represent true and false.

(Traditionally Nit is also considered to be the empty list, but we will

avoid this here, writing "()" for the empty list.)

Because LISP programs are represented as LISP data structures (S-

expressions), there is a difficulty with representing constants. For

example, suppose we want to determine whether or not the value of the

variable x is the atomic symbol "Foo". We might try writing:

(EQ X FOO)

Steele and Sussman 7 The Art of the Interpreter

This doesn't work. The occurrence of "foo" does not refer to the atomic

symbol Foo as a constant; it is treated as a variable, just as "Xx" is.

The essential problem is that we want to be able to write any S-

expression as a constant in a program, but some S-expressions must be used

to represent other things, such as variables and procedure invocations. To

solve this problem we invent a new notation: (QUOTE x) in a program

represents the constant S-expression x. {Note quote Mapping} Thus we can

write our test as "(EQ x (QUOTE FOO))". Similarly,

(EQUAL X (LIST Y Z))

constructs a list from the values of Y and z, and compares the result to

the value of x, while

(EQUAL X (QUOTE (LIST ¥ Z)))

compares the value of x to the constant S-expression "(LIST y Zz)". Because

the Quote construction is used so frequently in LISP, we use an abbreviated

notation: "'rFoo" is equivalent to "(quote Foo)". This is only a notational

convenience; the two notations denote the same S-expression. (S-

expressions are not character strings, but data objects with a certain

structure. We use character strings to notate S-expressions on paper, but

we can use other notations as well, such as little boxes and arrews. We |

can and do allow several different character strings to denote the same S-

expression.) | :

An Interpreter for LISP Recursion Equations

We now have enough machinery to begin our examination of the

genetic history of LISP. We first present a complete interpreter for LISP

recursion equations. The language interpreted is a dialect of LISP which

allows no free variables except for names of primitive or defined

procedures, and no definitions of procedures within other procedures.

The driver loop reads in definitions of procedures of the form:

(DEFINE (F ABC ...) <expression in ABC... andf GH ...>)

and saves’. them. It can also read in requests to apply some defined

procedure to some arguments (or, more’ generally, to evaluate any

expression), in which case it prints the resulting value. An expression

may consist of variable references, constants (numbers and quoted s-

expressions), procedure calls, and conditional expressions (conn). The

defined procedures may refer to each other and to initially supplied

primitive procedures (such as CAR, CONS, etc.). Definitions may contain

"forward references", as long as all necessary definitions are present at

the time of a request for a computation. The interpreter itself is

presented here as a set of such definitions, and so is meta-circular.

The language is intended to be evaluated in applicative order;

Steele and Sussman 8 The Art of the Interpreter

that is, all arguments to a procedure are fully evaluated before an attempt

is made to apply the procedure to the arguments. (It is necessary to state

this explicitly here, as it is not inherent in the form of the meta-

“circular definition. See [Reynolds] for an explication of this problem.)

The driver loop (see Figure 1) is conceptually started by a request

to invoke oORIVER with no arguments. Its task is to first print the message

"LITHP ITH LITHTENING" (a tradition of sorts) and then invoke ORIVER-LOOP.

The expression. <THE-PRIMITIVE-PROCEDURES> iS intended to represent a constant

list structure, containing definitions of primitive procedures, to be

supplied to ORIVER-LOOP.

(DEFINE (DRIVER)

(DRIVER-LOOP <THE-PRIMITIVE-PROCEDURES> (PRINT ‘|LITHP ITH LITHTENING|)))

(DEFINE (DRIVER-LOOP PROCEDURES HUNOZ)

(DRIVER-LOOP-1 PROCEDURES (READ)))—

(DEFINE (DRIVER-LOOP-1 PROCEDURES FORM)

(COND ((ATOM FORM)

(DRIVER-LOOP PROCEDURES (PRINT (EVAL FORM '() PROCEDURES))))

((EQ (CAR FORM) 'DEFINE)

(DRIVER-LOOP (BIND (LIST (CAADR FORM))

(LIST (LIST (CDADR FORM) (CADDR FORM)))

PROCEDURES)

(PRINT (CAADR FORM))))

(T (DRIVER-LOOP PROCEDURES (PRINT (EVAL FORM '() PROCEDURES))))))

Figure 1]

Top Level Driver Loop for a Recursion Equations Interpreter

DRIVER-LOOP reads an S-expression from the input stream and passes

it, along with the current procedure definitions, to oDRIVER-LOoOP-1. This

procedure in turn determines whether the input S-expression is a

definition. If it is, then it uses BIND (described below) to produce an.

augmented set of procedure definitions, prints the name of the defined

procedure, and calls oORIVER-LOoP to repeat the process. The augmented set of

procedures is passed to oDRIVER-LooP, and so the variable procepures always

contains all the accumulated definitions ever read. If the input S-

expression is not a definition, then it is given to the evaluator eval,

whose purpose is’ to determine the values of expressions. {Note Value

Quibble} The set of currently defined procedures is also passed to EVAL.

The process carried on by the driver loop is often called the "top

level";. all user programs and requests are run "under" it. The growing

set of procedure definitions is called the "top-level environment"; this

environment changes in the course of the user interaction, and contains the

State of the machine as perceived by the user. It is within this

environment that user programs are executed.

Steele and Sussman 9 The Art of the Interpreter

(DEFINE (EVAL EXP ENV PROCEDURES)

(COND ((ATOM EXP)

(COND ((EQ EXP 'NIL) 'NIL)

((EQ EXP 'T) 'T)

((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))

((EQ (CAR EXP) ‘QUOTE)

(CADR EXP))

((EQ (CAR EXP) 'COND)

(EVCOND (CDR EXP) ENV PROCEDURES))

(T (APPLY (VALUE (CAR EXP) PROCEDURES)

(EVLIS (CDR EXP) ENV PROCEDURES)

PROCEDURES))))

(DEFINE (APPLY FUN ARGS PROCEDURES)

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS))

(T (EVAL (CADR FUN)

(BIND (CAR FUN) ARGS '())

PROCEDURES))))

(DEFINE (EVCOND CLAUSES ENV PROCEDURES)

(COND ((NULL CLAUSES) (ERROR))

((EVAL (CAAR CLAUSES) ENV PROCEDURES)

(EVAL (CADAR CLAUSES) ENV PROCEDURES))

(T (EVCOND (COR CLAUSES) ENV PROCEDURES))))

(DEFINE (EVLIS ARGLIST ENV PROCEDURES)

(COND ({NULL ARGLIST) '())

(T (CONS (EVAL (CAR ARGLIST) ENV PROCEDURES)

(EVLIS (CDR ARGLIST) ENV PROCEDURES)))))

Figure 2

Evaluator for a Recursion Equations Interpreter

The evaluator proper (see Figure 2) is divided into two conceptual

components: EVAL and APPLY. EVAL Classifies expressions and directs their

evaluation. Simple expressions (such as constants and variables) can be

evaluated directly. For the complex case of procedure’ invocations

(technically called "“combinations"), eval looks up the procedure

definition, recursively evaluates the arguments (using eEVLIS), and then

calls APPLY. APPLY classifies procedures and directs their application.

Simple procedures (primitive operators) are applied directly. For the

complex case of user-defined procedures, aApPpLY uses BIND to build an

environment, a kind of symbol table, associating the formal parameters from

the procedure definition with the actual argument values provided by EVAL.

The body of the procedure definition is then passed to EvAL, along with the

environment just constructed, which is used to determine the values of

Steele and Sussman 10 The Art of the Interpreter

variables occurring in the body.

In more detail, EvAL iS a case analysis on the structure of the S-

expression exp. If it is an atom, there are several subcases. The special

atoms T and Nit are defined to evaluate to T and nit (this is strictly for

convenience, because they are used as truth values). Similarly, for

convenience numeric atoms evaluate to themselves. (These cases could be

eliminated by requiring the user to write lots of quote forms: 'T, ‘NIL,

'43, etc. This would have been quite inconvenient in early LISP, before

the "'" notation had been introduced; one would have had to write (QUOTE

43), etc.) Atomic symbols, however, encode variables; the value |

associated with that symbol is extracted from the environment ENv using the

function value (see below). .

If the expression to be evaluated is not atomic, then it may be a

quote form, a cond form, or a combination. For a Quote form, EVAL extracts

the S-expression constant using caprR. Conditionals are handled by -evcono,

which calls Eval on a predicate expression; if the predicate is true,

EVCOND evaluates the corresponding result expression (by calling eva, of

course); if the predicate is false, evconn calls itself to test the

predicate of the next clause of the cond body. For combinations, the

procedure is obtained, the arguments evaluated (using EVLIS), and APPLY

called as described earlier. Notice that value is used to get the

procedure definition from the set PRoceDURES; we can do this because, as an

engineering trick, we arrange for ENV and PROCEDURES to have the same

Structure, because they are both symbol tables.

EVLIS is a simple recursive function which calls EvaAt on successive

arguments in ARGLIST and produces a list of the values in order.

APPLY distinguishes two kinds of procedures: primitive and user-

defined. For now we avoid describing the precise implementation of

primitive procedures by assuming the existence of a predicate primop which

is true only of primitive procedures, and a function PRimMoP-APPLY which deals

with the application of such primitive procedures. (See {Note Primitive

Operators} for the details of a possible implementation of prRimMop and pPRIMOP-

APPLY.) We consider primitive procedures to be a kind of atomic S-

expression other -than numbers and atomic symbols; we define no particular

written notation for them here. However, primitive procedures are not to

be confused with the atomic symbols used as their names. The result of

(VALUE 'CAR PROCEDURES) is not the atomic symbol car, but rather some bizarre

object which is meaningful only to PRIMOP-APPLY.

User-defined procedures are represented here as lists. These lists

are constructed by DRIVER-LooP-1. The car of the list is the list of formal

parameters, and the cadr is the body of the definition.

Steele and Sussman il The Art of the Interpreter

(DEFINE (BIND VARS ARGS ENV)
(COND ((= (LENGTH VARS) (LENGTH ARGS))

(CONS (CONS VARS ARGS) ENV))
(T (ERROR))))

(DEFINE (VALUE NAME ENV)

(VALUE) NAME (LOOKUP NAME ENV)))

(DEFINE (VALUE NAME SLOT)

(COND ((EQ SLOT '&UNBOUND) (ERROR))

(T (CAR SLOT))))

(DEFINE (LOOKUP NAME ENV)

(COND ((NULL ENV) '&UNBOUND)

(T (LOOKUP1 NAME (CAAR ENV) (CDAR ENV) ENV))))

(DEFINE (LOOKUP1 NAME VARS VALS ENV)
(COND ((NULL VARS) (LOOKUP NAME (COR ENV)))

((EQ NAME (CAR VARS)) VALS)
(T (LOOKUP] NAME (COR VARS) (COR VALS) ENV))))

Figure 3

Utility Routines for Maintaining Environments

The interpreter uses several utility procedures for maintaining

symbol tables (see Figure 3). <A symbol table is represented as a list of

buckets; each bucket is a list whose car is a list of names and whose cdr

is a list of corresponding values. {Note This ain't A-lists} If a variable

name occurs in more than one bucket, the leftmost such bucket has priority;

in this way new symbol definitions added to the front of the list can

supersede old ones.

BIND takes a list of names, a list of values, and a symbol table,

and produces a new symbol table which is the old one augmented by an extra

bucket containing the new set of associations. (It ‘also performs a.useful

error check — LENGTH returns the length of a list.)

VALUE iS essentially an interface to Lookup. We define it because

later, in Part Three, we will want to use different versions of: VALUE]

without changing the underlying algorithm in tooxup. The check for auUNBOUND

catches incorrect references to undefined variables. .

Lookup takes a name and a symbol table, and returns that portion of

a bucket whose car is the associated value. (This definition will be more

useful later than one in which the value itself is returned.)

Note carefully the use of the variable proceoures in the

interpreter. When DRIVER-LOOP-1 calls EVAL it passes the current list of

defined procedures (both primitive and user-defined). oriver-Loop-1 is the

only routine which augments the value of procepures, and this value is only

Steele and Sussman 12 The Art of the Interpreter

used in -evaAL, when it is passed to va.ue. However, all of the routines

APPLY, EVCOND, and €vtiS have to know about procepures, and dutifully pass it

along so that it may be eventually used by eval. The set of definitions

must be passed along because there iS no provision for free variables or

side effects; there is no way to have "memory" or "state" other than in

passed variables. The absence of free variables effectively causes our

language to be referentially transparent. However, we sense a disturbing

lack of modularity in the use of procedures (and, to a lesser extent, in the

use of ENV — look at evcono and evits). We will return to this point later.

Our recursion equations language has no special iteration or

looping constructs, such as the Algol for statement or the FORTRAN DO loop.

All loops are constructed by arranging for recursive procedures to call

themselves or each other. For example, evcond (see Figure 2) iterates over

the clauses of a conp by calling itself on successive "tails" of the list

of clauses. Now such recursive calls may strike the reader familiar with

other languages (such as Algol, FORTRAN, PL/I, etc.) on an intuitive level

as being rather inefficient for implementing real programs. Even granted

that calls might be made fast, they would seem to consume space in the form

of return addresses and other control information. Examination of the

recursion equations evaluator will show, however, that this phenomenon does

not have to occur. This is because no extra information is saved if there

is nothing left to do on return from a recursive call. See [SCHEME] and

[Debunking] for a more thorough discussion of this.

Steele and Sussman 13 The Art of the Interpreter

Part One

Variable Scoping Disciplines

Procedures as Data

The simple LISP described in Part Zero can be a pleasant medium for

encoding rather complex algorithms, including those of symbolic

mathematics. Often lists are used for representing such structures as the

set of coefficients of a polynomial or coordinates of a space vector. Many

problems require one to perform an operation on each element of a list and

produce a new list of the results. For example, it may be useful to make a

list of the squares of each of the elements in a vector. We would write

this as follows:

(DEFINE (SQUARELIST L)

(COND ((NULL L) '())

(T (CONS (SQUARE (CAR L))

(SQUARELIST (CDR L))))))

We find ourselves writing this pattern over and over again:

(DEFINE (fLIST L)

(COND ((NULL L) '())

(T (CONS (fF (CAR L))
(FLIST (COR L))))))

where f is a function defined on the elements of our list. It would be

nice to be able to define an entity of the programming language which would

capture this abstract pattern. The "obvious" solution is to write the

variable function as a functional variable which can be accepted as an

argument:

(DEFINE (MAPCAR F L)

(COND ((NULL L) '())

(T (CONS (F (CAR L))

(MAPCAR F (CDR L))))))

(mMapcaR is the traditional name of this abstraction.) Using this we could

Say:

(MAPCAR SQUARE '(1 2 3))

Unfortunately, this will not work in our recursion equations interpreter.

Why not?

The essence of the problem is that our interpreter segregates

procedures from other kinds of objects. We refer to F as a procedure but

it was passed in as a variable. Procedures are only looked up in the

Steele and Sussman 14 The Art of the Interpreter

PROCEDURES Symbol table, but variables are bound in env. Moreover, in the

call to mapcaR, SQUARE is used aS a variable, which is looked up in env, but

its definition is only available in PROCEDURES.

Let's merge the two symbol tables... How could that hurt?

(DEFINE (DRIVER-LOOP-1 ENV FORM)

(COND ((ATOM FORM)

(DRIVER-LOOP ENV (PRINT (EVAL FORM ENV))))

((EQ (CAR FORM) 'DEFINE)

(DRIVER-LOOP (BIND (LIST (CAADR FORM))

(LIST (LIST '&PROCEDURE (CDADR FORM) (CADOR FORM)))

ENV)

(PRINT (CAADR FORM))))

(T (DRIVER-LOOP ENV (PRINT (EVAL FORM ENV))))))

For DRIVER-LOOP see Figure l.

For €vAL see Figure 5.

For BING see Figure 3.

Figure 4

Modified Driver Loop for Treating Procedures as Objects

We will eliminate procepures, and use ENV to contain both procedures

and other objects. The driver loop requires no particular changes (see

Figure 4), except for eliminating the argument ‘() in the calls to EvAL. We

will change the name PROCEDURES to ENV throughout as well, but of course that

isn't logically necessary, because our language is referentially.

transparent. (Snicker!) (Note evatquote}

(We have introduced a funny object aproceoure which we use to flag

procedural objects. In the previous interpreter it was impossible for the

user to request application of an object which was not either a primitive

operator or a procedure produced by a DEFINE form. Now that procedures

mingle freely with other data objects, it is desirable to be able to

distinguish them, e.g. for error checking in appty. We also have some

deeper motivations having to do with avoiding the confusion of a procedure

with its textual representation, but we do not want to deal with this issue

yet.)

To fix up the evaluator, we eliminate all occurrences of PROCEDURES.

In EVAL, where the name of a procedure in a combination is looked up, we

change it to perform the lookup in eNv. Finally, there is a problem in

APPLY: if the call to eval to evaluate the body is simply

(EVAL (CADDR FUN)

(BIND (CADR FUN) ARGS '()))

then the new ENV given to EVAL does not have the procedure definitions in

it. Moreover, APPLY does not even have access to an environment which

Steele and Sussman . 15 The Art of the Interpreter

contains the procedure definitions (because its parameter PROCEDURES was

deleted)! We can easily fix this. When apety is called from EvAL, ENV can

be passed along (as proceouRES used to be), and the call to EVAL from APPLY

can be changed to

(EVAL (CADDR FUN)

(BIND (CADR FUN) ARGS ENV))

In this way the environment passed to EVAL will contain the new variable

bindings added to the old environment containing the procedure definitions.

(See Figure 5.) This is indeed a good characteristic: if the name of a

defined procedure is used as a local variable (procedural or otherwise),

the new binding takes precedence locally, temporarily superseding the

global definition.

Steele and Sussman 16 The Art of the Interpreter

(DEFINE (EVAL EXP ENV)

(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))

((EQ (CAR EXP) 'QUOTE)

(CADR EXP))

((EQ (CAR EXP) 'COND)

(EVCOND (CDR EXP) ENV))

(T (APPLY (VALUE (CAR EXP) ENV)

(EVLIS (CDR EXP) ENV)

ENV))))

(DEFINE (APPLY FUN ARGS ENV)

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS))

((EQ (CAR FUN) '&PROCEDURE)

(EVAL (CADDR FUN)

(BIND (CADR FUN) ARGS ENV)))

(T (ERROR))))

(DEFINE (EVCOND CLAUSES ENV)

(COND ((NULL CLAUSES) (ERROR))

((EVAL (CAAR CLAUSES) ENV)

(EVAL (CADAR CLAUSES) ENV))

(T (EVCOND (COR CLAUSES) ENV))))

(DEFINE (EVLIS ARGLIST ENV)

(COND ((NULL ARGLIST) '())

(T (CONS (EVAL (CAR ARGLIST) ENV)

(EVLIS (CDR ARGLIST) ENV)))))

For vaLUE and BIND see Figure 3.

Figure 5

Evaluator for Treating Procedures as Objects

Another good thing about this version of the interpreter is that

the gross non-modularity of the scattered occurrences of proceourREesS has

disappeared. The problem has not been solved, of course, but we certainly

feel relieved that the particular manifestation has been removed!

By the way, we also eliminated the explicit tests for 1 and Nit in

EVAL, assuming that we can simply put their initial values in the initial
environment provided by oORIVER.

An interesting property of this interpreter is that free variables

now have been given a meaning, though we originally did not intend this.

Indeed, in the original recursion equations interpreter, there were free

variables in a sense: all procedural variables were free (but they could

be used only in operator position in a combination). In our new

Steele and Sussman 17 The Art of the Interpreter

interpreter, thanks to the merging of the procedural and variable

environments, we may have not only bound procedure names, but also free

variable names, for after all the two kinds of names are now one.

This interpreter differs in only small details from the one in LISP

1.5 [LISP 1.5M]. Both have dynamically scoped free variables (we will

elaborate on this point later). We might note that the reference to VALUE

in EVAL when computing the first argument for appLy can be replaced by a

reference to eEvAL; this does the same thing if a variable appears in the

operator position of a combination, and allows the additional . general

ability to use any expression to compute the procedure. This difference in

fact appears in the LISP 1.5 interpreter. There are other’ slight

differences, such as the representation of primitive operators and the

handling of procedures which are not primitive or user-defined. Aside from

these, the greatest difference between our interpreter and LISP 1.5's is

the use of lambda notation. This we will meet in the next section.

Steele and Sussman 18 The Art of the Interpreter

Local Procedures

We now have the ability to define and use the mapcaR procedure.

After some more experience in programming, however, we find that, having

abstracted the common pattern from our loops, that the remaining part (the

functional argument) tends to be different for each invocation of MaAPCAR.

Unfortunately, our language for all practical purposes requires that we use

a name to refer to the functional arguments, because the only way we have

to denote new procedures is to DEFINE names for them. We soon tire of

thinking up new ‘unique names for trivial procedures:

(DEFINE (FOOBAR-43 X) (* (+ X 4) 3))

.. (MAPCAR FOOBAR-43 L)

We run the risk of name conflicts; also, it would be nice to be able to

write the procedure definition at the single point of use. .

More abstractly, given that procedures have become referenceable

objects in the language, it would be nice to have a notation for them as

objects, or rather a way to write an S-expression in code that would

evaluate to a procedure. LISP [LISP 1M] adapted such a notation from the

A-calculus of Alonzo Church [Church]:

(LAMBDA <variables> <body>)

Comparing this with the DEFINE notation, we see that it has the same parts:

a keyword so that it can be recognized; a list of parameters; and a body.

The only difference is the omission of an irrelevant name. It is just the

right thing.

Given this, we can simply write

(MAPCAR (LAMBDA (xX) (* X X)) L)

rather than having to define SQuARE aS a Separate procedure. An additional

benefit is that this notation makes it very easy for a compiler to examine

this code and produce an efficient iterative implementation, because all

the relevant code is present locally (assuming the compiler knows about

MAPCAR). |)
Installing this notation requires only a two-line change in EVAL

(see Figure 6).

Steele and Sussman, 19 The Art of the Interpreter

(DEFINE (EVAL EXP ENV)

(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))

((EQ (CAR EXP) 'QUOTE)

(CADR EXP))

((EQ (CAR EXP) 'COND)

(EVCOND (CDR EXP) ENV))

((EQ (CAR EXP) 'LAMBDA)

(CONS '&PROCEDURE (COR EXP)))

(T (APPLY (EVAL (CAR EXP) ENV)

(EVLIS (CDR EXP) ENV)

ENV))))

For vaALuE see Figure 3.

For APPLY, EVCOND, and EVLIS see Figure 5.

Figure 6

Evaluator for LamMBDpA-notation (Dynamically Scoped)

(The reader might have noticed that all Eval does for a LAMBDA-

expression is replace the word LaAmMeoA with the word apProceoure, and that we

could avoid that work by uniformly using LAMBDA instead of &PROCEDURE as the

flag for a procedural object. Given then that EVAL on a LAMBDA-expression

is an identity operation, we can eliminate the handling of LAMBDA in EVAL

merely by requiring the user to write ‘(LAMBDA ...) instead of (LAMBDA ...).

Although the implementors of most LISPs have in fact done just this ever

since LISP 1, it is a very bad idea. EVAL iS supposed to process

expressions and produce their values, and the fact that it might be

implemented as an identity operation is no business of the user. The

confusion between: a procedural object and an expression having that object

as its value will lead to serious trouble. (Imagine confusing 15 with

(+ 7 8), and trying to take the car of the former instead of the latter, or

trying to add 3 to the latter instead of the former!) The quoted Lamsoda-

expression engineering trick discourages the implementation of a

referentially transparent LISP. In Part Four we will see the extreme

difficulties for a LISP compiler (or other program-understander) caused by

the blatant destruction of referential transparency. {Note quote Shafts

the Compiler})

The ability to use free variables and local procedures gives us

additional freedom to express interesting procedures. For example, we can

define a procedure scaALt which multiplies a vector of arbitrary length by a

scalar. If the vector is represented as a list of components, then we can

use MAPCAR and a local procedure with a free variable:

Steele and Sussman 20 The Art of the Interpreter —

(DEFINE (SCALE S V)

(MAPCAR (LAMBDA (X) (* X S))

v))

Everything would be just peachy keen, except for one small glitch.

suppose that the programmer who wrote scaLe for some reason chose the name tL

rather than s to represent the scatar:

(DEFINE (SCALE L V) |

(MAPCAR (LAMBDA (X) (* X L)) >

V))

Although the version with s works, the version with t does not work. This

happens because mapcaR also uses the name Lt for one of its arguments (that

is, a "local" variable). The reference to L in the LamspA-expression in

SCALE refers to the t bound in mapcaR and not to the one bound by Sscate. In

general, free variable references in one procedure refer to the bindings of

variables in other procedures higher up in the chain of calls. This

discipline is called dynamic scoping of variables, because the connection

between binding - and reference is established dynamically, changing as

different procedures are executed.

That the behavior of the SCALE program depends on the choice of

names for its local variables is a violation of referential transparency.

The modularity of the mapcar abstraction has been destroyed, because no one

can use that abstraction without understanding the details of its

implementation. This is the famous "“FUNARG problem" [Moses] [LISP

History]. .

If we are to avoid such conflicts between different uses of the

same name, we must arrange our language so that the choice of names locally

Cannot have global repercussions. More. specifically, we must have the

ability to bind a variable in such a way that it will have a truly local

meaning (though in general we might not want all variables to be strictly

local — we will consider later the possibility of having several types of

variables).

Steele and Sussman 21 The Art of the Interpreter

Lexical Scoping

We now construct an interpreter in which all variables have

strictly local usage. This discipline is called lexical scoping of

variables, and has been used in many programming languages, including Algol

60 [Naur]. The term "lexical" refers to the fact that all references to a

local variable binding are textually apparent in the program. The term

static binding is also used, indicating that the connection between binding

and reference is unchanging at run time.

The difficulty in scale is that the body of the taAmspaA-expression

(* XL) is evaluated using the env which was available to evat (and so passed

to apply) when it was working on the body of marcaR. But we want the (* x L)

to be evaluated using the ENV which was available when the body of SCALE was

being evaluated. somehow we must arrange for this environment to be

available for evaluating (* XL).

The correct environment was available at the time the LAMBDA-

expression wasS evaluated to produce a &proceoure-object. Why not just tack

the environment at that point onto the end of the aproceourE-object so that

it can be used when the procedure is applied?

This is in fact the right thing to do. The object we want to give ©

to mapcaR must be not just the text describing the computation to be

performed, but also the meanings of the free variables referenced in that

text. Only the combination of the two can correctly specify the

computation which reflects the complete meaning of the abstract function to

be mapped. This is the first place where we find it crucial to distinguish

the three ideas: (1) The program — the text describing a procedure, e.g.

in the form of an S-expression; (2) The procedure which is executed'by the.

computer; and (3) The mathematical function or other conceptual operation

computed by the execution of the procedure.

To install lexical scoping in our interpreter, we must change the.

treatment of LAmBpA-expressions in EVAL to make the current environment ENV

part of the aPprRoceDURE-object. We say that the procedure is closed in the

current environment, and the &PROCEDURE-object is therefore called a closure

of the procedure, or a closed procedure. We must also change app_y to bind

the new variable-value associations onto the environment in the &PROCEODURE-

object, rather than onto that passed by EvAL. When we have done this, we

see that in fact the environment passed by eval is not used, so we can

eliminate the parameter env from the definition of apply, and change the

invocation of apepLty that occurs in EvaL. Thus, while the handling of LAmBDA-

expressions has become more complicated, the handling of ENV has been

correspondingly simplified. (See Figure 7.)

Had we previously adopted the trick described in the preceding

section, wherein the user was required to write ‘(LAMBDA ...) rather than

(LAMBDA ...), it would have been more difficult to adjust the interpreter to

accommodate lexical scoping — it would have involved a large change rather

than a small tweak. (The change from dynamic scoping to lexical scoping

‘does involve a gross change of programming style, and this is undoubtedly

why, once dynamic scoping had historically become the standard discipline,

the guotation problem was never cleared up. We will see later that dynamic

Steele and Sussman 22 The Art of the Interpreter

scoping is a valuable technique for producing modularity, but we see no

virtue at all in the confusion produced by quoted tamppA-expressions. While

quoted LameoA-expressions do produce dynamic scoping, the support of dynamic

scoping does not depend on the quotation of Lamapa-expressions.)

While lexical scoping solves our problems of referential

transparency, we will see later that we must in turn pay a large price for

it — but it is not a price of run-time efficiency (contrary to popular

belief)!

(DEFINE (EVAL EXP ENV)

(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))

((EQ (CAR EXP) 'QUOTE)

(CADR EXP))

((EQ (CAR EXP) 'LAMBDA)

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV))

((EQ (CAR EXP) 'COND)

(EVCOND (COR EXP) ENV))

(T (APPLY (EVAL (CAR EXP) ENV)

(EVLIS (CDR EXP) ENV)))))

(DEFINE (APPLY FUN ARGS)

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS))

((EQ (CAR FUN) '&PROCEDURE)

(EVAL (CADDR FUN)

(BIND (CADR FUN) ARGS (CADDDR FUN))))

(T (ERROR))))

For VALUE and BIND see Figure 3.

For e€VvcoNnD and e€vtis see Figure 5.

Figure 7

Evaluator for Lexically Scoped Lamsova-notation

Let's see what we have bought. One thing we can do is generalize

MAPCAR. After yet. more programming experience we find that we write many

MAPCAR-like procedures. For example, we might need a kind of mapcar where

the function F always returns a list, and we want to produce not a list of

the lists, but the concatenation of the lists. We might also want to take

the sum or the product of all the numbers in a list, or the sum of the cars

of all elements in a list. The general pattern is that we look at each _

element of a list, do something to it, and then somehow combine the results

of all these elementwise operations. Another application might be to check

for duplicates in a list; for each element we want to see whether another

copy follows it in the list. We further generalize the pattern to look at

successive trailing segments of the list; we can always take the car to

4

| Steele and Sussman 23 The Art of the Interpreter

get a single element.

We could simply add more procedural parameters to MAPCAR:

(DEFINE (MAP F OP ID L)

(COND ((NULL L) 10)

| (T (OP (FL)
(MAP F OP ID (COR L))))))

| Using this, we can make a copy of the list Lt:

(MAP CAR CONS '() L)

We can simulate (MAPCAR FL):

(MAP (LAMBDA (XxX) (F (CAR X))) CONS '() L)

Indeed, we can write:

(QEF INE (MAPCAR F L)

(MAP (LAMBDA (X) (F (CAR X))) CONS '() L))

We can sum the elements of L:

(MAP CAR + 0 L)

We can take the product of the elements of L:

(MAP CAR * 11)

We can count the pairs of duplicate elements of L:

(MAP (LAMBDA (xX) X)

(LAMBDA (Y N) (COND ((MEMBER (CAR Y) (COR Y))

(+ N 1))

(7 N)))
0

L)

If we have occasion to take the sum over lots of lists in different

places, we might want to package the operation "sum over list" — we get

awfully tired of writing "car +o". We can write:

(DEFINE (MAPGEN F OP ID)

(LAMBDA (L) (MAP F OP ID L)))

The result of (MAPGEN CAR + 0) we might call sum — it is a procedure of one

argument which will sum the elements of a list. The reason we wrote a

procedure to construct sum, rather than just writing:

Steele and Sussman 24 The Art of the Interpreter

(DEFINE (SUM L)

(MAP CAR + 0 L))

is that MAPGEN Serves as a generalized constructor of such procedures, thus

capturing an interesting abstraction — we might call the result of (MAPGEN

CAR * 1), for example, PRodUCT, and so on. .

What is interesting about this is that we can write procedures

which construct other procedures. This is not to be confused with the

ability to construct S-expression representations. of procedures; that

ability is shared by all of the interpreters we have examined. The ability

to construct procedures was not available in the dynamically scoped

interpreter. In solving the violation of referential transparency we seem

to have stumbled across a source of additional abstractive power. While

the map example may seem strained, this example is quite natural: given a

numerical function, to produce a new function which numerically

approximates the derivative of the first.

(DEFINE (DERIVATIVE F AX)

(LAMBDA (X)

(/ (- (F (+ X &X))

(F X))

\X)))

Notice that this is not a symbolic process dealing with the representation

of F. The DERIVATIVE procedure knows nothing about the internal structure of

F. All it does is construct a new procedure which uses F only by invoking

it. The program DERIVATIVE captures (in approximation) the abstraction of

"derivative" as a mapping from the space of numerical (and reasonably well-

behaved!) functions to itself.

The ability to define procedures which construct other procedures

is powerful. We,.can use it to construct procedures which behave like data

objects. For example, since the only constraints which cons must (so far)

obey are the algebraic identities:

(CAR (CONS a 6)) = ao and (coR (CONS ao G)) = B.

the value of (cons a @) can be thought of as a procedure which produces a or

G on demand (cf. [Hewitt and Smith] [Fischer]). We can write this as

follows: .

(DEFINE (CONS A D0)

(LAMBDA (M)

(COND ((= M0) A)

({(= M1) D))))

(DEFINE (CAR X) (X 0))

(DEFINE (CDR X) (X 1))

Steele and Sussman 25 The Art of the Interpreter

Here we have envisioned the value of (cons a B) as a vector of two elements,

with zero-origin indexing. However, this definition of CONS makes use of

the primitive operator =. We can define the “primitive operators" CONS,

CAR, and coR without using another primitive operator at all! Following

[Church], we write:

(DEFINE (CONS A D)

(LAMBDA (M) (M A D)))

(DEFINE (CAR X)

(X (LAMBDA (A D) A)))

(DEFINE (COR X)

(X (LAMBDA (A D) D)))

Rather than using 0 and 1 (i.e. data objects) as selectors, we instead use

(LAMBDA (A D) A) and (LAMBDA (A D) OD) (i.e. procedures).

We can think of the LamapaA-expression which appears as the body of

the definition of DERIVATIVE or of CONS aS a prototype for new procedures.

When DERIVATIVE. or CONS is called, this prototype is instantiated as a

closure, with certain variables free to the prototype bound to the

arguments given to the constructor.

At this point it looks like we have solved all our problems. We

Started with a referentially transparent but expressively weak language.

We augmented it with procedural objects and a notation for them in order to

capture certain notions of abstraction and modularity. In doing this we

lost the referential transparency. We have now regained it, and in the

process uncovered even more powerful abstraction capabilities.

Top Levels versus Referential Transparency

"The Three Laws of Thermodynamics:

1. You can't win.

2. You can't break even.

3. You can't get out of the game."

— Unknown

There is no free lunch. We have ignored a necessary change to the

top level driver loop. We have changed the format of aproceouRE-objects.

DRIVER-LOOP-1 constructs aprocegure-objects; it must be rewritten to

accommodate the change. We must include an environment in each such

object. The obvious fix is shown in Figure 8.

Steele and Sussman 26 The Art of the Interpreter

(DEFINE (DRIVER-LOOP-1 ENV FORM)

(COND ((ATOM FORM)

(DRIVER-LOOP ENV (PRINT (EVAL FORM ENV))))

((EQ (CAR FORM) 'DEFINE)

(DRIVER-LOOP (BIND (LIST (CAADR FORM))

(LIST (LIST '&PROCEDURE

(CDADR FORM)

(CADDR FORM)

ENV))
ENV)

(PRINT (CAADR FORM))))

(T (DRIVER-LOOP ENV (PRINT (EVAL FORM ENV))))))

For DRIVER-LOOP see Figure 1.

For BIND see Figure 3.

For EVAL see Figure 7.

Figure 8

Modified Driver Loop for Lexically Scoped LAmMB0A-notation

It doesn't work. This patch does put the finishing touch on the

preservation of referential transparency. It does it so well, that each

new definition can only refer to previously defined names! We have lost

the ability to make forward references. We can't redefine a procedure

which had a bug in it and expect old references to use the new definition.

In fact, we cannot uSe DEFINE to make a recursive procedure. {Note Y-

operator} The a&proceourE-object for each defined procedure contains an

environment having only the previously defined procedures.

We are finally confronted with the fact that we have been seeking

the impossible. We have tried to attain complete referential transparency

(in the expectation that modularity would be enhanced), while trying also

to retain the notion of an incremental, interactive top-level loop for

reading definitions. But the very existence of such a top level inherently

constitutes a violation of referential transparency. A piece of code can

be read in which refers to an as yet undefined identifier (the name of a

procedure, for example), and then later a definition for that identifier

read in (thereby altering the meaning of the reference). |

If we stubbornly insist on maintaining absolute referential

transparency in our language, we are forced to eliminate the incremental

top level loop. A program must be constructed monolithically. We must

read in all our procedure definitions at once, close them all together, and

then take one or more shots at running them. (This is the way many Algol

implementations work; development of large systems can be very difficult

if parts cannot be separately constructed and compiled.) We are forced to

give up interactive debugging, because we cannot redefine erroneous

procedures easily. We are forced to give up incremental compilation of

separate modules.

. Steele and Sussman 27 The Art of the Interpreter

We have thrown the baby out with the bath water. The very purpose

of referential transparency is to permit programs to be divided into parts

so that each part can be separately specified without a description of its

implementation. The desirable result is that pieces can be separately

written and debugged. {Note Debugging}

On the other hand, if we give up absolute referential transparency,

we can fix the top level loop. The basic problem is that we really want

procedures defined at top level to be able to refer to procedures defined

later. The problem with pure lexical scoping is that the aproceoureE-objects

are created too early, when the desired environment is not yet available.

We must arrange for them to be constructed at a later time. We could

simply use the environment in use by the caller at the time of invocation

(reverting to dynamic scoping). But dynamic scoping would lose a great

deal of referential transparency and abstractive power. Procedures must

not be allowed to refer to variables internal to other procedures, but only

to top-level variables existing at the time they are called. Therefore

only the future top-level environment is to be included in the &sPROCEODURE-

object when it is eventually constructed. In this way free variable

references will be dynamic only with respect to the top-level environment.

Considering our dynamically-scoped interpreter above (see Figure

5), we would be led to: modify apply again, to combine the best properties

of the dynamically and lexically scoped interpreters. Indeed, the two

kinds of function can easily coexist. We borrow the code involving the

passing of pProceoures (including the pbriver-Loop, modified to initialize env to

PROCEDURES) from the recursion-equations interpreter (Figures 1 and 2), the

code for using this top-level environment from the dynamically-scoped

interpreter (Figure 5), and the code for constructing saproceoure-objects for

LAMBDA-expressions from the lexically- scoped interpreter (Figure 7). . The

result appears in Figure 9.

Steele and Sussman ° 28 The Art of the Interpreter

(DEFINE (EVAL EXP ENV PROCEDURES)

(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))

((EQ (CAR EXP) 'QUOTE)

(CADR EXP))

((EQ (CAR EXP) 'LAMBDA)

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV))

((EQ (CAR EXP) 'COND)

(EVCOND (CDR EXP) ENV PROCEDURES))

(T (APPLY (EVAL (CAR EXP) ENV PROCEDURES)

(EVLIS (COR EXP) ENV PROCEDURES)

PROCEDURES)))) .

(DEFINE (APPLY FUN ARGS PROCEDURES)

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS))

((EQ (CAR FUN) '&PROCEDURE)

(EVAL (CADDR FUN)

(BIND (CADR FUN) ARGS (CADDDR FUN))

PROCEDURES))

(T (EVAL (CADR FUN)

(BIND (CAR FUN) ARGS PROCEDURES)

PROCEOURES))))

(DEFINE (ORIVER-LOOP-1 PROCEOURES FORM)

(COND ((ATOM FORM)

(DRIVER-LOOP PROCEDURES

(PRINT (EVAL FORM PROCEDURES PROCEDURES))))

({EQ (CAR FORM) 'DEFINE)

(DRIVER-LOOP (BIND (LIST (CAADR FORM))

(LIST (LIST (CDADR FORM) (CADDR FORM)))

PROCEDURES)

(PRINT (CAADR FORM))))

(T (ORIVER-LOOP PROCEDURES

(PRINT (EVAL FORM PROCEDURES PROCEOURES))))))

For ODRIVER-LOOP See Figure 1.

For VALUE and BIND see Figure 3.

For EVCOND and EVLIS see Figure 2.

Figure 9

An Evaluator for Local Lexical Scoping

and Dynamic Top-Level References

Ugh bletch, pProceoures is back! Also, there are two kinds of user-

defined procedural objects floating around. There happens to be another

way to fix the top level, which yields additional flavor. We note that

Steete and Sussman 29 The Art of the Interpreter

during any one processing cycle of EVAL/APPLY, PROCEDURES remains constant.

We can thus choose to associate the top level environment with a top-level

procedure at a time earlier than invocation time in appLy. We also note

that Lookup! will have its hands on the top-level environment anyway just

before it locates the definition of a top-level procedure. Exploiting this

idea yields an alternate solution. {Note Lasers}

In the new driver (see Figure 10) loop we no longer use BIND to

augment the top-level environment whenever a new definition is made. We

instead have all of the top-level definitions in one frame of the

environment. When a new definition is to be made we extract the list of

names and the list of values for the old definitions from the old

environment and make a new top-level environment with the lists of names

and values separately augmented.

Instead of creating spProceoure-objects, this driver loop creates

&LABELEO-objects, which have the same format except that they contain no

environment. A &laBELEo-object is purely internal and can never be seen by

a user program. When LookuPpi encounters such an object as the value of a

variable, it immediately creates the corresponding sprocepuRE-object, using

the environment at hand, which turns out to be the top-level environment.

Steele and Sussman 30 The Art of the Interpreter

(DEFINE (DRIVER-LOOP-1 ENV FORM)

(COND ((ATOM FORM)

(DRIVER-LOOP ENV (PRINT (EVAL FORM ENV))))

((EQ (CAR FORM) 'DEFINE)

(DRIVER-LOOP (LIST (CONS (CONS (CAADR FORM) (CAAR ENV))

(CONS (LIST '&LABELED

(COADR FORM)

(CADDR FORM))

(CDAR ENV))))
(PRINT (CAADR FORM))))

(T (DRIVER-LOOP ENV (PRINT (EVAL FORM ENV))))))

(DEFINE (LOOKUP1 NAME VARS VALS ENV)

(COND ((NULL VARS)

(LOOKUP NAME (CDR ENV)))

((EQ NAME (CAR VARS))

(COND ((ATOM (CAR VALS)) VALS)

((EQ (CAAR VALS) '&LABELED).

(LIST '&PROCEDURE (CADAR VALS) (CADDAR VALS) ENV))

(T VALS)))

(T (LOOKUP1 NAME (COR VARS) (COR VALS) ENV))))

_ For pRiveR-Loop see Figure 1.

For Lookup see Figure 3.

For eval see Figure 7.

Figure 10

An Alternative Solution for Local Lexical Scoping

and Dynamic Top-Level References

(Modified Top-Level Driver Loop and Environment Lookup)

Steele and Sussman 31 The Art of the Interpreter

Part Two

State

Decomposition of State

We saw in Part One that an interactive top-level loop necessarily

violates referential transparency. We wish to deal with the computer as an

entity with state, which changes over time by interacting with a user. In

particular, we want the computer to change over time by accumulating

procedure definitions.

Just as the user wishes to think of the computer as having ‘state,

he may find it conceptually convenient to organize a program similarly:

one part may deal with another part having state. Often programs are

written for the purpose of analyzing or simulating a physical system. If

modules of the program are to reflect the conceptual divisions of the

physical system, then the program modules may well need to have independent

state variables. Thus the notion of state is not just a programming trick,

but may be required by the nature of the problem domain. .

A simpler example of the use of state involves the use of a pseudo-

random number generator. A LISP version of one might be:

(DEFINE (RANDOM SEED)

(({LAMBDA (Z)

(COND ((> Z 0) Z)

(T (+ Z -32768.))))

(* SEED 899.)))

This version of ‘RANDOM uses the power-residue method for a 16-bit two's-

complement number representation; the value produced is a pseudo-random

integer, and also is the seed for the next call. The caller of RANDOM is

required to save this value and supply it on the next call to RANDOM.

This fact is unfortunate. The caller really has no interest in the

workings of RaAnooM, and would much prefer to simply call it as "(RANDOM)",

for example, and get back a random number — because this would reflect

most precisely the abstract notion of "random number generator". Such a

generator would have to have state.

Suppose we are willing to live with this nuisance. Consider now

building some larger program using RANDOM. Many levels up, the programmer

who writes some high-level routine. very likely does not care at all that a

low-level routine uses RANDOM; he may not even know about the existence of

that routine. However, if the state of the pseudo-random number generator

is to be preserved, that programmer will have to deal with some state

quantity he knows nothing about, for the sake of a program ten levels

removed from his thinking. Just as proceoures had to be passed all around

for the sake of eval in Figure 2, so the state of RANDOM must be passed up

and down and all around by programs which don't really care. This clearly

violates our principle of modularity. (For an example of how bad this can

o
e

Steele and Sussman 32 The Art of the Interpreter

get, see {Note Gaussian}.)

As another example, suppose that George writes mapcarR, and Harry

uses it. Harry complains that mapcar is too slow. George then decides to

collect some statistics about the use of mapcar, such as the number of times

called, the average length of the second argument, and so on. He first

writes an experimental mapcarR to count number of calls:

(DEFINE (MAPCAR F LN)

(CONS (OLOMAPCAR FL) (+ .N 1)))

(DEFINE (OLDMAPCAR F L)

(COND ((NULL L) '())

(T (CONS (F (CAR L))

(OLDMAPCAR F (COR L))))))

and asks Harry to use it for a while in his program. "I had to add an

extra argument to keep track of the count," says George, "and in order to

_return both the result and the count, I had to cons them together. Please

rewrite your program to keep track of the count and pass it on from one

call on mapcarR to the next." Harry's reply is "unprintable".

Now Bruce comes along and asks Harry how to use Harry's program.

Harry says, "Just write (DIFFERENTIATE EXP VAR N), where Exp is the expression

to be differentiated, var is the variable with respect to which to

differentiate, and nN is George's statistics counter — but that may go away

next week." Bruce gives Harry a funny look, then goes away and writes his

OWN DIFFERENTIATE, uSing George's documentation for the old mapcarR, of course,

unaware that the new one has been installed...

George's new mapcaR conceptually has state. The state information

should be local to the definition of mapcar, because that information is not

anyone else's business, and George has no business requiring everyone else —

to keep track of it for him. George and Harry and Bruce all wish George

had a way to maintain local state information in mapcar.

Side Effects and Local State

Traditionally local state is maintained through some sort of "side

effect". We can always avoid the use of side effects if we are willing to

pass all state variables around.. AS we have seen, this requires a

monolithic conception of the program structure. If we wish to break a

program up into independent modules, each with local state information, we

must seek another method.

We claim that any such method effectively constitutes a side

effect. If a module has hidden state, then its behavior can potentially

change over time.

If only one module in the system has local state, then we can hide

the side effect by making it the top-level module of the system, as we have

done for oRIvVER-LooP. (For an example of this, see {Note Weber}.) If more

than one module has state, however, then each may perceive changes in the

Steele and Sussman | 33 The Art of the Interpreter

other's behavior. This the essence of side effect.

The concept of side effect is induced by particular choices of

boundaries between parts of a larger system. If a system boundary encloses

all processes of interest (the system is closed), we need no concept of

side effect to describe that system as a whole in vacuo. If, however, we

wish to make an abstraction by dividing the system into modules more than

one of which has independent state, then we have by this action created the

concept of side effect.

We are forced to introduce side effects as a technique for

constructing modular’ systems. But side effects violate referential

transparency by altering the meanings of expressions; we expect (+ 3 4)

always to mean the same thing, but we cannot say the same for (+ 3 (RANDOM)).

Two techniques for achieving modularity have come into direct conflict.

The most common form of side effect in programming languages is the

assignment statement, which alters the meaning of a variable. LISP

provides this notion in the seta construct:

(SETO X 43)

returns 43, and as a side effect alters the meaning of x so that subsequent

references will obtain 43 also.

With this, George can now write:

(DEFINE (MAPCAR F L)

(MAPCAR] F L (SETQ N (+ N 1))))

(DEFINE (MAPCAR] F L HUNOZ)

(OLDMAPCAR F L))

There are still some minor problems here. The function mapcaRi and the

variable HuUNOZ are used solely to throw away the value of the SeT9o form. It

is so common to use seETQ only for its side effect that another

construction, PROGN, is very useful:

(PROGN a ey)

evaluates each of the forms e, in order, throwing away the values of all

but the last one. Notice that we specifically require them to be evaluated

in order; this concept did not occur in the specification of our earlier

interpreters, because it was not necessary in the absence of side effects.

Similarly, it was not useful to be able to throw away values in the absence

of side effects. (We did throw away a value in DRIVER-LOOP, but that was one

which resulted from calling PRINT, which of course is assumed to have a

side effect!) Using procn, George can write:

(DEFINE (MAPCAR F L)

(PROGN (SETQ N (+ N 1))

(OLDMAPCAR F L)))

Steele and Sussman 34 The Art of the Interpreter

There remains the problem of the global variable N, which Harry or Bruce.

might stumble across by accident. George has to have some handle to get at

the statistics counter, and any handle George can use intentionally, Bruce

and Harry can use accidentally. One thing that George can do is rename N

to MAPCAR-STATISTICS-COUNTER, and warn Bruce and Harry not to use a global

variable with that name. This is still better than the original situation

— at least now Bruce and Harry need not change their programs, and it is

George's responsibility to find a name which does not conflict. {Note Can

George do better?}

In the case of RANDOM, where the state information is truly local in

that no one wants to access it except its owner, we can combine the use of

lexical scoping and of side effects to manipulate a completely hidden state

variable. For example, suppose we want several independent pseudo-random

number generators, initialized with different seeds. We can make a pseudo-

random number generator generator as follows:

(DEFINE (RGEN SEED)

(LAMBDA () (PROGN (SETQ SEED

((LAMBDA (Z) (COND ((> Z 0) Z)

. (T (+ Z -32768.))))

(* SEED 899.)))

SEED)))

Each call to rctn delivers as its value a new pseudo-random number

generator which is an instance of the prototype described by the LamBoa-

expression which is the body of rGEeN. Each one has a state variable which

is its seed. The state of each instance is distinct from that of every

other instance. This gives one the power of the own variables of ALGOL 60°

without any additional mechanism. ©

Side Effects in the Interpreter

In order to write a simple interpreter which implements the side

effect seta, we will postulate the existence of two side effect operators

which alter S-expressions:

(RPLACA X Y) and = (RPLACO X Y)

return the value of x (which must not be atomic), but as a side effect

alters x so that its car or cdr, respectively, is the value of y. (The

introduction of operators which modify S-expressions causes a number of

nasty problems, which we will consider presently.) We will use _ these

operators to alter the structure of the environment ENV. We modify Evat to

recognize the setg construct (see Figure 11). On seeing "seTQ" in the

"operator position" of the expression, eval dispatches to eEvseto, after

recursively evaluating the value to be assigned. EVSETQ uses LOOKUP to find

the effective binding of the variable mentioned in the settgo. If there is

such a binding, rRptacA is used to change the value associated with the

Steele and Sussman 35 The Art of the Interpreter

variable. If there is no such binding, then the intent is to initialize a

top-level variable; EV-TOP-LEVEL-SETQ locates the top-level environment

(which is always at the end of any environment) and creates a new binding

by altering the environment structure.

We also modify EVAL to recognize PROGN.. EVPROGN iS a tail-recursive

loop which evaluates each subform of the procn form in turn, throwing away

each value but the last. {Note progn Wizardry}

steele and Sussman 36 The Art of the Interpreter

(DEFINE (EVAL EXP ENV)

(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))

((EQ (CAR EXP) 'QUOTE)

(CADR EXP))

((EQ (CAR EXP) 'LAMBOA)

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV))

((EQ (CAR EXP) 'SETQ)

(EVSETQ (CADR EXP) (EVAL (CADDR EXP) ENV) ENV))

((EQ (CAR EXP) 'PROGN)

(EVPROGN (CDR EXP) ENV NIL))

((EQ (CAR EXP) 'COND)

(EVCOND (CDR EXP) ENV))

(T (APPLY (EVAL (CAR EXP) ENV)

(EVLIS (COR EXP) ENV)))))

(DEFINE (EVSETQ VAR VAL ENV)

((LAMBDA (SLOT)

(COND ((EQ SLOT '&UNBOUND)

(EV-TOP-LEVEL-SETQ VAR VAL ENV))

(T (CAR (RPLACA SLOT VAL)))))

(LOOKUP VAR ENV)))

(DEFINE (EV-TOP-LEVEL-SETQ VAR VAL ENV)

(COND ((NULL (COR ENV)) .

(CADAR (RPLACA ENV

(CONS (CONS VAR (CAAR ENV))

(CONS VAL (CDAR ENV))))))

(T (EV-TOP-LEVEL-SETQ VAR VAL (COR ENV)))))

(DEFINE (EVPROGN EXPS ENV HUNOZ)

(COND ((NULL (COR EXPS)) (EVAL (CAR EXPS) ENV)) .

(T (EVPROGN (CDR EXPS) ENV (EVAL (CAR EXPS) ENV)))))

For VALUE, LOOKUP, and BIND see Figure 3.

For e€VCOND and EVLIS see Figure 5.

For apply see Figure 7.

For Lookup, see Figure 10 (not Figure 3).

Figure 11

Evaluator with User Side Effects (Assignment to Variables)

Steele and Sussman 37 The Art of the Interpreter

Because EVSETQ can be used to initialize new top-level variables, it

is convenient for ORIVER-LOOP-1 to call evseTg when defining a new function

(see Figure 12). Unlike the oriver-Ltoop-1 of Figure 10, this one has no

special knowledge about the structure of environments; as before, such

knowledge is hidden in environment specialists such as BIND, VALUE, and now

EVSETQ. (The value of EvSETQ is not used, but thrown away; we introduce an

extra throwaway parameter into the definition of oRIverR-LooP for this

purpose.)

(DEFINE (DRIVER)

(DRIVER-LOOP <THE-PRIMITIVE-PROCEDURES>

NIL

(PRINT '|LITHP ITH LITHTENING])))

(DEFINE (DRIVER-LOOP ENV HUNOZ HUKAIRZ)

(DRIVER-LOOP-1 ENV (READ)))

(DEFINE (DRIVER-LOOP-1 ENV FORM)
(COND ((ATOM FORM)

(DRIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV))))
((EQ (CAR FORM) 'DEFINE)
(DRIVER-LOOP ENV

(EVSETQ (CAADR FORM)
(LIST '&LABELED

(CDADR FORM)
(CADDR FORM))

ENV)
(PRINT (CAADR FORM))))

(T (DRIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV))))))

For EVSETQ see Figure lil.

Figure 12

Driver Loop for Evaluator with User Side Effects

(Assignment to Variables)

(Once we have side effects, we don't really need the &lLABELED device

to permit incremental definition of recursive functions; we can just

perform a side effect on the top-level environment. We left the ataBeLed

device in Figure 12 for continuity with the previous examples. "Real" LISP

Systems use the side effect method. See {Note Driver Loop with Side

Effects}, and also {Note LabeLS with Side Effects}.)

Steele and Sussman 38 The Art of the Interpreter

Equipotency of SETQ and RPLACA

‘We pulled a fast one when we introduced rpLacA and rptaco for the
sake of implementing seto (though we actually only used rptacaA). We used a

Side effect to define the implementation of side effects. While this makes

a fine meta-circular description, it doesn't constitute a definition of

side effects founded on the original meta-circular recursion equations

interpreter.

We could implement an interpreter which would define a side effect

without itself using side effects. Such a definition would encapsulate the

entire state of the user's data structures into a single interpreter data

structure which is passed around by a top-level loop. Constructing such an

interpreter would involve turning a regular interpreter inside out (in much

the same way GAUSSIAN was everted in {Note Weber}). This is extremely

difficult and lengthy, and the module boundaries within the interpreter are

so destroyed that the resulting interpreter is nearly impossible to

understand. We will spare the reader the details.

We settle for a meta-circular description of side effects. Now

that we have seen how to implement seta in terms of RPLACA and RPLACOD, we can

also do the reverse, completing the meta-circle (see Figure 13). We use

the procedural version of cons shown earlier, modified to provide two

"setting procedures" sa and sp, which provide the ability to alter the car

and cdr.

(DEFINE (CONS A D)

(LAMBDA (M)

(M AD (LAMBDA (Z) (SETQ A Z)) (LAMBDA (Z) (SETQ D Z)))))

(DEFINE (CAR X)

(% (LAMBDA (A DSA SD) A))

(DEFINE (COR X)

(X (LAMBDA (A D SA SD) D))

(DEFINE (RPLACA-X Y)

(X (LAMBDA (A D SA SD)

(PROGN (SA Y) X))))

(DEFINE (RPLACD X Y)

(% (LAMBDA (A D SA SD)

(PROGN (SD Y) X))))

Figure 13

Procedural (“Actors-like") Implementation of cons and Friends

We originally introduced side effects such as setg to help us build

modules such as RANDOM which have local state. Now, using the technique of

Steele and Sussman 39 The Art of the Interpreter

constructing procedures, we find that cons can be viewed as a constructor

of modules, just aS MAPGEN waS. CONS constructs modules ("cons cells")

which use seta to maintain a local state.

Side Effects and Equality

"Things are seldom what they seem,

Skim milk masquerades as cream..."

— Gilbert and Sullivan

(H.M.S. Pinafore)

"Plus ca change, plus c'est la méme chose."

— Alphonse Karr

Our descriptions of SeTg and Rptaca, both informal and meta-

circular, are imprecise. They admit a number of drastically different

interpretations of the behavior of the system. We would all agree that for

RPLACA to mean anything at all like what we want, the expression:

((LAMBDA (xX)

(PROGN (RPLACA X 'Z)

(CAR X)))

(CONS 'A '(B C)))

Puzzle #1

should evaluate to z. But what about this case:

((LAMBDA (X Y)
(PROGN (RPLACA X 'Z)

(CAR Y)))
(CONS 'A '(B C))
(CONS 'A '(B C)))

Puzzle #2

Should this evaluate to a or 2? Nearly all LISP systems would produce A,

but there are arguments for both possibilities. Similarly, should this:

Steele and Sussman 40 The Art of the Interpreter

((LAMBDA (X)

((LAMBDA (U V)

(PROGN (RPLACA U 'Z)

(CAR V)))

x X))

(CONS 'A '(B C)))

Puzzle #3

evaluate to A or 2? Again there are arguments for both possibilities.

Before we can meaningfully consider these questions, we must have a

more precise notion of what we mean by "RPLACA”. Let us review its

description:

If x has as its value a non-atomic S-expression, and we

evaluate the expression (RPLACAX Y), then after this

evaluation, the value of the expression (CAR xX) is Y.

This description depends upon a critical assumption. We have a notion of a

thing which is the value of x, such that several references to the variable

X all refer to the same thing. But what the #}#@ do we mean by "same"??

The concept of side effect is inseparable from the notion of

equality/identity/sameness. The only way one can observationally determine .

that a side effect has occurred is when the same object behaves in two

different ways at different times. {Note rptaca Can Alter car’ Instead)

Conversely, the only way one can determine that two objects are the same is

to perform a side effect on one and look for an appropriate change in the

behavior of the other.
In order to determine the answers to the Puzzles above, we must

determine what properties are required of “sameness”. There may be

different points of view regarding sameness, which may lead to different

answers to the Puzzles.

If we agree that the answer to Puzzle #1 is 2z, then we have

implicitly adopted the notion of consistency of variable reference, because

we have referred to the variable x twice. As a property of the sameness

predicate =, we write: (=x x). We can say that referring to a variable

does not make a copy of its value (because if it did, the erpiaca in

Puzzle #1 would have changed only a copy of .the value of x, and (CAR x)

would extract the car of a different copy, producing A).

Given this, and given that we accept the interpreter of Figure 11

and believe in its meta-circularity, we are forced to conclude that the

answer to Puzzle #3 is also z. We must consider all access paths and show

that no copying can occur which would allow the answer to be a. The meta-

circularity requires that any property of the interpreted language also

hold for the text of the interpreter, and vice versa. The answer to

Puzzle #1 requires that variable references not produce implicit copies,

and so neither can variable references in the text of the interpreter.

Steele and Sussman 41 The Art of the Interpreter

(Consistent with this, our particular interpreter has no explicit code in

Lookup which specifies copying.) The other place in Puzzle #3 where copying

might occur is in the binding of uv and v. Examining the text of our

particular meta-circular interpreter shows that BIND also has no explicit

code for copying. There remains the possibility that binding does

implicitly copy in the text of the meta-circular interpreter; this would

consistently cause copying in the bindings of the interpreted code, because

ENV would be copied whenever bound in the text of the interpreter. This,

however, would cause the answer to Puzzle #1 to be A, because ENV is bound

at other places which would cause incorrect copying. We therefore conclude

that no implicit copying can occur, and so the answer to Puzzle #3 is Z.

We emphasize that this result rests on our acceptance of a

particular class of meta-circular interpreters. (These interpreters,

however, closely model what real LISP systems do.) There are other

languages which do implicitly copy structured values when’ binding

variables, such as Algol 60 when using call-by-value. For such a language,

the answer to Puzzle #3 would be a (if we represented the list (A BC) as an

Algol 60 array, for example), even though the answer to Puzzle #1 would

still be z.

One can argue both for and against copying during binding on the

basis of modularity. Copying isolates the caller from the called routine

by preventing the called routine from performing under-the-table side-

effects on the caller's data objects. Not copying allows data objects to

encapsulate independent pieces of state which can be operated on by low-

level routines whose details need not be understood by their caller (an

example of such a data object is the symbol table of an assembler, with its

insertion and lookup routines). |

We now consider Puzzle #2. If we accept that binding and variable

referencing do not makes copies, then Puzzle #2 is a question about the

nature of cons: if cons is called twice with arguments which are the same,

are the two results the same? (Note that this is the inverse of Postulate

4 for S-expressions in {Note S-expression Postulates and Notation}.) If

the answer is consistently a (as in most real LISP systems), then cons must

generate a new object every time it is called. (It must produce different

results if the two sets of arguments differ, and an answer of A_ to

Puzzle #2 requires different results if the two sets of arguments are the

same.) CONS perforce contains a side effect. Calls to it are not

referentially transparent.

The other possibility, given that variable binding and variable

referencing do not make copies, is that the answer to Puzzle #2 is z. In

this case, cons of the same arguments must always produce the same result.

This choice leads to galloping non-modularity of data structures without

compensation. suppose, for example, we represent arrays as lists of

numbers (a reasonable LISP representation), and want to alter the last

element of one such array (uSing RPLACA). Under this scheme, all arrays

whatsoever with the same last element would be magically altered! A

language with such characteristics would be extremely difficult to control.

Supposing now that binding does make copies as in Algol 60, the

answer to Puzzle #2 must be a. Here it does not matter whether cons of the

Steele and Sussman 42 The Art of the Interpreter

same arguments produces the same result, since the bindings of x and Y will

make copies anyway. We may, however, consider this variant:

(PROGN (RPLACA (CONS 'A '(B C)) 'Z)

(CAR (CONS 'A '(B C))))

Puzzle #2a

Here we have simply substituted the expressions (CONS 'A '(8 C)) for

the occurrences of x and y. If conS always returns the same object for the

same inputs, then Puzzle #2 and Puzzle #2a have different answers if

bindings copy, but may have the same answers if bindings do not copy (they

may not have the same answer if CONS notices that we have pulled the rug

out from under it and produces a new version because the old one was |

changed!). There is also a quibble as to whether the passing of an

argument to RPLACA in itself constitutes a binding — if so, RPLACA must be

completely ineffectual, because it always receives a copy! We must then

regard RPLACA as a built-in system primitive; the user would have no way to

define such a thing. This would be most unfortunate.

We have examined many of the design decisions for the meaning of

RPLACA, CONS, and equality. If side effects are to be usable at all, the.

references to things denoted by variables must not make copies of those

things. If the user is to be able to write procedures which produce

lasting side effects on their arguments (as system-supplied primitive

operators do), then there must be a variable binding mechanism which does

not make copies. (LISP's binding mechanism in fact does not copy. Algol

60's call-by-value mechanism does copy structured data, but its call-by-

name mechanism does not; we will study this in Part Three.) If the

variable binding (or assignment) mechanism does not make copies, then cons

must generate a new, distinct object on each call.

The reader may have noted that we have been talking in circles for

the last several paragraphs: in attempting to elucidate the meaning of

sameness, we have discussed side effects, and in so doing used the word

"same" nearly every other sentence. The point is that it is not possible

to define them separately; The meanings of "equality" and "side effect"

Simultaneously constrain each. other. With this in mind, we will

investigate the choice of a primitive equality predicate.

The equality predicate we choose should be sufficiently finely

grained to distinguish any two objects which have potentially distinct

behavior, yet should not be so finely grained as to distinguish entities

which otherwise would have the same behavior. Thus we have two desiderata:

[1] Two objects which are_ observed to _ behave

differently must not be equal.

[2] Conversely, we would like two objects which are

adjudged unequal to exhibit differing behaviors under

suitable circumstances.

Steele and Sussman 43 The Art of the Interpreter

Any useful equality predicate must satisfy [1]. Unfortunately, satisfying

[2] also may be too difficult; the equivalence of behavior for procedural

objects is an unsolvable problem. We are thus forced to settle for an

equality predicate which may make more distinctions than are strictly

necessary. .

LISP has two standard equality predicates: EQUAL and €Q. We

exhibited a definition of Equal in Part Zero. In Part Zero we also gave a

description of £0, but defined it only on atoms; LISP usually extends €Q

to all S-expressions in such a way as to distinguish the results of

different calls to cons (regardless of the arguments given to cons).

Variable references and variable binding "preserve eEQqness".

In the absence of erptaca ("pure LISP"), £€o and EQUAL both satisfy

desideratum [1]. equaL, however, makes fewer unnecessary distinctions than

EQ. By desideratum [2], equal is therefore preferred to £9. (The technique

of “hash-consing" [Goto] can be used in this situation to make £€Q and EQUAL

effectively the same.)

In the presence of side effects such as RPLACA, EQUAL fails to make

sufficiently many distinctions. Each call to cons produces’ distinct

objects, which equal may fail to distinguish. In this case, eEQuAL fails

desideratum [1]. Thus, in the presence of RPLACA, £Q is the preferred

equality predicate. |
In summary, indeed "the more things change, the more they remain

the same". Two distinct objects may look the same because one masquerades

as the other; they can be operationally distinguished only by purposely

altering the behavior of just one of them. Thus the ability to decide

whether two objects are the same is directly correlated with the ability to

perform side effects on them.

Dynamic Scoping as a State-Decomposition Discipline

As we saw in the preceding section, side effects can become rather

complicated. To help keep this complexity under control, we ought to

abstract and package common patterns of their use. .
Suppose we have a procedure PRINT-NUMBER Which prints numbers:

(DEFINE (PRINT-NUMBER N)

((LAMBDA (Q R)

(COND ((ZEROP Q) (PRINT-DIGIT R))

(T (PROGN (PRINT-NUMBER Q)

(PRINT-DIGIT R)))))
(/ N10.)

(REMAINDER N 10.)))
~

Now people find this program very useful and use it in all their programs.

Normally we want to print numbers in radix 10 (decimal), but

occaSionally (for example, in a debugging aid) we want to print numbers in:

other radices, such as 8 or 16. One might generalize the PRINT-NUMBER

program to take the radix as an extra argument:

Steele and Sussman 44 The Art of the Interpreter

(DEFINE (PRINT-NUMBER N RADIX)

((LAMBDA (Q R)

, (COND ((ZEROP Q) (PRINT-DIGIT R))

(T (PROGN (PRINT-NUMBER Q)

(PRINT-DIGIT R)))))

(/ N RADIX)

(REMAINDER N RADIX)))

Of course, then everyone who useS PRINT-NUMBER must supply the radix. This

is mildly annoying, because most of the time one wants decimal printing,

and one tires of writing "10." all the time. One might write another

program for most people to use:

(DEFINE (PRINT-10 N)

(PRINT-NUMBER N 10.))

This example is simple, but a real PRINT procedure in a real LISP system

may be controlled by dozens of parameters like RADIX: format parameters

for printing floating-point numbers, which file to print to, file-dependent

format parameters such as line width and page length, file-dependent

processing routines (e.g. scrolling for display terminals), abbreviation

format parameters for S-expressions, etc. All these extra parameters to

PRINT are really determined by the larger context in which PRINT is used,

but this context is usually not determined by the immediate caller of

PRINT. A program which generates and prints successive prime numbers

should not have to deal with the complexities of output files; in

particular, one does not want to have to rewrite the program just to direct

the output to a line printer instead of a disk file. Context decisions are

usually made at a much higher level (perhaps interactively by the user).

Therefore the solution of using procedures like PRINT-10 iS not acceptable;

such procedures only serve as abbreviations, binding the many parameters to

constants at too low a decision level.

Another idea is to pass the extra parameters for print control

through the intermediate levels of the program. But this violates the

modularity of the intermediate modules, which generally have no interest in

PRINT'S screwy parameters. On the other hand, an occasional intermediate

module will be interested in dealing with a few of the parameters (but

probably not all of them!). We would like a mechanism for dealing with

only the parameters of interest, without having to deal with all of them

all of the time.

Side effects can do the job. We can make all the parameters

globally available variables (in the top-level environment), initialized to

reasonable default values, and invite all interested parties to perform

SETQ aS necessary. This technique has disadvantages. If every program

just changes the parameters at will, then each program must re-set all the

parameters (even the ones not of interest) for its own uses of PRINT. This

is even worse than just passing PRINT all the parameters!

We can require a convention whereby the parameters normally have

their initial default values, and any program which modifies a parameter

Steele and Sussman 45 The Art of the Interpreter

must eventually restore it to its previous value.. For example, a procedure

to print in octal might look like:

(DEFINE (PRINT-8 N)

((LAMBDA (OLDRADIX)

(PROGN (SETQ RADIX 8)

(PRINT-NUMBER N)

-(SETQ RADIX OLDRADIX)))

RADIX))

This convention allows PRINT-8 to locally alter the radix, in a manner

transparent to its caller; it does not interfere with the way in which its

caller may be using PRINT.

This convention is a standard pattern of use. It is a stack

discipline on the values of rapix (or whatever other variables). We would

like to capture this pattern as an abstraction in our language.

Surprise! We have seen this abstraction before: dynamically

scoped variables behave in precisely this way. Dynamically scoped

variables conceptually have a built-in side effect — we took advantage of

this at the end of Part One to fix the problem with the top-level loop.

Binding a dynamically scoped variable such as RADIX can be said to cause a

side effect because it alters the behavior of a (superficially) unrelated

procedure such as PRINT in a referentially opaque manner. Such binding is

a particularly structured kind of side effect, because it guarantees that

the side effect will be properly undone when the binder has finished

executing. Thus with dynamic scoping we could write:

(DEFINE (PRINT-8 N)
(({LAMBDA (RADIX)

(PRINT-NUMBER N))

8))

We saw in Part One that, precisely because dynamically scoped

variables are referentially opaque, we do not want all variables to be

dynamically scoped. But we have newly rediscovered dynamic variables in

another context and found them desirable. We therefore consider an inter-

preter which supplies both lexical and dynamic variables (see Figure 14).

Here we have merged the dynamically scoped variable evaluator

(Figure 5) with the lexically scoped evaluator (Figure 11). We changed

APPLY to have an extra case, wherein an "open. LAmMBDA-expression" is

effectively closed at the time of its application using the environment of

its caller. Eval is changed to once again supply the environment to apply.

This interpreter is almost identical to that of LISP 1.5 [LISP 1.5M], with.

the difference that we write simply (LamapA ...) to get a closed procedure

where in LISP 1.5 one must write (FUNCTION (LAMBDA ...)); in both cases one

must write ‘(LAMBDA ...) to get an open LAmMBDA-expression.

Steele and Sussman 46 The Art of the Interpreter

(DEFINE (EVAL EXP ENV)
(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))
((EQ (CAR EXP) 'QUOTE)
(CADR EXP))

((EQ (CAR EXP) 'LAMBDA)
(LIST '&PROCEDURE (CADR EXP) (CADDR EXP) ENV))

((EQ (CAR EXP) 'SETQ)
(EVSETQ (CADR EXP) (EVAL (CADDR EXP) ENV) ENV))

((EQ (CAR EXP) 'PROGN)
(EVPROGN (CDR EXP) ENV NIL))

((EQ (CAR EXP) 'COND)
(EVCOND (CDR EXP) ENV))

(T (APPLY (EVAL (CAR EXP) ENV)
(EVLIS (COR EXP) ENV)

ENV))))

(DEFINE (APPLY FUN ARGS ENV)

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS))

((EQ (CAR FUN) '&PROCEDURE)

(EVAL (CADOR FUN)

(BIND (CADR FUN) ARGS (CADDOR FUN))))

((EQ (CAR FUN) 'LAMBDA)

(EVAL (CADOR FUN)

(BIND (CADR FUN) ARGS ENV)))

(T (ERROR))))

For VALUE, LOOKUP, and BIND see Figure 3.

For €VCOND and EVLIS see see Figure 5.

For vLookuel see Figure 10 (not Figure 3).

Figure 14

Interpreter with Both Open and Closed Procedures

Although this is the tradition, it doesn't work very well. The

problem is that the lexical variables are not really lexical. Although

lexical references cannot incorrectly refer to dynamically intended

bindings, the reverse is not true. Dynamic variable references can be

captured by bindings intended to be strictly lexical.

For example, we might want to write a procedure which packages up

information about dealing with RaoIx:

(DEFINE (RADIX-10 FUN)

((LAMBDA (RADIX) (FUN))

10.))

Steele and Sussman 47 The Art of the Interpreter

This is more general than PRINT-10 in that'it allows us to wrap a binding of

RADIX around any piece of code, not just a call to PRINT. (In a more

realistic example, we might package up the bindings of a dozen parameters

in a similar manner.) .

There are two possibilities: should the argument to RADIX-10 be a

closed procedure or an open LaAmMBDA-expression? If closed:

(DEFINE (DO-SOMETHING-INTERESTING X FUN)

(RADIX-10 (LAMBDA () (FORMAT-HAIR 'FOO (CADR X) FUN))))

(FORMAT-HAIR takes several arguments, one of them a procedure and presumably

Calls PRINT at some level), then the binding of RADIX in RADIX-10 will not be

apparent to PRINT, because the environment of the call to FORMAT-HAIR is that

of the closed procedure, which in turn is that of the call to RADIx-10

Within DO-SOMETHING- INTERESTING. Thus it fails to work at all. If the

argument to RADIX-10 is left open:

(DEFINE (DO-SOMETHING-INTERESTING X FUN)

(RADIX-10 '(LAMBDA () (FORMAT-HAIR 'FOO (CADR X) FUN))))~

then this fails to work at all because of a variable naming conflict with

FUN. The third argument passed to FORMAT-HAIR Will evaluate to the argument

which was passed to RADIX-10, namely the quoted lambda expression. This is

similar to the mapcar bug that originally got us thinking about lexical

scoping in Part One.

A solution to this problem is to maintain separate environments for

lexical and dynamic variables; this will guarantee that the two kinds

cannot interfere with each other. This will require a special syntax for

distinguishing references to and bindings of the two kinds of variables.

We will choose to encode lexical variables as atomic symbols, as before,

and dynamic variables as lists of the form (byYnaMIC x), where x is the name

of the dynamic variable. (This choice is completely arbitrary. We could

have chosen to encode the two kinds as (LEXICAL x) and x; or aS (LEXICAL x)

and (DYNAMIC x), leaving atomic symbols as such free to encode yet something

else; but we have chosen this because in practice most variable

references, even in a purely dynamically scoped LISP, are lexical, or can

be considered so.) . |
In our new interpreter (see Figure 15) we call the two environments

ENV (lexical) and oenv (dynamic). The syntax of LamespA-expressions is

extended to accommodate two kinds of bindings; for example,

(LAMBDA (X Y (DYNAMIC Z) W) ...)

takes four arguments, and binds the parameters x, Y, and Ww lexically, and z

dynamically. Using this syntax, we could write RADIX-10 in this way:

(DEFINE (RADIX-10 FUN)

((LAMBDA ((DYNAMIC RADIX)) (FUN))

10.))

Steele and Sussman | 48 The Art of the Interpreter

‘

The code for PRINT-NUMBER would then be written:

(DEFINE (PRINT-NUMBER N)

((LAMBDA (Q R)

. (COND ((ZEROP Q) (PRINT-DIGIT R))-

(T (PROGN (PRINT-NUMBER Q)

(PRINT-DIGIT R)))))

(/ N (DYNAMIC RADIX))

(REMAINDER N (DYNAMIC RADIX))))

Most of the extra complexity in Figure 15 is devoted to the parsing of

LAMBDA-expression binding lists upon application by app.y-proceoure. (For the

sake of brevity we have omitted the parts of the interpreter which deal

with seta and PROGN; they could easily be re-inserted.)

Steele and Sussman 49 The Art of the Interpreter

(DEFINE (EVAL EXP ENV DENV)
(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)
(1 (VALUE EXP ENV))))

((EQ (CAR EXP) QUOTE) (CADR EXP))
((EQ (CAR EXP) 'LAMBDA) |
(LIST '&PROCEDURE (CADR EXP) (CADDR EXP) ENV))

((EQ (CAR EXP) 'COND)
(EVCOND (CDR EXP) ENV DENV))

((EQ (CAR EXP) 'DYNAMIC) (VALUE (CADR EXP) DENV))
(7 (APPLY (EVAL (CAR EXP) ENV DENV)

(EVLIS (COR EXP) ENV DENV)

DENV))))

(DEFINE (APPLY FUN ARGS DENV)

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS DENV))

((EQ (CAR FUN) '&PROCEDURE)

(APPLY-PROCEDURE (CADR FUN) ARGS '() "() "() '()

(CADDDR FUN) DENV (CADDR FUN)))

(T (ERROR))))

(DEFINE (APPLY-PROCEDURE VARS ARGS LVARS LARGS DVARS DARGS ENV DENV BODY)

(COND ((NULL VARS) .

(COND ((NULL ARGS)

(EVAL BODY

(BIND LVARS LARGS ENV)

(BIND DVARS DARGS DENV)))

(T (ERROR)))) |
((NULL ARGS) (ERROR))

(({ATOM (CAR VARS))

(APPLY-PROCEDURE (CDR VARS) (COR ARGS)

(CONS (CAR VARS) LVARS) (CONS (CAR ARGS) LARGS)

DVARS DARGS

ENV DENV BODY))

((EQ (CAAR VARS) 'DYNAMIC)

(APPLY-PROCEDURE (COR VARS) (COR ARGS)

LVARS LARGS

(CONS (CAR VARS) DVARS) (CONS (CAR ARGS) DARGS)

ENV DENV BODY))

(T (ERROR))))

For EvCcOND and EvVLIS see Figure 2.

For VALUE, BIND, and tooxup see Figure 3.

For vtooxupi see Figure 10.

Figure 15 .

Interpreter with Separate Lexical and Dynamic Variables

Steele and Sussman 50 The Art of the Interpreter

Dynamic scoping provides an important abstraction for dealing with

side effects in a controlled way. <A low-level procedure may have state

variables which are not of interest to intermediate routines, but which

must be controlled at a high level. Dynamic scoping allows any procedure

to get access to parts of the state when necessary, but permits most

procedures to ignore the existence of the state variables. The existence

of many dynamic variables permits the decomposition of the state in such a

way that only the part of interest need be dealt with.

If dynamic variables are integrated with the lexical environment,

intractable dilemmas are encountered. (We have not considered here all

possible such integration schemes, but the authors have found = such

difficulties with every such scheme they have examined.) We have therefore

presented an interpreter in which environments for the two kinds of

variable are separated.

Steele and Sussman 51 The Art of the Interpreter

Summary

We examined the effects of various language design decisions on the

programming styles available to a user of the language, with particular

emphasis on the ability to incrementally construct modular systems. At

each step we exhibited an interactive meta-circular interpreter for the

language under consideration. Each new interpreter was the result of an

incremental change to the previous interpreter.

We started with a simple interpreter for LISP recursion equations.

In order to capture certain abstractions we were forced to introduce

procedural data. This in turn forced consideration of the meanings of free

variables in a= procedure, for. the simplest extension unexpectedly

introduced dynamic scoping of variables.

We were compelled to turn from dynamic scoping to lexical scoping

to preserve the integrity of procedural abstractions. The referentially

transparent language thus obtained is richer than expected. It allows the

definition of procedures which construct other procedures by instantiation

of a prototype. Unfortunately, we found that complete referential

transparency in a language makes it impossible to construct an interactive

interface to the interpreter. But such an interface is necessary to

satisfy another requirement of modular construction: that parts of a

program can be independently defined, replaced, and debugged. We were

forced to give up absolute referential transparency to admit an interactive

interface.

The problems of the interactive interface led us to consider the

notion of state as a dimension of abstraction. Just as we didn't want to

have textually monolithic programs, we wanted to avoid programs which

manipulate a monolithic representation of the state. The decomposition of

the state of a system into several independent parts induces the notion of

a side effect. Side effects only make sense relative to a definition of

-equality on the space of data objects. But the definition of equality

itself depends simultaneously on the notion of side effect. Only a few of

the choices of equality predicate and. side effect notion are consistent

with the requirements of modular construction.

The introduction of side effects is inconsistent with referential

transparency. But since both are important to support modular construction

we must accept an engineering trade-off between them. We were led to look

for controlled patterns of side effects which can be easily understood and

safely applied. We discovered that one such pattern is equivalent to the

use of dynamically scoped variables we discussed earlier. We investigated

how to construct a system which integrates lexical and dynamic scoping in a

smooth way.

There are many issues yet to be explored. The introduction of side

effects raises questions about order of evaluation. An interesting order

provided by Algol 60 is call-by-name. This discipline, so unlike LISP's,

is induced from a different notion of procedure, expressed as the "copy

rule". This idea is a syntactic one, and so differs in flavor from the

Steele and Sussman 52 The Art of the Interpreter

procedural ideas embodied by the interpreters we have presented.

Consideration of syntactic transformations leads to the notion of meta-

procedures, such as macros, compilers, and simplifiers. We will explore

all of this in Parts Three and Four. :

Acknowledgements

We would like to thank Johan De Kleer, Daniel L. Weinreb, Julie

Sussman, Carl Hewitt, Richard Stallman, Jon Doyle, and Mitch Marcus for

reading our draft. They found a few bugs and helped us refine our

presentation. We also want to thank Hal Abelson and Robert Fano for. help

and encouragement. Finally, we must’ thank John McCarthy. Besides

responding to our messages and answering questions about the early history

of LISP, it was all his idea in the first place and we are continually

amazed at the beauty and power of his conception. .

Steele and Sussman 53 The Art of the Interpreter

Notes

{Can George do better?} Page 34

The problem here is that George needs access to the statistics

counter without giving that access to anyone else. As described in the

next example George can make the counter an own variable, but how can he

get access to it? One idea is that George can define mapcAR in the

following manner:

(({ LAMBDA (N)

(PROGN (SETQ MAPCAR

(LAMBDA (F L)

(PROGN (SETQ N (+ N 1))

(OLDMAPCAR F L))))

(LAMBDA () N)))

0)

This expression defines mapcaR by setging (See {Note Driver Loop with Side

Effects}.) it to an appropriate procedure. It then returns, as a value,

an anonymous procedure which accesses the value of the statistics counter.

If George saves this value and uses it to get at the counter when he needs

it, he will have isolated it completely from everyone else!

{Debugging} Page 27

It has been suggested that it is possible always to write correct

programs. Such a situation would eliminate the need for debugging. The

problem with this idea is that a crucial part of the problem-solving

Strategy is. the decomposition of problems into presumably independent

subproblems. There is no guarantee that this is possible in general, but

even when it is not possible, there are often general strategies for

approximating a solution to a problem by composing the solutions to almost

independent. subproblems. Often one can make progress on the solution to a

hard problem by considering the solution of a simplified version of the

problem which is similar in some essential aspect to the original one but

which differs from it in detail. Once the solutions to the subproblems are

obtained, they must be fitted together, and the details of the interactions

smoothed out. The fixing of unanticipated interactions is debugging.

Even in those cases where a decomposition into completely

independent subproblems is possible, it is not always feasible. In order

to be sure that the solutions to the subproblems are really independent it

is necessary to understand both the problem-~ and the possible

implementations and interactions of subsolutions so completely that one

must effectively solve the entire problem before choosing the correct

decomposition. This compromises the decomposition strategy.

Steele and Sussman 54 The Art of the Interpreter

{Driver Loop with Side Effects} | Pages 37, 53, 59

This driver loop (Figure Nl) is similar to the one in Figure 8

(which didn't work). This one does work because, although top-level

procedure definitions are closed in the current top-level environment, that

(DEFINE (DRIVER-LOOP-1 ENV FORM)

(COND ((ATOM FORM)

(ORIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV))))

({EQ (CAR FORM) 'DEFINE)

(ORIVER-LOOP ENV

(EVSETQ (CAADR FORM)

(LIST '&PROCEDURE

(CDADR FORM)

(CADDR FORM)

ENV)

ENV)

(PRINT (CAADR FORM))))

(T (DRIVER-LOOP ENV NIL (PRINT (EVAL FORM ENV))))))

For €val and EvsetTg see Figure ll.

For LookuPl1 see Figure 3 (not Figure 10, despite Figure 11!).

Figure Nl

Implementation of oriver-Loop Using Side Effects

Steele and Sussman 25 The Art of the Interpreter

{ EVALQUOTE } Page 14

The top level of LISP 1 [LISP 1M] and LISP 1.5 [LISP 1.5M] actually

was not at all like the one presented here. Rather than reading one S-

expression and giving it to EvAL, it read two S-expressions and gave them

to appty. Such a top level is called an EvaLquote top level (see Figure N2).

(DEFINE (DRIVER-LOOP-1 PROCEDURES FORM1)

(ORIVER-LOOP-2 PROCEDURES FORM] (READ)))

(DEFINE (DRIVER-LOOP-2 PROCEDURES FORM) FORM2)
(COND ((EQ FORM] ‘DEFINE)

(DRIVER-LOOP (BIND (LIST (CAAR FORM2))
(LIST (LIST '&PROCEDURE (CDAR FORM2) (CADR FORM2)))
PROCEDURES)

(PRINT (CAAR FORM2))))
(T (DRIVER-LOOP PROCEDURES

(PRINT (APPLY FORM] FORM2 PROCEDURES))))))

For DRIVER-LOOP see Figure 1.

For apPtyY see Figure 2.

For BIND see Figure 3.

Figure N2

Driver Loop for an EvALQuoTeE Top Level

This driver loop is somewhat nicer than the one in Figure 1,

because the one in Figure] had an essentially useless condo clause. The

case of typing an atom was not useful, because there were no top-level

values for variables. Once we introduce procedural objects, this is no

longer true. But EVALQUOTE requires an inconsistency of notation: at the

top level one must write CAR((A . 68)), Whereas in the middle of a program

one would write (cAR '(A . B)).

The notion of evaiquote also has some theoretical motivation, if one

thinks of LISP as a universal machine akin to a universal Turing machine.

In this model one takes a description of a machine to be simulated and a

description of its input data, and gives them to the universal machine to

process. In LISP, the universal machine is aApPLy.

Steele and Sussman 56 The Art of the Interpreter

{Gaussian} Pages 32, 68

A typical example of the use of a pseudo-random number generator is

to construct a generator for pseudo-random numbers with a Gaussian

distribution by adding up a large number of uniformly distributed pseudo-

random numbers. We would like to write it in roughly as in Figure N3.

(DEFINE (GAUSSIAN)

(WEBER 0 43))

(DEFINE (WEBER X N)

(COND ((= N 0) X)

(T (WEBER (+ X (RANDOM)) (- N 1)))))

Figure N3

"Gaussian" Pseudo-Random Number Generator

This code should add up 43 pseudo-random numbers obtained by calling’ RANDOM. |

We cannot write such a RANDOM without side effects, however. We can arrange

to pass the seed around, as in Figure N4.

(DEFINE (GAUSSIAN SEED)

(WEBER 0 43 SEED))

(DEFINE (WEBER X N SEED)

(COND ((= N 0) (CONS X SEED))

(T ((LAMBOA (NEWSEED)

(WEBER (+ X NEWSEED) (- N 1) NEWSEED))

(RANDOM SEED)))))

Figure N4

"Gaussian" Pseudo-Random Number Generator, Passing SEED

This is much more complicated. The user of GAUSSIAN muSt maintain the seed.

Moreover, GAUSSIAN and WEBER each need to return two values; here we cons

them together, and the user must take them apart.

Steele and Sussman 57 The Art of the Interpreter

{LABELS } Pages 29, 59

This technique can be generalized to allow the definition of

recursive local procedures. (Although the Y-operator discussed in {Note Y-

operator} can be used to implement recursive local procedures, it is

extremely painful to construct several mutually recursive procedures.

Although mutually recursive procedures can be theoretically eliminated (by

procedure integration), this process destroys the conceptual structure of

the program.)

Consider writing a procedure to construct the reverse of a given

list:

(DEFINE (REVERSE L)

(REVERSEL L '()))

(DEFINE (REVERSE] OLD NEW)

(COND ((NULL OLD) NEW)

(T (REVERSEL (COR OLD) (CONS (CAR OLD) NEW)))))

The procedure REVERSE] 1S irrelevant to the outside world; we would like to

hide it inside REVERSE.
Let us invent a new construction to permit the definition of local

procedure definitions with names:

(LABELS (CCF, Ya. “a2 | body,)

((f, Yo Yoo wae) body,)

((f, Yn “ne wee) body,))

body)

means the value of body when evaluated in an environment where’ the

specified procedure definitions are available. For example:

(DEFINE (REVERSE L)

(LABELS (((REVERSE1 OLD NEW)

(COND ((NULL OLD) NEW)

(T (REVERSE1] (COR OLD) (CONS (CAR OLD) NEW))))))

(REVERSE L '())))

The same trick works for LABELS as for the top level: when tooxupl has found

a LABELS-defined function, it has the correct environment in hand for

constructing a &PRrocenurE-object. We need only add a test in eval for the

LABELS construct, and arrange for the appropriate &taseLeo-objects to be

constructed (see Figure N5). .

Steele and Sussman 58 The Art of the Interpreter

(DEFINE (EVAL EXP ENV)

(COND ((ATOM EXP)

(COND ((NUMBERP EXP) EXP)

(T (VALUE EXP ENV))))

((EQ (CAR EXP) 'QUOTE)

(CADR EXP))

- ((EQ (CAR EXP) 'LAMBDA)

(LIST '&PROCEDURE (CADR EXP) (CADOR EXP) ENV))

((EQ (CAR EXP) 'LABELS)

(EVLABELS (CADR EXP) EXP '() '() ENV))

((EQ (CAR EXP) 'COND) |

(EVCOND (COR EXP) ENV))

(T (APPLY (EVAL (CAR EXP) ENV)

(EVLIS (COR EXP) ENV)))))

(DEFINE (EVLABELS DEFINITIONS EXP NAMES FNS ENV)

(COND ((NULL DEFINITIONS) .

(EVAL (CADOR EXP) (BIND NAMES FNS ENV)))

(T (EVLABELS (COR DEFINITIONS)

EXP

(CONS (CAAAR DEFINITIONS) NAMES)

(CONS (LIST '&LABELED

(COAAR DEFINITIONS)

(CADAR DEFINITIONS))

FNS)

ENV))))

For VALUE, LOOKUP, and BIND see Figure 3.

For EVCOND and EVLIS see Figure 5.

For APPLY see Figure 7.

For tooxup1 see Figure 10 (not Figure 3).

Figure N5

An Evaluator For Local Lexical Scoping,

Dynamic Top-Level References,

and Local Definition of Recursive Procedures

Steele and Sussman _ 59 The Art of the Interpreter

{LABELS with Side Effects} “Page 37

This implementation of tapeLs (see Figure N6) applies the technique

of {Note Driver Loop with Side Effects} to the implementation of LABELS in

{Note tases}. This is in fact how tasets (or its cousin LABEL) is usually

implemented in "real" LISP systems.

(DEFINE (EVLABELS DEFINITIONS EXP NAMES FNS ENV)

(COND ((NULL DEFINITIONS) |
(EVLABELS-CLOSE (CADR EXP) EXP NIL (BIND NAMES FNS ENV)))

(T (EVLABELS (COR DEFINITIONS)

"EXP

(CONS (CAAR DEFINITIONS) NAMES)

(CONS '&UNASSIGNEO FNS)

ENV))))

(DEFINE (EVLABELS-CLOSE DEFINITIONS EXP VALS ENV)

(COND ((NULL DEFINITIONS)

(EVLABELS-CLOBBER NIL EXP (COAR ENV) VALS ENV))

(T (EVLABELS-CLOSE (COR DEFINITIONS)

EXP

(CONS (LIST '&PROCEQURE

, (CDAAR DEFINITIONS)

(CADAR DEFINITIONS)

ENV)

VALS)

ENV))))

(DEFINE (EVLABELS-CLOBBER HUNOZ EXP SLOTS VALS ENV)

(COND ((NULL VALS)

(EVAL (CADDR EXP) ENV))

(T (EVLABELS-CLOBBER (RPLACA SLOTS (CAR VALS))

EXP

(CDR SLOTS)

(CDR VALS)

ENV))))

For €VAL and EVSETQ see Figure 11.

For LookuPl] see Figure 3 (not Figure 10, despite Figure 11!).

Figure N6

Implementation of LaBeLs Using Side Effects

Steele and Sussman 60 The Art of the Interpreter

{Primitive Operators} Page 10

A primitive operator might be a very complicated object in a "real"

LISP implementation; it would probably have machine-language code within

it. We are not interested in the details of a particular host machine

here; we wish only to present a simple meta-circular definition of pRimop

and PRIMoP-APPLY. We will notate the procedural object which is the value of

caR (say) in the initial top-level environment <THE-PRIMITIVE-PROCEDURES> aS

"acar"., This object has no interesting properties except that it is EQ to

itself and not to any other object. The initial top-level environment
therefore looks like:

(((CAR COR EQ ATOM NULL NUMBERP + - * ...)

&CAR &CDR &EQ &ATOM &NULL &NUMBERP &+ &- &* ...))

Given this, we can define PRIMOP and PRIMOP-APPLY aS in Figure N7.

(DEFINE (PRIMOP FUN)

(COND ((EQ FUN '&CAR) T)

(CEQ FUN '&COR) T)

((EQ FUN '&EQ) T)

((EQ FUN '&ATOM) T)

((EQ FUN '&NULL) T)

((EQ FUN '&NUMBERP) T)

({EQ FUN '&+) T)

((EQ FUN '&-) T)

((EQ FUN '&*) T)

(T NIL)))

(DEFINE (PRIMOP-APPLY FUN ARGS)

(COND ((EQ FUN '&CAR) (CAR (CAR ARGS)))

({EQ FUN '&COR) (COR (CAR ARGS)))

((EQ FUN '&EQ) (EQ (CAR ARGS) (CADR ARGS)))

((EQ FUN '&ATOM) (ATOM (CAR ARGS)))

((EQ FUN '&NULL) (NULL (CAR ARGS)))

((EQ FUN '&NUMBERP) (NUMBERP (CAR ARGS)))

((EQ FUN '&+) (+ (CAR ARGS) (CADR ARGS)))

((EQ FUN '&-) (- (CAR ARGS) (CADR ARGS)))

((EQ FUN '&%&) (* (CAR ARGS) (CADR ARGS)))

(T (ERROR))))

Figure N7

Meta-Circular Definition of PRIMOP and PRIMOP-APPLY

Steele and Sussman 61 The Art of the Interpreter

{PROGN Wizardry} Page 35

We defined EvprogN in the way shown in Figure 11 rather than in this

"more obvious" way:

(DEFINE (EVPROGN EXPS ENV LASTVAL)

(COND ((NULL EXPS) LASTVAL)

(T (EVPROGN (COR EXPS) ENV (EVAL (CAR EXPS) ENV)))))

for a technical reason: we would like the tail-recursive properties of the

code being interpreted to be reflected in the interpretation process. We

specifically want recursive calls as the last subform of a proGN form to be

tail-recursive if the procn form itself is in a tail-recursive situation.

For example, we might write a loop such as:

(DEFINE (PRINTLOOP x)

(COND ((= X 0) 'BLASTOFF)

(T (PROGN (PRINT X)

(PRINTLOOP (- X 1))))))

We would like this loop to be iterative, but it can be iterative only if

the recursive call to PRINTLOOP is tail-recursive. Our point is that if the

"obvious" version of EVPROGN is used in the interpreter, then interpretation

of PRINTLOOP will not be tail-recursive because of the "stacking up of EVPROGN

frames" (the last call to eval from EvpROGN is not tail-recursive). This is

unnecessary because EvPROGN does nothing with the last value but return it

anyway.

By the way, the use of PROGN in a COND clause as shown above in

PRINTLOOP iS a very common Situation, as is the use of a PROGN as the body of

a procedure (cf. George's last experimental version of MaPcarR). As a

convenience, most real LISP implementations define extended versions of COND

and tampoa which implicitly treat clauses (resp. bodies) as proGn forms (see

Figure N8). This allows us to write such things as:

(DEFINE (PRINTLOOP xX)

(SLEEP 1)

(COND ((= X 0) 'BLASTOFF)

(T (PRINT X)

(PRINTLOOP (- X 1)))))

Steele and Sussman 62 The Art of the Interpreter

(DEFINE (EVCOND CLAUSES ENV)

(COND ((NULL CLAUSES) (ERROR))

((EVAL (CAAR CLAUSES) ENV)

(EVPROGN (CDAR CLAUSES) ENV NIL))

(T (EVCOND (CDR CLAUSES) ENV))))

(DEFINE (APPLY FUN ARGS)

(COND ((PRIMOP FUN) (PRIMOP-APPLY FUN ARGS))

((EQ (CAR FUN) '&PROCEDURE)

(EVPROGN (CODR FUN)

(BIND (CADR FUN) ARGS (CADODR FUN))

NIL))

(T (ERROR))))

For €VAL and EvprROGN see Figure 1].

Figure N8

Treating conn Clauses and Procedure Bodies as Implicit PROGN Forms

Finally, we note that PROGN iS unnecessary except as a programming

convenience. Because the language'is defined to be executed in applicative

order (cf. {Note Normal Order Loses} in [Revised Report]), we can force

the sequencing of evaluation, as well as throw away unwanted values, by

using LaAMBOA-expressions. We first note that

(PROGN @, ey +++ Oy yg ey) = (PROGN e, (PROGN Oy vee (PROGN en} ey) .e»))

so that we need worry only about PROGN with two subforms:

(PROGN e, e = ((LAMBDA (HUNOZ F) (F)) 1&2) *

f)
(LAMBDA () e,))

(see [Imperative] and [Revised Report]).

e
n

Steele and Sussman 63 The Art of the Interpreter

{quote Mapping} | Page 7

What the quote notation. achieves is a simple mapping of the entire

set of S-expressions into a subset of itself; this mapping is trivially

invertible. This is necessary in order to leave some S-expressions left

over to represent other things.

This idea may be applied to natural numbers as well. We can

"quote" a number by doubling it. In this way every even number represents

half of itself, just as the S-expression (quote o) represents the S-

expression in its cadr. This leaves all the odd numbers for other

purposes. For example, we can define an ordered set of variables and let |

3% encode the n'th variable, for N>1i0. We can also let 3) mean COND, 3° mean

LaMena, etc. We can then encode a procedure call as §'7%11%13%... where f is

the encoding of the procedure and x, y, z, ... are the encodings of the

arguments; cond forms and LAMBDA-expressions can be similarly encoded. For

example, 7 |

(COND ((NULL A) 3) (T 6))

might be encoded as the number

1421 319
7 48 78) 053 712, 1 (5

53 7f5

In this manner we can encode all of the LISP language as natural numbers.

This is an example of the technique of “Godelization".

{quote Shafts the Compiler} Page 19

We emphasize that it is not the presence of dynamically scoped

variables which makes standard LISP difficult for compilers, but the very

fact that the Lamepa-expressions are quoted. It is impossible in general to

determine whether a quoted S-expression is intended to be code or just some

constant data. Most LISP systems provide another kind of quote called

FUNCTION. In LISP J [LISP 1M] and LISP 1.5 [LISP 1.5M] this used to produce

FUNARG Objects (we call them aproceourE objects), but in more recent LISP

systems [Moon] [Teitelman] an ordinary FuUNCTION-expression has been made

equivalent to a quoted expression, serving only as a flag to the compiler

that the quoted expression is intended as code. However, the introduction

of the "'" notation for quoted expressions has led many programmers to

prefer the use of Quote to FUNCTION for reasons of conciseness. This in turn

has required changes to the compiler to specially recognize standard

situations where this is used (e.g. the functional argument to mapcar), but

this patch doesn't solve the problem generally.

Steele and Sussman 64 The Art of the Interpreter

{RPLACA Can Alter car Instead} Page 40

We have implicitly thought of the RPLACA operation as modifying a

cons so as to have a different car. However, there is an interpretation in

which RPLACA is thought of as modifying the car operator. Taking the car of

an object always involves both the car operator and the object. When we

perform an RPLACA on object denoted by Foo, all we can say is that the value

of (CAR FOO) may have changed. It is not necessarily clear what aspect of

that expression has changed. Using this idea, we can express RPLACA in

terms of sSETQ aS in Figure N9. Note that we depend on EQ to distinguish

different results of CONS.

(DEFINE (RPLACA X Y)

(PROGN ((LAMBDA (OLDCAR)

(SETQ CAR

(LAMBDA (Z)

(COND ((EQ Z X) Y)

(T (OLOCAR X))))))

CAR)

X))

Figure N9

RPLACA in Terms of SETQ Which Modifies CAR

Steele and Sussman 65 The Art of the Interpreter

{S-expression Postulates and Notation} Pages 4, 41

s-expressions form a number system analogous to that for the

natural numbers. Each can be used to encode arbitrary strings of symbols

by means of "GOdelization", but the S-expression encoding is usually far

more convenient than the numerical encoding.

We repeat here the informal characterization of Peano's postulates

and the analogous postulates for S-expressions from [Levin]:

The Postulates of Arithmetic

Zero is a number.

The successor of a number is a number.

Zero is not the successor of any number.

No two numbers have the same successor.

(Induction Principle) Any property which is true for zero, and

is such that if it is true for some number it is also true for

the successor of that number, it is true for all numbers.

om
W
 DN

ee
go

Zero is notated as 0, and the successor of any number wn is notated

as N'. AS a convenience we define alternative notations for numbers other

than zero, such as decimal place-value notation. Thus for orrttrtttttete we

often write 13.

The Postulates for S-expressions

Atoms are S-expressions.

The cons of any two S-expressions is an S-expression.

An atom is not the cons of any two S-expressions..

If « differs from 6, or if y differs from &, then cons of a

and y differs from cons of @ and &.

5. (Induction Principle) Any property which is true of all atoms,

and is such that if it is true for two S-expressions it is also

true for their cons, is true for all S-expressions.

om
GW
0

Atoms are notated as strings of letters and digits. The cons of

two S-expressions a and @ is notated (a . @). AS a convenience, we define

alternative notations for some commonly used forms of S-expression, such as

list notation. The atom NIL is called the “empty list"; we write it

as (). If (a @ ¥ ...&) is (the notation for) a list nm (where the "..." is

meant aS a meta-syntactic ellipsis), then the cons of « and nm is written

(e « B ¥ ...&). We also define quotation notation, in. which (quote a) is

written as ‘a.

(This definition of S-expressions applies to "pure LISP", which has

no side effects. In Part Two, when the RPLACA and RPLACD operators are

introduced, the phrase "the cons of" will not be well-defined.)

Steele and Sussman 66 The Art of the Interpreter

{This ain't A-lists} Page 11

Our symbol table routines are not the same as those in LISP 1.5.

Their behavior is approximately the same, but the data structures involved

differ. The LISP 1.5 routines (PpAIRLIS and assoc) use the traditional

"association list" format: -

 ee ee)

oe v2 |@2 v3 [/e3] jvy{er] vsTEs] Ve (EC

Our routines (BIND and Lookup), besides having nicer names, are more

efficient because the number of conses performed to bind a given number of

variables is usually smaller (we arrange for the environment structure to

share the variable lists already contained in LamspA-expressions). Morever,

the environment is organized into "frames" or "contours", which will be of

some utility later. The environment is represented in this form:

TJ

+e? Par-t of

LAMBDA -2 xpression

Steele and Sussman 67 The Art of the Interpreter

{Value Quibble} Page 8

"Did he ever return?

No, he never returned,

And his fate is still unlearned..."

~— The Man Who Never Returned

(Charlie on the NTA)

We said "eval's purpose is to determine the values of expressions".

But what is the value of the expression (DRIVER)? It is certainly not an

illegal or useless expression to evaluate, yet it has no value. The

purpose of the expression is to cause a certain process to be evolved; it

is an “infinite loop", which never returns. This process includes side

effects (READ and PRINT) through which it interacts with the user. This

Situation arises because the system of interest is broken into two parts

with independent state: the computer and the user. We will have more to

say about this later. .

Steele and Sussman 68 The Art of the Interpreter

{Weber } Pages 32, 38

To continue our GAUSSIAN example (see {Note Gaussian}), we can try

to remove the side-effect from RANDOM while avoiding the passing around of

SEEO by pushing RANDOM up to the top level (see Figure N10). RANDOM-DRIVER

takes a function F and an initial seed (reminiscent of <THE-PRIMITIVE-

PROCEDURES>), and continually stuffs random numbers into F. Each call to F

must produce a new Ff (a kind of continuation [Reynolds]). Using this, we

can arrange for numbers with a "Gaussian" distribution to be generated.

(DEFINE (RANDOM-DRIVER F SEED)

((LAMBDA (NEWSEED)

(RANDOM-DRIVER (F NEWSEED) NEWSEED))

((LAMBDA (Z)

(COND ((> Z 0) Z)

(T (+ Z -32768.))))

(* SEEN 899.))))

(DEFINE (GAUSSIAN G)

(WEBER 0 43 G))

(DEFINE (WEBER XN H)

(COND ((= N 0) (H X))

(T (LAMBDA (R)

(WEBER (+ XR) (- N 1) H)))))

(DEFINE (ORIVER USERFN INITSEED)

(RANDOM-DRIVER (GAUSSIAN USERFN) INITSEED))

Figure N10

"Gaussian" Pseudo-Random Number Generator without Passing seep Around

In this way, a uSer function can be provided to oRIVER (along with the

initial seed), and the user function will have "Gaussian" numbers stuffed

into it. For example:

(DEFINE (PR) (PROGN (PRINT R) P))

(DRIVER P 11)

will print an interminable sequence of “Gaussian” numbers. Notice the

structure of the program: the RANDOM procedure calls GAUSSIAN, which in turn

calls the user procedure. We have completely everted the overall system.

The more layers in the original system piled on top of GAUSSIAN, the more —

layers will appear inside-out in this version. ' .

Now there are two other funny things about this. One is that we

had to use a side effect (print) to get the answer out; the other is that

Steele and Sussman 69 The Art of the Interpreter

it's hard to make it stop! These problems are related. The structure of

RANDOM-DRIVER iS an infinite loop, as with all drivers. Because RANDOM-DRIVER

never returns a value, there is no way to get an answer out without a side-

effect like PRINT.

We can arrange to signal RANDOM-DRIVER that no more values are

desired, and to return a value (see Figure N11).

(DEFINE (RANDOM-DRIVER F SEED)

(COND ((CAR F) (COR F))

(T ((LAMBDA (NEWSEED)

_ (RANDOM-DRIVER ((CDR F) NEWSEED) NEWSEED))

((LAMBDA (Z)

(COND ((> Z 0) Z)

(1 (+ Z -32768.))))

(* SEED 899.))))))

(DEFINE (GAUSSIAN G)

(WEBER 0 43 G))

(DEFINE (WEBER X N H)

(COND ((= N 0) (H X))

(T (CONS NIL

(LAMBDA (R)

(WEBER (+ X R) (- N 1) H))))))

(DEFINE (DRIVER USERFN)

(RANDOM-DRIVER (GAUSSIAN USERFN) 43))

Figure Nll

"Gaussian" Random-Number Generator "Top Level" without Side Effects

Using this new definition, we can write:

(DEFINE (PR) (CONS T R))

(DRIVER P 11)

which eventually returns one "Gaussian" number. (Doing something with more

than one "Gaussian" number takes a little more work...)

Notice that in order to make this work, RANDOM-DRIVER had to know an

awful lot about its functional argument; a fairly complicated protocol had

to be developed for handshaking. We might argue that this exercise, while

it has indeed removed all obvious side effects, has somewhat tarnished the

modularity of the RANDOM program. In any case, the structure of our final

program is not exactly what we had in mind when we started.

Steele and Sussman 70 The Art of the Interpreter

{Y-operator} Pages 26, 57

While the interpreter of Figure 8 cannot DEFINE recursive

procedures, it is possible to define recursive procedures by using a

variant of the “paradoxical combinator", also known as the Y-operator:

(DEFINE (Y F).

((LAMBDA (G)

(LAMBDA (Xx)

({F (G G)) X)))
(LAMBDA (G)

(LAMBDA (X)

((F (G G)) X)))))

Using this we define the doubly-recursive algorithm for computing the

Fibonacci function:

(DEFINE (FIB K)

((Y (LAMBDA (F)

(LAMBDA (N)

(COND ((= N 0) 1)

((= N 1) 1)

AT G+ CF (- NAY) (CF (- N 2))))))))

K))

That this manages to work is truly remarkable. Notice that this is almost

identical to the LtaseL construct which was actually introduced by LISP 1,

though at the time it was invented the implementors didn't realize this

correspondence [LISP History].

Steele and Sussman 71 The Art of the Interpreter

References

(Entries marked with a "*" are not referenced in the text.)

{ Church] Pages 4, 18, 25

Church, Alonzo. The Calculi of Lambda Conversion. Annals of

Mathematics Studies Number 6. Princeton University Press

(Princeton, 1941). Reprinted by Klaus Reprint Corp. (New York,

1965).

[Debunking } Page 12

Steele, Guy Lewis Jr. "Debunking the ‘Expensive Procedure Call'

Myth." Proc. ACM National Conference (Seattle, October 1977),153-

162. Revised as MIT Al Memo 443 (Cambridge, October 1977).

[Declarative] *

Steele, Guy Lewis Jr. LAMBDA: The Ultimate Declarative. AI Memo

379. MIT AI Lab (Cambridge, November 1976).

{ Fischer] Page 24

Fischer, Michael J. "Lambda Calculus Schemata." Proceedings of

ACM Conference on Proving Assertions about Programs. SIGPLAN

Notices (January 1972).

[Goto] . Page 43
Goto, Eiichi. Monocopy and Associative Algorithms in an Extended

LISP. Information Science Laboratory, University of Tokyo (May

1974). |

(Hewitt and Smith] Pages 2, 24

Hewitt, Carl, and Smith, Brian. -"Towards a Programming

Apprentice." IEEE Transactions on Software Engineering SE-1, 1

(Narch 1975), 26-45.

{ Imperative] Page 62

Steele, Guy Lewis Jr., and Sussman, Gerald Jay. LAMBDA: The

Ultimate Imperative. AI Memo 353. MIT AI Lab (Cambridge, March

1976).

[Kleene] ‘Page 4

Kleene, Stephen Cole. Introduction to Metamathematics. Von

Nostrand (Princeton, 1950).

[Landin] *

Landin, Peter Je "A Correspondence between ALGOL 60 and Church's

Lambda-Notation." Comm. ACM 8, 2-3 (February and March 1965).

Steele and Sussman 72 The Art of the Interpreter

[Levin] . Page 65

Levin, Michael. Mathematical Logic for Computer Scientists. MIT

Project MAC TR-131 (Cambridge, June 1974).

[LISP 1M] ot Pages 18, 55, 63

McCarthy, J., Brayton, R., Edwards, D., Fox, P., Hodes, L.,

Luckham, D., Maling, K., Park, D., and Russell, S. LISP 1

Programmer's Manual. Artifical’ Intelligence Group, Computation

Center and Research Laboratory of Electronics, MIT (Cambridge,

March 1960).

[LISP 1.5M] Pages 2, 17, 45, 55, 63

McCarthy, John, et al. LISP 1.5 Programmer's Manual. The MIT

Press (Cambridge, 1962).

[LISP History] Pages 4, 20, 70

McCarthy, John. "History of LISP." To appear in Proceedings of

the SIGPLAN History of Programming Languages Conference, June 1978.

[McDermott and Sussman] Page 2

McDermott, Drew V. and Sussman, Gerald Jay. The CONNIVER Reference

Manual. AI Memo 295a. MIT AI Lab (Cambridge, January 1974).

[Moon J Pages 2, 63

Moon, David A. MacLISP Reference Manual, Revision 0. Project MAC,

MIT (Cambridge, April 1974).

(Moses] Page 20

Moses, Joel. The Function of FUNCTION in LISP. AI Memo 199, MIT

AI Lab (Cambridge, June 1970).

(Naur J] Page 21

Naur, Peter (ed.), et al. "Revised Report on the Algorithmic

Language ALGOL 60." Comm. ACM 6, 1 (January 1963), 1-20.

(Revised Report J] Pages 2, 62

Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report

on SCHEME. MIT AI Memo 452 (Cambridge, January 1978).

[Reynolds] Pages 8, 68

Reynolds, John C. "Definitional Interpreters for Higher Order

Programming Languages." ACM Conference Proceedings 1972.

{Rulifson] | | Page 2
Rulifson, J.F., Derksen, J.A., and Waldinger, R.J. QA4: A

Procedural Calculus for Intuitive Reasoning. Techical Note 73.

Artificial Intelligence Center, Stanford Research Institute (Menlo

Park, California, November 1972).

Steele and Sussman 73 The Art of the Interpreter

[SCHEME] Pages 2, 12

Sussman, Gerald Jay, and Steele, Guy Lewis Jr. SCHEME: An

Interpreter for Extended Lambda Calculus. AI Memo 349. MIT AI Lab

(Cambridge, December 1975).

[Smith and Hewitt] Page 2

Smith, Brian C. and Hewitt, Carl. A PLASMA Primer (draft). MIT AI

Lab (Cambridge, October 1975).

{ Teitelman] . Pages 2, 63

Teitelman, Warren. InterLISP Reference Manual. Revised edition.

Xerox Palo Alto Research Center (Palo Alto, 1975).

[Warren] Page 4

Warren, David H.D., and Pereira, Luis. "PROLOG: The Language and

Its Implementation Compared with LISP." Proceedings of the

Symposium on Artifical Intelligence and Programming Languages

(Rochester, New York, August 1977). SIGPLAN Notices 12, 8, SIGART

Newsletter 64 (August 1977), 109-115.

