

RABBIT:
A Compiler

for SCHEME

Guy Lewis Steele

MIT Artificial Intelligence Laboratory

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

FEIW 12N7/6 ADA Ol GQ lo

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

TRA

2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)

RABBIT:
Compiler Optimization)

A Compiler for SCHEME (A Study in

5. TYPE OF REPORT & PERIOD COVERED

Technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(8)

Guy Lewis Steele

8. CONTRACT OR GRANT NUMBER(e)

NO0014-75-C-0643

9. PERFORMING ORGANIZATION NAME AND ADORESS

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

1), CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT DATE

Information Systems
Arlington, Virginia 22217

Advanced Research Projects Agency May 1978
1400 Wilson Blvd 13. NUMBER OF PAGES
Arlington, Virginia 22209 272

14 MONITORING AGENCY NAME & ADORESS (i! different from Controlling Olfice) 18. SECURITY CLASS. (of thta report,

Office of Naval Research UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

 16. OISTRIBUTION STATEMENT (of this Report)

Distribution of this document fs unlimited.

17, DISTRIBUTION STATEMENT (of the abatract entered In Block 20, tf different from Report)

18. SUPPLEMENTARY NOTES

None

compiler optimization

code generation
LISP

macros

19. KEY WORDS (Continue on reveree side if necessary and identify by block number)

tail-recursion

lambda calculus
lexical scoping
continuations

known as SCHEME.

general

lambda-calculus.

sequencing, assiqnment, 20. ABSTRACT (Continue on reveree aide if necessary and identify by block number)

We have developed a compiler for the lexically~scoped dialect of LISP
The compiler knows relatively little about specific data

manipulation primitives such as arithmetic operators, but concentrates on
issues of environment and contral.

knowledge about a large variety of control and environment constructs, the
compiler handles only a small basis set which reflects the semantics of

All of the traditional imperative constructs, such as
looping, GOTO,

Rather than having specialized as well as many standard (cont'd)

| DD oan a 1473 EDITION OF 1 NOV 65 1S OBSOLETE

S/N 202-014-6601 |

we

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

BLOCK 20 CONTINUED

LISP constructs such as AND, OR, and COND, are expressed as macros In
terms of the applicative basis set. A small number of optimization tech-
niques, coupled with the treatment of function calls as GOTO statements,
serve to produce code as good as that produced by more traditional compilers.
The macro approach enables speedy implementation of new constructs as
‘desired without sacrificing efficiency in the generated code.

A fair amount of analysis fis devoted to determining whether environments
may be stack-allocated or must be heap-allocated. Heap-allocated environ-
ments are necessary [fn general because SCHEME (unlike Algol 60 and Algol 68,
for example) allows procedures with free lexically scoped vartable to be
returned as the values of other procedures: the. Algol stack-allocation environ-
ment strategy does not suffice. . The methods used here Indicate that a-
heap-allocating generalizaiton of the ''display'' technique leads to an efficient
implementation of such "upward funargs''. Moreover, compile-time optimiza- —
tion and analysis can eliminate many "funargs' entirely, and so far fewer
environment structures need be allocated at run time than might be
expected.

A subset of SCHEME (rather than triples, for example) serves as the
representation intermedieate between the optimized SCHEME code and the final
‘output code; code is expressed in this subset in-the so'called constinua-
tion-passing style. As a subset of SCHEME, it enjoys the same theoretical
properties; one could even apply the same optimizer used on the input code
to the intermediate code. However, the subset: is so chosen that all temp-
Orary quantities are made manifest as variables, and no control stack is
needed to evaluate it. As a result, this apparently applicative represen-
tation admits an Imperative interpretation which permits easy transcription
to fianl imperative machine code. These qualities suggest that an applica-
tive language like SCHEME is a better candidate for an UNCOL than the more
imperative candidates proposed to date.

ee
e

Me
sa

k
a
y

3a

This research was conducted at the Artificial Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the Laboratory's artificial

intelligence research is provided in part by the Advanced Research Projects

Agency of the Department of Defense under Office of Naval Research contract

number N00014-75-C-0643.

RABBIT:

A Compiler for SCHEME

(A Dialect of LISP)

A Study in

Compiler Optimization

Based on Viewing
LAMBDA as RENAME

and
PROCEDURE CALL as GOTO

using the techniques of

Macro Definition of Control and Environment Structures

Source-to-Source Transformation

Procedure Integration
and

Tail-Recursion

Guy Lewis Steele Jr.

Massachusetts Institute of Technology

May 1978

Revised version of a dissertation submitted (under the title "Compiler

Optimization Based on Viewing LAMBDA as RENAME plus GOTO") to the Department of

Electrical Engineering and Computer Science on May 12, 1977, in partial

fulfillment of the requirements for the degree of Master of Science.

RABBIT: A Compiler for SCHEME (A Dialect of LISP)

A Study in Compiler Optimization

Based on Viewing LAMBDA as RENAME and PROCEDURE CALL as GOTO

using the techniques of

Macro Definition of Control and Environment Structures,

Source-to-Source Transformation, Procedure Integration, and Tail-Recursion

Guy Lewis Steele Jr.

Massachusetts Institute of Technology

May 1978

ABSTRACT

We have developed a compiler for the lexically-scoped dialect of LISP

Known as SCHEME. The compiler knows relatively little about specific data

manipulation primitives such as arithmetic operators, but concentrates on general

issues of environment and control. Rather than having specialized knowledge

about a large variety of control and environment constructs, the compiler handles

only a small basis set which reflects the semantics of lambda-calculus. All of

the traditional imperative constructs, such as sequencing, assignment, looping,

GOTO, as well as many standard LISP constructs such as AND, OR, and COND, are

expressed as macros in terms of the applicative basis set. A small number of

optimization techniques, coupled with the treatment of function calls as GQTO

statements, serve to produce code as good as that produced by more traditional

compilers. The macro approach enables speedy implementation of new constructs as

desired without sacrificing efficiency in the generated code.

A fair amount of analysis is devoted to determining whether environments

may be stack-allocated or must be heap-allocated. Heap-allocated environments

are necessary in general because SCHEME (unlike Algol 60 and Algol 68, for

example) allows procedures with free lexically scoped variables to be returned as

the values of other procedures; the Algol stack-allocation environment strategy

does not. suffice. The methods used here indicate that a heap-allocating

generalization of the “display” technique leads to an efficient implementation of

such "upward funargs". Moreover, compile-time optimization and analysis can

eliminate many "funargs" entirely, and so far fewer environment structures need

be allocated at run time than might be expected.

A subset of SCHEME (rather than triples, for example) serves as the

representation intermediate between the optimized SCHEME code and the final

output code; code 1s expressed in this subset in the so-called continuation-

passing style. As a subset of SCHEME, it enjoys the same theoretical properties;

one could even apply the same optimizer used on the input code to _ the

intermediate code. However, the subset is so chosen that all temporary

quantities are made manifest as variables, and no control stack is needed to

evaluate it. As a result, this apparently applicative representation admits an

imperative interpretation which permits easy transcription to final imperative

machine code. These qualities suggest that an applicative language like SCHEME

is a better candidate for an UNCOL than the more imperative candidates proposed
to date.

Thesis Supervisor: Gerald Jay Sussman

Title: Associate Professor of Electrical Engineering

Note

The first part of this report is a slightly revised version of a

dissertation submitted in May 1977. Where it was of historical interest to

reflect changes in the SCHEME language which ocurred in the following year and

the effect they had on RABBIT, the text was left intact, with notes added of the

form, "Since the dissertation was written, thus-and-so occurred." The second

part, the Appendix, was not part of the dissertation, and is a complete listing

of the source code for RABBIT, with extensive commentary.

It is intended that the first part should be self-contained, and provide

a qualitative overview of the compilation methods used in RABBIT. The second

part is provided for those readers who would like to examine the precise

mechanisms used to carry out the general methods.

Thus there are five levels of thoroughness at which the reader may

consume this document:

(1) The reader who wishes only to skim is advised to read sections 1, 5, 6,

possibly 7, 8A, 8B, 8C, 10, 11, and 12. This will give a basic overview,

including the use of macros and the optimizing techniques.

(2) The reader who also wants to know about the details of SCHEME, the run-time

system, and a long example is advised to read the entire main text (about a third

of the document).

(3) The reader who wants to understand the low-level organization of the

algorithms, and read about the more tricky special cases, should read the main

text and then the commentary on the code.

(4) The reader who additionally wants to understand the nit-picking details

Should read the code along with the commentary.

(5) The reader who wants a real feel for the techniques involved should read the

entire document, invent three new SCHEME constructs and write macros for them,

and then reimplement the compiler for another run-time environment. (He ought

please also to send a copy of any documents on such a project to this author, who

would be very interested!)

Acknowledgements

I would like to acknowledge the contributions to this work of the

following people and other entities:

Gerald Jay Sussman, who is not only my thesis advisor but a colleague and a good

friend; who is fun to hack programs with; who not only provided insights on

the issues of programming, but also was willing to give me a kick in the right

direction when necessary;

Jon Doyle, one of the first real "users" of SCHEME, who was always willing to

discuss my problems, and who carefully proofread the thesis in one day when no
one else would or could;

Richard Zippel, the other first real SCHEME user, who has discussed with me many

possibilities for the practical use of SCHEME-like languages in such large

systems as MACSYMA;

Carl Hewitt, whose actors metaphor inspired in part first SCHEME and then the

investigations presented here;

Scott Fahlman, who has Great Ideas, and who paid some of his dues at the same

place I did;

Jon L White, resident LISP compiler expert and agreeable office-mate, who likes

both tea and ();

Dan Weinreb, Bernie Greenberg, Richard Stallman, Dave Moon, Howard Cannon, Alan

Bawden, Henry Baker, and Richard Greenblatt for their companionship, advice,

comments, enthusiasm, criticism, and/or constructive opposition;

the rest of the gang at the AI Lab and Project MAC (loosely known as the Lab for

Computer Science), for their continued interest in my work and for the

pleasant social atmosphere they provide;

Bill Wulf, Charles Geschke, Richard Johnsson, Charles Weinstock, and Steven

Hobbs, whose work on BLISS-i1l I found a great inspiration, for it told me that

there was at least one beautiful compiler already;

Dan Friedman and Dave Wise, who also know that LISP is the One True Way;

Dick Gabriel, a most singular person (that's odd...}, who knows that Lapin is

best dealt with gingerly;

the National Science Foundation, which provided the fellowship under which this

work was done;

Cindy Ellis and J.J. McCabe, who always treated me as just a regular guy;

Julie Genovese, my main (and only) groupie;

the congregation at the Brighton Evangelical Congregational Church, for their
social and moral support;

Mittens Jr., our cat, who was willing to communicate when the rest of the world
was asleep;

Chuck, the peculiar poodle, who carried on as best she could after Mittens Jr.

had gone, and who still barks in the night;

my brother, David A. Steele, who has kept me up to date on cultural affairs, and
who probably understands me better than anyone else;

and my parents, Guy L. Steele Sr. and Nalora Steele, who provided unbounded

amounts of patience, encouragement, opportunity, and support.

Contents

1. Introduction 7

A. Background 7

B. The Thesis . 10

2. The Source Language - SCHEME 15

3. The Target Language i8

4. The Target Machine 22

5. Language Design Considerations 25

6. The Use of Macros 28

7. The Imperative Treatment of Applicative Constructs 37

8. Compilation Strategy 44

A. Alpha-conversion and macro-expansion 45

B. Preliminary analysis 46

C. Optimization 49

D. Conversion to Continuation-Passing Style 56

E. Environment and closure analysis 60

F. Code generation 64

9. Example: Compilation of Iterative Factorial 69

10. Performance Measurements 86

ll. Comparison with Other Work 88

12. Conclusions and Future Work 90

Notes 93

References 113

Appendix 117

1. Introduction

The work described here is a continuation (!) of that described in

LSCHEME], [Imperative], and [Declarative]. Before enumerating the points of the

thesis, we summarize here each of these documents.

A. Background

In [SCHEME] we (Gerald Jay Sussman and the author) described the

implementation of a dialect of LISP named SCHEME with the properties of lexical

scoping and tail-recursion; this implementation is embedded within MacLISP

[Moon], a version of LISP which does not have these properties. The property of

lexical scoping (that a variable can be referenced only from points textually

within the expression which binds it) is a consequence of the fact that all

functions are closed in the “binding environment". [Moses] That is, SCHEME is a

"full-funarg" LISP dialect. {Note Full-Funarg Example} The property of tail-

recursion implies that loops written in an apparently recursive form will

actually be executed in an iterative fashion. Intuitively, function calls do not

"push control stack"; instead, it is argument evaluation which pushes control

stack. The two properties of lexical scoping and tail-recursion are not

independent. In most LISP systems [LLISP1.5M] [Moon] [Teitelman], which use

dynamic scoping rather than lexical, tail-recursion is impossible because

function calls must push control stack in order to be able to undo the dynamic

bindings after the return of the function. On the other hand, it is possible to

have a lexically scoped LISP which does not tail-recurse, but it is easily seen

that such an implementation only wastes storage space needlessly compared to a

tail-recursing implementation. [Steele] Together, these two properties cause

SCHEME to reflect lambda-calculus semantics much more closely than dynamically

scoped LISP systems. SCHEME also permits the treatment of functions as full-

fledged data objects; they may be passed as arguments, returned as values, made

part of composite data structures, and notated as independent, unnamed

("anonymous") entities. (Contrast this with most ALGOL-like languages, in which

a function can be written only by declaring it and giving it a name; imagine

being able to use an integer value only by giving it a name in a declaration!)

The property of lexical scoping allows this to be done in a consistent manner

without the possibility of identifier conflicts (that is, SCHEME “solves the

FUNARG problem" [Moses]). In [SCHEME] we also discussed the technique of

"“continuation-passing style", a way of writing programs in SCHEME such that no

function ever returns a value.

In [Imperative] we explored ways of exploiting these properties to

implement most traditional programming constructs, such as assignment, looping,

and call-by-name, in terms of function application. Such applicative (lambda-

calculus) models of programming language constructs are well-known’ to

theoreticians (see [Stoy], for example), but have not been used in a practical

programming system. All of these constructs are actually made available in

SCHEME by macros which expand into these applicative definitions. This technique

has permitted the speedy implementation of a rich user-level language in terms of

a very small, easy-to-implement basis set of primitive constructs. In

[Imperative] we continued the exploration of continuation-passing style, and

noted that the escape operator CATCH is easily modelled by transforming a program

into this style. We also pointed out that transforming a program into this style

enforces a particular order of argument evaluation, and makes all intermediate

computational quantities manifest as variables.

In [Declarative] we examined more closely the issue of tail-recursion,

and demonstrated that the usual view of function calls as pushing a return

address must lead to an either inefficient or inconsistent implementation, while

the tail-recursive approach of SCHEME leads to a uniform discipline in which

function calls are treated as GOTO statements which also pass arguments. We also

noted that a consequence of lexical scoping is that the only code which can

reference the value of a variable in a given environment is code which is closed

in that environment or which receives the value as an argument; this in turn

implies that a compiler can structure a run-time environment in any arbitrary

fashion, because it will compile all the code which can reference that

environment, and so can arrange for that code to reference it in the appropriate

manner. . Such references do not require any kind of search (as is commonly and

incorrectly believed in the LISP community because of early experience with LISP

interpreters which search a-lists) because the compiler can determine the precise

location of each variable in an environment at compile time. It is not necessary

to use a standard format, because neither interpreted code nor other compiled

code can refer to that environment. (This is to be constrasted with “spaghetti

stacks" [Bobrow and Wegbreit].}) In [Declarative] we also carried on the analysis

of continuation-passing style, and noted that transforming a program into this

Style elucidates traditional compilation issues such as register allocation

because user variables and intermediate quantities alike are made manifest as

variables on an equal footing. Appendix A of [Declarative] contained an

algorithm for converting any SCHEME program (not containing ASET) to

continuation-passing style.

We have implemented two compilers for the language SCHEME. The purpose

was to explore compilation techniques for a language modelled on lambda-calculus,

using lambda-calculus-style models of imperative programming constructs. Both

compilers use the strategy of converting the source program to continuation-

10

passing style.

The first compiler (known as CHEAPY) was written as a_throw-away

implementation to test the concept of conversion to continuation-passing style.

The first half of CHEAPY is essentially the algorithm which appears in Appendix A

of [Declarative], and the second is a simple code generator with almost no

optimization. In conjunction with the writing of CHEAPY, the SCHEME interpreter

was modified to interface to compiled functions. (This interface is described

later in this report.)

The second compiler, with which we are primarily concerned here, is known

as RABBIT. It, like CHEAPY, is written almost entirely in SCHEME (with minor

exceptions due only to problems in interfacing with certain MacLISP I/0

facilities). Unlike CHEAPY, it is fairly clever. It is intended to demonstrate

a number of optimization techniques relevant to lexical environments and tail-

recursive control structures. (The code for RABBIT, with commentary, appears in

the Appendix.)

B. The Thesis

(1) Function calls are not expensive when compiled correctly; they should be

thought of as GOTO statements that happen to pass arguments.

(2) The combination of cheap function calls, lexical scoping, tail-recursion,

and "anonymous" notation of functions (which are not independent properties

of a language, but aspects of a single unified approach) permits the

definition of a wide variety of "imperative" constructs in applicative

terms. Because these properties result from adhering to the principles of

the well-known lambda-calculus [Church], such definitions can be lifted

intact from existing literature and used directly.

(3)

(4)

(5)

(6)

il

A macro facility (the ability to specify syntactic transformations) makes it

practical to use these as the only definitions of imperative constructs ina

programming system. Such a facility makes it extremely easy to define new

constructs.

A few well-chosen optimization strategies enable the compilation of these

applicative definitions into the imperative low-level code which one would

expect from a traditional compiler.

The macro facility and the optimization techniques used by the compiler can

be conceptually unified. The same properties which make it easy to write

the macros make it easy to define optimizations correctly. In the same way

that many programming constructs are defined in terms of a small, well-

chosen basis set, so a large number of traditional optimization techniques

fall out as special cases of the few used in RABBIT. This is no accident.

The separate treatment of a large and diverse set of constructs necessitates

separate optimization techniques for each. As the basis set of constructs

is reduced, so is the set of interesting transformations. If the basis set

is properly chosen, their combined effect is "multiplicative" rather than

"additive".

The technique of compiling by converting to continuation-passing style

elucidates some important compilation issues in a natural way. Intermediate

quantities are made manifest; so is the precise order of evaluation.

Moreover, this is all expressed in a language isomorphic to a subset of the

source language SCHEME; as a result the continuation-passing style version

of a program inherits many of the philosophical and practical advantages.

For example, the same optimization techniques can be applied at this level

as at the original source level. While the use of continuation-passing

style may not make the decisions any easier, it provides an effective and

(7)

(8)

(9)

12

natural way to express the results of those decisions.

Continuation-passing style, while apparently applicative in nature, admits a

peculiarly imperative interpretation as a consequence of the facts that it

requires no control stack to be evaluated and that no functions ever return

values. As a result, it is easily converted to an imperative machine

language.

A SCHEME compiler should ideally be a designer of good data structures,

since it may choose any representation whatsoever for environments. RABBIT

has a rudimentary design knowledge, involving primarily the preferral of

registers to heap-allocated storage. However, there is room for knowledge

of “bit-diddling" representations.

We suggest that those who have tried to design useful UNCOL's (UNiversal

Computer-Oriented Languages) [Sammet] [Coleman] have perhaps been thinking

too imperatively, and worrying more about data manipulation primitives than

about environment and control issues. As a result, proposed UNCOLS have

been little more than generalizations of contemporary machine languages. We

suggest that SCHEME makes an ideal UNCOL at two levels. The first level is

the fully applicative level, to which most source-language constructs are

easily reduced; the second is the continuation-passing style level, which

is easily reduced to machine language. We envision building a compiler in

three Stages: (a) reduction of a user language to basic SCHEME, whether by

macros, a parser of algebraic syntax, or some other means; (b) optimization

by means of SCHEME-level source-to-source transformations, and conversion to

continuation-passing style; and (c) generation of code for a particular

machine. RABBIT addresses itself to the second stage. Data manipulation

primitives are completely ignored at this stage, and are just passed along

from input to output. These primitives, whether integer arithmetic, string

13

concatenation and parsing, or list structure manipulators, are chosen as a

function of a particular source language and a particular target machine.

RABBIT deals only with fundamental environment and control issues common to

most modes of algorithmic expression.

(10) While syntactic issues tend to be rather superficial, we point out that

algebraic syntax tends to obscure the fundamental nature of function calling

and tail-recursion by arbitrarily dividing functions into syntactic classes

such as "operators" and "functions". ([{Standish], for example, uses much

space to exhibit each conceptually singular transformation in a multiplicity

‘of syntactic manifestations.) The lack of an “anonymous” notation for

functions in most algebraic languages, and the inability to treat functions

as data objects, is a distinct disadvantage. The uniformity of LISP syntax

makes these issues easier to deal with.

To the LISP community in particular we address these additional points:

(11) Lexical scoping need not be as expensive as is commonly thought. Experience

with lexically-scoped interpreters is misleading; lexical scoping is not

inherently slower than dynamic scoping. While some implementations may

entail access through multiple levels of structure, this occurs only under

circumstances (accessing of variables through multiple levels of closure)

which could not even be expressed in a dynamically scoped language. Unlike

deep-bound dynamic variables, compiled lexical access requires no search;

unlike shallow-bound dynamic variables, lexical binding does not require

that values be put in a canonical value cell. The compiler has complete

discretion over the manipulation of environments and variable values. The

"display" technique used in Algol implementations can be generalized to

provide an efficient solution to the FUNARG problen.

(12) Lexical scoping does not necessarily make LISP programming unduly difficult.

14

The very existence of RABBIT, a working compiler some fifty pages in length

written in SCHEME, first implemented in about a month, part-time,

substantiates this claim (which is, however, admitted to be mostly a matter

of taste and experience). {Note Refinement of RABBIT} SCHEME has also been

used to implement several AI problem-solving languages, including AMORD

[Doyle].

15

2. The Source Language - SCHEME

The basic language processed by RABBIT is a subset of the SCHEME language

‘as described in [SCHEME] and [Revised Report], the primary restrictions being

that the first argument to ASET must be quoted and that the multiprocessing

primitives are not accommodated. This subset is summarized here.

SCHEME is essentially a lexically scoped ("full funarg") dialect of LISP.

Interpreted programs are represented by S-expressions in the usual manner.

Numbers represent themselves. Atomic symbols are used as identifiers (with the

conventional exception of T and NIL, which are conceptually treated as

constants). All other constructs are represented as lists.

In order to distinguish the various other constructs, SCHEME follows the

usual convention that a list whose car is one of a set of distinguished atomic

symbols is treated as directed by a rule associated with that symbol. All other

lists (those with non-atomic cars, or with undistinguished. atoms in their cars)

are combinations, or function calls. All subforms of the list are uniformly

evaluated in an unspecified order, and then the value of the first (the function)

is applied to the values of all the others (the arguments). Notice that the

function position is evaluated in the same way as the argument positions (unlike

most other LISP systems). (In order to be able to refer to MacLISP functions,

global identifiers evaluate to a special kind of functional object if they have

definitions as MacLISP functions of the EXPR, SUBR, or LSUBR varieties. Thus

"(PLUS 1 2)" evaluates to 3 because the values of the subforms are <functional

object for PLUS>, 1, and 2; and applying the first to the other two causes

invocation of the MacLISP primitive PLUS.)

The atomic symbols which distinguish special constructs are as follows:

LAMBDA This denotes a function. A form (LAMBDA (varl var2 ... varn) body)

IF

QUOTE

LABELS

ASET'

16

will evaluate to a function of n arguments. The parameters vari are

identifiers (atomic symbols) which may be used in the body to refer to

the respective arguments when the function is invoked. Note that a

LAMBDA-expression is not a function, but evaluates to one, a crucial

distinction.

This denotes a conditional form. (IF abc) evaluates the predicate a,

producing. a value x; if x is non-NIL, then the consequent b is

evaluated, and otherwise the alternative c. If c is omitted, NIL is

assumed.

As in all LISP systems, this provides a way to specify any S-expression

as a constant. (QUOTE x) evaluates to the S-expression x. This may be

abbreviated to 'x, thanks to the MacLISP read-macro-character feature.

This primitive permits the local definition of one or more mutually

recursive functions. The format is:

(LABELS ((namel (LAMBDA ...))
(name2 (LAMBDA ...))

(namen (LAMBDA ...)))
body)

This evaluates the body in an environment in which the names refer to

the respective functions, which are themselves closed in that same

environment. Thus references to these names in the bodies of the

LAMBDA-expressions will refer to the labelled functions. {Note

Generalized LABELS}

This is the primitive side-effect on variables. (ASET' var body)

evaluates the body, assigns the resulting value to the variable var,

and returns that value. {Note Non-quoted ASET} For implementation-

dependent reasons, it is forbidden by RABBIT to use ASET' on a global

CATCH

Macros

\7

variable which is the name of a primitive MacLISP function, or on a

variable bound by LABELS. (ASET' is actually used very seldom in

practice anyway, and all these restrictions are “good programming

practice". RABBIT could be altered to lift these restrictions, at some

expense and labor.)

This provides an escape operator facility. [Landin] [Reynolds] (CATCH

var body) evaluates the body, which may refer to the variable var,

which will denote an “escape function" of one argument which, when

called, will return from the CATCH-form with the given argument as the

value of the CATCH-form. Note that it is entirely possible to return

from the CATCH-form several times. This raises a difficulty with

optimization which will be discussed later.

Any atomic symbol which has been defined in one of various ways to be a

macro distinguishes a special construct whose meaning is determined by

a macro function. This function has the responsibility of rewriting

the form and returning a new form to be evaluated in place of the old

one. In this way complex syntactic constructs can be expressed in

terms of simpler ones.

18

3. The Target Language

The "target language" is a highly restricted subset of MacLISP, rather

than any particular machine language for an actual hardware machine such as the

PDP-10. RABBIT produces MacLISP function definitions which are then compiled by

the standard MacLISP compiler. In this way we do not need to deal with the

uninteresting vagaries of a particular piece of hardware, nor with the

peculiarities of the many and various data-manipulation primitives (CAR, RPLACA,

+, etc.). We allow the MacLISP compiler to deal with them, and concentrate on

the issues of environment and control which are unique to SCHEME. While for

production use this is mildly inconvenient (since the code must be passed through

two compilers before use), for research purposes it has saved the wasteful re-

implementation of much knowledge already contained in the MacLISP compiler.

On the other hand, the use of MacLISP as a target language does not by

any means trivialize the task of RABBIT. The MacLISP function-calling mechanism

cannot be used as a target construct for the SCHEME function call, because

MacLISP's function calls are not guaranteed to behave tail-recursively. Since

tail-recursion is a most crucial characteristic distinguishing SCHEME from most

LISP systems, we must implement SCHEME function calls by more primitive methods.

Similarly, since SCHEME is a full-funarg dialect of LISP while MacLISP is not, we

cannot in general use MacLISP's variable-binding mechanisms to implement those of

SCHEME. On the other hand, it is a perfectly legitimate optimization to use

MacLISP mechanisms in those limited situations where they are applicable.

Aside from ordinary MacLISP data-manipulation primitives, the only

MacLISP constructs used in the target language are PROG, GO, RETURN, PROGN, COND,

SETQ, and ((LAMBDA ...) ...). PROG is never nested; there is only a single,

outer PROG. RETURN is used only in the form (RETURN NIL) to exit this outer

19

PROG; it is never used to return a value of any kind. LAMBDA-expressions are

used only to bind temporary variables. In addition, CONS, CAR, CDR, RPLACA, and

RPLACD are used in the creation and manipulation of environments.

We may draw a parallel between each of these constructs and an equivalent

machine-language (or rather, assembly language) construct:

PROG A single program module.

GO A branch instruction. PROG tags correspond to instruction labels.

RETURN Exit from program module.

PROGN Sequencing of several instructions.

COND Conditional branches, used in a disciplined manner. One may think of

(COND (predl valuel)

(pred2 value2)

(predn valuen))

as representing the sequence of code

<code for predi>

JUMP-IF-NIL regi, TAG]

<code for valuel>

JUMP ENDTAG

TAG1: <code for pred2>

JUMP-IF-NIL regi, TAGZ

<code for value2>

JUMP ENDTAG

TAGZ2: we

<code for predn>

JUMP-IF-NIL regl, TAGn

<code for valuen>

JUMP ENDTAG

TAGn: LOAD-VALUE NIL

ENDTAG :

which admits of some optimizations, but we shall not worry about this.

(The MacLISP compiler does, but we do not depend at all on this fact.)

SETQ Load register, or store into memory.

LAMBDA

CONS

20

We use this primarily in the form:

((LAMBDA (qi ... qn)

(setq varl ql)

(setq varn qn))
valuel ... valuen)

which we may think of as saving values on a temporary stack and then

popping them into the variables:

<code for valuel> ;leaves result in regl
PUSH regl

<code for valuen>
PUSH regl

POP varn

POP varl

This is in fact approximately how the MacLISP compiler will treat this

construct. This is used to effect the simultaneous assignment of

several values to several registers. It would be possible to do

without the MacLISP LAMBDA in this case, by using extra intermediate

variables, but it was decided that this task was less interesting than

other issues within RABBIT, and that assignments of this kind would

occur sufficiently often that it was desirable to get the MacLISP

compiler to produce the best possible code in this case.

The form ((LAMBDA ...) ...) is also used in some situation where the

user wrote such a form in the SCHEME code, and the arguments and

LAMBDA-body are all "trivial", in a sense to be defined later.

CONS is used, among other things, to "push" new values onto the current

environment. While SCHEME variables can sometimes be represented as

temporary MacLISP variables using LAMBDA, in general they must be kept

CAR,

21

in a “consed environment" in the heap; CAR and CDR are used to “index”

the environment "stack" (which is not really a stack, but in general

tree-like). (N.B. By using CONS for this purpose we can push the

entire issue of environment retention off onto the LISP garbage

collector. It would be possible to use array-like blocks for

environments, and an Algol-like "display" pointer discipline for

variable access. However, a retention strategy as opposed to a

deletion strategy must be used in general, because SCHEME, unlike Algol

60 and 68, permits procedures to be the values of other procedures.

Stack allocation does not suffice in general -- a heap must be used.

Later we will see that RABBIT uses stack allocation of environments and

a deletion strategy in simple cases, and reverts to heap allocation of

environments and a retention strategy in more complicated situations.)

Primitive MacLISP operators such as + and CAR are analogous to machine-

language instructions such as ADD and LOAD-INDEXED. We leave to the

MacLISP compiler the task of compiling large expressions involving

these; but we are not avoiding the associated difficult issues such as

register allocation, for we shall have to deal with them in compiling

calls to SCHEME functions.

22

4. The Target Machine

Compiled code is interfaced to the SCHEME interpreter in two ways. The

interpreter must be able to recognize functional objects which happen to be

compiled and to invoke them with given arguments; and compiled code must be able

to invoke any function, whether interpreted or compiled, with given arguments.

(This latter interface is traditionally known as the "UUO Handler" as the result

of the widespread use of the PDP-10 in implementing LISP systems. [DEC] [Moon }

[Teitelman]) We define here an arbitrary standard form for functional objects,

and a standard means for invoking them.

In the PDP-10 MacLISP implementation of SCHEME, a function is, in

general, represented as a list whose car contains one of a set of distinguished

atomic symbols. (Notice that LAMBDA is not one of these; a LAMBDA-expression

may evaluate to a function, but is not itself a valid function.) This set of

symbols includes EXPR, SUBR, and LSUBR, denoting primitive MacLISP functions of

those respective types; BETA, denoting a SCHEME function whose code is

interpretive; DELTA, denoting an escape function created by the interpreter for

a CATCH form, or a continuation given by the interpreter to compiled code;

CBETA, denoting a SCHEME function or continuation whose code is compiled; and

EPSILON, denoting a continuation created when compiled code invokes interpreted

code. Each of these function types requires a different invocation convention;

the interpreter must distinguish these types and invoke them in the appropriate.

manner. For example, to invoke an EXPR the MacLISP FUNCALL construct must be

used. A BETA must be invoked by creating an appropriate environment, using the

given arguments, and then interpreting the code of the function.

We have arbitrarily defined the CBETA interface as follows: there are a

number of "registers", in the form of global variables. Nine registers called

23

KKCONT&K*, *&KONEXX, *xxTWOke, ..., **EIGHT** are used to pass arguments to compiled

functions. %**CONT** contains the continuation. The others contain the arguments

prescribed by the user; if there are more than eight arguments, however, then

they are passed as a list of all the arguments in register **xONE*x*, and the

others are unused. (Any of a large variety of other conventions could have been

chosen, such as the first seven arguments in seven registers and a list of all

remaining arguments in *xEIGHT**. We merely chose a convention which would be

workable and convenient, reflect the typical finiteness of hardware register

sets, and mirror familiar LISP conventions. The use of a list of arguments is

analogous to the passing of an arbitrary number of arguments on a_ “stack,

sometimes known as the LSUBR convention. [Moon] [Declarative])

There is another register called **FUN**. A function is invoked by

putting the functional object in **FUN**, its arguments in the registers already

described, and the number of arguments in the register **NARGS**, and then

exiting the current function. Control (at the MacLISP level) is then transferred

to a routine (the "SCHEME UUO handler") which determines the type of the function

in **FUN** and invokes it.

A continuation is invoked in exactly the same manner as any other kind of

function, with two exceptions: a continuation does not itself require a

continuation, so **xCONT** need not be set up; and a continuation always takes a

Single argument, so **NARGS** need not be set to 1. {Note Multiple-

Argument Continuations}

A CBETA form has additional fixed structure. Besides the atomic symbol

CBETA in the car, there is always in the cadr the address of the code, and in the

cddr the environment. The form of the environment is completely arbitrary as far

as the SCHEME interpreter is concerned; indeed, the CHEAPY compiler and the

RABBIT compiler use completely different formats for environments for compiled

24

function. (Recall that this cannot matter since the only code which will ever be

able to access that environment is the code belonging the the functional closure

of which that environment is a part.) The "UUO handler" puts the cddr of **FUN**

in the register *xENV**, and then transfers to the address in the cadr of

*x*xFUN*X*x. When that code eventually exits, control returns to the "UUO handler",

which expects the code to have set up **FUN** and any necessary arguments.

There is a set of "memory locations" -ll-, -l2-, ... which are used to

hold intermediate quantities within a single user function. (Later we shall see

that we think of these as being used to pass values between internally generated

functions within a module. For this purpose we think of the “registers” and

“memory locations" being arranged in a single sequence **CONT**, **ONEX*, ...,

*KEIGHT**, -1ll-, -12-, ... There is in principle an unbounded number of these

“memory locations", but RABBIT can determine (and in fact outputs as a

declaration for the MacLISP compiler) the exact set of such locations used by any

given function.) One may think of the "memory locations" as being local to each

module, since they are never used to pass information between modules; in

practice they are implemented as global MacLISP variables.

The registers **FUN**, **kNARGS**, *xENV*x*, and the argument registers are

the only global registers used by compiled SCHEME code (other than the "memory

locations"). Except for global variables explicitly mentioned by the user

program, all communication between compiled SCHEME functions is through these

registers. It is useful to note that the continuation in **CONT** is generally

analogous to the usual "control stack" which contains return addresses, and so we

may think of **xCONT** as our “stack pointer register".

25

5. Language Design Considerations

SCHEME is a lexically scoped ("full-funarg") dialect of LISP, and so is

an applicative language which conforms to the spirit of the lambda-calculus.

[Church] We divide the definition of the SCHEME language into two parts: the

environment and control constructs, and the data manipulation primitives.

Examples of the former are LAMBDA-expressions, combinations, and IF; examples of

the latter are CONS, CAR, EQ, and PLUS. Note that we can conceive of a version

of SCHEME which did not have CONS, for example, and more generally did not have

S-expressions in its data domain. Such a version would still have the same

environment and control constructs, and so would hold the same theoretical

interest for our purposes here. (Such a version, however, would be less

convenient for purposes of writing a meta-circular description of the language,

however!)

By the “spirit of lambda-calculus" we mean the essential properties of

the axioms obeyed by lambda-calculus expressions. Among these are the rules of

alpha-conversion and beta-conversion. The first intuitively implies that we can

uniformly rename a function parameter and all references to it without altering

the meaning of the function. An important corollary to this is that we can in

fact effectively locate all the references. The second implies that in a

situation where a known function is being called with known argument expressions,

we may substitute an argument expression for a parameter reference within the

body of the function (provided no naming conflicts result, and that certain

restrictions involving side effects are met). Both of these operations are of

importance to an optimizing compiler. Another property which follows indirectly

is that of tail-recursion. This property is exploited in expressing iteration in

terms of applicative constructs, and is discussed in some detail in

26

[Declarative].

We realize that other systems of environment and control constructs also

are reasonably concise, clear, and elegant, and can be axiomatized in useful

ways, for example the guarded commands of Dijkstra. [Dijkstra] However, that of

lambda-calculus is extremely well-understood, lends itself well to certain kinds

of optimizations in a natural manner, and has behind it a body of literature

which can be used directly by RABBIT to express non-primitive constructs.

The desire for uniform lexical scoping arises from other motives as well,

some pragmatic, some philosophical. Many of these are described in [SCHEME],

[Imperative], [Declarative], and [Revised Report]. It is often difficult to

explain some of these to those who are used to dynamically scoped LISP systems.

Any one advantage of lexical scoping may often be countered with “Yes, but you

can do that in this other way in a dynamically scoped LISP." However, we are

convinced that lexical scoping in its totality provides all of the advantages to

be described in a natural, elegant, and integrated manner, largely as a

consequence of its great simplicity.

There are those to whom lexical scoping is nothing new, for example the

ALGOL community. For this audience, however, we should draw attention to another

important feature of SCHEME, which is that functions are first-class data

objects. They may be assigned or bound to variables, returned as values of other

functions, placed in arrays, and in general treated as any other data object.

Just as numbers have certain operations defined on them, such as addition, so

functions have an important operation defined on them, namely invocation.

The ability to treat functions as objects is not at all the same as the

ability to treat representations of functions as objects. It is the latter

ability that is traditionally associated with LISP; functions can be represented

as S-expressions. In a version of SCHEME which had no S-expression primitives,

27

however, one could still deal with functions (i.e. closures) as such, for that

ability is part of the fundamental environment and control facilities.

Conversely, in a SCHEME which does have CONS, CAR, and CDR, there is no defined

way to use CONS by itself to construct a function (although a primitive ENCLOSE

is now provided which converts an S-expression representation of a function into

a function), and the CAR or CDR of a function is in general undefined. The only

defined operation on a function is invocation. {Note Operations on Functions)

We draw this sharp distinction between environment and control constructs

on the one hand and data manipulation primitives on the other because only the

former are treated in any depth by RABBIT, whereas much of the knowledge of a

"real" compiler deals with the latter. A PL/I compiler must have much specific

knowledge about numbers, arrays, strings, and so on. We have no new ideas to

present here on such issues, and so have avoided this entire area. RABBIT itself

knows almost nothing about data manipulation primitives beyond being able to

recognize them and pass them along to the output code, which is a small subset of

MacLISP. In this way RABBIT can concentrate on the interesting issues of

environment and control, and exploit the expert knowledge of data manipulation

primitives already built into the MacLISP compiler.

28

6. The Use of Macros

An important characteristic of the SCHEME language is that its set of

primitive constructs is quite small. This set is not always convenient for

expressing programs, however, and so a macro facility is provided for extending

the expressive power of the language. A macro is best thought of as a syntax

rewrite rule. As a simple example, suppose we have a primitive GCD which takes

only two arguments, and we wish to be able to write an invocation of a GCD

function with any number of arguments. We might then define (in a "production-

rule" style) the conditional rule:

(XGCD) => 0

(XGCD x) => x

(XGCD x . rest) => (GCD x (XGCD. rest))

(Notice the use of LISP dots to refer to the rest of a list.) This is not

considered to be a definition of a function XGCD, but a purely syntactic

transformation. In principle all such transformations could be performed before

executing the program. In fact, RABBIT does exactly this, although the SCHEME

interpreter naturally does it incrementally, as each macro call is encountered.

Rather than use a separate production-rule/pattern-matching language, in

practice SCHEME macros are defined as transformation functions from macro-call

expressions to resulting S-expressions, just as they are in MacLISP. (Here,

however, we shall continue to use production rules for purposes of exposition.)

It is important to note that macros need not be written in the language for which

they express rewrite rules; rather, they should be considered an adjunct to the

interpreter, and written in the same language as the interpreter (or the

compiler). To see this more clearly, consider a version of SCHEME which does not

have S-expressions in its data domain. If programs in this language are

29

represented as S-expressions, then the interpreter for that language cannot be

written in that language, but in another meta-language which does deal with S-

expressions. Macros, which transform one S-expression (representing a macro

call) to another (the replacement form, or the interpretation of the call),

Clearly should be expressed in this meta-language also. The fact that in most

LISP systems the language and the meta-language appear to coincide is a source of

both power and confusion.

In the PDP-10 MacLISP implementation of SCHEME, four separate macro

mechanisms are used in practice. One is the MacLISP read-macro mechanism [Moon],

which performs transformations such as 'FOO => (QUOTE FOO) when an expression is

read from a file. The other three are as described earlier, processed by the

interpreter or compiler, and differ only in that one kind is recognized by the

MacLISP interpreter as well while the other two are used only by SCHEME, and that

of the latter two one kind is written in MacLISP and the other kind in SCHEME

itself.

There is a growing library of SCHEME macros which express a variety of

traditional programming constructs in terms of other, more primitive constructs,

and eventually in terms of the small set of primitives. A number of these are

catalogued in [Imperative] and [Revised Report]. Others were invented in the

course of writing RABBIT. We shall give some examples here.

The BLOCK macro is similar to the MacLISP PROGN; it evaluates all its

arguments and returns the value of the last one. One critical characteristic is

that the last argument is evaluated "tail-recursively" (I use horror quotes

because normally we speak of invocation, not evaluation, as being tail-

recursive). An expansion rule is given for this in [Imperative] equivalent to:

(BLOCK x) => xX

(BLOCK x . rest) => ((LAMBDA (DUMMY) (BLOCK . rest)) x)

30

This definition exploits the fact that SCHEME is evaluated in applicative order,

and so will evaluate all arguments before applying a function to them. Thus, in

the second subrule, x must be evaluated, and then the block of all the rest is.

It is then clear from the first subrule that the last argument is evaluated

"tail-recursively".

One problem with this definition is the occurrence of the variable DUMMY,

which must be chosen so as not to conflict with any variable used by the user.

This we refer to as the "GENSYM problem", in honor of the traditional LISP

function which creates a "fresh" symbol. It would be nicer to write the macro in

such a way that no conflict could arise no matter what names were used by the

user. There is indeed a way, which ALGOL programmers will recognize as

equivalent to the use of "thunks", or call-by-name parameters:

(BLOCK x) => x

(BLOCK x . rest) => ((LAMBDA (A B) (B))

(LAMBDA () (BLOCK . rest)))

Consider carefully the meaning of the right-hand side of the second subrule.

First the expression x and the (LAMBDA () ...) must be evaluated (it doesn't

matter in which order!); the result of the latter is a function (that is, a

closure), which is later invoked in order to evaluate the rest of the arguments.

There can be no naming conflicts here, because the scope of the variables A and B

(which is lexical) does not contain any of the arguments to BLOCK written by the

user. (We .should note that we have been sloppy in speaking of the “arguments” to

BLOCK, when BLOCK is properly speaking not a function at all, but merely a

syntactic keyword used to recognize a situation where a syntactic rewriting rule

is applicable. We would do better to speak of “argument expressions” or "macro

31

arguments", but we shall continue to be sloppy where no confusion should arise.)

This is a technique which should be understood quite thoroughly, since it

is the key to writing correct macro rules without any possibility of conflicts

between names used by the user and those needed by the macro. As another

example, let us consider the AND and OR constructs as used by most LISP systems.

OR evaluates its arguments one by one, in order, returning the first non-NIL

value obtained (without evaluating any of the following arguments), or NIL if all

arguments produce NIL. AND is the dual to this; it returns NIL if any argument

does, and otherwise the value of the last argument. A simple-minded approach to

OR would be:

(OR) => ‘NIL

(OR x . rest) => (IF x x (OR . rest))

There is an objection to this, which is that the code for x is duplicated. Not

only does this consume extra space, but it can execute erroneously if x has any

side-effects. We must arrange to evaluate x only once, and then test its value:

(OR) => ‘NIL
(OR x . rest) => ((LAMBDA (V) (IF V V (OR . rest))) x)

This certainly evaluates x only once, but admits a possible naming conflict

between the variable V and any variables used by rest. This is avoided by the

same technique used for BLOCK:

(OR) => 'NIL
(OR x . rest) => ((LAMBDA (V R) (IF V V (R)))

x

(LAMBDA () (OR . rest)))

Similarly, we can express AND as follows:

32

(AND) => 'T
(AND x) => x
(AND x . rest) => ((LAMBDA (V R) (IF V (R) ‘NIL))

x

(LAMBDA () (AND . rest)))

(The macro rules are not precise duals because of the non-duality between NIL-

ness and non-Nil-ness, and the requirement that a successful AND return the

actual value of the last argument and not just T.) {Note Tail-Recursive OR}

As yet another example, consider a modification to BLOCK to allow a

limited form of assignment statement: if (v := x) appears as a statement in a

block, it "assigns" a value to the variable v whose scope is the remainder of the

block. Let us assume that such a statement cannot occur as the last statement of

a block (it would be useless to have one in that position, as the variable would

have a null scope). We can write the rule:

(BLOCK x)

(BLOCK (v := x) . rest)
(BLOCK x . rest)

5 ((LAMBDA (v) (BLOCK . rest)) x)
> ((LAMBDA (A B) (B))

(LAMBDA () (BLOCK . rest)))

The second subrule states that an "assignment" causes x to be evaluated and then

bound to v, and that the variable v is visible to the rest of the block.

We may think of := as a "sub-macro keyword" which is used to mark an

expression as Suitable for transformation, but only in the context of a certain

larger transformation. This idea is easily extended to allow other

constructions, such as "simultaneous assignments" of the form

((varl var2 ... varn) := valuel value2 ... valuen)

which first compute all the values and then assign to all the variables, and

“exchange assignments" of the form (X :=: Y), as follows:

33

(BLOCK x) => xX

(BLOCK (v := x) . rest)

=> ((LAMBDA (v) (BLOCK . rest)) x)

(BLOCK (vars := . values) . rest)

=> ((LAMBDA vars (BLOCK . rest)) . values)

: y) . rest)

=> ((LAMBDA (x y) (BLOCK . rest)) y x)

(BLOCK x . rest) => ((LAMBDA (A B) (B))

x

(LAMBDA () (BLOCK . rest)))

(BLOCK (x :

Let us now consider a rule for the more complicated COND construct:

(COND) => 'NIL
(COND (x) . rest) => (OR x (COND. rest))

(COND (x .r) . rest) => (IF x (BLOCK . r) (COND . rest))

This defines the "extended" COND of modern LISP systems, which produces NIL if no

clauses succeed, which returns the value of the predicate in the case of a

singleton clause, and which allows more than one consequent in a clause. An

important point here is that one can write these rules in terms of other macro

constructs such as OR and BLOCK; moreover, any extensions to BLOCK, such as the

limited assignment feature described above, are automatically inherited by COND.

Thus with the above definition one could write

(COND ((NUMBERP X) (Y := (SQRT X)) (+ Y (SQRT Y)))
(T (HACK X)))

where the scope of the variable Y is the remainder of the first COND clause.

SCHEME also provides macros for such constructs as DO and PROG, all of

which expand into similar kinds of code using LAMBDA, IF, and LABELS (see below).

In particular, PROG permits the use of GO and RETURN in the usual manner. In

this manner all the traditional imperative constructs are expressed in an

applicative manner. {Note ASET' Is Imperative}

None of this is particularly new; theoreticians have modelled imperative

34

constructs in these terms for years. What is new, we think, is the serious

proposal that a practical interpreter and compiler can be designed for a language

in which such models serve as the sole definitions of these imperative

constructs. {Note Dijkstra's Opinion} This approach has both advantages and

disadvantages.

One advantage is that the base language is small. A simple-minded

interpreter or compiler can be written in a few hours. (We have re-implemented

the SCHEME interpreter from scratch a dozen times or more to test various

representation strategies; this was practical only because of the small size of

the language. Similarly, the CHEAPY compiler is fewer than ten pages of code,

and could be rewritten in a day or less.) Once the basic interpreter is written,

the macro definitions for all the complex constructs can be used without

revision. Moreover, the same macro definitions can be used by both interpreter

and compiler (or by several versions of interpreter and compiler!). Excepting

the very few primitives such as LAMBDA and IF, it is not necessary to “implement

a construct twice", once each in interpreter and compiler.

Another advantage is that new macros are very easy to write (using

facilities provided in SCHEME). One can easily invent a new kind of DO loop, for

example, and implement it in SCHEME for both interpreter and all compilers in

less than five minutes. (In practice such new control constructs, such as the

ITERATE loop described in [Revised Report], are indeed installed within five to

ten minutes of conception, in a routine manner.)

A third advantage is that the attention of the compiler can be focused on

the basic constructs. Rather than having specialized code for two dozen

different constructs, the compiler can have much deeper knowledge about each of a

few basic constructs. One might object that this "deeper knowledge" consists of

recognizing the two dozen special cases represented by the separate constructs of

35

the former case. This is true to some extent. It is also true, however, that in

the latter case such deep knowledge will carry over to any new constructs which

are invented and represented as macros.

Among the disadvantages of the macro approach are lack of speed and the

discarding of information. Many people have objected that macros are of

necessity slower than, say, the FSUBR implementation used by most LISP systems.

This is true in many current interpretive implementations, but need not be true

of compilers or more cleverly designed interpreters. Moreover, the FSUBR

implementation is not general; it is very hard for a user to write a meaningful

FSUBR and then describe to the compiler the best way to compile it. The macro

approach handles this difficulty automatically. We do not object to the use of

the FSUBR mechanism as a special-case "speed hack" to improve the performance of

an interpreter, but we insist on recognizing the fact that it is not as generally

useful as the macro approach.

Another objection relating to speed is that the macros produce convoluted

code involving the temporary creation and subsequent invocation of many closures.

We feel, first of all, that the macro writer should concern himself more with

producing correct code than fast code. Furthermore, convolutedness can be

eliminated by a few simple optimization techniques in the compiler, to be

discussed below. Finally, function calls need not be as expensive as is

popularly supposed. [Steele]

Information is discarded by macros in the situation, for example, where a

DO macro expands into a large mess that is not obviously a simple loop; later

compiler analysis must recover this information. This is indeed a problem. We

feel that the compiler is probably better off having to recover the information

anyway, Since a deep analysis allows it to catch other loops which the user did

not use DO to express for one reason or another. Another is the possibility that

36

DO could leave clues around in the form of declarations if desired.

Another difficulty with the discarding of information is the issuing of

meaningful diagnostic messages. The user would prefer to see diagnostics mention

the originally-written source constructs, rather than the constructs into which

the macros expanded. (An example of this problem from another LISP compiler is

that it may convert (MEMQ X ‘(A B C)) into (OR (EQ X 'A) (EQ X 'B) (EQ X 'C));

when by the same rule it converts (MEMQ X '(A)) (a piece of code generated by a

macro) into (OR (EQ X '‘'A)), it later issues a warning that an OR had only one

subform.) This problem can be partially circumvented if the responsibility for

syntax-checking is placed on the macro definition at each level of expansion.

37

7. The Imperative Treatment of Applicative Constructs

Given the characteristics of lexical scoping and _ tail-recursive

invocations, it is possible to assign a peculiarly imperative interpretation to

the applicative constructs of SCHEME, which consists primarily of treating a

function call as a GOTO. More generally, a function call is a GOTO that can pass

one or more items to its target; the special case of passing no arguments is

precisely a GOTO. It is never necessary for a function call to save a return

address of any kind. It is true that return addresses are generated, but we

adopt one of two other points of view, depending on context. One is that the

return address, plus any other data needed to carry on the computation after the

called function has returned (such as previously computed intermediate values and

other return addresses) are considered to be packaged up into an additional

argument (the continuation) which is passed to the target. This lends itself to

a non-functional interpretation of LAMBDA, and a method of expressing programs

Called the continuation-passing style (similar to the message-passing actors

paradigm [Hewitt]), to be discussed further below. The other view, more

intuitive in terms of the traditional stack implementation, is that the return

address should be pushed before evaluating arguments rather than before calling a

function. This view leads to a more uniform function-calling discipline, and is

discussed in [Declarative] and [Steele].

We are led by these points of view to consider a compilation strategy in

which function calling is to be considered very cheap (unlike the situation with

PL/I and ALGOL, where programmers avoid procedure calls like the plague -- see

[Steele] for a discussion of this). In this light the code produced by the

Sample macros above does not seem inefficient, or even particularly convoluted.

Consider the expansion of (OR a bc):

38

((LAMBDA (V R) (IF V V (R)))
a
(LAMBDA () ((LAMBDA (V R) (IF V V (R)))

b
(LAMBDA () ((LAMBDA (V R) (IF V V (R)))

Cc
(LAMBDA () ‘NIL))))))

Then we might imagine the following (slightly contrived) compilation scenario.

First, for expository purposes, we shall rename the variables in order to be able

to distinguish them.

((LAMBDA (V1 RI) (IF Vi V1 (R1)))

(LAMBDA () ((LAMBDA (V2 R2) (IF V2 V2 (R2)))

(LAMBDA () ((LAMBDA (V3 R3) (IF V3 V3 (R3)))
c
(LAMBDA () 'NIL))))))

We shall assign a generated name to each LAMBDA-expression, which we shall notate

by writing the name after the word LAMBDA. These names will be used as tags in

the output code.

((LAMBDA namel (Vi R1) (IF Vi V1 (R1)))

(LANBDA name2 () ((LAMBDA name3 (V2 R2) (IF V2 V2 (R2)))

(LAMBDA name4 () ((LAMBDA name5 (V3 R3)
(IF V3 V3 (R3)))

(LAMBDA name6 () 'NIL))))))

Next, a simple analysis shows that the variables Rl, R2, and R3 always denote the

LAMBDA-expressions named nameZ, name4, and name6, respectively. Now an optimizer

might simply have substituted these values into the bodies of namel, name3, and

name5 using the rule of beta-conversion, but we shall not apply that technique

here. Instead we shall compile the six functions in a straightforward manner.

We make use of the additional fact that all six functions are closed in identical

39

environments (we count two environments as identical if they involve the same

variable bindings, regardless of the number of "frames" involved; that is, the

environment is the same inside and outside a (LAMBDA () ...)). Assume a simple

target machine with argument registers called regl, reg2, etc.

main: <code for a> ;result in regl

LOAD reg2,[name2] ;Lname2} is the closure for name2
CALL-FUNCTION 2,[namel] ;call namel with 2 arguments

namel: JUMP-IF-NIL regl,namela

RETURN ;return the value in regl

namela: CALL-FUNCTION 0,reg2 ;call function in reg2, 0 arguments

name2: <code for b> ;result in regl

LOAD regZ,[name4] ;[name4] is the closure for name4
CALL-FUNCTION 2,[name3] ;call name3 with 2 arguments

name3: JUMP-IF-NIL regl,name3a

RETURN ;return the value in regl

name3a: CALL-FUNCTION 0,reg2 ;call function in reg2, 0 arguments

name4: <code for c> sresult in regl

LOAD reg2,[name6] ;[name6] is the closure for name6
CALL-FUNCTION 2,[name5] ;call name5 with 2 arguments

name5: JUMP-IF-NIL regl,name5a

RETURN sreturn the value in regl

name5a: CALL-FUNCTION 0,reg2 ;call function in reg2, 0 arguments

name6: LOAD regl,'NIL ;constant NIL in regl

RETURN

Now we make use of our knowledge that certain variables always denote certain

functions, and convert CALL-FUNCTION of a known function to a simple GOTO. (We

have actually done things backwards here; in practice this knowledge is used

before generating any code. We have fudged over this issue here, but will return

to it later. Our purpose here is merely to demonstrate the treatment of function

calls as GOTOs.)

main: <code for a> sresult in regl

LOAD reg2,[name2] ;[nameZ2] is the closure for name2
GOTO namel

40

namel: JUMP-IF-NIL regl,namela

RETURN sreturn the value in regl

namela: GOTO name2

name2: <code for b> sresult in regl

LOAD reg2,[name4 J ;[name4] is the closure for name4
GOTO name3

name3: JUMP-IF-NIL regl,name3a

RETURN sreturn the value in regl

name3a: GOTO name4

name4: <code for c> sresult in regl

LOAD reg2,[name6 J ;[name6] is the closure for name6
GOTO name5

name5: JUMP-IF-NIL regl,name5a

RETURN ;return the value in regl

name5a: GOTO name6

name6: LOAD regl, ‘NIL sconstant NIL in regl

RETURN

The construction [foo] indicates the creation of a closure for foo in the current

environment. This will actually require additional instructions, but we shall

ignore the mechanics of this for now since analysis will remove the need for the

construction in this case. The fact that the only references to the variables

Rl, RZ, and R3 are function calls can be detected and the unnecessary LOAD

instructions eliminated. (Once again, this would actually be determined ahead of

time, and no LOAD instructions would be generated in the first place. All of

this is determined by a general pre-analysis, rather than a peephole post-pass.)

Moreover, a GOTO to a tag which immediately follows the GOTO can be eliminated.

4l

main: <code for a> ;result in regl

namel: JUMP-IF-NIL regli,namela

RETURN sreturn the value in regl

namela:
name2: <code for b> sresult in regl

name3: JUMP-IF-NIL regl,name3a
RETURN sreturn the value in regl

name3a:

name4: <code for c> ;result in regl

nameS: JUMP-IF-NIL regi,name5a

RETURN sreturn the value in regl

name5a:

name6: LOAD regl, ‘NIL ;constant NIL in regl

RETURN

This code is in fact about what one would expect out of an ordinary LISP

compiler. (There is admittedly room for a little more improvement.) RABBIT

indeed produces code of essentially this form, by the method of analysis outlined

here.

Similar considerations hold for the BLOCK macro. Consider the expression

(BLOCK a bc); conceptually this should perform a, b, and c sequentially. Let

us examine the code produced:

((LAMBDA (A B) (B))

(LAMBDA () ((LAMBDA (A B) (B))
b

(LAMBDA () c))))

Renaming the variables and assigning names to LAMBDA-expressions:

((LAMBDA namel (Al Bl) (B1))
a
(LAMBDA nameZ () ((LAMBDA name3 (AZ B2) (B2))

b
(LAMBDA name4 () c))))

Producing code for the functions:

42

main: <code for a>

LOAD reg2,[{name2]}

CALL-FUNCTION 2,[namel }

namel: CALL-FUNCTION 0,reg2

nameZ: <code for b>

LOAD reg2,[name4 J
CALL-FUNCTION 2,[name3]

name3: CALL-FUNCTION 0,reg2

name4: <code for c>

RETURN

Turning general function calls into direct GO's, on the basis of analysis of what

variables must refer to constant functions:

main: <code for a>

LOAD reg2,[name2]
GOTO namel

namel: GOTO name2

nmame2: <code for b>

LOAD reg2,[name4]
GOTO name3

name3: GOTO name4

name4: <code for c>

RETURN

Eliminating useless GOTO and LOAD instructions:

main: <code for a>

namel:

name2: <code for b>

name3:

name4: <code for c>

RETURN

What more could one ask for?

Notice that this has fallen out of a general strategy involving only an

_ approach to compiling function calls, and has involved no special knowledge of OR

43

or BLOCK not encoded in the macro rules. The cases shown so far are actually

special cases of a more general approach, special in that all the conceptual

closures involved are closed in the same environment, and called from places that

have not disturbed that environment, but only used "“registers*. In the more

general case, the environments of caller and called function will be different.

This divides into two subcases, corresponding to whether the closure was created

by a simple LAMBDA or by a LABELS construction. The latter involves circular

references, and so is somewhat more complicated; but it is easy to show that in

the former case the environment of the caller must be that of the (known) called

function, possibly with additional values added on. This is a consequence of

lexical scoping. As a result, the function call can be compiled as a GOTO

preceded by an environment adjustment which consists merely of lopping off some

leading portion of the current one (intuitively, one simply "pops the unnecessary

crud off the stack"). LABELS-closed functions also can be treated in this way,

_if one closes all the functions in the same way (which RABBIT presently does, but

this is not always desirable). If one does, then it is easy to see the effect of

expanding a PROG into a giant LABELS as outlined in [Imperative] and elsewhere:

normally, a GOTO to a tag at the same level of PROG will involve no adjustment of

environment, and so compile into a simple GOTO instruction, whereas a GOTO to a

tag at an outer level of PROG probably will involve adjusting the environment

from that of the inner PROG to that of the outer. All of this falls out of the

proper imperative treatment of function calls.

44

8. Compilation Strategy

The overall approach RABBIT takes to the compilation of SCHEME code may

be summarized as follows:

(1) Alpha-conversion (renaming of variables) and =macro-expansion

(expansion of syntactic rewrite rules).

(2) Preliminary analysis (variable references, "trivial" expressions, and

side effects).

(3) Optimization (meta-evaluation).

(4) Conversion to continuation-passing style.

(5) Environment and closure analysis.

(6) Code generation.

During (1) a data structure is built which is structurally a copy of the user

program but in which all variables have been renamed and in which at each “node*®

of the program tree are additional slots for extra information. These slots are

filled in during (2). In (3) the topology of the structure may be modified to

reflect transformations made to the program; routines from (2) may be called to

update the information slots. In (4) a new data structure is contructed from the

old one, radically different in structure, but nevertheless also tree-like in

form. During (5) information is added to slots in the second structure. In (6)

this information is used to produce the final code.

45

A. Alpha-conversion and macro-expansion

In this phase a copy of the user program is made. The user program is

conceptually a tree structure; each node is one of several kinds of construct

(constant, variable, LAMBDA-expression, IF-expression, combination, etc.). Some

kinds of nodes have subnodes; for example, a LAMBDA-expression node has a

subnode representing the body, and a combination node has a subnode for each

argument. The copying is performed in the obvious way by a recursive tree-walk.

In the process all bound variables are renamed. Each bound variable is assigned

a new generated name at the point of binding, and each node for a reference to a

bound variable contains this generated name, not the original name. From this

point on all variables are dealt with in terms of their new names. (This is

possible because, as a consequence of lexical scoping, we can identify all

references to each bound variable.) These new names are represented as atomic

symbols, and the property lists of these symbols will later be used to store

information about the variables.

As each subform of the user program is examined, a check is made for a

macro call, which is a list whose car is an atomic symbol with one of several

macro-defining properties. When such a call is encountered, the macro call is

expanded, and the tree-walk is resumed on the code returned by the expansion

process.

46

B. Preliminary analysis

The preliminary analysis ("phase 1") is in three passes, each involving a

tree-walk of the node structure, filling in information slots at each node. (Two

passes would have sufficed, but for reasons of clarity and modularity there is

one pass for each type of analysis.)

The first pass (ENV-ANALYZE) analyzes variable references. For each node

we determine the set of all local (bound) variables referenced at or below that

node. For example, for a variable-reference node this set is empty (for a global

variable), or the singleton set of the variable itself (for a local variable);

for a LAMBDA-expression, it is the set for its body minus the variables bound by

that LAMBDA-expression; for an IF-expression, it is the union of the sets for

the predicate, consequent, and alternative; and so on. We also compute for each

node the set of bound variables which appear in an ASET' at or below the node.

(This set will be a subset of the first set, but no non-trivial use of this

property is used in this pass.) Finally, for each variable we store several

properties on its property list, including a list of all nodes which reference

the variable (for “reading") and a list of of all ASET' nodes which modify the

variable. These lists are built incrementally, with an entry added as _ each

reference is encountered during the tree walk. (This exemplifies the general

strategy for passing data around; any information which cannot be _ passed

conveniently up and down the tree, but which must jump laterally between

branches, is accumulated on the property lists of the variables. It may appear

to be "lucky" that all such information has to do with variables, but this is

actually an extremely deep property of our notation. The entire point of using

identifiers is to relate textually separated constructions. We depend on alpha-

conversion to give all variables distinct names (by "names" we really mean

47

“compile-time data structures") so that the information for variables which the

user happened to give the same name will not be confused.)

The second pass (TRIV-ANALYZE) locates "trivial" portions of the progran.

(Cf. {Wand and Friedman].) Constants and variables are trivial; an IF-

expressions is trivial iff the predicate, consequent, and alternative are all

trivial; an ASET' is trivial iff its body is trivial; a combination is trivial

iff the function is either a global variable which is the name of a MacLISP

primitive, or a LAMNBDA-expression whose body is trivial, and the arguments are

all trivial. LAMBDA-expressions, LABELS-forms (which contain LAMBDA-

expressions), and CATCH-forms are never trivial. The idea is that a trivial

expression is one that MacLISP could evaluate itself, without benefit of SCHEME

control structures. (No denigration of MacLISP's ability is intended by this

terminology!) Note particularly the two special cases of combinations

distinguished here (in which the function position contains either the name of a

MacLISP primitive or a LAMBDA-expression); they are very important, and shall be

referred to respectively as TRIVFN-combinations and LAMBDA-combinations.

The third pass (EFFS-ANALYZE) analyzes the possible side-effects caused

by each node, and the side-effects which could affect it. It actually produces

two sets of analyses, one liberal and one conservative. Where there is any

uncertainty as to what side-effects may be involved, it assumes none in one case

and all possible in the other. The liberal estimation is used only to issue

error messages to the user about possible conflicts which might result as a

consequence of the freedom to evaluate arguments to combinations in any order.

The user is given the benefit of doubt, and warned only of a "provable" conflict.

(Actually, the “proof" is a little sloppy, and can err in both directions, but in

practice it has issued no false alarms and a number of helpful warnings.) The

conservative estimation is used by the optimizer, which will move expressions

48

only if it can prove that there will be no conflict.

Side effects are grouped into classes: ASET, RPLACA and RPLACD (which

are considered distinct), FILE (input/output operations), and CONS. These are

not intended to be exhaustive; there is also an internal notation for “any side-

effect whatever". The use of classes enables the analysis to realize, for

example, that RPLACA. cannot affect the value of a variable per se. There is a

moderately large body of data in RABBIT about the side-effects of MacLISP

primitive functions. For example, CAR, CDR, CAAR, CADR, and so on are known not

to have side-effects, and to be respectively affected only by RPLACA, RPLACD,

RPLACA, RPLACA or RPLACD, and so on. Similarly, RABBIT knows that ASET' affects

the values of variables, but cannot affect the outcome of a CAR operation. (It

may affect the value of the expression (CAR X), but only because a variable

reference is a subnode of the combination. The effects, or affectability, of a

combination are the union of the effects, or affectibility, of all arguments plus

those of the function.) The CONS side-effect is a special case. This side-

effect cannot affect anything, and two instances of it may be performed in the

“wrong” order, but performing a single instance twice will produce distinct (as

determined by EQ) and therefore incorrect results. In particular, closures of

LAMBDA-expressions involve the CONS side-effect. (The definition of SCHEME says

nothing about whether EQ is a valid operation on closures, but in general it is

not a good idea to produce unnecessary multiple copies.) On the other hand,

LAMBDA-expressions occurring in function position of a LAMBDA-combination do not

incur the CONS side-effect. The CONS side-effect is given special treatment in

the optimizer. {Note Side-Effect Classifications}

49

C. Optimization

Once the preliminary analysis is done, the optimization phase performs

certain transformations on the code. The result is an equivalent program which

will (probably) compile into more efficient code. This new program is itself

structurally a valid SCHEME program; that is, all transformations are contained

within the language. The transformations are thus similar to those performed on

macro calls, consisting of a syntactic rewriting of an expression, except that

the situations where such transformations are applicable are more easily

recognized in the case of macro calls. It should be clear that the optimizer and

the macro-functions are conceptually at the same level in that they may be

written in the same meta-language that operates on representations of SCHEME

programs. {Note Non-deterministic Optimization}

The simplest transformation is that a combination whose function position

contains a LAMBDA-expression and which has no arguments can be replaced by the

body of the LAMBDA-expression:

((LAMBDA () body)) => body

Another is that, in the case of a LAMBDA-combination, if some parameter of the

LAMBDA-expression is not referenced and the corresponding argument can be proved

to have no side-effects (with an exception discussed below), then the parameter

and argument can be eliminated:

((LAMBDA (xl x2 x3) body) al a2 a3)
=> ((LAMBDA (x1 x3) body) al a3)

if x2 is unreferenced in body and a2 has no side-effects

Repeated applications of this rule can lead to the preceding case.

A third rule is that, in a LAMBDA-combination, an argument can be

50

substituted for one or more occurrences of a parameter in the body of the LAMBDA-

expression. (This rule is related to the view of LAMBDA as a renaming operator

discussed in [Declarative], and together with the two preceding rules make up the

rule of beta-conversion.) Such a substitution is permissible only if (a) either

the parameter is referred to only once or the argument has no side effects, and

(b) the substitution will not alter the order in which expressions are evaluated

in such a way as to allow possible side-effects to produce different results.

Before performing the substitution it is necessary to show that side-effects will

not interfere in this manner. This issue is discussed in [Allen and Cocke],

[Geschke], and [Wulf], and characterized more accurately in [Standish]. There is

also some difficulty if the parameter appears in an ASET'. Presently RABBIT does

not attempt any form of substitution for such a parameter. (ASET' is so seldom

used in SCHEME programs that this restriction makes very little difference.)

This third rule creates an exception to the second. If an argument with

a side effect is referred to once, and is substituted for the reference, then the

second rule must be invoked to eliminate the original occurrence of the argument,

so that the side effect will not occur twice. This requires a little collusion

between the two rules.

Even if such a substitution is permissible, it is not always desirable;

time/space tradeoffs are involved. The current heuristic is that a substitution

is desirable if (1) the parameter is referred to only once; or (2) the argument

to be substituted in is a constant or variable; or (3) the argument is a LAMBDA-

expression whose body is (3a) a constant, or (3b) a variable reference, or (3c) a

combination which has no more arguments than the LAMBDA-expression requires and

for which the arguments are all constants or variables. This heuristic was

designed to be as conservative as possible while handling most cases which arise

from typical macro-expansions.

51

The case where the expression substituted for a variable is a LAMBDA-

expression constitutes an instance of procedure integration [Allen and Cocke].

The more general kind of procedure integration proposed in [Declarative], which

would involve block compilation of several user functions, and possibly also user

declarations or data type analysis, has not been implemented yet.

It would be possible to substitute a LAMBDA-expression for a variable

reference in the case of a variable bound by a LABELS. This might be useful in

the case of a LABELS produced by a simple-minded PROG macro, which produced a

labelled function for each statement of the PROG; in such a case most labelled

functions would be referred to only once. We have not implemented this yet in

RABBIT. {Note Loop Unrolling}

Currently there is not any attempt to perform the inverse of beta-

conversion. This process would be that of locating common subexpressions of some

Single large expression, making that large expression the body of a LAMBDA-

expression of one parameter, replacing all occurrences of the common

subexpression by a reference to the parameter, and replacing the large expression

by a combination whose function position contained the LAMBDA-expression and

whose argument was a copy of the common subexpression. More generally, several

common subexpressions could be isolated at once and made into several parameters

of the LAMBDA-expression. For example, consider:

(LAMBDA (A B C)
(LIST (/ (+ (- B) (SQRT (- (* B 2) (* 4 A C))))

(* 2 A))
(/ (- (- B) (SQRT (- (* B 2) (* 4A C))))

(* 2 A))))

Within the large expression (LIST ...) we might detect the common subexpressions

(- B), (SQRT ...), and (* 2 A). Thus we would invent three parameters Q1, Q2, Q3

and transform the expression into:

52

(LAMBDA (A B C)
((LAMBDA (Q1 Q2 Q3)

(LIST (/ (+ Q1 Q2) Q3)
(- B) (/ (- Ql Q2) Q3)))

- B
(SQRT (- (* B 2) (* 4A C)))
(* 2 A)))

(There would be no problem of conflicting names as there is for macro rules,

because we are operating on code for which all variables have already been

renamed; Q1, Q2, and Q3 can be chosen as the next variables in the renaming

sequence.)

This approach doesn't always work if side-effects are present; the

abstracted (!) common subexpression may be evaluated too soon, or the wrong

number of times. This can be solved by wrapping (LAMBDA () ©) around the common

subexpression, and replacing references by a combination instead of a simple

variable reference. For example:

(IF (HAIRYP X)

(BLOCK (PRINT ‘|jHere is some hair:|)
(PRINT X)

(PRINT '|End of hair.|))

(BLOCK (PRINT '|This one is bald:]|)

(PRINT X)

(PRINT '|End of baldness.|)))

We could not transform it into this:

((LAMBDA (Q1)

(IF (HAIRYP X)
(BLOCK (PRINT '|JHere is some hair: |)

Qi
(PRINT ‘jEnd of hair.]))

(BLOCK (PRINT '|This one is baid:|)
Ql
(PRINT '|End of baldness.|))))

(PRINT X))

because x would be printed before the appropriate leading message. Instead, we

53

transform it into:

((LAMBDA (Q1)

(IF (HAIRYP X)

(BLOCK (PRINT '|Here is some hair: |)

(Ql)
(PRINT ‘{End of hair.|))

(BLOCK (PRINT '|This one is bald:{)

(Ql)
(PRINT 'JEnd of baldness,;]))))

(LAMBDA () (PRINT X)))

This is similar to the call-by-name trick used in writing macro rules.

A more general transformation would detect nearly common subexpressions

as follows:

((LAMBDA (Q1)
(IF (HAIRYP X)

(Qi '|Here is some hair:|

'|End of hair.|)

(Q1 ‘|This one is bald: |
'lEnd of baldness.|)))

(LAMBDA (Q2 Q3)

(BLOCK (PRINT QZ) (PRINT X) (PRINT Q3))))

In this way we can express the notion of subroutinization.

{Note Subroutinization}

We point out these possibilities despite the fact that they have not been

implemented in RABBIT because the problem of isolating common subexpressions

seems not to have been expressed in quite this way in the literature on

compilation strategies. We might speculate that this is because most compilers

which use complex optimization strategies have been for ALGOL-like languages

which do not treat functions as full-fledged data objects, or even permit the

writing of "anonymous" functions in functions calls as LISP does.

RABBIT does perform folding on constant expressions [Allen and Cocke];

that is, any combination whose function is a side-effect-less MacLISP primitive

54

and whose arguments are all constants is replaced by the result of applying the

primitive to the arguments. There is presently no attempt to do the same thing

for side-effect-less SCHEME functions, although this is conceptually no problem.

Finally, there are two transformations on IF expressions. One is simply

that an IF expression with a constant predicate is simplified to its consequent

or alternative (resulting in elimination of dead code). The other was adapted

from [Standish], which does not have this precise transformation listed, but

gives a more general rule. In its original form this transformation is:

(IF (IF abc)de) => (IF a (IF b de) (IF cd e))

One problem with this is that the code for d and e is duplicated. This can be

avoided by the use of LAMBDA-expressions:

((LAMBDA (Q1 Q2)
(IF a

(IF b (Ql) (Q2))
(IF c (Ql) (Q2))))

(LAMBDA () d)
(LAMBDA () e))

As before, there is no problem of name conflicts with Q1 and QZ. While this code

may appear unnecessarily complex, the calls to the functions Ql and Q2 will

typically, as shown above, be compiled as simple GOTO's. As an example, consider

the expression:

(IF (AND PREDI PRED2) (PRINT 'WIN) (ERROR 'LOSE))

Expansion of the AND macro will result in:

(IF ((LAMBDA (V R) (IF V (R) 'NIL))
PRED1I
(LAMBDA () PREDZ))

(PRINT ‘WIN)
(ERROR 'LOSE))

55

(For expository clarity we will not bother to rename all the variables, inasmuch

as they are already distinct.) Because V and R have only one reference apiece

(and there are no possible interfering side-effects), the corresponding arguments

can be substituted for them.

(IF ((LAMBDA (V R) (IF PREDI ((LAMBDA () PRED2)) '‘NIL))
PRED
(LAMBDA () PREDZ))

(PRINT ‘WIN)
(ERROR 'LOSE))

Now, since V and R have no referents at all, they and the corresponding arguments

can be eliminated, since the arguments have no side-effects.

(IF ((LAMBDA () (IF PREDI ((LAMBDA () PRED2Z)) ‘NIL)))
(PRINT 'WIN)
(ERROR 'LOSE))

Next, the combination ((LAMBDA () ...)) is eliminated in two places:

(IF (IF PREDI PRED2 'NIL)
(PRINT 'WIN)
(ERROR 'LOSE))

Now, the transformation on the nested IF's:

((LAMBDA (Q1 Q2)
(IF PRED1

(IF PRED2 (Q1) (Q2))
(IF 'NIL (Ql) (Q2))))

(LAMBDA () (PRINT 'WIN))
(LAMBDA () (ERROR 'LOSE)))

Now one IF has a constant predicate and can be simplified:

56

((LAMBDA (Q1 Q2)
(IF PREDI1

(IF PRED2 (Qi) (Q2))

(Q2)))
(LAMBDA () (PRINT 'WIN))

(LAMBDA () (ERROR 'LOSE)))

The variable Ql has only one referent, and so we substitute in, eliminate the

variable and argument, and collapse a ((LAMBDA () ..)):

((LAMBDA (Q2)

(IF PREDI

(IF PRED2 (PRINT 'WIN) (Q2))

(Q2)))
(LAMBDA () (ERROR 'LOSE)))

Recalling that (Q2) is, in effect, a GOTO branching to the common piece of code,

and that by virtue of later analysis no actual closure will be created for either

LAMBDA-expression, this result is quite reasonable. {Note Evaluation for

Control}

D. Conversion to Continuation-Passing Style

This phase is the real meat of the compilation process. It is of

interest primarily in that it transforms a program written in SCHEME into an

equivalent program (the continuation-passing-style version, or CPS _ version),

written in a language isomorphic to a subset of SCHEME with the property that

interpreting it requires no control stack or other unbounded temporary storage

and no decisions as _ to the order of evaluation of (non-trivial) subexpressions.

The importance of these properties cannot be overemphasized. The fact that it is

essentially a subset of SCHEME implies that its semantics are as clean, elegant,

and well-understood as those of the original language. It is easy to build an

57

interpreter for this subset, given the existence of a SCHEME interpreter, which

can execute the transformed program directly at this level. This cannot be said

for other traditional intermediate compilation forms; building an interpreter

for triples [Gries], for example, would be a tremendous undertaking. The

continuation-passing version expresses all temporary intermediate results

explicitly as variables appearing in the program text, and all temporary control

structure in the form of LAMBDA-expressions (that is, closures). It is explicit

in directing the order of operations; there is no non-trivial freedom at any

point in the evaluation process.

As a result, once the CPS version of a program has been generated, the

remainder of the compilation process is fairly easy. There is a reasonably

direct correspondence between constructs in the CPS language and "machine-

language" operations (if one assumes CONS to be a "machine-language" primitive

for augmenting environment structure, which we do). The later passes are

complicated only by the desire to handle certain special cases in an optimal

manner, most particularly the case of a function call whose function position

contains a variable which can be determined to refer to a known’ LAMBDA-

expression. This analysis must be done after the CPS conversion because it

applies to continuations as well as LAMBDA-expressions written by the user or

generated by macros.

The CPS language differs from SCHEME in only two respects. First, each

primitive function is different, in that it returns no value; instead, it

accepts an additional argument, the continuation, which must be a "function" of

one argument, and by definition invokes the continuation tail-recursively, giving

it aS an argument the computed "value" of the primitive function. We extend this

by convention to non-primitive functions, and so all functions are considered to

take a continuation as one of its arguments (by convention the first -- this

58

differs from the convention used in the examples in [SCHEME], [Imperative], and

[Declarative]). Continuations, however, do not themselves take continuations as

arguments.

Second, no combination may have a non-trivial argument. In strict

continuation-passing style (as described in note {Evalorder} of [Imperative]}),

this implies that no combination can have another combination as an argument, or

an IF-expression with a non-trivial consequent or alternative, etc. We relax

this to allow as arguments any trivial form in the sense described above for the

preliminary triviality analysis. We note that, in principle, trivial expressions

require no unbounded space on the part of the SCHEME interpreter to evaluate, and

that the compiler need not worry about control and environment issues for trivial

expressions. (Trivial expressions do require unbounded space on the part of the

MacLISP run-time system, because the point of the triviality analysis is that

trivial expressions can be handled by MacLISP! The question of what should be

considered trivial is actually a function of the characteristics of our target

machine. We note that, at the least, variables, constants, and LAMBDA-

expressions should be considered trivial. That the preliminary triviality

analysis does not consider LAMBDA-expressions trivial is a trick so that all

closures will be processed by the CPS-conversion process, and the fact that we

call it a triviality analysis is a white lie. See, however,

[Wand and Friedman].)

| The effect of the restriction on combinations is startling. On the one

hand, they do not so constrain the language as to be useless; on the other hand,

they require a radically different approach to the expression of algorithms. It

is easy to see that no control stack is necessary to evaluate such code, for, as

mentioned in [SCHEME], control stack is used only to keep track of intermediate

values and return addresses, and these arise only in the case of combinations

59

with non-trivial arguments, and conditionals with non-trivial predicates.

An algorithm for converting SCHEME programs to continuation-passing style

was given in Appendix A of [Declarative]. {Note Old CPS Algorithm} The one used

in RABBIT is almost identical, except that for the convenience of the code-

generation phase a distinction is made between ordinary LAMBDA-expressions and

continuations, and between combinations used to invoke "functions" and those used

to invoke continuations. These sets can in fact be consistently distinguished,

and it affords a certain amount of error-checking; for example, a LAMBDA-

expression should never appear in the "function" position of a continuation-

invoking combination. Another fine point is that ASET' can never be applied to a

variable bound by a continuation. Except for such differences arising from their

uses, the two sets of constructs are treated more or less identically in later

phases. An additional difference between the algorithm in [Declarative] and the

one in RABBIT is that trivial subforms are treated as single nodes in the CPS

“version; these nodes have pointers to the non-CPS versions of the relevant code,

which are largely ignored by later processing until the final code is to be

generated.

It must be emphasized that there is not necessarily a unique CPS version

for a given SCHEME program; there is as much freedom as there is in the original

program to re-order the evaluation of subexpressions. In the course of the

conversion process decisions must be made as to what order to uSe in evaluating

arguments to combinations. The current decision procedure is fairly simple-

minded, consisting mostly of not making copies of constants and the values of

variables. The point here, as earlier, is not so much that RABBIT has a much

better algorithm than other compilers as that it has a far cleaner way of

expressing the result. (For a complex decision procedure for argument ordering,

see (Wulf].) {Note Non-deterministic CPS Conversion}

60

E. Environment and closure analysis

This phase consists of four passes over the CPS version of the program.

As with the earlier preliminary analysis, each pass determines one related set of

information and attaches this information to nodes of the program tree and to

property lists.

The first pass (CENV-ANALYZE) analyzes variable references for the CPS

version in a manner similar to that of the first pass of the preliminary

analysis. The results of this previous analysis are used here in the case of

trivial expressions; with this exception the analysis is redone completely,

because additional variables are introduced by the CPS conversion. (None of

these new variables can appear in an ASET', however, and so the analysis of

written variables need not be done over.) In addition, for each variable

reference which does not occur in the function position of a combination, we mark

that variable with a non-nil VARIABLE-REFP property, used later to determine

whether closures need to be created for known functions.

The second pass (BIND-ANALYZE) determines for each LAMBDA-expression

whether a closure will be needed for it at run time. There are three

possibilities:

(1) If the function denoted by the LAMBDA-expression is bound to some

variable, and that variable is referenced other than in function position,

then the closure is being treated as data, and must be a full (standard CBETA

format) closure. If the function itself occurs in non-function position other

than in a LAMBDA-combination, it must be fully closed.

(2) If the closure is bound to some variable, and that variable is referenced

61

only in function position, but some of these references occur within other

partially or fully closed functions, then this function must be partially

closed. By this we mean that the environment for the closure must be "consed

up", but no pointer to the code need be added on as for a full closure. This

function will always be called from places that know the name of the function

and so can just perform a GO to the code, but those such places which are

within closures must have a complete copy of the necessary environment.

(3) In other cases (functions bound to variables referenced only in function

position and never within a closed function, or functions occurring in

function position of LAMBDA-combinations), the function need not be closed.

This is because the environment can always be fully recovered from the

environment at the point of call.

In order to determine this information, it is necessary to determine, for

each node, the set of variables referred to from within closed functions at or

below that node. Thus this process and the process of determining which

functions to close are highly interdependent, and so must be accomplished in a

Single pass.

The second pass also generates a name for each LAMBDA-expression (to be

used as tags in the output code, as discussed in the examples earlier), and for

non-closed functions determines which variables will be assigned to "registers"

or "memory locations". For these non-closed functions it may determine that

certain variables need not be assigned locations at all (they are never

referenced, or are bound to other non-closed functions -- the latter circumstance

is important when a variable is known to denote a certain function, but the

optimizer was too conservative to perform beta-substitution for fear of

duplicating code and thus wasting space). Finally, for each variable which is

(logically, at run time not necessarily actually) bound to a known function (and

62

which never appears in an ASET'), a property KNOWN-FUNCTION is put on its

property list whose value is the node of the CPS version of that function. This

property is used later in generating code for combinations in whose function

positions such variables appear.

The third pass (DEPTH-ANALYZE) examines each LAMBDA-expression and

determines the precise registers or memory locations through which arguments are

to be passed to each. Closed functions take their arguments in the standard

registers described earlier; non-closed functions may take their arguments in

any desired places. (Partially closed functions could also, but there is little

advantage to this.) The allocation strategy in RABBIT for non-closed functions

is presently merely stack-like; the deeper the nesting of a function, the higher

in the ordering of "registers" and "memory locations" are the locations assigned.

(See e.g. [Johnsson] for a detailed analysis of the register allocation problem.)

The fourth pass (CLOSE-ANALYZE) determines the precise format of the

environment to be constructed for each closure. That is, while the third pass

handles cases for which stack-allocation of environments will suffice, the fourth

pass deals with heap-allocated environment structures. Recall that the format of

an environment can be completely arbitrary, since the only code which can

possibly refer to an environment is the function for a closure of which the

environment was created. Therefore the compiler which compiles that function has

a free hand in determining the structure of the environment. For the sake of

Simplicity, RABBIT chooses to generate code which represents environments simply

as a list of variable values. Several environment lists may share a common tail.

The environment for a closure need not contain any variables not needed by the

closed function, but it may if this will allow the sharing of a single structure

among several closures. (There is a problem with variables modified by ASET'

which is discussed in the next paragraph.)

63

For each LAMBDA-expression which must be closed, three sets of variables

are computed: (1) the variables which will already be in the “"“consed”

environment structure at the time the closure is to be created; (2) additional

variables which must be added ("consed on") to the existing structure to create

the closure (because at that point they are spread out in "registers") {Note

Heap-Allocated Contours}; (3) variables which must be added to the environment

immediately after entering the function because they must eventually be added in

for closures later and they are referred to in ASET' constructs. The third set

arises from a requirement that ASET' constructs must have a consistent effect,

and confusion can arise if a variable's value can be in more than one place. If

the value were allowed to be both in a “register” and in an environment

Structure, or in several different environment structures, then altering the

value in one place would not affect the other places. To assure consistency,

this third set is computed, and such variables must at run time be placed in an

environment structure to be shared by all others which refer to such variables.

For every LABELS statement a set of variables is computed which is the

set of variables to be added to the existing environment on entry to the LABELS

body, in order to share this new structure among all the closures to be created

for the LABELS functions.

64

F. Code generation

Given the foregoing analysis, the generation of code is straightforward,

and largely consists of using the information already gathered to detect special

cases. The special cases of interest relate almost entirely to function calls

and closures (indeed, there is little else in the language for RABBIT's

purposes!).

RABBIT has provision for "block compiling" a number of functions into a

Single module. This permits an optimization in which one function can transfer

control directly to another without going through the "UUO handler". Even if

several user functions are not compiled into a single module, this is still of

advantage, because a single user function can produce a large number of output

functions, as a consequence of the code-generation techniques.

A module consists of a single MacLISP function whose body is a single

PROG. This PROG has no local variables, but does have a number of tags, one for

each function in the module. On entry to the module, the register **xENV** will

contain the "environment" for the function to be executed. As noted above, the

format of this is arbitrary. For functions compiled by RABBIT, this is a list

whose car iS a tag within the PROG and whose cdr is the "real environment".

{Note Code Pointers} At the beginning of the PROG there is always the code

(GO (PROG2 NIL (CAR **xENV**)
(SETQ *xENV** (CDR **xENV*x))))

the effect of which is to put the “real environment" in **ENV** and then perform

a computed GO to the appropriate tag. (This is the only circumstance in which

the MacLISP PROG2 and computed GO constructs are used by RABBIT-compiled code.

Either could be eliminated at the expense of more bookkeeping, the former by

65

using a temporary intermediate variable, the latter by using a giant COND with

non-computed GO statements (which is effectively how the MacLISP compiler

compiles a computed GO anyway). As always, such trivial issues are left to the

MacLISP compiler when they do not bear on the issues of interest in compiling

SCHEME code.) For small functions, often the "main entry point" is the only

closed function, and it would be possible to eliminate the computed GO, but

RABBIT always outputs one, because is is cheap and provides a useful error check.

Once the computed GO has been performed, the code following the tag is

responsible for performing its bit of computation and then exiting. It may exit

by setting the *x*xFUN** register to another function, setting up appropriate

argument registers, and then doing (RETURN NIL) to exit the module and enter the

UUO handler; or it may exit by directly transferring control to another function

within the module by performing a GO to the appropriate tag, after setting up the

arguments and *xENV**. In the latter case the arguments may actually be passed

through “memory locations" rather than the standard "registers". (Conceptually,

in this optimized case the environment needed for the function being called is

being passed, not in *xENV**, but spread out in those registers and locations

lower than those being used to pass the arguments.)

Starting with the CPS version of one or more user functions, the

generation of the code for a module proceeds iteratively. Code for each function

is generated in turn, producing one segment of code and a tag; this tag and code

will become part of the body of the module. In processing a function, other

functions may be encountered; in general, each such function is added to the

list of outstanding functions for the module, and is replaced by code to generate

a closure for that function. When all functions have been processed, the outer

structure of the module is created.

Many situations are treated specially. For example,

66

((LAMBDA ...) ...)

does not cause the LAMBDA-expression to be added to the list of outstanding

functions; rather, a MacLISP PROGN is constructed consisting of the argument

set-up followed by the code for the body of the LAMBDA-expression. A more subtle

case is

(FOO (LAMBDA ...) ...)

where FOO is the name of a MacLISP primitive and the LAMBDA-expression is the

continuation. In this case a PROGN is constructed consisting of calling the

MacLISP primitive on the other arguments, putting this value into the appropriate

location, and then executing the body of the LAMBDA-expression. (It should be

noted that all these special cases must be anticipated by the analysis preceding

the code generation phase.)

In the case of ((LAMBDA ...) ...), we must also handle the argument set-

up a little carefully, because parameters which are never referred to or which

represent known non-closed functions need not actually be passed. However, the

corresponding argument for the first case must nevertheless be evaluated because

it may have a side-effect. A good example is the result of expanding BLOCK

(neglecting the effects of optimization): there is a (continuation-passing

style) combination of the forn:

((LAMBDA (C A B) (B C)) cont x (LAMBDA (C) y))

The argument x need not be passed, but presumably has a side effect and so must

be evaluated. The second LAMBDA-expression need not be closed, and so requires

neither evaluation nor passing. The output code uses a PROGN to evaluate the

arguments which are potentially for effect. In this way the end result of a

67

BLOCK construct actually turns out to be a MacLISP PROGN. (The routine

LAMBDACATE in the Appendix is responsible for this analysis.)

{Note Evaluation for Effect} |

Another case of interest is a combination whose function position

contains a variable with a KNOWN-FUNCTION property. The value of this property

is the node for the CPS version of the function, which provides information about

°
pos -ie code generation strategies. We can decide which arguments needn't be

passed as for the ((LAMBDA ...) ...) case, and can also arrange to call the

function with a direct (MacLISP) GO to the appropriate tag within the module.

The set-up of the environment depends on whether the function is non-closed or

partially closed; in the latter case the partial closure is the environment, and

in the former the environment can be recovered from the current one (and may even

be the same).

A certain amount of "peephole optimization" [McKeeman] is also performed,

primarily to make it easier for people to inspect the code produced, since the

MacLISP compiler will handle them anyway. Examples of these are avoiding the

generation of SETQ of a variable to the value of that same variable; reduction

of car-cdr chains to single functions, such as (CAR (CDR (CDR x))) to (CADDR x);

removal of nested PROGN's such as

(PROGN a (PROGN bc) d) => (PROGN a bc d)

and the like; and simplification of nested COND's, such as

(COND (a b) (COND (a b)
(T (COND (cd) = (c d)

---))) ++)

One of the effects of this last peephole optimization is that many times, when

the user writes a COND in a piece of SCHEME code, that COND is expanded into IF

68

constructs, and then re-contracted by the peephole optimization into an

equivalent COND! (This fact is of no practical consequence, but looks cute.)

69

9. Example: Compilation of Iterative Factorial

Here we shall provide a complete example of the compilation of a simple

function IFACT (iterative factorial), to show what quantities are computed in the

course of analyzing the code. We shall need some notation for the data

structures involved. Every node of the program is represented by a small data

structure which has a type and several named components. (In the actual

implementation, a node is represented as two such structures; one contains named

components common to all program nodes, and the other contains components

specific to a given node type. We shall gloss over this detail here.) For

example, a LAMBDA-expression is represented by a structure of type LAMBDA with

components named UVARS (user variable names), VARS (the alpha-converted names),

BODY (the node representing the body), ENV (the environment of the node), and so

on. We shall represent a data structure as the name of its type, with the

components written below it and indented, with colons after each component name.

For example:

LAMBDA
UVARS: (A B)
VARS: (VAR-43 VAR-44)
BODY: COMBINATION

ARGS: VARIABLE

VAR: F

VARIABLE

VAR: VAR-44

VARIABLE

VAR: VAR-43

Notice that the value of a component may itself be a structure. These structures

are always arranged in a tree, so no notation for cycles will be needed. In the

case where a component contains a list of things, we will write the things as a

LISP list unless the things are structures, in which case we will simply write

70

them in a vertical stack, as shown in the example above. To conserve space, in

any single diagram we will show only the named components of interest.

Components may seem to appear and then disappear in the series of diagrams, but

in practice they all exist simultaneously.

The source code for our example:

(DEFINE IFACT

(LAMBDA (N)

(LABELS ((F (LAMBDA (M A)

(IF (= M0) A

(F (- M1) (* M A))))))
(F N 1))))

The alpha-conversion process copies the program and produces a tree of

structures. All the bound variables are renamed, and VARIABLE nodes refer to

these new names. The GLOBALP component in a VARIABLE node is non-NIL iff the

reference is to a global variable. The ENV component is simply an a-list

relating the user names of variables to the new names; this a-list is computed

during the conversion as the new names are created at LAMBDA, LABELS, and CATCH

nodes.

LAMBDA

ENV: ()

UVARS: (N)

VARS: (VAR-1)

BODY:

LABELS

ENV: -((N VAR-1))

UF NVARS: (F)

FNVARS: (FNVAR-2)

FNDEFS:

LAMBDA

ENV: ((F FNVAR-2) (N VAR-1))

UVARS: (M A)

VARS: (VAR-3 VAR-4)

BODY: IF .

ENV: ((A VAR-4) (M VAR-3) (F FNVAR-2) (N VAR-1))

PREO: COMBINATION

ENV: azz (see below)

ARGS: VARIABLE

71

ENV: khh

VAR: =

GLOBALP: T

VARIABLE

ENV: RRR

VAR: VAR-3

GLOBALP: NIL

CONSTANT

ENV: kkk

VALUE: 0

CON: VARIABLE

ENV: Rkk

VAR: VAR-4

GLOBALP: NIL

ALT: COMBINATION

ENV: akk

ARGS: VARIABLE

ENV: Rik

VAR: FNVAR-2

GLOBALP: NIL

COMBINATION

ENV: waK

ARGS: VARIABLE

ENV: akk

VAR: -

GLOBALP: T

VARIABLE

ENV: kkk

VAR: VAR-3

GLOBALP: WIL

CONSTANT

ENV: kkk

VALUE: 1

COMBINATION

ENV: Rit

ARGS: VARIABLE

ENV: aah

VAR: *

GLOBALP: T

VARIABLE

ENV: kkk

VAR: VAR-3

GLOBALP: NIL

VARIABLE

ENV: ake

VAR: VAR-4

GLOBALP: NIL
BOOY: COMBINATION

ENV: ((F FNVAR-2) (N VAR-1))

ARGS: VARIABLE

ENV: ((F FNVAR-2) (N VAR-1))

VAR: FNVAR-2

GLOBALP: NIL

72

VARIABLE

ENV: ((F FNVAR-2) (N VAR-1))

VAR: VAR-1

GLOBALP: NIL

CONSTANT

ENV: ((F FNVAR-2) (N VAR-1))

VALUE: 1

The reader is asked to imagine that the expression

((A VAR-4) (M VAR-3) (F FNVAR-2) (N VAR-1))

occurs where x*x*k appears in the diagram. It should be clear how the ENV

components are computed on the basis of variables bound at the LAMBDA and LABELS

nodes. The ENV information propagates down the tree to VARIABLE nodes, where it

is used to supply the correct new name for the one used by the original code.

The first step in the preliminary analysis is the determination of

referenced variables:

LAMBDA

REFS: ()

VARS: (VAR-1)
BODY:

LABELS

REFS: (VAR-1)

FNVARS: (FNVAR-2)
FNDEFS:

LAMBDA

REFS: (FNVAR-2)
VARS: (VAR-3 VAR-4)
BODY: IF

REFS: (FNVAR-2 VAR-3 VAR-4)
PRED: COMBINATION

REFS: (VAR-3)
ARGS: VARIABLE

REFS: ()

VAR: =

GLOBALP: T

VARIABLE

REFS: (VAR-3)

VAR: VAR-3

GLOBALP: NIL

CONSTANT

REFS: ()

BODY:

73

VALUE:

CON: VARIABLE

REFS: (VAR-4)

VAR: VAR -4

GLOBALP: NIL

ALT: COMBINATION

REFS:

ARGS: VARIABLE

REFS:

VAR:

GLOBALP:

COMBINATION

REFS:

ARGS:

COMBINATION

REFS:

ARGS:

COMBINATION

REFS: (FNVAR-2 VAR-1)

ARGS: VARIABLE

REFS: (FNVAR-2)

FNVAR-2

GLOBALP: NIL

VARIABLE

REFS: (VAR-1)

VAR-1

GLOBALP: NIL

CONSTANT

REFS: ()

VALUE: 1

0

(FNVAR-2 VAR-3 VAR-4)

(FNVAR-2)

FNVAR-2

NIL

(VAR-3)

VARIABLE

REFS: ()

VAR: -

GLOBALP: T

VARIABLE

REFS: (VAR-3)
VAR: VAR-3

GLOBALP: NIL

CONSTANT

REFS: ()

VALUE: 1

(VAR-3 VAR-4)

VARIABLE
REFS: ()
VAR:
GLOBALP: T

VARIABLE
REFS: (VAR-3)
VAR: —- VAR-3
GLOBALP: NIL

VARIABLE
REFS: (VAR-4)
VAR: —- VAR-4
GLOBALP: NIL

74

The REFS component is a list of all local variables referenced at or below the

node. Notice that, in general, the REFS component of a node is the union

(considering them as sets) of the REFS components of its subnodes. In this way

the information sifts up from the VARIABLE nodes. At a LAMBDA, LABELS, or CATCH,

the variables bound at that node are filtered out of the REFS sifting up. The

REFS for the outer function must always be (), a useful error check. In this

example, we see that VAR-1 (N) is not referenced by the function FNVAR-2 (F).

This indicates that a closure for this function need not contain the value for

VAR-1 in its environment. (We will not actually use the information for this

purpose, since later analysis will determine that the function need not have a

Closure constructed for it.) Another component ASETVARS is computed for each

node, which contains the set of variables appearing in an ASET' at or below the

node. We have omitted this information from the diagram since the value is the

empty set in all cases. Certain properties are placed on the property list of

each variable as well, which are not shown here.

The next pass locates trivial subforms:

LAMBDA

TRIVP: NIL

VARS: (VAR-1)

BODY:

LABELS

TRIVP: NEL

FNVARS: (FNVAR-2)

FNDEFS:

LAMBDA

TRIVP: WIL

VARS: (VAR-3 VAR-4)

BODY: IF

TRIVP: NIL

PRED: _ COMBINATION

TRIVP: T

ARGS: VARIABLE

TRIVP: T

VAR: =

GLOBALP: T

VARIABLE

BODY:

75

TRIVP:

VAR:

GLOBALP:

CONSTANT

TRIVP:

VALUE:

CON: VARIABLE

TRIVP: T

VAR: VAR-4

GLOBALP: NIL

ALT: COMBINATION

TRIVP: NIL

ARGS: VARIABLE

TRIVP:

VAR:

GLOBALP:

COMBINATION

TRIVP:

ARGS:

COMBINATION

TRIVP:;

ARGS:

COMBINATION

TRIVP: WIL

ARGS: VARIABLE

TRIVP: T

VAR: FNVAR-2

GLOBALP: NIL

VARIABLE

TRIVP: T

VAR: VAR-1

GLOBALP: NIL

T

VAR-3

NIL

T

0

T

FNVAR-2

NIL

T

VARIABLE

TRIVP: T

VAR: -

GLOBALP: T

VARIABLE

TRIVP: T

VAR: VAR-3

GLOBALP: WIL

CONSTANT

TRIVP: T

VALUE: 1

T

VARIABLE

TRIVP: T

VAR: &

GLOBALP: T

VARIABLE

TRIVP: T

VAR: VAR-3

GLOBALP: NIL

VARIABLE

TRIVP: T

VAR: VAR-4

GLOBALP: NIL

76

CONSTANT

TRIVP: T

VALUE: 1

Constants and variables are always trivial, and trivial combinations (involving

only MacLISP primitives) are located. As before, in this pass information sifts

up from below. One possibility not yet explored in RABBIT is to isolate entire

SCHEME functions (for example FNVAR-2), determine that it is, as a whole,

trivial, compile it as a simple MacLISP SUBR, and reference it as a primitive.

This would in turn render trivial the combination (F N 1) in the body of the

LABELS, for example.

The analysis of side-effects merely determines that no side-effects are

present, and is uninteresting for our example. The optimization pass finds no

transformations worth making. We will skip over these steps to the conversion to

continuation-passing style. As a simple S-expression, this may be rendered as:

(LAMBDA (CONT-5 VAR-1)

(LABELS ((FNVAR-2

(LAMBDA (CONT-6 VAR-3 VAR-4)

(IF (= VAR-3 0)

(CONT-6 VAR-4)

(FNVAR-2 CONT-6

(- VAR-3 1)

(* VAR-3 VAR-4))))))
(FNVAR-2 CONT-5 VAR-1 1)))

In rendering this as a tree of data structures, we use structures of type CLAMBDA

instead of LAMBDA, etc., in order to prevent confusion. Trivial forms are

represented by structures of type TRIVIAL with pointers to the data structures

from before. We will not notate such data structures in the following diagrams,

but will simply write an S-expression as a reminder of what the trivial form was.

The types RETURN and CONTINUATION are like CCOMBINATION and CLAMBDA, but are

distinguished as discussed above for convenience and for purposes of consistency

77

checking.

CLAMBDA
VARS: (CONT-5 VAR-1)
BODY: CLABELS

FNVARS: (FNVAR-2)
FNDEFS: CLAMBDA

VARS: (CONT-6 VAR-3 VAR-4)
BODY: CIF

PRED: TRIVIAL
(= VAR-3 0)

CON: RETURN
CONT: CVARIABLE

VAR: CONT-6

VAL: TRIVIAL

VAR-4

ALT: CCOMBINATION

ARGS: TRIVIAL

FNVAR-2

CVARIABLE

VAR: CONT-6

TRIVIAL

(- VAR-3 1)

TRIVIAL

(* VAR-3 VAR-4)

BODY: CCOMBINATION

ARGS: TRIVIAL

FNVAR-2

CVARIABLE

VAR: CONT-5

TRIVIAL

VAR-1

TRIVIAL

1

The first post-conversion analysis pass computes ENV and REFS components

as before, this time including the variables introduced to represent

continuations. The ENV in this case is not an a-list, but simply a list of

variables, since no renaming is taking place. The ENV information sifts down

from above during the tree walk, and on the way back the REFS information sifts

up. For a TRIVIAL node, the REFS information is taken from the pre-conversion

node referenced by the TRIVIAL node; this REFS information is shown here as a

reminder. As before, the REFS information for a node is always a subset of the

78

ENV information.

CLAMBDA

ENV:

REFS:

VARS:

BODY:

()

()
(CONT-5 VAR-1)
CLABELS

ENV: (CONT-5 VAR-1)
REFS: (CONT-5 VAR-1)
FNVARS: (FNVAR-2)
FNDEFS: CLAMBDA

ENV: (FNVAR-2 CONT-5 VAR-1)
REFS: (FNVAR-2)
VARS: (CONT-6 VAR-3 VAR-4)
BODY: CIF

ENV: = &ee
REFS: (FNVAR-2 CONT-6 VAR-3 VAR-4)
PRED: TRIVIAL

REFS: (VAR-3)
(= VAR-3 0)

CON: — RETURN
ENV: ae
REFS: (CONT-6 VAR-4)

CONT: CVARIABLE

ENV: Rk

REFS: (CONT-6)

VAR: CONT-6

VAL: TRIVIAL

REFS: (VAR-4)

VAR-4

ALT: CCOMBINATION

ENV: Rak

REFS: (FNVAR-2 CONT-6 VAR-3 VAR-4)

ARGS: TRIVIAL

REFS: (FNVAR-2)

FNVAR-2

CVARIABLE

ENV: kak

REFS: (CONT-6)

VAR: CONT-6

TRIVIAL
REFS: (VAR-3)
(- VAR-3 1)

TRIVIAL
REFS: (VAR-3 VAR-4)

(* VAR-3 VAR-4)
BODY: CCOMBINATION

ENV: (FNVAR-2 CONT-5 VAR-1)

REFS: (FNVAR-2 CONT-5 VAR-1)

ARGS: TRIVIAL

REFS: (FNVAR-2)

FNVAR-2

79

CVARIABLE
ENV: (FNVAR-2 CONT-5 VAR-1)
REFS: (CONT-5)
VAR: — CONT-5

TRIVIAL
REFS: (VAR-2)
VAR-1

TRIVIAL
REFS: ()
1

The reader is asked to imagine that where *** occurs the expression

(CONT-6 VAR-3 VAR-4 FNVAR-2 CONT-5 VAR-1)

had been written instead. An additional operation performed on this pass is to

flag all variables referenced in other than function position. These include

VAR-1, VAR-3, etc.; but FNVAR-2 is not among them. This will be of importance

below.

The next pass determines all variables referenced by closures at or below

each node, and also decides which functions will actually be closed. It is

determined that FNVAR-2 need not be closed, because it is referred to only in

function position (as determined by the previous pass), and is not referred to by

any other closures. As a result, no closures are created at all in this

function, and so all the computed sets of variables are empty. This pass also

assigns the name F-7 to the outer function, for use later as a tag.

The third pass computes the "depth" of each function, which determines

through what registers or other locations arguments will be passed for each

function. In this case the outer CLAMBDA is assigned depth 0, and the one

labelled FNVAR-2 is assigned depth 2, because it is not closed, and is contained

in a depth 0 function of 2 arguments. In this way registers are allocated in a

purely stack-like manner; all closed functions are of depth 0, and all unclosed

ones are at a depth determined by that of the containing function and its number

80

of arguments.

One way to think about this trick is as follows. A closure consists of a

pointer to a piece of code and a set of values determined at the time of closure.

When the closure is invoked, we execute the code, making available to it (a) the

set of values (its environment), and (b) some additional arguments. Slicing

these components a different way, we may think of calling the bare code,

supplying all the values as arguments; we pass the arguments in some registers,

and the environment values in some other registers. Put yet another way, if we

can determine that every caller of the closed function can reconstruct the

necessary environment at the time of the call (because it will have available the

necessary values anyway), then we can avoid constructing the closure at the point

where the function should be closed, and instead arrange for each caller to pass

the environment through specified registers. As mentioned earlier, the compiler

has a completely free hand in determining the format of an environment!

As it happens, the function labelled FNVAR-2 does not reference CONT-5 or

VAR-1, and so this argument is of no importance here. It is determined that the

following register assignments will apply:

CONT-5 *KkKCONT **

VAR-1 *KONEK*

FNVAR-Z <none>
CONT-6 *xkKTWOK*

VAR-3 *xKTHREEX*

VAR-4 *x*kFOUR K*

{Note Continuation Variable Hack} We will see below that some unnecessary

shuffling of values results; a more complicated register assignment technique

would be useful here. (One was outlined in [Declarative], but it has not been

implemented. See also [Wulf] and [Johnsson].)

The fourth post-conversion analysis pass determines the format of

81

environments for closed functions. Since there are none in this example, this

analysis is of little interest here.

Finally, we are ready to generate code. Consider the S-expression form:

(LAMBDA (CONT-5 VAR-1)

(LABELS ((FNVAR-2

(LAMBDA (CONT-6 VAR-3 VAR-4)

(IF (= VAR-3 0)

(CONT-6 VAR-4)
(FNVAR-2 CONT-6

(- VAR-3 1)
(* VAR-3 VAR-4))))))

(FNVAR-2 CONT-5 VAR-1 1)))

The first function encountered is the outer one (named F-7). In analyzing its

body we note the LABELS, and place all the labelled functions (that is, FNVAR-2)

on the queue of functions yet to be processed. We then analyze the body of the

LABELS. This is a combination, and so we analyze each argument, producing code

for each. Each argument must be TRIVIAL, a (C)VARIABLE, or a (C)LAMBDA-

expression. (We shall refer to this set of possibilities as "meta-trivial",

which means what "trivial" did in [Imperative].) The variable FNVAR-2 refers to

a known function which is not closed, and so we need not set up **FUN**. The

others may be referred to as **CONTX*, **kONEX*, and the constant 1, respectively.

These are to be passed to FNVAR-2 through the registers **xTWOx*, x*x*xTHREEx*, and

kFOUR (as determined by the register allocation pass). Thus the code for F-7

looks like this:

F-7 ((LAMBDA (Q-40 Q-41 Q-42)

(SETQ **FOUR** Q-42)

(SETQ **THREEX* Q-41)

(SETQ **TWOx* Q-40))

*xCONTA *KONERH 1)
(GO FNVAR-2)

The first form sets up the arguments, using a standard “Simultaneous assignment"

82

construction. The second branches to the code for FNVAR-2. Because a Known

function is being called, it is not necessary to set up **NARGS**. Because

FNVAR-2 requires no closure, it is not necessary to set up **xENV*x.

The next function on the queue to process is FNVAR-2. Its body is an IF

(actually a CIF); this is compiled into a COND containing the code for the

predicate, consequent, and alternative:

(COND (<predicate> <consequent>)

(T <alternative>))

The predicate is guaranteed to be meta-trivial. It is, in this example, a

trivial combination; this is compiled by changing all the variable references

appropriately, producing (= **THREE** '0).

The consequent involves calling an unknown continuation which is in

xTWOx*. The returned value is in **FOUR. The code produced is:

(SETQ *&*xFUNKk *&xTWOXx)

(SETQ **ONEX* **FOURK*)
(RETURN NIL)

The (RETURN NIL) exits the module, passing control to the dispatcher in the

SCHEME interpreter, which will arrange to invoke the continuation.

The code for the alternative is similar to that for the body of F-7,

because we are calling the known function FNVAR-2. The generated code is:

((LAMBDA (Q-43 Q-44)

(SETQ **FOUR** Q-44)

(SETQ **THREE** Q-43))

(- **xTHREE** '1)
(* **kTHREEX* *kFOQUR**))

(GO FNVAR-2)

The argument set-up ought to involve copying **TWOx*x into *x*TWOx*, but a peephole

optimization eliminates that SETQ.

83

Putting all this together, the code for FNVAR-2 is:

FNVAR-2 (COND ((= **THREE** '0)

(SETQ *kFUNK* *&xTWOx%)

(SETQ **xONEX* *x*xFOUR**)

(RETURN NIL))

(T ((LAMBDA (Q-43 Q-44)

(SETQ **xFOUR** Q-44)

(SETQ **xTHREE** Q-43))

(- **THREE** '1)
(* *xTHREEX* *kFOUR*x))

(GO FNVAR-2)))

(We have glossed over the peephole optimizations which eliminate occurrences of

PROGN in such places as COND clauses.)

There are no more functions to be processed, and so we now create the

final module. The final output, with comments inserted by RABBIT for debugging

purposes, and declarations supplied by RABBIT for the benefit of the MacLISP

compiler, looks like this:

(PROGN ‘COMPILE

(COMMENT MODULE FOR FUNCTION IFACT)

(DEFUN ?-37 ()

(PROG ()

(DECLARE (SPECIAL ?-37))

(GO (PROG2 NIL (CAR &eENVAR) (SETQ *kENVEX (CDR ee ENVe®))))

F-7 (COMMENT (DEPTH = 0) (FNP = NIL) (VARS = (CONT-5 N)))

(({ LAMBDA (Q-40 Q-41 Q-42)

(SETQ **FOUR** Q-42)

(SETQ **THREE** Q-41)

(SETQ **TWOee Q-40))

KaKCONTR* &eONEX*® '))

(COMMENT (DEPTH = 2) (FNP = NOCLOSE) (VARS = (CONT-6 M A)))

(GO FNVAR-2)

FNVAR-2

(COMMENT (DEPTH = 2) (FNP = NOCLOSE) (VARS = (CONT-6 M A)))

(COND ((= **THREE*x*® '0)

(SETQ **FUNS* xe TWOee)

(SETQ **ONER*® x&FOURRS)}

(RETURN NIL))

(T ((LAMBDA (Q-43 Q-44)

(SETQ **FOURS® Q-44)

(SETQ **THREE®® Q-43))
(- **THREE** '1)
(* *&THREERR eaFOURSe))

84

(COMMENT (DEPTH = 2) (FNP = NOCLOSE) (VARS = (CONT-6 M A)))
(GO FNVAR-2)))))

(SETQ ?-37 (GET '?-37 ‘SUBR))
(SETQ IFACT (LIST 'CBETA ?-37 ‘F-7))
(DEFPROP ?-37 IFACT USER-FUNCTION))

In the interpolated comments, FNP refers to whether the function being entered or

being called is closed or not (the possibilities are NIL, NOCLOSE, and EZCLOSE).

The VARS are the passed variables, expressed as the names from the original

source code, except for those introduced by the CPS conversion. The form (SETQ

IFACT ...) constructs the closure for the globally defined function IFACT. The

DEFPROP form provides debugging information.

The points of interest in this example are the isolation of trivial

subforms, and the analysis of the function FNVAR-2 which allows it to be called

with GO. Examination of the output code will show that FNVAR-2 is coded as an

iterative loop. While the register allocation leaves something to be desired,

the inner loop does surprisingly little shuffling. (This should be compared with

the code suggested in [Declarative] for this function.)

For those who prefer “real” machine language, we give a plausible

transcription of the MacLISP code into our hypothetical machine language:

IFACT: PUSH CONT ;CONT contains the return address
PUSH ONE
PUSH 1
POP FOUR
POP THREE
POP TWO
GOTO FNVAR2

85

FNVARZ: JUMP-IF-ZERO THREE,FNV2A
MOVE ONE, FOUR
RETURN (TWO) sreturn to address in TWO

FNV2ZA: MOVE TEMP, THREE ;TEMP is used to evaluate

ADD TEMP, 1 ; trivial forms

PUSH TEMP

MOVE TEMP, THREE
MUL TEMP, FOUR

PUSH TEMP

POP FOUR

POP THREE

GOTO FNVAR2

While this is not the world's most impressively tight code, it again shows the

essential iterative structure of the inner loop. The primary problem is the

absence of analysis of which registers are used when. Leaving aside the question

of allocating registers, one could at least determine when assigning values to

registers for argument set-up can occur sequentially rather than simultaneously.

There are a few other obvious optimizations which have not’ been

performed, for example the elimination of (GO FNVAR-2) just before the tag FNVAR-

2. While this would not have been difficult, we knew that the MacLISP compiler

would take care of this for us; since it is not a very interesting issue, we let

it slide.

86

10. Performance Measurements

RABBIT has provision for metering runtime usage, and for controlling

whether certain options in the optimizer are used. The standard test case has

been RABBIT compiling itself (!); by running both interpreted and compiled

version of this task, some comparisons have been made. Two different compiled

versions have also been tested, where the code was produced with or without using

the optimizer.

The overall speed gain of unoptimized compiled code over interpreted code

has been measured to be a factor of 25. The speed gain ratio excluding time for

garbage collection was 17, and the garbage collection time ratio was 34. (The

SCHEME interpreter does a lot of consing. The straight runtime ratio of 17 is

roughly typical for standard LISP compilers on non-numeric code.)

The overall speed ratio of optimized compiled code to unoptimized

compiled code has been measured to be 1.2. The speed ratio excluding garbage

collection was 1.37, and the garbage collection time ratio was 1.07. We conclude

that the amount of consing was reduced very little, despite optimizations which

may eliminate closures, because the phase-2 analysis of closures eliminated most

consing from that source anyway. Eliminations of register shuffling because of

substitutions of one variable for another were probably more significant.

Combining these figures yields an overall speed ratio for optimized

compiled code over interpreted code of about 30.

Turning now to the analysis of compilation time, as opposed to running

time, we have found that using the optimizer approximately doubles the cost of

compilation. It might be possible to reduce this with a more clever optimizer;

presently RABBIT wastes much time re-doing certain analysis unnecessarily. The

extra time needed by the optimizer excluding garbage collection is only half

87

again the overall compilation time, but the garbage collection time triples,

because the optimizer copies and re-copies parts of the program.

There is also one error check which is very expensive; it checks every

argument of a combination against every other argument to check for possible

side-effect conflicts (this is the "liberal" analysis in EFFS-ANALYZE, and the

testing done by CHECK-COMBINATION-PEFFS). Use of this error check increased

compilation time by thirty percent.

88

11. Comparison with Other Work

The only other work we know of similar to ours is that in

{Wand and Friedman]. They use a technique from category theory known as

factorization to isolate trivial expressions. As far as they go, their work is

similar to ours; they have written a compiler for LISP code, producing output

code which uses continuations. However, they indicate that they cannot interface

compiled and interpreted code correctly. Moreover, while they use continuations,

they do not make general use of closures, and in fact there is no clue that

closures are permitted in their source language, or that functions are

permissible as data objects. (In fact, there is evidence to the contrary in

several examples they give involving an expression

(MAPCAR (QUOTE (LAMBDA ...)) ...)

These seem to indicate that they have not made the crucial distinction between

treating a function as a data object and treating a representation of a function

as data.) Wand and Friedman do realize the importance of tail-recursion, but

fail to mention the necessity for lexical scoping (perhaps taking it for

granted). We feel that the contributions of category theory may provide

interesting new ways to analyze programs, but also feel that Wand and Friedman

have not, in the work cited, explored it thoroughly, since they have not even

explored the issue of closures as such.

Somewhat more distantly related is the work of Carter and others at the

IBM T.J. Watson Research Lab. [Carter] This work is similar in spirit, in that

it uses “macro definitions" of complex operators, which are integrated into the

program being compiled, followed by source-to-source program transformations

which optimize the resulting code. However, they have primarily worked with

89

definitions of complex data manipulations, such as string concatenation, whereas

this report has dealt exclusively with environment and control operations.

(Also, as a matter of taste, we find SCHEME a simpler and more tractable language

to deal with than the low-level dialect of PL/I used in [Carter], partly because

of its closeness to lambda-calculus and partly because SCHEME inherits from LISP

the natural ability to deal with representations of its own programs.)

90

12. Conclusions and Future Work

Lexical scoping, tail-recursion, the conceptual treatment of functions

(as opposed to representations thereof) as data objects, and the ability to

notate “anonymous" functions make SCHEME an excellent language in which to

express program transformations and optimizations. Imperative constructs are

easily modelled by applicative definitions. Anonymous functions make it easy to

avoid needless duplication of code and conflict of variable names. A language

with these properties is useful not only at the preliminary optimization level,

but for expressing the results of decisions about order of evaluation and storage

of temporary quantities. These properties make SCHEME as good a candidate as any

for an UNCOL. The proper treatment of functions and function calls leads to

generation of excellent imperative low-level code.

We have emphasized the ability to treat functions as data objects. We

Should point out that one might want to have a very simple run-time environment

which did not support complex environment structures, or even stacks. Such an

end environment does not preclude the use of the techniques described here. Many

optimizations result in the elimination of LAMBDA-expressions; post CPS-

conversion analysis eliminates the need to close many of the remaining LAMBDA-

expressions. One could use the macros and internal representations of RABBIT to

describe intermediate code transformations, and require that the final code not

actually create any closures. As a concrete example, imagine writing an

operating system.in SCHEME, with machine words as the data domain (and functions

excluded from the run-time data domain). We could still meaningfully write, for

example:

91

(IF (OR (STOPPED (PROCESS I))
(AWAITING-INPUT (PROCESS I)))

(SCHEDULE-LOOP (+ I 1))
(SCHEDULE-PROCESS I))

While the intermediate expansion of this code would conceptually involve the use

of functions as data objects, optimizations would reduce the final code to a form

which did not require closures at run time.

An experiment we would like to try would be to use CGOL [Pratt], a

program which parses ALGOL-like syntax and produces LISP code, as a front end for

RABBIT. The result would be a compiler for an ALGOL-like language which would

produce code by the processes of parsing (by CGOL); macro-expansion,

optimization, and output of MacLISP code (by RABBIT); and generation of PDP-10

machine language (by the MacLISP compiler).

Among the interesting issues we have not dealt with or have not yet

implemented in RABBIT are: compilation of data manipulation primitives,

interaction of such primitives, procedure integration of the most general form,

and complex register allocation. A particularly interesting issue is that of

data type analysis. Such analysis would solve certain problems which cannot

easily be solved now by RABBIT. For example, consider the piece of code:

(IF (OR A B) X Y)

The macro-expansion and optimization phases will reduce this to:

(IF A (IF AX Y) (IF BX Y))

The difficulty is that RABBIT has no way of knowing that A is known to be non-

null in the first inner IF by virtue of the testing of A in the outer IF. If it

could realize this, then the code would reduce to the more reasonable:

92

(IF A X (IF BX Y))

Compare this with the case of (IF (AND ...) ...) presented earlier.

One particularly nagging difficulty concerns an interaction between CATCH

and optimization by substituting expressions for variables. The problem is that

if an expression with a side-effect is substituted into a place which is

evaluated after the return of a call to an unknown function (where it had been

written at a place normally evaluated before the call), and if a CATCH is

performed within that unknown function, and the escape function is subsequently

called more than once, then the expression with a side-effect will be evaluated

twice instead of once. There is no possible way to decide whether this can

happen, other than to be fearful of all unknown function calls. In practice this

defeats most optimization. We have ignored this difficulty in RABBIT. It

probably indicates that escape functions are even more intractable than we had

earlier believed. It would not be so bad if we could insist that an escape

function be called no more than once (or rather, that a CATCH be returned from no

more than once, ‘implying that if the escape function is used it must be

dynamically within the body of the CATCH). If this restriction is enforced, or

if CATCH is forbidden, then in fact no continuation can be invoked more than

once, which, with other suitable restrictions, accounts for the ability of most

languages to use stacks instead of trees for their control stacks.

93

Notes

{Note ASET' Is Imperative}

It is true that ASET' is an actual imperative which produces a side

effect, and is not expressed applicatively. ASET' is used only for two purposes

in practice: to initialize global variables (often relating to MacLISP

primitives), and to implement objects with state (cells, in the PLASMA sense

[Smith and Hewitt] [Hewitt and Smith]). If we were to redesign SCHEME from

scratch, I imagine that we would introduce cells as our primitive side-effect

rather than ASET'. The decision to use ASET' was motivated primarily by the

desire to interface easily to the MacLISP environment (and, as a corollary, to be

able to implement SCHEME in three days instead of three years!).

We note that in approximately one hundred pages of SCHEME code written by

three people, the non-quoted ASET has never been used, and ASET' has been used

only a dozen times or so, always for one of the two purposes mentioned above. In

most situations where one would like to write an assignment of some kind, macros

which expand into applicative constructions suffice.

94

{Note Code Pointers}

Conceptually a closure is made up of a pointer to some code (a “script”

(Smith and Hewitt]) and an environment. In a RABBIT-formatted CBETA, the pointer

to the code is encoded into two levels: a pointer to a particular piece of

MacLISP code, plus a tag within that PROG. This implementation was forced upon

us by MacLISP. If we could easily create pointers into the middle of a PROG, we

could avoid this two-level encoding.

On the other hand, this is not just an engineering kludge, but can be

provided with a reasonable semantic explanation: rather than compiling a lot of

little functions, we compile a single big function which is a giant CASE

Statement. Wherever we wish to make a closure of a little function, we actually

close a different little function which calls the big function with an extra

argument to dispatch on.

{Note Continuation Variable Hack}

Since the dissertation was written, a simple modification to the routine

which converts to continuation-passing style has eliminated some of the register

shuffling. The effect of the change was to perform substitutions of one

continuation variable for another, in situations such as:

((CLAMBDA (CONT-3 ...) ...)

CONT-2 ...)

where CONT-2 would be substituted for CONT-3 in the body of the CLAMBDA-

expression. Once this is done, CONT-3 is unreferenced, and so is not really

passed at all by virtue of the phase-2 analysis. The result is that

continuations are not copied back and forth from register to register. In the

95

iterative factorial example in the text, the actual register assignment would be:

CONT-5 *kCONT**
VAR-1 *KKONEX&

FNVAR-2 <none>
VAR-3 **xTWOK*

VAR-4 **kTHREEX*

This optimization is discussed more thoroughly in the Appendix near the routine

CONVERT-COMBINATION.

{Note Dijkstra's Opinion}

In [Dijkstra] a remark is made to the effect that defining the while-do

construct in terms of function calls seems unusually clumsy. In [Steele] we

reply that this is due partly to Dijkstra's choice of ALGOL for expressing the

definition. Here we would add that, while such a definition is completely

workable and is useful for compilation purposes, we need never tell the user that

we defined while-do in this manner! Only the writer of the macros needs to know

the complexity involved; the user need not, and should not, care as long as the

construction works when he uses it.

96

{Note Evaluation for Control}

It is usual in a compiler to distinguish at least three “evaluation

contexts": value, control, and effect. (See [Wulf], for example.) Evaluation

for control occurs in the predicate of an IF, where the point is not so much to

produce a data object as simply to decide whether it is true or false. The

results of AND, OR, and NOT operations in predicates are “encoded in the program

counter". When compiling an AND, OR, or NOT, a flag is passed down indicating

whether it is for value or for control; in the latter case, two tags are also

passed down, indicating the branch targets for success or failure. (This is

called “anchor pointing" in [Allen and Cocke].)

In RABBIT this notion falls out automatically without any special

handling, thanks to the definition of AND and OR as macros expanding into IF |

Statements. If we were also to define NOT as a macro

“(NOT x) => (IF x 'NIL 'T)

then nearly all such special "evaluation for control" cases would be handled by

virtue of the nested-IF transformation in the optimizer.

One transformation which ought to be in the optimizer is

(IF ((LAMBDA (X Y ...) <body>) AB...) <con> <alt>)
=> ((LAMBDA (X Y ...) (IF <body> <con> <alt>)) AB...)

which could be important if the <body> is itself as IF. (This transformation

would occur at a point (in the optimizer) where no conflicts between X, Y, ...

and variables used in <con> and <alt> could occur.)

97

{Note Evaluation for Effect}

This is the point where the notion of evaluation for effect is handled

(see {Note Evaluation for Control}). It is detected as the special case of

evaluation for value where no one refers to the value! This may be construed as

the distinction between "statement" and “expression" made in Algol-like

languages.

{Note Full-Funarg Example}

As an example of the difference between lexical and dynamic scoping,

consider the classic case of the "funarg problem". We have defined a function

MAPCAR which, given a function and a list, produces a new list of the results of

the function applied to each element of the given list:

(DEFINE MAPCAR

(LAMBDA (FN L)

(IF (NULL L) NIL

(CONS (FN (CAR L)) (MAPCAR FN (CDR L))))))

Now suppose in another program we have a list X and a number L, and want to add L.

to every element of X:

(MAPCAR (LAMBDA (Z) (+ ZL)) X)

This works correctly in a lexically scoped language such as SCHEME, because the L

in the function (LAMBDA (Z) (+ Z L)) refers to the value of L at the point the

LAMBDA-expression is evaluated. In a dynamically scoped language, such as

standard LISP, the L refers to the most recent run-time binding of L, which is

the binding in the definition of MAPCAR (which occurs between the time the

LAMBDA-expression is passed to MAPCAR and the time the LAMBDA-expression is

98

invoked).

{Note Generalized LABELS}

Since the dissertation was written, and indeed after [Revised Report]

came out, the format of LABELS in SCHEME was generalized to permit labelled

functions to be defined using any of the same three formats permitted by DEFINE

in [Revised Report]. RABBIT has been updated to reflect this change, and the

code for it appears in the Appendix.

{Note Heap-Allocated Contours}

RABBIT maintains heap-allocated environments as a simple chained list of

variable values. However, all the variables which are added on at once as a

Single set may be regarded as a new "contour" in the Algol sense. Such contours

could be heap-allocated arrays (vectors), and so an environment would be a

chained list of such little arrays. The typical Algol implementation technique

using a "display" (a margin array whose elements point at successive elements

(contours) of the environment chain) is clearly applicable here. One advantage

of the list-of-all-values representation actually used in RABBIT is that null

contours automatically add no content to the environment structure, which makes

it easier to recognize later, in the code generator, that no environment

adjustments are necessary in changing between two environments which differ only

by null contours (see the code for ADJUST-KNOWNFN-CENV in the Appendix).

99

{Note Loop Unrolling}

In the case of a LABELS used to implement a loop, the substitution of a

labelled function for the variable which names it would constitute an instance of

loop unrolling [Allen and Cocke], particularly if the substitution permitted

subsequent optimizations such as eliminating dead code. Here, as elsewhere, a

specific optimization technique falls out as a consequence of the more general

technique of beta-conversion.

{Note Multiple-Argument Continuations}

One could easily define a SCHEME-like language in which continuations

could take more than one argument (that is, functions could return several

values); see the discussion in [Declarative]. We have elected not to provide

for this in SCHEME and RABBIT.

{Note Non-deterministic CPS Conversion}

As with optimization, so the conversion to continuation-passing style

involves decisions which ideally could be made non-deterministically. The

decisions made at this level will affect later decisions involving register

allocation, etc., which cannot easily be foreseen at this stage.

100

{Note Non-deterministic Optimization}

To simplify the implementation, RABBIT uses only a deterministic (and

very conservative) optimizer. Ideally, an optimizer would be non-deterministic

in structure; it could try an optimization, see how the result interacted with

other optimizations, and back out if the end result is not as good as desired.

We have experimented briefly with the use of the AMORD language [Doyle] to build

a non-deterministic compiler, but have no significant results yet.

We can see more clearly the fundamental unity of macros and other

optimizations in the light of this hypothetical non-deterministic implementation.

Rather than trying to guess ahead of time whether a macro expansion or

optimization is desirable, it goes ahead and tries, and then measures the utility

of the result. The only difference between a macro and other optimizations is

that a macro call is an all-or-nothing situation: if it cannot be expanded for

some reason, it is of infinite disutility, while if it can its disutility is

finite. This leads to the idea of non-deterministic macro expansions, which we

have not pursued.

{Note Non-quoted ASET}

The SCHEME interpreter permits one to compute the name of the variable,

but for technical and philosophical reasons RABBIT forbids this. We shall treat

"ASET'" as a single syntactic object (think "ASETQ").

Hewitt (private communication) and others have objected that the ASET

primitive is "dangerous" in that one cannot predict what variable may be

Clobbered, and in that it makes one dependent on the representation of variables

(since one can "compute up" an arbitrary variable to be set). The first is a

valid objection on the basis of programming style or programming philosophy.

101

(Indeed, on this basis alone it was later decided to remove ASET from the SCHEME

language, leaving only ASET' in [Revised Report].}) The second is only slightly

true; the compiler can treat ASET with an non-quoted first argument as a sort of

macro. Let Vi, V2, ..., VN be the names of the bound variables accessible to the

occurrence of ASET in question. These names are all distinct, for if two are the

Same, one variable "shadows" another, and so we may omit the one shadowed (and so

inaccessible). Then we may write the transformation:

(ASET ab) => ((LAMBDA (Q1 Q2)
(COND ((EQ Q1 'V1) (ASET' V1 Q2))

((EQ Ql 'V2) (ASET' V2 Q2))

((EQ Ql 'VN) (ASET' VN Q2))
(T (GLOBAL-SET P Qi Q2))))

D)

This transformation is to be made after the alpha-conversion process, which

renames all variables; Qi and Q2 are two more generated variables guaranteed not

to conflict with V1, ..., VN. This expansion makes quite explicit the fact that

we are comparing against a list of symbols to decide which variable to modify.

The actual run-time representation of variables is not exploited, the one

exception being the GLOBAL-SET operator, which raises questions about the meaning

of the global environment and the user interface which we are not prepared to

answer.

(See also {Note ASET' Is Imperative}.)

102

{Note Old CPS Algorithm}

We reproduce here Appendix A of [Declarative]:

Here we present a set of functions, written in SCHEME, which convert a

SCHEME expression from functional style to pure continuation-passing style.

{Note PLASMA CPS}

(ASET' GENTEMPNUM 0)

(DEFINE GENTEMP

(LAMBDA (X)

(IMPLODE (CONS X (EXPLODEN (ASET' GENTEMPNUM (+ GENTEMPNUM 1)))))))

GENTEMP creates a new unique symbol consisting of a given prefix and a unique

number.

(DEFINE CPS (LAMBDA (SEXPR) (SPRINTER (CPC SEXPR NIL '#CONT#))))

CPS (Continuation-Passing Style) is the main function; its argument is the

expression to be converted. It calls CPC (C-P Conversion) to do the real work,

and then calls SPRINTER to pretty-print the result, for convenience. The symbol

#CONT# is used to represent the implied continuation which is to receive the

value of the expression.

103

(OEFINE CPC
(LAMBDA (SEXPR ENV CONT)

(COND ((ATOM SEXPR) (CPC-ATOM SEXPR ENV CONT))
((EQ (CAR SEXPR) 'QUOTE)
(IF CONT "(,CONT ,SEXPR) SEXPR))

((EQ (CAR SEXPR) 'LAMBDA)
(CPC-LAMBDA SEXPR ENV CONT))

((EQ (CAR SEXPR) 'IF)
(CPC-IF SEXPR ENV CONT))

((EQ (CAR SEXPR) 'CATCH)
(CPC-CATCH SEXPR ENV CONT))

((EQ (CAR SEXPR) 'LABELS)
(CPC-LABELS SEXPR ENV CONT))

((AND (ATOM (CAR SEXPR))
(GET (CAR SEXPR) 'AMACRO))

(CPC (FUNCALL (GET (CAR SEXPR) 'AMACRO) SEXPR) ENV CONT))
(T (CPC-FORM SEXPR ENV CONT)))))

CPC merely dispatches to one of a number of subsidiary routines based on the form

of the expression SEXPR. ENV represents the environment in which SEXPR will be

evaluated; it is a list of the variable names. When CPS initially calls CPC,

ENV is NIL. CONT is the continuation which will receive the value of SEXPR. The

double-quote (") is like a single-quote, except that within the quoted expression

any subexpressions preceded by comma (,) are evaluated and substituted in (also,

any subexpressions preceded by atsign (@) are substituted in a list segments).

One special case handled directly by CPC is a quoted expression; CPC also

expands any SCHEME macros encountered.

(DEFINE CPC-ATOM

(LAMBDA (SEXPR ENV CONT)

((LAMBDA (AT) (IF CONT "(,CONT ,AT) AT))

(COND ((NUMBERP SEXPR) SEXPR)

((MEMQ SEXPR ENV) SEXPR)

((GET SEXPR 'CPS-NAME))

(T (IMPLODE (CONS '% (EXPLODEN SEXPR))))))))

For convenience, CPC-ATOM will change the name of a global atom. Numbers and

atoms in the environment are not changed; otherwise, a specified name on the

property list of the given atom is used (properties defined below convert "+"

104

into "++", etc.); otherwise, the name is prefixed with "X%". Once the name has

been converted, it is converted to a form which invokes the continuation on the

atom. (If a null continuation is supplied, the atom itself is returned.)

(DEFINE CPC-LAMBDA
(LAMBDA (SEXPR ENV CONT)

((LAMBDA (CN)
((LAMBDA (LX) (JF CONT "(CONT ,LX) LX))
"(LAMBDA (@(CADR SEXPR) ,CN)

(CPC (CADDR SEXPR)
(APPEND (CADR SEXPR) (CONS CN ENV))
CN))))

(GENTEMP 'C))))

A LAMBDA expression must have an additional parameter, the continuation supplied

to its body, added to its parameter list. CN holds the name of this generated

parameter. A new LAMBDA expression is created, with CN added, and with its body

converted in an environment containing the new variables. Then the same test for

a null CONT is made as in CPC-ATOM.

(DEFINE CPC-IF
(LAMBDA (SEXPR ENV CONT)

((LAMBDA (KN)
"((LAMBDA (,KN)

,(CPC (CADR SEXPR)
ENV
((LAMBDA (PN)

"(LAMBDA (,PN)
(1F ,PN

(CPC (CADDR SEXPR)
ENV
KN)

{CPC (CADDDR SEXPR)
ENV
KN))))

(GENTEMP 'P))))

»CONT))

(GENTEMP 'K))))

First, the continuation for an IF must be given a name KN (rather, the name held

in KN; but for convenience, we will continue to use this ambiguity, for the form

105

of the name is indeed Kn for some number n), for it will be referred to in two

places and we wish to avoid duplicating the code. Then, the predicate is

converted to continuation-passing style, using a continuation which will receive

the result and call it PN. This continuation will then use an IF to decide which

converted consequent to invoke. Each consequent is converted using continuation

KN.

(DEFINE CPC-CATCH
(LAMBDA (SEXPR ENV CONT)

((LAMBDA (EN)
"((LAMBDA (,EN)

(({LAMBDA (,(CADR SEXPR))
(CPC (CADDR SEXPR)

(CONS (CADR SEXPR) ENV)

EN))
(LAMBDA (VC) (,EN V))))

,CONT))
(GENTEMP 'E))))

This routine handles CATCH as defined in [Sussman 75], and in converting it to

continuation-passing style eliminates all occurrences of CATCH. The idea is to

give the continuation a name EN, and to bind the CATCH variable to a continuation

(LAMBDA (V C) ...) .which ignores its continuation and instead exits the catch by

calling EN with its argument V. The body of the CATCH is converted using

continuation EN.

(DEFINE CPC-LABELS
(LAMBDA (SEXPR ENV CONT)

(DO ((X (CADR SEXPR) (COR X))
(Y ENV (CONS (CAAR X) Y)))

((NULL X)
(DO ((W (CADR SEXPR) (COR W))

(Z NIL (CONS (LIST (CAAR W)
(CPC (CADAR W) Y NIL))

z)))
((NULL W)
"(LABELS ,(REVERSE Z)

.(CPC (CADDR SEXPR) Y CONT))))))))

106

Here we have used DO loops as defined in MacLISP (DO is implemented as a macro in

SCHEME). There are two passes, one performed by each DO. The first pass merely

collects in Y the names of all the labelled LAMBDA expressions. The second pass

converts all the LAMBDA expressions using a null continuation and an environment

augmented by all the collected names in Y, collecting them in Z. At the end, a

new LABELS is constructed using the results in Z and a converted LABELS body.

(DEFINE CPC-FORM
(LAMBDA (SEXPR ENV CONT)

(LABELS ((LOOP1
(LAMBDA (X Y Z)

(IF (NULL X)
(DO ((F (REVERSE (CONS CONT Y))

(IF (NULL (CAR Z)) F
(CPC (CAR Z)

ENV
"(LAMBDA (,(CAR Y)) .F))))

(Y Y (COR Y))

(Z Z (COR Z)))

((NULL 2) F))
(COND ((OR (NULL (CAR X))

(ATOM (CAR X)))
(LOOP1 (CDR X)

(CONS (CPC (CAR X) ENV NIL) Y)
(CONS NIL Z)))

((EQ (CAAR X) ‘QUOTE)
(LOOP1 (COR X)

(CONS (CAR X) Y)
(CONS NIL Z)))

((EQ (CAAR X) 'LAMBDA)
(LOOP1 (COR X)

(CONS (CPC (CAR X) ENV NIL) Y)
(CONS NIL Z)))

(T (LOOP1 (COR xX)
(CONS (GENTEMP 'T) Y)
(CONS (CAR X) Z))))))))

(LOOP SEXPR NIL NIL))))

This, the most complicated routine, converts forms (function calls). This also

operates in two passes. The first pass, using LOOP], uses X to step down the

expression, collecting data in Y and Z. At each step, if the next element of X

can be evaluated trivially, then it is converted with a null continuation and

107

added to Y, and NIL is added to Z. Otherwise, a temporary name TN for the result

of the subexpression is created and put in Y, and the subexpression itself is put

in Z. On the second pass (the DO loop), the final continuation-passing form is

constructed in F from the inside out. At each step, if the element of Z is non-

null, a new continuation must be created. (There is actually a bug in CPC-FORM,

which has to do with variables affected by side-effects. This is easily fixed by

changing LOOP1L so that it generates temporaries for variables even though

variables evaluate trivially. This would only obscure the examples presented

below, however, and so this was omitted.)

(LABELS ((BAR
(LAMBDA (DUMMY X Y)

(IF (NULL X) '[CPS ready to go!]|
(BAR (PUTPROP (CAR X) (CAR Y) 'CPS-NAME)

(CDR X)
(COR Y))))))

(BAR NIL
"(+ - & f/f > T NIL)
"(44 -- ee 11/7 ~* 'T NNIL)))

This loop sets up some properties so that “+" will translate into "++" instead of

"%+", etc.

Now let us examine some examples of the action of CPS. First, let us try

our old friend FACT, the iterative factorial program.

(DEFINE FACT
(LAMBDA (N)

(LABELS ((FACTI (LAMBDA (M A)
(IF (2 MO) A

(FACT1 (- M1) (* M A))))))
(FACTI N 1))))

Applying CPS to the LAMBDA expression for FACT yields:

108

(#CONT#
(LAMBDA (N C7)

(LABELS ((FACT1
(LAMBDA (M A C10)

((LAMBDA (K11)
(%= M0

(LAMBDA (P12)
(IF P12 (K11 A)

(-- M1
(LAMBDA (113)

(s* MA

(LAMBDA (7114)

(FACTL T13 114 K11)))))))))

€10))))
(FACTI N 1 C€7))))

As an example of CATCH elimination, here is a routine which is a

paraphrase of the SQRT routine from [Sussman 75]:

(DEFINE SORT
(LAMBDA (X EPS)

((LAMBDA (ANS LOOPTAG)
(CATCH RETURNTAG

(BLOCK (ASET' LOOPTAG (CATCH M M))
(IF ---

(RETURNTAG ANS)
NIL)

(ASET' ANS ===)
(LOOPTAG LOOPTAG))))

1.0

NIL)))

Here we have used "---" and “===" as ellipses for complicated (and relatively

uninteresting) arithmetic expressions. Applying CPS to the LAMBDA expression for

SQRT yields: |

109

(#CONT#
(LAMBDA (X EPS C33)

((LAMBDA (ANS LOOPTAG C34)
((LAMBDA (E35)

((LAMBDA (RETURNTAG)
((LAMBDA (E52)

((LAMBDA (M) (E52 M))
(LAMBDA (VC) (E52 V))))

(LAMBDA (T51)
(%ASET' LOOPTAG T51

(LAMBDA (137)
((LAMBDA (A B C36) (B C36))
137
(LAMBDA (C40)

((LAMBDA (K47)
((LAMBDA (P50)

(IF P50
(RETURNTAG ANS K47)
(K47 "NIL)))

%---))
(LAMBDA (742)

((LAMBDA (A B C41) (68 C41))
T42
(LAMBDA (C43)

(%ASET' ANS %===
(LAMBDA (145)

((LAMBDA (A B C44)
(B C44))

T45
(LAMBDA (C46)

(LOOPTAG
LOOPTAG
C46))

C43))))
c40))))

E35))))))
(LAMBDA (VC) (E35 V))))

C34))
1.0
"NIL
C33)))

Note that the CATCHes have both been eliminated. It is left as an exercise for

the reader to verify that the continuation-passing version correctly reflects the

semantics of the original.

110

{Note Operations on Functions}

It would certainly be possible to define other operations on functions,

such as determining the number of arguments required, or the types of the

arguments and returned value, etc. (Indeed, after the dissertation was written,

it was decided to include such an operator PROCP in [Revised Report].) The point

is that functions need not conform to a specific representation such as S-

expressions. At a low level, it may be useful to think of invocation as a

generic operator which dispatches on the particular representation and invokes

the function in an appropriate manner. Similarly, a debugging package might need

to be ‘able to distinguish the various representations. At the user level,

however, it is perhaps best to hide this issue, and answer a type inquiry with

merely " function" .

{Note Refinement of RABBIT}

Since the original dissertation was written I have continued to refine

and improve RABBIT. This effort has included a complete rewriting of the

optimizer to make it more efficienct and at the same time more lucid. It also

included accommodation of changes to SCHEME as documented in [Revised Report].

This work has spanned perhaps eight months' time, because the availability of

computer time restricted me to testing RABBIT only once or twice a night. Thus,

the actual time expended for the improvements was much less than ten hours a

week.

hil

{Note Side-Effect Classifications}

The division of side-effects into classes in RABBIT was not really

necessary to the primary goals of RABBIT, but was undertaken as an interesting

experiment for our own edification. One could easily imagine a more complex

taxonomy. A case of particular interest not handled by RABBIT is dividing the

‘ASET side-effect into ASET of each particular variable; thus an ASET on FOO

would not affect a reference to the variable BAR. This could have been done in

an ad hoc manner, but we are interested in a more general method dealing only

with sets of effects and affectabilities.

{Note Subroutinization}

We have not said anything about how to locate candidate expressions for

subroutinization. For examples of appropriate strategies, see [Geschke] and

[LAho, Johnson, and Ullman]. Our point here is that SCHEME, thanks to the

property of lexical scoping and the ability to write "anonymous" functions as

LAMBDA-expressions, provides an ideal way to represent the result of such

transformations.

liz

{Note Tail-Recursive OR}

Since the dissertation was written, the SCHEME language was redefined in

[Revised Report] to prescribe a "tail-recursive" interpretation for the last form

in an AND or OR. This requirement necessitated a redefinition of OR which is in

fact dual to the definition of AND.

113

References

[Aho, Johnson, and Ullman]
Aho, A.V., Johnson, S.C., and Ullman, J.D. "Code Generation for

Expressions with Common Subexpressions." J. ACM 24, 1 (January 1977),
146-160.

[Allen and Cocke }
Allen, Frances E., and Cocke, John. "A Catalogue of Optimizing

Transformations." In Rustin, Randall (ed.), Design and Optimization of

Compilers. Proc. Courant Comp. Sci. Symp. 5. Prentice-Hall

(Englewood Cliffs, N.J., 1972).

{ Bobrow and Wegbreit]

Bobrow, Daniel G. and Wegbreit, Ben. "A Model and Stack Implementation

of Multiple Environments." CACM 16, 10 (October 1973) pp. 591-603.

(Carter]
Carter, J. Lawrence. "A Case Study of a New Code Generation Technique

for Compilers." Comm. ACM 20, 12 (December 1977), 914-920.

{ Church J
Church, Alonzo. The Calculi of Lambda Conversion. Annals of

Mathematics Studies Number 6. Princeton University Press (Princeton,

1941). Reprinted by Klaus Reprint Corp. (New York, 1965).

[Coleman]

Coleman, Samuel S. JANUS: A Universal Intermediate Language. Ph.D.

thesis. University of Colorado (1974).

[DEC }

Digital Equipment Corporation. DecSystem 10 Assembly Language Handbook

(third edition). (Maynard, Mass., 1973).

{ Declarative }
Steele, Guy Lewis Jr. LAMBDA: The Ultimate Declarative. AI Memo 379.

MIT AI Lab (Cambridge, November 1976).

[Dijkstra]

Dijkstra, Edsger W. A Discipline of Programming. Prentice-Hall

(Englewood Cliffs, N.J., 1976).

[Doyle]

Doyle, Jon, de Kleer, Johan, Sussman, Gerald Jay, and Steele, Guy L.

Jr. "AMORD: A Dependency-Based Problem-Solving Language." Submitted

to the 1977 SIGART/SIGPLAN Artificial Intelligence and Programming

Languages Conference.

[Geschke]

Geschke, Charles M. Global Program Optimizations. Ph.D. thesis.

Carnegie-Mellon University (Pittsburgh, October 1972).

114_

[Gries]
Gries, David. Compiler Construction for Digital Computers. John Wiley

& Sons (New York, 1971), 252-257.

(Hewitt J
Hewitt, Carl. "Viewing Control Structures as Patterns of Passing

Messages." AI Journal 8, 3 (June 1977), 323-364.

[Hewitt and Smith]
Hewitt, Carl, and Smith, Brian. “Towards a Programming Apprentice."

IEEE Transactions on Software Engineering SE-1, 1 (March 1975), 26-45.

{ Imperative]

Steele, Guy Lewis Jr., and Sussman, Gerald Jay. LAMBDA: The Ultimate

Imperative. AI Memo 353. MIT AI Lab (Cambridge, March 1976).

{ Johnsson J |

Johnsson, Richard Karl. An Approach _to Global Register Allocation.

Ph.D. Thesis. Carnegie-Mellon University (Pittsburgh, December 1975).

[Landin]

Landin, Peter J. "A Correspondence between ALGOL 60 and Church's

Lambda-Notation." CACM 8, 2-3 (February and March 1965).

[LISP1.5M] ,

McCarthy, John, et al. LISP 1.5 Programmer's Manual. The MIT Press

(Cambridge, 1962).

{ McKeeman]

McKeeman, W.M. "“Peephole optimization." CACM 8, 7 (July 1965), 443-

444,

[Moon]
Moon, David A. MACLISP Reference Manual, Revision 0. Project MAC, MIT

(Cambridge, April 1974).

(Moses]
Moses, Joel. The Function of FUNCTION in LISP. AI Memo 199, MIT AI

Lab (Cambridge, June 1970). ©

[Pratt]

Pratt, Vaughan R. CGOL: an Alternative External Representation for

LISP Users. Working Paper 121. MIT AI Lab (Cambridge, March 1976).

[Revised Report]

Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report on

SCHEME. MIT AI Memo 452 (Cambridge, January 1978).

{ Reynolds }

Reynolds, John C. "Definitional Interpreters for Higher Order

Programming Languages." ACM Conference Proceedings 1972.

115

[Sammet]

Sammet, Jean E. Programming Languages: History and Fundamentals.

Prentice-Hall (Englewood Cliffs, N.J., 1969), 708-709.

{ SCHEME]

Sussman, Gerald Jay, and Steele, Guy Lewis Jr. SCHEME: An Interpreter

for Extended Lambda Calculus. AI Memo 349. MIT AI Lab (Cambridge,

December 1975).

{Smith and Hewitt]
Smith, Brian C. and Hewitt, Carl. A PLASMA Primer (draft). MIT AI Lab

(Cambridge, October 1975).

{ Standish }

Standish, T.A., et al. The Irvine Program Transformation Catalogue.

University of California (Irvine, January 1976).

[Steele] .
Steele, Guy Lewis Jr. “Debunking the ‘Expensive Procedure Call' Myth.”

Proc. ACM National Conference (Seattle, October 1977),153-162.

Revised as MIT AI Memo 443 (Cambridge, October 1977).

[Stoy]
Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approach

to Programming Language Theory. MIT Press (Cambridge, 1977).

[Teitelman]

Teitelman, Warren. InterLISP Reference Manual. Revised edition.

Xerox Palo Alto Research Center (Palo Alto, 1975).

[Wand and Friedman]

Wand, Mitchell, and Friedman, Daniel P. Compiling Lambda Expressions

Using Continuations. Technical Report 55. Indiana University

(Bloomington, October 1976).

(Wulf J

Wulf, William A., et al. The Design of an Optimizing Compiler.

American Elsevier (New York, 1975).

117

Appendix

We present here the complete working source code for RABBIT, written in

SCHEME. (The listing of the code was produced by the "@" listing generator,

written by Richard M. Stallman, Guy L. Steele Jr., and other contributors.)

The code is presented on successive odd-numbered pages. Commentary on

the code is on the facing even-numbered page. An index appears at the end of the.

listing, indicating where each function is defined.

It should be emphasized that RABBIT was not written with efficiency as a

particular goal. Rather, the uppermost goals were clarity, ease of debugging,

and adaptability to changing algorithms during the development process Much

information is generated, never used by the compilation process, and then thrown

away, Simply so that if some malfunction should occur it would be easier to

conduct a post-mortem analysis. Information that is used for compilation is

often retained longer than necessary. The overall approach is to create a big

data structure and then, step by step, fill in slots, never throwing anything

away, even though it may no longer be needed.

The algorithms could be increased in speed, particularly the optimizer,

which often recomputes information needlessly. Determining whether or not the

recomputation was necessary would have cluttered up the algorithms, however,

making them harder to read and to modify, and so this was omitted. Similarly,

certain improvements could dramatically decrease the space used. The larger

functions in RABBIT can just barely be compiled with a memory size of 256K words

on a PDP-10. However, it was deemed worthwhile to keep the extra information

available for as long a time as possible.

The implementation of RABBIT has taken perhaps three man-months. This

includes throwing away the original optimizer and rewriting it completely, and

accomodating certain changes to the SCHEME language as they occurred. RABBIT was

operational, without the optimizer, after about one man-month's work. The

dissertation was written after the first version of the optimizer was

demonstrated to work. The remaining time was spent analyzing the faults of the

first optimizer, writing the second version, accomodating language changes,

making performance measurements, and testing RABBIT on programs other than RABBIT

itself.

118

The main modules of RABBIT are organized something like this:

COMFILE, TRANSDUCE, PROCESS-FORM (Bookkeeping and file handling)

COMPILE (Compile a function definition)
ALPHATIZE (Convert input, rename variables)

MACRO-EXPAND (Expand macro forms)

META-EVALUATE (Source-to-source optimizations)
PASS1-ANALYZE (Preliminary code analysis)

ENV-ANALYZE (Environment analysis)

TRIV-ANALYZE (Triviality analysis)
EFFS-ANALYZE (Side effects analysis)

META-IF-FUDGE (Transform nested IF expressions)
META-COMBINATION-TRIVFN (Constants folding)

META-COMBINATION-LAMBDA (Beta-conversion)
SUBST-CANDIDATE (Substitution feasibility)
META-SUBSTITUTE (Substitution, subsumption)

CONVERT (Convert to continuation-passing style)
_ CENV-ANALYZE (Environment analysis)

BIND-ANALYZE (Bindings analysis)

DEP TH-ANALYZE (Register allocation)

CLOSE-ANALYZE (Environment structure design)

COMP ILATE-ONE-FUNCTION (Generate code, producing one module)

COMPILATE (Generate code for one subroutine)

COMP-BODY (Compile procedure body)
ANALYZE (Generate value-producing code)

TRIV~-ANALYZE (Generate "trivial" code)

AI: QUUX; RABBIT 568 GLS 12:14:50 Monday, May 15, 1978

Created 23:29:15 Sunday, May 14, 1978

RRRRRRRR
RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RR RR

RRRRRRRR
RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RR RR
RR RR
RR RR
RR RR
RR RR

AT: QUUX; RABBIT 568

AA

AA
AA

AA AA
AA AA
AA AA

AA AA
AA AA
AA AA
AA AA
AA AA
AA AA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA |
AA AA
AA AA
AA — AA
AA AA
AA AA
AA AA

GLS

BBBBBBBB
BBBBBBBB
BBBBBBBB
BB BB
BB BB
BB BB
BB BB
BB BB
BB BB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BB BB
BB BB
BB BB
BB BB
BB BB
BB BB
BBBBBBBB
BBBBBBBB
BBBBBBBB

12:14:50 Monday, May 15, 1978
Created 23:29:15 Sunday, May 14, 1978

5555555555
5555555555
5555555555

§5555555
55555555
$5555555

Switch Settings: LELISP}] % AN 69V 110W X
Fonts: F[FONTS;22FG KST,,]

666666
666666
666666

66 66
66 66
66 66
66
66
66
66666666
66666666
66666666
66 66
66 66
66 66
66 66
66 66
66 66

666666
666666
666666

888888
888888
888888

888888
888888
888888

888888
888888
888888

FQ+13H.53M. 29S.

BBBBBBBB
BBBBBBBB
BBBBBBBB
BB BB
BB BB
BB BB
BB BB
BB BB
BB BB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BB BB
BB BB
BB BB
BB BB
BB BB
BB BB
BBBBBBBB
BBBBBBBB
BBBBBBBB

FQ+13H.53M.298.

FQ+10.2H.39M.45S.

IIIT!
TIIIII
TIT!

II
BEES 9'
TIT
TUIIt!

TTTTTVITTT
TTTTTTITTTT
TTTTTTTTTT

TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT
TT

FQ+t10.2H.39M.4S.

120

The DECLARE forms are for the benefit of the MacLISP compiler, which will

process the result of compiling this file (i.e. RABBIT compiling itself). The

first few forms are concerned with switch settings, allocation of memory within

the MacLISP compiler, and loading of auxiliary functions which must be available

at compile time.

The large block of SPECIAL declarations contains the name of every SCHEME

function in the file. This is necessary because the run-time representation of a

global variable is as a MacLISP SPECIAL variable. The compiled function objects

‘Will reside in MacLISP value cells, and SCHEME functions refer to each other

through these cells.

The second set of SPECIAL declarations (variables whose names begin and

end with a "*") specify variables used globally by RABBIT. These fall into three

categories: variables containing properties of the SCHEME interpreter which are

parameters for the compiler (e.g. **ARGUMENT-REGISTERS**); switches, primarily

for debugging purposes, used to control certain compiler operations (e.g.

FUDGE); and own variables for certain functions, used to generate objects or

gather statistics (e.g. *GENTEMPNUM* and *xDEPROGNIFY-COUNT*).

The PROCLAIM forms are to RABBIT as DECLARE forms are to the MacLISP

compiler. These provide declarations to the incarnation of RABBIT which is

compiling the file. The subforms of a PROCLAIM form are executed by RABBIT when

it encounters the form in a file being compiled. (We will see later how this is
done.)

001
002
003
004
005

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043.
044
045
(046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065

333 RABBIT COMPILER -*-LISP-*- RABBIT 568 05/18/78 Page 1

(DECLARE (FASLOAD (QUUX) SCHMAC))
(DECLARE (MACROS T) (NEWIO T))
(DECLARE (ALLOC ‘(LIST (300000 450000 .2) FIXNUM 50000 SYMBOL 24000)))
(DECLARE (DEFUN DISPLACE (X Y) Y))

(DECLARE (SPECIAL EMPTY TRIVFN GENTEMP GENFLUSH GEN-GLOBAL-NAME PRINT-WARNING ADDPROP DELPROP SETPROP
ADJOIN UNION INTERSECT REMOVE SETDIFF PAIRLIS COMPILE PASSI-ANALYZE TEST-COMPILE
NODIFY ALPHATIZE ALPHA-ATOM ALPHA-LAMBDA ALPHA-1F ALPHA-ASET ALPHA-CATCH
ALPHA-LABELS ALPHA-LABELS-DEFN ALPHA-BLOCK MACRO-EXPAND ALPHA-COMBINATION
ENV-ANALYZE TRIV-ANALYZE TRIV-ANALYZE-FN-P EFFS-ANALYZE EFFS-UNION EFFS-ANALYZE- IF
EFFS-ANALYZE-COMBINATION CHECK-COMBINATION-PEFFS ERASE-NODES ME TA-EVALUATE
META-IF-FUDGE META-COMBINATION-TRIVFN META-COMBINATION-LAMBDA SUBST-CANDIDATE
REANALYZE1 EFFS-INTERSECT EFFECTLESS EFFECTLESS-EXCEPT-CONS PASSABLE
META-SUBSTITUTE COPY-CODE COPY-NODES CNODIFY CONVERT MAKE-RETURN CONVERT-LAMBDA-FM
CONVERT-IF CONVERT-ASET CONVERT-CATCH CONVERT-LABELS CONVERT-COMBINATION
CENV-ANALYZE CENV-TRIV-ANALYZE CENV-CCOMBINATION-ANALYZE BIND-ANALYZE REFD-VARS
BIND-ANALYZE-CLAMBDA BIND-ANALYZE-CONTINUATION BIND-ANALYZE-CIF BIND-ANALYZE-CASET
BIND-ANALYZE-CLABELS BIND-ANALYZE-RETURN BIND-ANALYZE-CCOMBINATION
BIND-CCOMBINATION-ANALYZE DEPTH-ANALYZE FILTER-CLOSEREFS CLOSE-ANALYZE COMPILATE
DEPROGNIFY1 TEMPLOC ENVCARCOR REGSLIST SET-UP-ASETVARS COMP-BODY PRODUCE - IF
PRODUCE -ASET PRODUCE-LABELS PRODUCE-LAMBDA-COMBINATION PRODUCE -TRIVFN-COMBINATION
PRODUCE - TRIVFN-COMBINATION-CONTINUATION PRODUCE - TRIVFN-COMBINATION-CVARIABLE
PRODUCE -COMBINATION PRODUCE -COMBINATION-VARIABLE ADJUST-KNOWNFN-CENV
PRODUCE -CONTINUATION-RETURN PRODUCE-RETURN PRODUCE-RETURN-1 LAMBDACATE PSETQIFY

PSETQIFY-METHOD-2 PSETQIFY-METHOD-3 PSETQ-ARGS PSETQ-ARGS-ENV PSETQ- TEMPS
MAPANALYZE ANALYZE ANALYZE-CLAMBDA ANALYZE-CONTINUATION ANALYZE-CIF ANALYZE-CLABELS
ANALYZE -CCOMBINATION ANALYZE-RETURN LOOKUPICATE CONS-CLOSEREFS OUTPUT-ASET
CONDICATE DECARCDRATE TRIVIALIZE TRIV-LAMBDACATE COMPILATE-ONE-FUNCTION
COMPILATE-LOOP USED-TEMPLOCS REMARK-ON MAP-USER-NAMES COMFILE TRANSDUCE
PROCESS-FORM PROCESS-DEFINE-FORM PROCESS-DEFINITION CLEANUP SEXPRFY CSEXPRFY
CHECK-NUMBER-OF-ARGS DUMPIT STATS RESET-STATS INIT-RABBIT))

(DECLARE (SPECIAL *EMPTY* *GENTEMPNUM® *GENTEMPLIST® *GLOBAL-GEN-PREFIX* *ERROR-COUNT* *ERROR-LIST#
TEST *TESTING*® *OPTIMIZE* *REANALYZE* *SUBSTITUTE® *FUDGE* *NEW-FUDGE*
SINGLE-SUBST *LAMBDA-SUBST*® *FLUSH-ARGS* *STAT-VARS* *DEAD-COUNT*® *FUDGE-COUNT®
FOLD-COUNT *FLUSH-COUNT® *CONVERT-COUNT*® *SUBST-COUNT*® *DEPROGNIF Y-COUNT*
LAMBDA-BODY-SUBST *LAMBDA-BODY-SUBST-TRY-COUNT* *LAMBDA-BODY-SUBST-SUCCESS-COUNT*
*CHECK-PEFFS& **CONT+ARG-REGS** **ENV+CONT+ARG-REGS*& **#ARGUMENT-REGISTERS*&&
&*NUMBER-OF -ARG-REGS*& *BUFFER-RANDOM-FORMS® *DISPLACE-SWs))

(PROCLAIM (*EXPR PRINT-SHORT)

(SET' *BUFFER-RANOOM-FORMS* NIL)
(ALLOC '(LIST (240000 340000 1000) FIXNUM (30000 40000 1000)

SYMBOL (14000 24000 NIL) HUNK4 (20000 53000 NIL)
HUNK& (20000 50000 NIL) HUNK16 (20000 60000 NIL))))

(SET' *STAT-VARS® '(*DEAD-COUNT*® *FUDGE-COUNT® *FOLD-COUNT® *FLUSH-COUNT® *CONVERT-COUNT#
SUBST-COUNT® *DEPROGNIFY-COUNT® *LAMBDA-BODY-SUBST-TRY-COUNT*
* LAMBDA - BODY -SUBST-SUCCESS-COUNTS))

(ALLOC ‘(LIST (240000 340000 1000) FIXNUM (30000 40000 1000)
SYMBOL (14000 24000 NIL) HUNK4 (20000 50000 NIL)
HUNKS (20000 50000 NIL) HUNK16 (20000 70000 NIL)))

(APPLY 'GCTWA '(T)) ;GC USELESS ATOMS (CAN'T SAY (EVAL' (GCTWA T)) BECAUSE OF NCOMPLR)
(REPLACE) ;UNDO ANY DISPLACED MACROS
(SET' *DISPLACE-SW* NIL) ;DON'T LET MACROS SELF -DISPLACE
(GRINDEF) ;LOAD THE GRINDER (PRETTY-PRINTER)

(DECLARE (/@DEFINE DEFINE {SCHEME FUNCTION])) ;DECLARATIONS FOR LISTING PROGRAM
(DECLARE (/@DEFINE DEFMAC |MACLISP MACRO]))
(DECLARE (/@DEFINE SCHMAC |PDP-10 SCHEME MACRO}))
(DECLARE (/@DEFINE MACRO [SCHEME MACRO|))

122

The variable *EMPTY* is initialized to a unique object (a list cell whose

car is *EMPTY* -- this is so that no other object can be EQ to it, but it can be

easily recognized when printed) which is used to initialize components of
structures. (We will see later how such structures are defined.) We do not use,
say, NIL to represent an empty component because NIL might be a meaningful value
for that component. The predicate EMPTY is true of the unique object.

TRIVFN is a predicate which is true of "trivial" functions. A function

is trivial if it is a MacLISP primitive (an EXPR, SUBR, or LSUBR), or has been

declared to be primitive via a *EXPR or *LEXPR proclamation.

(INCREMENT FOO) expands into the code (ASET' FOO (+ FOO 1)).

CATENATE is a utility macro which may be thought of as a function. Given

any number of S-expressions it produces an atomic symbol whose print name is the

concatenation of the print names of the S-expressions. Usually the S-expressions

will be atomic symbols or numbers.

(CATENATE 'FOO '- 43) => FOQO-43

GENTEMP is used to generate a new unique symbol, given a specified

prefix. The global variable *GENTEMPNUM* starts at zero and _ increases

monotonicially. Each call to GENTEMP catenates the prefix, a hyphen, and a new

value of *GENTEMPNUM*. Because the numeric suffixes of the generated symbols

increase with time, one can determine in which order symbols were generated. We

also will use different prefixes for different purposes, so that one can tell

which part of the compiler generated a given symbol. This information can be

invaluable for debugging purposes; from the names of the symbols appearing in a

data structure, one can determine how that structure was created and in what

order. (The generated symbols are themselves used primarily as simple markers,

or as simple structures (property lists). The use of the print names amounts to

tagging each marker or structure with a type and a creation timestamp. A LISP-

like language encourages the inclusion of such information.)

(GENTEMP 'NODE) => NODE-2534

A list of all generated symbols is maintained in *GENTEMPLIST*. GENFLUSH

can be called to excise all generated symbols from the MacLISP obarray; this is

periodically necessary when compiling a large file so that unneeded symbols may

be garbage-collected. The symbols are initially interned on the obarray in the

first place for ease of debugging (one can refer to them by name from a debugging

breakpoint). GEN-GLOBAL-NAME is used to generate a symbol to be used as a run-

time name by the compiled code. The prefix for such names is initially "?" for

testing purposes, but is initialized by the file transducer as a function of the

name of the file being compiled. This allows separately compiled files to be
loaded together without fear of naming conflicts.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044

RABBIT 568 05/15/78 Page 2

(COND ((NOT (BOUNDP '*EMPTY*))
(SET' *sEMPTY* (LIST '*EMPTY*))))

(DEFINE EMPTY
(LAMBDA (X) (EQ X ®EMPTY®)))

(DEFINE TRIVFN
(LAMBDA (SYM)

(GETL SYM '(EXPR SUBR LSUBR *EXPR *LEXPR))))

(DEFMAC INCREMENT (X) "(ASET' ,X (+ ,X% 1)))

(DEFMAC CATENATE ARGS
"(IMPLODE (APPEND @(MAPCAR ‘(LAMBDA (X)

(COND ((OR (ATOM X) (NOT (EQ (CAR X) 'QUOTE)))
"(EXPLODEN ,X))

(T "(QUOTE ,(EXPLODEN (CADR X))))))
ARGS))))

(COND ((NOT (BOUNDP '*GENTEMPNUMs))
(SET' *GENTEMPNUM* 0)))

(COND ((NOT (BOUNDP '#GENTEMPLIST#))
(SET' *GENTEMPLIST# NIL)))

(DEFINE GENTEMP
(LAMBDA (X)

(BLOCK (INCREMENT *GENTEMPNUM®)
(LET ((SYM (CATENATE X '{-| *GENTEMPNUM)))

(ASET' *GENTEMPLIST® (CONS SYM *GENTEMPLIST#)) SYM))))

(DEFINE GENFLUSH
(LAMBDA ()

(BLOCK (AMAPC REMOB *GENTEMPLIST®)
(ASET' *GENTEMPLIST® NIL))))

(OEFINE GEN-GLOBAL -NAME
(LAMBDA () (GENTEMP *GLOBAL-GEN-PREFIX*)))

(SET! *GLOBAL-GEN-PREFIX* '|?])

124

WARN is a macro used to print a notice concerning an incorrect program

being compiled. It generates a call to PRINT-WARNING, which maintains a count

and a list of the error messages, and prints the message, along with any

associated useful quantities.

(WARN |FOO is greater than BAR| FOO BAR)

would print (assuming the values of FOO and BAR were 43 and 15)

;Warning: FOO is greater than BAR

; 43

; 15

WARN is used only to report errors in the program being compiled. The MacLISP

ERROR function is used to signal internal inconsistencies in the compiler.

ASK is a macro which prints a message and then waits for a reply.

Typically NIL means "no", and anything else means "yes".

SX and CSX are debugging aids which print intermediate data structures

internal to the compiler in a readable form. They make use of SPRINTER (part of

the MacLISP GRIND pretty-printing package) and of SEXPRFY and CSEXPRFY, which are

defined below.

The EQCASE macro provides a simple dispatching control structure. The
first form evaluates to an item, and the clause whose keyword matches the item is

executed. If no clause matches, an error occurs. For example:

(EQCASE TRAFFIC-LIGHT
(RED (PRINT 'STOP))
(GREEN (PRINT 'GO))
(YELLOW (PRINT 'ACCELERATE) (CRASH)))

expands into the code:

(COND ((EQ TRAFFIC-LIGHT 'RED) (PRINT 'STOP))
((EQ TRAFFIC-LIGHT 'GREEN) (PRINT 'GO)) ©
((EQ TRAFFIC-LIGHT 'YELLOW) (PRINT 'ACCELERATE) (CRASH))
(T (ERROR '|Losing EQCASE| TRAFFIC-LIGHT ‘FAIL-ACT)))

001
002
003
004

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

RABBIT 568 05/15/78 Page 3
(DEFMAC WARN (MSG . STUFF)

"(PRINT-WARNING ',MSG (LIST @STUFF)))

(DEFINE PRINT-WARNING
(LAMBDA (MSG STUFF)

(BLOCK (INCREMENT *ERROR-COUNTS)
(ASET' *ERROR-LIST* (CONS (CONS MSG STUFF) *ERROR-LIST#*))
(TYO 7 (SYMEVAL 'TYO)) ;BELL
(TERPRI (SYMEVAL 'TYO))
(PRINC '|;Warning: | (SYMEVAL 'TYO))
(TYO 7 (SYMEVAL 'TYO)) ;BELL
(PRINC MSG (SYMEVAL 'TYO))
(AMAPC PRINT-SHORT STUFF))))

(DEFUN PRINT-SHORT (X)
((LAMBDA (PRINLEVEL PRINLENGTH TERPRI)

(TERPRI (SYMEVAL 'TYO))
(PRINC '}; | (SYMEVAL 'TYO))
(PRIN X (SYMEVAL 'TYO)))

3 8 T))

(SCHMAC ASK (MSG)
“(BLOCK (TERPRI) (PRINC ',MSG) (TYO 40) (READ)))

(DEFMAC SX (X) "(SPRINTER (SEXPRFY ,X NIL))) ;DEBUGGING AID
(DEFMAC CSX (X) "(SPRINTER (CSEXPRFY ,X))) ;DEBUGGING AID

(DEFMAC EQCASE (OBJ . CASES)

"(COND @(MAPCAR ‘(LAMBDA (CASE)
(OR (ATOM (CAR CASE))

(ERROR '|Losing EQCASE clause]))
"((EQ ,0BJ ',(CAR CASE)) @(COR CASE)))

CASES)

(T (ERROR ‘}Losing EQCASE] ,OBJ 'FAIL-ACT))))

126

The next group of macros implement typed data structures with named

components. ACCESSFN, CLOBBER, and HUNKFN allow definition of very general

Structure access functions. Their precise operation is not directly relevant to

this exposition; suffice it to say that they are subsidiary to the DEFTYPE macro

on the next page.

DEFTYPE defines structure "data types" with named components. These

structures are implemented as MacLISP hunks. (A hunk is essentially a kind of

list cell with more than two pointer components; it may be thought of as a

short, fixed-length vector. Hunks are accessed with the function (CXR n hunk),

which returns the nth component of the hunk. (RPLACX n hunk newval) analogously

alters the nth component. CXR and RPLACX are thus similar to CAR/CDR and
RPLACA/RPLACD.)

Slot 0 of each hunk is reserved for a "property list"; this feature is

not used in RABBIT. Slot 1 always contains an atomic symbol which is the name of

the type. Thus every structure explicitly bears its type. The form (HUNKFN TYPE

1) creates a function (actually a macro) called TYPE which when applied to a hunk

will fetch slot 1. Slots 2 upward of a hunk are used to contain named

components. A structure does not contain the component names. (However, the
symbol which is the name of the type does have a list of the component names on

its property list. This is useful for debugging purposes. There is, for

example, a package which pretty-prints structured data types, showing the

components explicitly as name-value pairs, which uses this information.)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033

RABBIT 568 05/15/78 Page 4

(DECLARE (/@DEF INE ACCESSFN JACCESS MACRO|))

(DEFMAC ACCESSFN (NAME UVARS FETCH . PUT)
((LAMBDA (VARS CNAME)

(DO ((A VARS (COR A))
(B '*Z* “(COR ,B))
(C NIL (CONS "(CAR ,B) C)))

((NULL A)
"(PROGN ‘COMPILE

(DEFMAC ,NAME *Z*
((LAMBDA ,(NREVERSE (COR (REVERSE VARS)))

FETCH)
@(REVERSE (COR C))))

(DEFMAC ,CNAME *Zs
(({LAMBDA ,VARS

.(COND (PUT (CAR PUT))
(T ""(CLOBBER ,,FETCH

, THE -NEW-VALUE))))
@(REVERSE C)))))))

(COND (PUT UVARS)
(T (APPEND UVARS '(THE-NEW-VALUE))))

(CATENATE '|CLOBBER-| NAME)))

(DEFMAC CLOBBER (X Y)
"((CATENATE '|CLOBBER-| (CAR X)) @(COR X) .Y))

(DECLARE (/®DEF INE HUNKFN |HUNK ACCESS MACRO]))

(DEFMAC HUNKFN (NAME SLOT)
"(ACCESSFN ,NAME (THE-HUNK NEW-VALUE)

~ "(CXR ,,SLOT ,THE-HUNK)
"(RPLACX ,,SLOT ,THE-HUNK ,NEW-VALUE)))

128

Consider for example the form

(DEFTYPE LAMBDA (UVARS VARS BODY))

This defines a structured data type called LAMBDA with three named components

UVARS, VARS, and BODY. It also defines a series of macros for manipulating this

data type.

For access, the macros LAMBDA\UVARS, LAMBDA\VARS, and LAMBDA\BODY are

defined. These each take a single argument, a data structure of type VARIABLE,

and return the appropriate component. (The TYPE function can also be applied to

the data object, and will return LAMBDA.)

For construction, a macro CONS-LAMBDA is defined. For example, the form:

(CONS-LAMBDA (UVARS = LIST1)
(VARS = LIST2))

would construct a LAMBDA structure with the TYPE, UVARS, VARS, and BODY slots

initialized respectively to LAMBDA, the value of LISTI, the value of LISTZ, and

the “empty object" (recall the EMPTY predicate above). Any component names

(possibly none!) may be initialized in a CONS-xxx form, and any components not

mentioned will be initialized to the empty object. (The "=" signs are purely

syntactic sugar for mnemonic value. They can be omitted.)

For alteration of components, a macro ALTER-LAMBDA is defined. For

example, the form

(ALTER-LAMBDA FOO
(UVARS := LIST1)
(BODY := (LIST A B)))

would alter the UVARS and BODY components of the value of FOO (which should be a
LAMBDA structure - this is not checked) to be respectively the values of LIST1l

and (LIST A B). Any non-zero number of components may be modified by a single

ALTER-xxx form. (The “:=" signs are purely syntactic sugar also.)

A great advantage of using these structure definitions is that it is very

easy to add or delete components during the development of the program. In

particular, when a new component is added to a type, it is not necessary to find
all instances of creations of objects of that type; they will simply

automatically initialize the new slot to the empty object. Only parts of the

program which are relevant to the use of the new component need be changed.

001
002
003
004
005
006
007
008
009
010
011

_ 012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

(DECLARE (/@DEFINE DEFTYPE |DATA TYPE}))
RABBIT 568 05/15/78 Page 5

>; SLOT 0 IS ALWAYS THE PROPERTY LIST, AND SLOT 1 THE HUNK TYPE.

(HUNKFN TYPE 1)

(DEFMAC DEFTYPE (NAME SLOTS SUPP)
"(PROGN ‘COMPILE

(DEFMAC ,(CATENATE '|CONS-{ NAME) KWOS

(PROGN (DO ((K KWDS (CDR K)))
((NULL K))
(OR ,(COND ((COR SLOTS) "(MEMQ (CAAR K) ',SLOTS))

(T "(EQ (CAAR K) ',(CAR SLOTS))))
(ERROR ',(CATENATE '|Invalid Keyword Argument to CONS- |

NAME)

(CAR K)

*FAIL-ACT)))
"(HUNK ',' NAME

e(DO ((S ',SLOTS (CDR S))
(X NIL

(CONS ((LAMBDA (KWD)
(COND (KWD (CAR (LAST KWD)))

(T 'xEMPTY#)))
(ASSQ (CAR S$) KWDS))

X)))
((NULL S) (NREVERSE X)))

NIL)))
(DEFMAC ,(CATENATE ‘|ALTER-| NAME) (08) . KWOS)

(PROGN (DO ((K KWDS (COR K)))

((NULL K))
(OR ,{COND ((COR SLOTS) "(MEMQ (CAAR K) ',SLOTS))

(T "(EQ (CAAR K) ',(CAR SLOTS))))
(ERROR ',(CATENATE '|Invalid Keyword Argument to ALTER- |

NAME)
(CAR K)
'FAIL-ACT)))

(DO ((I (+ (LENGTH KWOS) 1) (- I 1))
(VARS NIL (CONS (GENSYM) VARS)))

((= 1 0)
"“((LAMBDA ,VARS

»(BLOCKIFY
(MAPCAR ‘(LAMBDA (K V) ;

"(CLOBBER (,(CATENATE ° ,NAME

"INI
(CAR K))

(,(CAR VARS)))
(.v)))

KWDS
(COR VARS))))

(LAMBDA () ,OBJ)
@(MAPCAR '(LAMBDA (K) "(LAMBDA () ,(CAR (LAST K))))

KWDS))))))
@(DO ((S SLOTS (COR S))

(N 2 (+N 1))
(X NIL (CONS "(HUNKFN ,(CATENATE NAME '|\| (CAR S))

»N)
x)))

((NULL S) (NREVERSE X)))
(DEFPROP ,NAME ,SLOTS COMPONENT-NAMES)
(DEFPROP ,NAME ,SUPP SUPPRESSED-COMPONENT-NAMES)
‘(TYPE ,NAME DEFINED)))

130

On this page are two groups of utility functions. One group manipulates

property lists, and the other manipulates sets of objects represented as lists.

For (ADDPROP SYM VAL PROP), the PROP property of the symbol SYM should be
a list of things. The object VAL is added to this list if it is not already a

member of the list.

DELPROP performs the inverse of ADDPROP; it removes an object from a

list found as the property of a symbol.

(SETPROP SYM VAL PROP) puts the property-value pair PROP,VAL on the

property list of SYM; but if SYM already has a PROP property, it is an error

unless the new value is the same as (EQ to) the existing one. That is, a

redundant SETPROP is permitted, but not a conflicting one.

(ADJOIN ITEM SET) produces a new set SET U {ITEM}.

UNION produces the union of two sets.

INTERSECT produces the intersection of two sets.

(REMOVE ITEM SET) produces a new set SET - {ITEM}.

(SETDIFF SET1 SET2) produces the set SETI - SET2.

All of the set operations are accomplished non-destructively; that is,

the given arguments are not modified. Examples: .

(ADJOIN 'A '(A BC)) => (A BC)
(ADJOIN 'A '(B C D)) => (A BC D)
(UNION '(A BC) '(B DF)) => (DF ABC)
(INTERSECT '(A BC) '(B D F)) => (B)
(REMOVE 'B '(A B C)) => (A C)
(SETDIFF '(A BC) '(B D F)) => (AC)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064

333 ADD TO A PROPERTY WHICH IS A LIST OF THINGS

(DEFINE ADDPROP
(LAMBDA (SYM VAL PROP)

(LET ((L (GET SYM PROP)))
(1F (NOT (MEMQ VAL L))

(PUTPROP SYM (CONS VAL L) PROP)))))

333 INVERSE OF ADDPROP

(DEFINE DELPROP
(LAMBDA (SYM VAL PROP)

(PUTPROP SYM (DELQ VAL (GET SYM PROP)) PROP)))

333 LIKE PUTPROP, BUT INSIST ON NOT CHANGING A VALUE ALREADY THERE

(DEFINE SETPROP
(LAMBDA (SYM VAL PROP)

(LET ((L (GETL SYM (LIST PROP))))
(IF (AND L (NOT (EQ VAL (CADR L))))

(ERROR '[Attempt to redefine a unique property|
- (LIST 'SETPROP SYM VAL PROP)
"FAIL-ACT)

(PUTPROP SYM VAL PROP)))))

33° OPERATIONS ON SETS, REPRESENTED AS LISTS

(DEFINE ADJOIN
(LAMBDA (X S)

(1F (MEMQ X S) S (CONS X S))))

(DEFINE UNION
(LAMBDA (xX Y)

(DO ((Z Y (CDR Z))
(VX (ADJOIN (CAR Z) V)))

((NULL Z) V))))

(DEFINE INTERSECT
(LAMBDA (X Y)

(1F (NULL X)
NIL |
(IF (MEMQ (CAR X) Y)

(CONS (CAR X) (INTERSECT {CDR X) Y))
(INTERSECT (CDR X) Y)))))

(DEFINE REMOVE
(LAMBDA (X S)

(IF (NULL S)
Ss
(IF (EQ X (CAR S))

(COR S$)
((LAMBDA (Y)

(1F (EQ Y (CDR S)) S
(CONS (CAR S) Y)))

(REMOVE X (COR S)))))))

(DEFINE SETDIFF
(LAMBDA (X Y)

(DO ((Z X (COR Z))
(W NIL (IF (MEMQ (CAR Z) Y)

)
(CONS (CAR Z) W))))

((NULL Z) W))))

132

The PAIRLIS function is similar to, but not identical to, the function of

the same name in the LISP 1.5 Manual. The difference is that the pairs of the

association list produced are 2-lists rather than single conses. This was done
purely so that structures produced by PAIRLIS would be more readable when

printed; the ease of debugging was considered worth the additional CONS and

access time.

(PAIRLIS '(A BC) '(X YZ) '((F P) (G Q)))
=> ((C Z) (BY) (A X) (F P) (G Q))

The COMPILE function is the main top-level function of the compiler. It

is responsible for invoking each phase of the compiler in order. NAME is the

name of a function (an atomic symbol), and LAMBDA-EXP the corresponding lambda-
expression; these are easily extracted, for example, from a SCHEME DEFINE-form.

SEE-CRUD is NIL for normal processing, or T for debugging purposes. OPTIMIZE is

a switch controlling whether the optimization phase should be invoked; it can be

T, NIL, or MAYBE (meaning to ask the (human) debugger).

The overall flow within COMPILE is as_ follows: check number of

arguments; apply ALPHATIZE to the lambda-expression to produce the pass 1 data

Structure; optionally optimize this data structure; perform pass 1 analysis;

convert the pass 1 data structure to a pass 2 (continuation-passing style) data
structure; perform pass 2 analysis; generate code. The value of COMPILE is the

MacLISP code produced by the code generator.

PASS1-ANALYZE is a separate function so that it can be used by the

optimizer to re-analyze newly created subexpressions.

CL is a debugging utility. (CL FOO) causes the function FOO (which

should be defined in the running SCHEME into which the compiler has been loaded)

to be compiled. Various debugging facilities, such as SEE-CRUD, are enabled.

This is done by using TEST-COMPILE.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061

RABBIT 568 05/15/78 Page 7
(DEFINE PAIRLIS

(LAMBDA (L1 L2 L)
(DO ((V Li (COR V)):

(U L2 (CDR U))
(E L (CONS (LIST (CAR V) (CAR U)) E)))

((NULL V) E))))

(DEFINE COMPILE .

(LAMBDA (NAME LAMBDA-EXP SEE-CRUD OPTIMIZE)

(BLOCK (CHECK-NUMBER-OF -ARGS NAME

(LENGTH (CADR LAMBDA-EXP))

T)
(LET ((ALPHA-VERSION (ALPHATIZE LAMBDA-EXP NIL)))

(IF (AND SEE-CRUD (ASK |See alpha-conversion?|))
(SX ALPHA-VERSION))

(LET ((OPT (IF (EQ OPTIMIZE 'MAYBE)
(ASK f{Optimize?})
OPTIMIZE)))

(LET ((META-VERSION
(IF OPT

(META-EVALUATE ALPHA-VERSION)

(PASS1-ANALYZE ALPHA-VERSION NIL NIL))))

(OR (AND (NULL (NODE\REFS META-VERSION))

(NULL (NODE\ASETS META-VERSION)))

(ERROR '|ENV-ANALYZE lost - COMPILE]

NAME

'FAIL-ACT))
(IF (AND SEE-CRUD OPT (ASK |See meta-evaluation?|))

(SX META-VERSION))
(LET ((CPS-VERSION (CONVERT META-VERSION NIL (NOT (NULL OPT)))))

(IF (AND SEE-CRUD (ASK |See CPS-conversion?]))
(CSX CPS-VERSION))

(CENV-ANALYZE CPS-VERSION NIL NIL)

(BIND-ANALYZE CPS-VERSION NIL NIL)

(DEPTH-ANALYZE CPS-VERSION 0)

(CLOSE-ANALYZE CPS-VERSION NIL)

(COMP ILATE-ONE-FUNCTION CPS-VERSION NAME))))))))

(DEFINE PASS1-ANALYZE

(LAMBDA (NODE REDO OPT)

(BLOCK (ENV-ANALYZE NODE REDO)

(TRIV-ANALYZE NODE REDO)

(IF OPT (EFFS-ANALYZE NODE REDO))

NODE)))

(SCHMAC CL (FNNAME) "(TEST-COMPILE ',FNNAME))

(DEFINE TEST-COMPILE
(LAMBDA (FNNAME)

(LET ((FN (GET FNNAME ‘SCHEME !FUNCTION)))
(COND (FN (ASET' *TESTING* T)

(ASET' &TEST& NIL) ;PURELY TO RELEASE FORMER GARBAGE
(ASET' *ERROR-COUNT* 0)
(ASET' *ERROR-LIST*® NIL)
(ASET' *TEST® (COMPILE FNNAME FN T 'MAYBE))
(SPRINTER *TEST#)
"((IF (ZEROP *ERROR-COUNT®) 'NO *ERROR-COUNT#) ERRORS))

(T "(,FNNAME NOT DEFINED))))))

134

Here are the structured data types used for the pass 1 intermediate

representation. Each piece of the program is represented as a NODE, which has

various pieces of information associated with it. The FORM component is a

structure of one of the types CONSTANT, VARIABLE, LAMBDA, IF, ASET, CATCH,

LABELS, or COMBINATION. This structure holds information specific to a given

type of program node, whereas the NODE structure itself holds information which

is needed at every node of the program structure. (One may think of the FORM
component as a PASCAL record variant.)

The ALPHATIZE routine and its friends take the S-expression definition of
a function (a lambda-expression) and make a copy of it using NODE structures.

This copy, like the S-expression, is a tree. Subsequent analysis routines will

all recur on this tree, passing information up and down the tree, either

distributing information from parent node to child nodes, or collating

information from child nodes to pass back to parent nodes. Some information must
move laterally within the tree, from branch to branch; this is accomplished

exclusively by using the property lists of symbols, usually those generated for

renamings of variables (since all lateral information is associated with variable

references - which is no accident!).

The function NODIFY is used for constructing a node, with certain slots

properly initialized. In particular, the METAP slot is initialized to NIL,

indicating a node not yet processed by META-EVALUATE; this fact will be used

later in the optimizer. A name is generated for the node, and the node is put on

the property list of the name. This property is for debugging purposes only;

given the name of a node one can get the node easily. The name itself may also
be used for another purpose by CONVERT-COMBINATION, to represent the intermediate

quantity which is the value of the form represented by the node.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019,
020
021
022
023
024
025
026
027

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067

RABBIT 568 05/15/78 Page 8
33 ALPHA-CONVERSION

33 HERE WE RENAME ALL VARIABLES, AND CONVERT THE EXPRESSION TO AN EQUIVALENT TREE-LIKE FORM
333 WITH EXTRA SLOTS TO BE FILLED IN LATER. AFTER THIS POINT, THE NEW NAMES ARE USED FOR
333 VARIABLES, AND THE USER NAMES ARE USED ONLY FOR ERROR MESSAGES AND THE LIKE. THE TREE-LIKE
733 FORM WILL BE USED AND AUGMENTED UNTIL IT IS CONVERTED TO CONTINUATION-PASSING STYLE.

323 WE ALSO FIND ALL USER-NAMED LAMBDA-FORMS AND SET UP APPROPRIATE PROPERTIES.
33; THE USER CAN NAME A LAMBDA-FORM BY WRITING (LAMBDA (X) BODY NAME).

(DEF TYPE NODE (NAME SEXPR ENV REFS ASETS TRIVP EFFS AFFD PEFFS PAFFD METAP SUBSTP FORM) (SEXPR))
>NAME: A GENSYM WHICH NAMES THE NODE'S VALUE
;SEXPR: THE S-EXPRESSION WHICH WAS ALPHATIZED TO MAKE THIS NODE
: (USED ONLY FOR WARNING MESSAGES AND DEBUGGING)
sENV: THE ENVIRONMENT OF THE NODE (USED ONLY FOR DEBUGGING)

>REFS: ALL VARIABLES BOUND ABOVE AND REFERENCED BELOW OR BY THE NODE
;ASETS: ALL LOCAL VARIABLES SEEN IN AN ASET BELOW THIS NODE (A SUBSET OF REFS)

>TRIVP: NON-NIL IFF EVALUATION OF THIS NODE 1S TRIVIAL
sEFFS: SET OF SIDE EFFECTS POSSIBLY OCCURRING AT THIS NODE OR BELOW
;AFFO: SET OF SIDE EFFECTS WHICH CAN POSSIBLY AFFECT THIS NODE OR BELOW
>PEFFS: ABSOLUTELY PROVABLE SET OF EFFS
;PAFFO: ABSOLUTELY PROVABLE SET OF AFFD
>METAP: NON-NIL IFF THIS NODE HAS BEEN EXAMINED BY THE META-EVALUATOR
;SUBSTP:FLAG INDICATING WHETHER META-SUBSTITUTE ACTUALLY MADE A SUBSTITUTION

;FORM: ONE OF THE BELOW TYPES

(DEF TYPE CONSTANT (VALUE))
;VALUE: THE S-EXPRESSION VALUE OF THE CONSTANT

(DEF TYPE VARIABLE (VAR GLOBALP)) —
;VAR: THE NEW UNIQUE NAME FOR THE VARIABLE, GENERATED BY ALPHATIZE.
; THE USER NAME AND OTHER INFORMATION IS ON ITS PROPERTY LIST.
;GLOBALP: NIL UNLESS THE VARIABLE IS GLOBAL (IN WHICH CASE VAR IS THE ACTUAL NAME)

(DEF TYPE LAMBDA (UVARS VARS BODY))
;UVARS: THE USER NAMES FOR THE BOUND VARIABLES (STRICTLY FOR DEBUGGING (SEE SEXPRFY))
;VARS: A LIST OF THE GENERATED UNIQUE NAMES FOR THE BOUND VARIABLES
;BODY: THE NODE FOR THE BODY OF THE LAMBDA-EXPRESSION

(DEF TYPE IF (PRED CON ALT))
;PRED: THE NODE FOR THE PREDICATE
;CON: THE NODE FOR THE CONSEQUENT
;ALT: THE NODE FOR THE ALTERNATIVE

(DEFTYPE ASET (VAR BODY GLOBALP))
;VAR: THE GENERATED UNIQUE NAME FOR THE ASET VARIABLE
;BODY: THE NODE FOR THE BODY OF THE ASET
;GLOBALP: NIL UNLESS THE VARIABLE IS GLOBAL (IN WHICH CASE VAR IS THE ACTUAL NAME)

(DEF TYPE CATCH (UVAR VAR BODY))
;UVAR: THE USER NAME FOR THE BOUND VARIABLE (STRICTLY FOR DEBUGGING (SEE SEXPRFY))
;VAR: THE GENERATED UNIQUE NAME FOR THE BOUND VARIABLE
;BODY: THE NODE FOR THE BODY OF THE CATCH

(DEF TYPE LABELS (UFNVARS FNVARS FNDEFS BODY))
;UFNVARS: THE USER NAMES FOR THE BOUND LABELS VARIABLES
sFNVARS: A LIST OF THE GENERATED UNIQUE NAMES FOR THE LABELS VARIABLES
;FNDEFS: A LIST OF THE NODES FOR THE LAMBDA-EXPRESSIONS
;BODY: THE NODE FOR THE BOY OF THE LABELS

(DEF TYPE COMBINATION (ARGS WARNP))
sARGS: A LIST OF THE NODES FOR THE ARGUMENTS (THE FIRST IS THE FUNCTION)
;WARNP: NON-NIL IFF CHECK-COMBINATION-PEFFS HAS DETECTED A CONFLICT IN THIS COMBINATION

(DEFINE NODIFY
(LAMBDA (FORM SEXPR ENV)

(LET ((N (CONS-NODE (NAME
(FORM = FORM)
(SEXPR = SEXPR)
(ENV = ENV)
(METAP = NIL))))

(PUTPROP. (NODE\NAME N) N 'NODE)
N)))

(GENTEMP 'NODE))

"
o
o
n

136

ALPHATIZE takes an S-expression to convert, and an environment. The

latter is a list of 2-lists; each 2-list is of the form (user-name new-name).

This is used for renaming each variable to a unique name. The unique names are

generated within ALPHA-LAMBDA, ALPHA-LABELS, and ALPHA-CATCH, where the variable

bindings are encountered. The new name pairings are tacked onto the front of the

then-current environment, and the result used as the environment for converting

the body.

ALPHATIZE merely does a dispatch on the type of form, to one of the sub-

functions for the various types. It also detects forms which are really macro

calls, and expands them by calling MACRO-EXPAND, which returns the form to be

used in place of the macro call. (BLOCK is handled as a separate special case.

In the interpreter, BLOCK is handled specially rather than going through the

general MACRO mechanism. This is done purely for speed. Defining BLOCK as a

macro in the compiler can confuse the interpreter in which the compiler runs, and

so it was decided simply to handle BLOCK as a special case in the compiler also.)

ALPHATIZE allows the S-expression to contain already converted code in the form

of NODEs; this fact is exploited by the optimizer (see META-IF-FUDGE below), but
has no use in the initial conversion.

ALPHA-ATOM creates a CONSTANT structure for numbers and the special

symbols NIL and T. Otherwise a VARIABLE structure is created. If the symbol (it

better be a symbol!) occurs in the environment, the new-name is used, and

otherwise the symbol itself. The slot GLOBALP is set to T iff the symbol was not

in the environment.

ALPHA-LAMBDA generates new names for all the bound variables. It then

converts its body, after using PAIRLIS to add the user-name/new-name pairs to the

environment. The result is used to make a LAMBDA structure. A copy is made of

the list of variables in the UVARS slot; it must be copied because later META-

COMBINATION-LAMBDA may splice out elements of that list. If so, it will also

splice out corresponding members of VARS, but that list was freshly consed by

ALPHA-LAMBDA.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017

018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

RABBIT 568 05/15/78 Page 9
373 ON NODE NAMES THESE PROPERTIES ARE CREATED:
53s NODE THE CORRESPONDING NODE

(DEFINE ALPHATIZE
(LAMBDA (SEXPR ENV)

(COND ((ATOM SEXPR)
(ALPHA-ATOM SEXPR ENV))

((HUNKP SEXPR)
(1F (EQ (TYPE SEXPR) 'NODE)

SEXPR
(ERROR '|Peculiar hunk - ALPHATIZE] SEXPR 'FAIL-ACT)))

((EQ (CAR SEXPR) 'QUOTE)
(NODIFY (CONS-CONSTANT (VALUE = (CADR SEXPR))) SEXPR ENV))

((EQ (CAR SEXPR) 'LAMBDA)
(ALPHA-LAMBDA SEXPR ENV))

((EQ (CAR SEXPR) 'IF)
(ALPHA-IF SEXPR ENV))

((EQ (CAR SEXPR) 'ASET)
(ALPHA-ASET SEXPR ENV))

((EQ (CAR SEXPR) 'CATCH)
(ALPHA-CATCH SEXPR ENV))

((EQ (CAR SEXPR) 'LABELS)
(ALPHA-LABELS SEXPR ENV))

((EQ (CAR SEXPR) 'BLOCK)
(ALPHA-BLOCK SEXPR ENV))

((AND (ATOM (CAR SEXPR))
(EQ (GET (CAR SEXPR) 'AINT) 'AMACRO))

(ALPHATIZE (MACRO-EXPAND SEXPR) ENV))
(T (ALPHA-COMBINATION SEXPR ENV)))))

(DEFINE ALPHA-ATOM
(LAMBDA (SEXPR ENV)

(IF (OR (NUMBERP SEXPR) (NULL SEXPR) (EQ SEXPR 'T)).
(NODIFY (CONS-CONSTANT (VALUE = SEXPR)) SEXPR ENV)
(LET ((SLOT (ASSQ SEXPR ENV)))

(NODIFY (CONS-VARIABLE (VAR = (IF SLOT (CADR SLOT) SEXPR))
(GLOBALP = (NULL SLOT)))

SEXPR
ENV)))))

(DEFINE ALPHA-LAMBDA
(LAMBDA (SEXPR ENV)

(LET ((VARS (DO ((3 (LENGTH (CADR SEXPR)) (- I 1))
(V NIL (CONS (GENTEMP 'VAR) V)))

((= I 0) (NREVERSE V)))))
(IF (COOOR SEXPR)

(WARN [Malformed LAMBDA expression| SEXPR))
(NODIFY (CONS-LAMBDA (UVARS = (APPEND (CADR SEXPR) NIL))

;;SEE META-COMBINATION-LAMBDA
(VARS = VARS)
(BODY = (ALPHATIZE (CADDR SEXPR)

(PAIRLIS (CADR SEXPR)
VARS

ENV))))
SEXPR

ENV))))

138

ALPHA-IF simply converts the predicate, consequent, and alternative, and

makes an IF structure.

ALPHA-ASET checks for a non-quoted first argument. (Presently RABBIT

does not allow for computed ASET variables. Since RABBIT was written, such

computed variables have in fact been banned from the SCHEME language [Revised

Report].) For simplicity, it also does not allow altering a global variable

which is the name of a MacLISP primitive. This restriction is related only to

the kludginess of the PDP-10 MacLISP SCHEME implementation, and is not an

essential problem with the language. The ERROR function was used here rather

than WARN because the problems are hard to correct for and occur infrequently.

Aside from these difficulties, ALPHA-ASET is much like ALPHA-ATOM on a variable;

it looks in the environment, converts the body, and then constructs an ASET

structure.

ALPHA-CATCH generates a new name "CATCHVAR-nn" for the bound variable,

tacks it onto the environment, and converts the body; it then constructs a CATCH

structure.

ALPHA-LABELS generates new names "FNVAR-n" for all the bound variables;

it then constructs in LENV the new environment, using PAIRLIS. It then converts

all the bound function definitions and the body, using this environment. In this

way all the function names are apparent to all the functions. A LABELS structure

is then created.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059

RABBIT 568 05/15/78 Page 10
(DEFINE ALPHA- IF

(LAMBDA (SEXPR ENV)
(NODIFY (CONS-IF (PREO = (ALPHATIZE (CADR SEXPR) ENV))

(CON = (ALPHATIZE (CADDR SEXPR) ENV))
(ALT = (ALPHATIZE (CADDOR SEXPR) ENV)))

SEXPR
ENV)))

(DEFINE ALPHA-ASET
(LAMBDA (SEXPR ENV)

(LET ((VAR (COND ((OR (ATOM (CADR SEXPR))
(NOT (EQ (CAADR SEXPR) ‘QUOTE)))

(ERROR '|Can't Compite Non-quoted ASET Variable]
SEXPR

"FAIL-ACT))
(T (CADADR SEXPR)))))

(LET ((SLOT (ASSQ VAR ENV)))
(IF (AND (NULL SLOT) (TRIVFN VAR))

(ERROR '[IVlegal to ASET a MacLISP primitive|

SEXPR
"FAIL-ACT))

(NODIFY (CONS-ASET (VAR = (IF SLOT (CADR SLOT) VAR))
(GLOBALP = (NULL SLOT))
(BODY = (ALPHATIZE (CADOR SEXPR) ENV)))

SEXPR

ENV)))))

(DEFINE ALPHA-CATCH
(LAMBDA (SEXPR ENV)

(LET ((VAR (GENTEMP ‘CATCHVAR)))
(NODIFY (CONS-CATCH (VAR = VAR)

(UVAR = (CADR SEXPR))
(BODY = (ALPHATIZE (CADDR SEXPR)

(CONS (LIST (CADR SEXPR) VAR)
ENV))))

SEXPR
ENV))))

(DEFINE ALPHA-LABELS
(LAMBDA (SEXPR ENV)

(LET ((UFNVARS (AMAPCAR (LAMBDA (X)
(IF (ATOM (CAR X))

(CAR X)
(CAAR X)))

(CADR SEXPR))))
(LET ((FNVARS (DO ((I (LENGTH UFNVARS) (- I 1))

(V NIL (CONS (GENTEMP 'FNVAR) V)))
((= 10) (NREVERSE V)))))

(LET ((LENV (PAIRLIS UFNVARS FNVARS ENV)))
(NODIFY (CONS-LABELS (UFNVARS = UFNVARS)

(FNVARS = FNVARS)
(FNDEFS = (AMAPCAR

(LAMBDA (X)
(ALPHA-LABELS-DEFN X LENV))

(CADR SEXPR)))
(BODY = (ALPHATIZE (CADDR SEXPR) LENV)))

SEXPR
ENV))))))

140

ALPHA-LABELS-DEFN parses one LABELS definition clause. An extension to

the SCHEME language (made just after the publication of [Revised Report]!)

allows a LABELS definition to take on any of the same three forms permitted by

DEFINE. Thus this LABELS form actually defines FOO, BAR, and BAZ to be

equivalent functions:

(LABELS ((FOO (LAMBDA (X Y) (BLOCK (PRINT X) (+ X Y))))
(BAR (X Y) (PRINT X) (+ X Y))
((BAZ X Y) (PRINT X) (+ X Y)))

(LIST (FOO 1 2) (BAR 1 2) (BAZ 1 2)))

ALPHA-BLOCK implements the standard macro definition of BLOCK. (BLOCK x)

is simply x, and (BLOCK x . y) expands into:

((LAMBDA (A B) (B)) x (LAMBDA () (BLOCK . y)))

MACRO-EXPAND takes a macro call and expands it into a new form to be used

in place of the macro call. In the PDP-10 MacLISP SCHEME implementation there

are three different kinds of macros. Types MACRO and AMACRO are defined by

MacLISP code, and so their defining functions are invoked using the MacLISP

primitive FUNCALL. Type SMACRO is defined by SCHEME code which is in the value

cell of an atomic symbol; thus SYMEVAL is used to get the contents of the value

cell, and this SCHEME function is then invoked.

ALPHA-COMBINATION converts all the subforms of a combination, making a

list of them, and creates a COMBINATION structure. If the function position

contains a variable, it performs a consistency check using CHECK-NUMBER-OF-ARGS

to make sure the right number of arguments is present.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046.
047—
048
049
050
051
052

RABBIT 568 05/15/78 Page 11
(DEFINE ALPHA-LABELS-DEFN

(LAMBDA (LDEF LENV)
(ALPHATIZE (IF (ATOM (CAR LDEF))

(IF (CODR LDEF)
"(LAMBDA ,(CADR LDEF) ,(BLOCKIFY (CODR LDEF)))
(CADR LDEF))

"(LAMBDA ,(CDAR LODEF) ,(BLOCKIFY (COR LDEF))))
LENV)))

(DEFINE ALPHA-BLOCK

(LAMBDA (SEXPR ENV)

(COND ((NULL (COR SEXPR))

(WARN |BLOCK with no forms]
"(ENV = ,(AMAPCAR CAR ENV)))

(ALPHATIZE NIL ENV))

(T (LABELS ((MUNG

(LAMBDA (BODY)

(IF (NULL (CDR BODY))
(CAR BODY)
"((LAMBDA (A B) (B))

(CAR BODY)

(LAMBDA () ,(MUNG (COR BODY))))))))
(ALPHATIZE (MUNG (CDR SEXPR)) ENV))))))

(DEFINE MACRO-EXPAND

(LAMBDA (SEXPR)
(LET ((M (GETL (CAR SEXPR) ‘(MACRO AMACRO SMACRO))))

(IF (NULL M)
(BLOCK (WARN |missing macro definition] SEXPR)

"(ERROR '|Undefined Macro Form| ',SEXPR 'FAIL-ACT))
(EQCASE (CAR M)

(MACRO (FUNCALL (CADR M) SEXPR))
(AMACRO (FUNCALL (CADR M) SEXPR))
(SMACRO ((SYMEVAL (CADR M)) SEXPR)))))))

(DEFINE ALPHA-COMBINATION
(LAMBDA (SEXPR ENV)

(LET ((N (NODIFY (CONS-COMBINATION
(WARNP = NIL)
(ARGS = (AMAPCAR (LAMBDA (X) (ALPHATIZE X ENV))

SEXPR)))
SEXPR
ENV)))

(LET ((M (NODE\FORM (CAR (COMBINATION\ARGS (NODE\FORM N))))))
(1F (AND (EQ (TYPE M) 'VARIABLE)

(VARIABLE\GLOBALP M))
(CHECK-NUMBER-OF -ARGS
(VARIABLE\VAR M)
(LENGTH (COR (COMBINATION\ARGS (NODE\FORM N))))
NIL))

N))))

142

Once the S-expression function definition has been copied as a NODE tree,

COMPILE calls PASS1-ANALYZE to fill in various pieces of information. (If
optimization is to be performed, COMPILE instead calls META-EVALUATE. META-

EVALUATE in turn calls PASSI-ANALYZE in a coroutining manner we will examine

later.) PASSI-ANALYZE in turn calls ENV-ANALYZE, TRIV-ANALYZE, and EFFS-ANALYZE

in order. Each of these has roughly the same structure. Each takes a node and a

flag called REDOTHIS. Normally REDOTHIS is NIL and the information has not yet

been installed in the node, and so the routine proceeds to analyze the node and

install the appropriate information.

When invoked by the optimizer, however, there may be information in the

node already, but that information may be incorrect or obsolete as a result of

the optimizing transformations. If REDOTHIS is non-NIL, then the given node must

be reanalyzed, even if the information is already present. If REDOTHIS is in

fact the symbol ALL, then all descendants of the given node must be reanalyzed.

Otherwise, only the given node requires re-analysis, plus any descendants which

have not had the information installed at all. We will see later how these

mechanisms are used in the optimizer.

The purpose of ENV-ANALYZE is to fill in for each node the slots REFS and

ASETS. The first is a set (represented as a list) of the new-names of all

variables bound above the node and referenced at or below the node, and the

second (a subset of the first) is a set of such names which appear in an ASET at

or below the node. These lists are computed recursively. A CONSTANT node has no

such references; a VARIABLE node (with GLOBALP = NIL) refers to its own

variable. An ASET node adds its variable to the ASET list for its body. Most

other kinds of nodes merely merge together the lists for their immediate

descendants. In order to satisfy the "bound above the node" requirement, those

Structures which bind variables (LAMBDA, CATCH, LABELS) filter out their own

bound variables from the two sets.

As an example, consider this function:

(LAMBDA (X)
((LAMBDA (Y)

((LAMBDA (W)
(ASET' Z (* X Y)))

(ASET' Y (- Y 1))))

(- X 3)))

The node for (- X 3) would have a REFS list (X) and an ASET list (). The node

for the ASET on Z would have REFS=(X Y) (or perhaps (Y X)) and ASETS=(); Z does
not appear in the ASETS list because it is not bound above. The node for the

combination ((LAMBDA (W) ...) ...) would have REFS=(X Y) and ASETS=(Y). The

node for the lambda-expression (LAMBDA (Y) ...) would have REFS=(X) and

ASETS=(), because Y is filtered out.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069

RABBIT 568 05/15/78 Page 12
333 ENVIRONMENT ANALYSIS.

>>+ FOR NODES ENCOUNTERED WE FILL IN:

a> REFS
rar ASETS
;33 ON VARIABLE NAMES THESE PROPERTIES ARE CREATED:
ara BINDING THE NODE WHERE THE VARIABLE IS BOUND ©
ear USER -NAME THE USER'S NAME FOR THE VARIABLE (WHERE BOUND)
ae READ-REFS VARIABLE NODES WHICH READ THE VARIABLE

aoe WRITE-REFS ASET NODES WHICH SET THE VARIABLE

333 NORMALLY, ON RECURRING TO A LOWER NODE WE STOP IF THE INFORMATION
$33 IS ALREADY THERE. MAKING THE PARAMETER "REDOTHIS" BE "ALL" FORCES
333 RE-COMPUTATION TO ALL LEVELS; MAKING IT "ONCE" FORCES
333 RECOMPUTATION OF THIS NODE BUT NOT OF SUBNODES.

(DEFINE ENV-ANALYZE
(LAMBDA (NODE REDOTHIS)

(IF (OR REDOTHIS (EMPTY (NODE\REFS NODE)))
(LET ((FM (NODE\FORM NODE))

(REDO (IF (EQ REDOTHIS ‘ALL) ‘ALL NIL)))
(EQCASE (TYPE FM)

(CONSTANT
(ALTER-NODE NODE

(REFS := NIL)
(ASETS := NIL)))

(VARTABLE
(ADOPROP (VARIABLE\VAR FM) NODE 'READ-REFS)
(IF (VARIABLE\GLOBALP FM)

(SETPROP (VARIABLE\VAR FM) (VARIABLE\VAR FM) '‘USER-NAME))
(ALTER-NODE NODE

(REFS := (AND (NOT (VARIABLE\GLOBALP FM))
(LIST (VARIABLE\VAR FM))))

(ASETS := NIL)))
(LAMBDA
(DO ((V (LAMBDA\VARS FM) (COR V))

(UV (LAMBDA\UVARS FM) (CDR UV)))
((NULL V))
(SETPROP (CAR V) (CAR UV) 'USER-NAME)
(SETPROP (CAR V) NODE 'BINDING))

(LET ((8 (LAMBDA\BODY FM)))
(ENV-ANALYZE B REDO)
(ALTER-NODE NODE

(REFS := (SETDIFF (NODE\REFS B)
(LAMBDA\VARS FM)))

(ASETS := (SETDIFF (NODE\ASETS B)
(LAMBDA\VARS FM))))))

(IF
(LET ((PRED (IF\PRED FM))

(CON (IF\CON FM))
(ALT (IF\ALT FM)))

(ENV-ANALYZE PRED’ REOO)
(ENV-ANALYZE CON REDO)
(ENV-ANALYZE ALT REDO)
(ALTER-NODE NODE

(REFS := (UNION (NODE\REFS PRED)
(UNION (NODE\REFS CON)

(NODE\REFS ALT))))
(ASETS := (UNION (NODE\ASETS PRED)

(UNION (NODE\ASETS CON)
(NODE\ASETS ALT)))))))

(ASET
(LET ((B (ASET\BODY FM))

(V (ASET\VAR FM)))
(ENV-ANALYZE B REDO)
(ADDPROP V NODE 'WRITE-REFS)
(IF (ASET\GLOBALP FM)

(ALTER-NODE NODE

144

It should be easy to see the the topmost node of the node-tree must have

REFS=() and ASETS=(), because no variables are bound above it. This fact is used

in COMPILE for a consistency check. (After writing this last sentence, I noticed

that in fact this consistency check was not being performed, and that it was a

good idea. On being installed, this check immediately caught a subtle bug in the

optimizer. Consistency checks pay off!)

Another purpose accomplished by ENV-ANALYZE is the installation of

several useful properties on the new-names of bound variables. Two properties,

READ-REFS and WRITE-REFS, accumulate for each variable the set of VARIABLE nodes

which refer to it and the set of ASET nodes that refer to it. These lists are

very important to the optimizer. A non-empty WRITE-REFS set also calls for

special action by the code generator.

When a LAMBDA node is encountered, that node is put onto each new-name

under the BINDING property, and the user-name is put under the USER-NAME

property; these are used only for debugging.

070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112

RABBIT 568 05/15/78 Page 12.1
(REFS := (NODE\REFS B))
(ASETS := (NODE\ASETS B)))

(ALTER-NODE NODE
(REFS := (ADJOIN V (NODE\REFS B)))
(ASETS := (ADJOIN V (NODE\ASETS B)))))))

(CATCH
(LET ((B (CATCH\BODY FM))

(V (CATCH\VAR FM)))
(SETPROP V (CATCH\UVAR FM) 'USER-NAME)
(SETPROP V NODE 'BINDING)
(ENV-ANALYZE B REDO)
(ALTER-NODE NODE

(REFS := (REMOVE V (NODE\REFS B)))
(ASETS := (REMOVE V (NODE\ASETS B))))))

(LABELS
(DO ((V (LABELS\FNVARS FM) (CDR V))

(UV (LABELS\UFNVARS FM) (CDR UV))
(D (LABELS\FNDEFS FM) (COR D))
(R NIL (UNION R (NODE\REFS (CAR 0))
(A NIL (UNION A (NODE\ASETS (CAR D)

((NULL V)
(LET ((B (LABELS\BODY FM)))

(ENV-ANALYZE B REDO)
(ALTER-NODE NODE

(REFS := (SETDIFF
(UNION R (NODE\REFS B))
(LABELS\FNVARS FM)))

(ASETS := (SETDIFF
(UNION A (NODE\ASETS B))

, (LABELS\FNVARS FM))))))
(SETPROP (CAR V) (CAR UV) 'USER-NAME)
(SETPROP (CAR V) NODE 'BINDING)
(ENV-ANALYZE (CAR D) REDO)))

(COMBINATION
(LET ((ARGS (COMBINATION\ARGS FM)))

(AMAPC (LAMBDA (X) (ENV-ANALYZE X REDO)) ARGS)
(BO ((A ARGS (CDR A))

(R NIL (UNION R (NODE\REFS (CAR A))))
(S NIL (UNION S (NODE\ASETS (CAR A)))))

((NULL A)
(ALTER-NODE NODE

(REFS := R)
(ASETS := S)))))))))))

))
))))

146

TRIV-ANALYZE fills in the TRIVP slot for each node. This is a flag

which, if non-NIL, indicates that the code represented by that node and its

descendants is "trivial", i.e. it can be executed as simple host machine

(MacLISP) code because no SCHEME closures are involved. Constants and variables

are trivial, as are combinations with trivial arguments and a provably trivial

function. While lambda-expressions are in general non-trivial (because a closure

must be constructed), a special case is made for ((LAMBDA ...) ...), i.e. a

combination whose function is a lambda-expression. This is possible because the
code generator will not really generate a closure for the lambda-expression.

This is the first example of a trichotomy we will encounter repeatedly.

Combinations are divided into three kinds: those with a lambda-expression in the

function position, those with a trivial MacLISP. primitive (satisfying the

predicate TRIVFN) in the function position, and all others.

All other expressions are, in general, trivial iff all their subparts are

trivial. Note that a LABELS is trivial iff its body is trivial; the non-

triviality of the bound functions does not affect this.

The triviality flag is used by phase 2 to control conversion to

continuation-passing style. This in turn affects the code generator, which

compiles trivial forms straightforwardly into MacLISP code, rather than using the

more complex techniques required by non-trivial SCHEME code. It would be

possible to avoid triviality analysis entirely; the net result would only be

less optimal final code.

002
002
003
004
005
006
007
008
009
010
O11
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
046
049
050
051
052
053
054
055
056
057
058
059
060
061

RABBIT 568 05/15/78 Page 13
333 TRIVIALITY ANALYSIS

335 FOR NODES ENCOUNTERED WE FILL IN:

ee TRIVP

33> A COMBINATION IS TRIVIAL IFF ALL ARGUMENTS ARE TRIVIAL, AND
33> THE FUNCTION CAN BE PROVED TO BE TRIVIAL. WE ASSUME CLOSURES
33> TO BE NON-TRIVIAL IN THIS CONTEXT, SO THAT THE CONVERT FUNCTION
333 WILL BE FORCED TO EXAMINE THEM.

(DEFINE TRIV-ANALYZE
(LAMBDA (NODE REDOTHIS)

(IF (OR REDOTHIS (EMPTY (NODE\TRIVP NODE)))
(LET ((FM (NODE\FORM NODE))

(REDO (IF (EQ REDOTHIS 'ALL) 'ALL NIL)))
(EQCASE (TYPE FM)

(CONSTANT
(ALTER-NODE NODE (TRIVP := T)))

(VARIABLE
(ALTER-NODE NODE (TRIVP := T)))

(LAMBDA
(TRIV-ANALYZE (LAMBDA\BODY FM) REDO)
(ALTER-NODE NODE (TRIVP := NIL)))

(IF
(TRIV-ANALYZE (IF\PRED FM) REDO)
(TRIV-ANALYZE (IF\CON FM) REOO)
(TRIV-ANALYZE (IF\ALT FM) REDO)
(ALTER-NODE NODE

(TRIVP := (AND (NODE\TRIVP (IF\PRED FM))
(NODE\TRIVP (IF\CON FM))
(NODE\TRIVP (IF\ALT FM))))))

(ASET
(TRIV-ANALYZE (ASET\BODY FM) REDO)
(ALTER-NODE NODE (TRIVP := (NODE\TRIVP (ASET\BODY FM)))))

(CATCH
(TRIV-ANALYZE (CATCH\BODY FM) REDO)
(ALTER-NODE NODE (TRIVP := NIL)))

(LABELS
(AMAPC (LAMBDA (F) (TRIV-ANALYZE F REDO))

(LABELS\FNDEFS FM))
(TRIV-ANALYZE (LABELS\BODY FM) REDO)
(ALTER-NODE NODE (TRIVP := NIL)))

(COMBINATION
(LET ((ARGS (COMBINATION\ARGS FM)))

(TRIV-ANALYZE (CAR -ARGS) REDO)
(DO ((A (CDR ARGS) (COR A))

(SW T (AND SW (NODE\TRIVP (CAR A)))))
({NULL A)
(ALTER-NODE NODE.

(TRIVP := (AND SW
(TRIV-ANALYZE -FN-P
(CAR ARGS))))))

(TRIV-ANALYZE (CAR A) REDO)))))))))

(DEFINE TRIV-ANALYZE-FN-P
(LAMBDA (FN)

(OR (AND (EQ (TYPE (NODE\FORM FN)) 'VARIABLE)
(TRIVFN (VARIABLE\VAR (NODE\FORM FN))))

(AND (EQ (TYPE (NODE\FORM FN)) ‘LAMBDA)
(NODE\TRIVP (LAMBDA\BODY (NODE\FORM FN)))))))

148

EFFS-ANALYZE analyzes the code for side-effects. In each node the four

Slots EFFS, AFFD, PEFFS, and PAFFD are filled in. Each is a set of side effects,

which may be the symbol NONE, meaning no side effects; ANY, meaning all possible

side effects; or a list of specific side effect names. Each such name specifies

a category of possible side effects. Typical names are ASET, RPLACD, and FILE

(which means input/output transactions).

The four slots EFFS, AFFD, PEFFS, and PAFFD refer to the node they are in

and all nodes beneath it. Thus each is computed by taking the union of the

corresponding sets of all immediate descendants, then adjoining any effects due

to the current node.

EFFS is the set of side effects which may possibly be caused at or below

the current node; PEFFS is the set of side effects which can be proved to occur

at or below the node. These may differ because of ignorance on RABBIT'S part.

For example, the node for a combination (RPLACA A B) will have the side-effect

name RPLACA adjoined to both EFFS and PEFFS, because the RABBIT knows that RPLACA

causes an RPLACA side effect (how this is known will be discussed later). On the

other hand, for a combination (FOO A B), where FOO is some user function, RABBIT

can only conjecture that FOO can cause any conceivable side effect, but cannot

prove it. Thus EFFS will be forced to be ANY, while PEFFS will not.

AFFD is the set of side effects which can possibly affect the evaluation

of the current node or its descendants. For example, an RPLACA side effect can

affect the evaluation of (CAR X), but on the other hand an RPLACD side effect

cannot. PAFFD is the corresponding set of side effects for which it can be

proved. (This set is "proved" in a less rigorous sense than for PEFFS. The name
RPLACA would be put in the PAFFD set for (CAR X), even though the user might know

that while there are calls to RPLACA in his program, none of them ever modify X.

PEFFS and PAFFD are only used by CHECK-COMBINATION-PEFFS to warn the user of

potential conflicts anyway, and serve no other purpose. EFFS and AFFD, on the

other hand, are used by the optimizer to prevent improper code motion. Thus EFFS

and AFFD must be pessimistic, and err only on the safe side; while PEFFS and

PAFFD are optimistic, so that the user will not be pestered with too many warning

messages.)

The CONS side effect is treated specially. A node which causes the CONS

side effect must not be duplicated, because each instance will create a new

object; but whereas two RPLACA side effects may not be executed out of order,
two CONS side effects may be.

The computation of AFFD and PAFFD for variables depends on whether the

variable is global or not. If it is, SETQ and RPLACD can affect it (RPLACD can

occur because of the peculiarities of the PDP-10 MacLISP implementation);

otherwise, ASET can affect it if indeed any ASET refers to it (in which case ENV-

ANALYZE will have left a WRITE-REFS property); otherwise, nothing can affect it.

Similar remarks hold for the computation of EFFS and PEFFS for an ASET node. The

name SETQ applies to modifications of global variables, while ASET applies to
local variables.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066

RABBIT 568 05/15/78 Page 14

>>> SIDE-EFFECTS ANALYSIS
33; FOR NODES ENCOUNTERED WE FILL IN: EFFS, AFFD, PEFFS, PAFFD
333 A SET OF SIDE EFFECTS MAY BE EITHER ‘NONE OR ‘ANY, OR A SET.

(DEFINE EFFS-ANALYZE
(LAMBDA (NODE REDOTHIS)

(IF (OR REDOTHIS (EMPTY (NODE\EFFS NODE)))
(LET ((FM (NODE\FORM NODE))

(REDO (IF (EQ REDOTHIS 'ALL) ‘ALL NIL)))
(EQCASE (TYPE FM)

(CONSTANT
(ALTER-NODE NODE

(EFFS := 'NONE)
(AFFO := 'NONE)
(PEFFS := 'NONE)
(PAFFD := 'NONE)))

(VARIABLE
(LET ((A (COND ((VARIABLE\GLOBALP FM) '(SETQ))

((GET (VARIABLE\VAR FM) 'WRITE-REFS) '(ASET))
(T 'NONE))))

(ALTER-NODE NODE
(EFFS := "NONE)
(AFFD := A)
(PEFFS := 'NONE)
(PAFFD := A))))

(LAMBDA
(EFFS-ANALYZE (LAMBDA\BODY FM) REDO)
(ALTER-NODE NODE

(EFFS := '(CONS))
(AFFD := NIL)
(PEFFS := '(CONS))
(PAFFO := NIL)))

(IF (EFFS-ANALYZE-IF NODE FM REDO))
(ASET
(EFFS-ANALYZE (ASET\BODY FM) REDO)
(LET ((ASETEFFS (IF (ASET\GLOBALP FM)

"(SETQ)
'(ASET))))

(ALTER-NODE NODE °
(EFFS := (EFFS-UNION ASETEFFS

(NODE\EFFS (ASET\BODY FM))))
(AFFD := (NODE\AFFD (ASET\BODY FM)))
(PEFFS := (EFFS-UNION ASETEFFS

(NODE\PEFFS (ASET\BOOY FM))))
(PAFFD := (NODE\PAFFD (ASET\BODY FM))))))

oe
 "

(CATCH
(EFFS-ANALYZE (CATCH\BODY FM) REDO)
(ALTER-NODE NODE

(EFFS := (NODE\EFFS (CATCH\BODY FM)))
(AFFD := (NODE\AFFD (CATCH\BODY FM)))
(PEFFS := (NODE\PEFFS (CATCH\BODY FM)))
(PAFFD := (NODE\PAFFD (CATCH\BODY FM)))))

(LABELS
(AMAPC (LAMBDA (F) (EFFS-ANALYZE F REDO))

(LABELS\FNDEFS FM))
(EFFS-ANALYZE (LABELS\BODY FM) REDO)
(ALTER-NODE NODE

(EFFS := (EFFS-UNION '(CONS)
(NODE\EFFS (LABELS\BODY FM))))

(AFFD := (NODE\AFFD (LABELS\BODY FM)))
(PEFFS := (EFFS-UNION '(CONS)

(NODE\PEFFS (LABELS\BODY FM))))
(PAFFD := (NODE\PAFFD (LABELS\BODY FM)))))

(COMBINATION
(EFFS-ANALYZE-COMBINATION NODE FM REDO)))))))

150

(While it may be held that allowing ASET' on variables is unclean, and

that the use of cells as in PLASMA is semantically neater, it is true that

because of the lexical scoping rules it can always be determined whether a given

variable is ever used in an ASET'. In this way one can say that variables are

divided by the compiler into two classes: those which are implicitly cells, and

those which are not.)

A closure (LAMBDA-expression) causes a CONS side-effect. This is not so
much because SCHEME programs depend on being able to do EQ on closures (it is

unclear whether this is a reasonable thing to specify in the semantics of
SCHEME), as because there is no point in creating two closures when one will
suffice. Adjoining CONS to EFFS will prevent the creation of such duplicate code

by the optimizer. The same idea holds for LABELS (which has LAMBDA-expressions

within it).

Notice that a LAMBDA node does not add to its four sets the information
from its body's sets. This is because evaluation of a LAMBDA-expression does not

immediately evaluate the body. Only later, when the resulting closure is

invoked, is the body executed.

EFFS-UNION gives the union of two sets of side effects. It knows about

the special symbols NONE and ANY.

EFFS~ANALYZE-IF computes the side-effect sets for IF nodes. It has been

made a separate function only because its code is so bulky; it must perform a

three-way union for each of four sets.

EFFS-ANALYZE-COMBINATION computes the side-effect sets for COMBINATION

nodes. First the function is analyzed, then the arguments. The unions of the

four sets over all the arguments are accumulated in EF, AF, PEF, and PAF. CHECK-

COMBINATION-PEFFS is called to warn the user of any possible violations of the

rule that SCHEME is privileged to choose the order in which to evaluate the

subforms of a combination. Finally, there are three cases depending on the form

of the function position. .

If it is a variable, then the property list of the variable name is

searched for information about that function. (The generated names for local

variables will never have any such information; thus information will be found

only for global variables. This information is used to augment the sets. (A

clever technique not used in RABBIT would be to arrange for situations like

((LAMBDA (F) <bodyl>) (LAMBDA (...) <body2>), where F denotes a "known function"
(see the description of BIND-ANALYZE below), to put on the property list of F the

side-effect information for <body2>, to aid optimization in <bodyl>.)

If the function position is a LAMBDA-expression, then the four sets of

the body of the LAMBDA-expression are unioned into the four sets for the

COMBINATION node. This is because in this case we know that the body LAMBDA-

expression will be executed in the course of executing the COMBINATION node.

In any other case, an unknown function is computed, and so it must be
assumed that any side-effect is possible for EFFS and AFFD.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065

RABBIT 568 05/15/78 Page 15
(DEFINE EFFS-UNION

(LAMBDA (A B)
(COND ((EQ A ‘NONE) B)

((EQ B 'NONE) A)
((EQ A 'ANY) 'ANY)
((EQ B 'ANY) 'ANY)
(T (UNION A B)))))

(DEFINE EFFS-ANALYZE-IF
(LAMBDA (NODE FM REDO)

(BLOCK (EFFS-ANALYZE (IF\PREO FM) REDO)
(EFFS-ANALYZE (IF\CON FM) REDO)
(EFFS-ANALYZE (IF\ALT FM) REDO)
(ALTER-NODE NODE

(EFFS : (EFFS-UNION (NODE\EFFS (IF\PRED FM))
(EFFS-UNION (NODE\EFFS (IF\CON FM))

(NODE\EFFS (IF\ALT FM)))))
(EFFS-UNION (NODE\AFFD (IF\PRED FM))

(EFFS-UNION (NODE\AFFD (IF\CON FM))
(NODE\AFFO (IF\ALT FM)))))

(EFFS-UNION (NODE\PEFFS (IF\PRED FM)) .
(EFFS-UNION (NODE\PEFFS (IF\CON FM))

(NODE\PEFFS (IF\ALT FM)))))
(EFFS-UNION (NODE\PAFFD (IF\PRED FM))

(EFFS-UNION (NODE\PAFFD (IF\CON FM))
(NODE\PAFFD (IF\ALT FM)))))))))

(AFFD :

(PEFFS :

(PAFFD :

(SET' *CHECK-PEFFS*® NIL)

(DEFINE EFFS-ANALYZE-COMBINATION
(LAMBDA (NODE FM REDO)

(LET ((ARGS (COMBINATION\ARGS FM)))
(EFFS-ANALYZE (CAR ARGS) REDO)
(DO ((A (CDR ARGS) (CDR A))

(EF ‘NONE (EFFS-UNION EF (NODE\EFFS (CAR A))))
(AF "NONE (EFFS-UNION AF (NODE\AFFD (CAR A))))
(PEF ‘NONE (EFFS-UNION PEF (NODE\PEFFS (CAR A))))
(PAF ‘NONE (EFFS-UNION PAF (NODE\PAFFD (CAR A)))))

((NULL A)
(IF *CHECK-PEFFS® (CHECK-COMBINATION-PEFFS FM))
(COND ((EQ (TYPE (NODE\FORM (CAR ARGS))) 'VARIABLE)

(LET ((V (VARIABLE\VAR (NODE\FORM (CAR ARGS)))))
(LET ((VE (GET V 'FN-SIDE-EFFECTS))

(VA (GET V 'FN-SIDE-AFFECTED)))
(ALTER-NODE NODE

(EFFS := (IF VE (EFFS-UNION EF VE) ‘ANY))
(AFFD := (IF VA (EFFS-UNION AF VA) 'ANY))
(PEFFS := (EFFS-UNION PEF VE))
(PAFFD := (EFFS-UNION PAF VA))))))

({EQ (TYPE (NODE\FORM (CAR ARGS))) ‘LAMBDA)
(LET ((B (LAMBDA\BODY (NODE\FORM (CAR ARGS)))))

(ALTER-NODE NODE
(EFFS := (EFFS-UNION EF (NODE\EFFS B)))
(AFFD := (EFFS-UNION AF (NODE\AFFD B)))
(PEFFS := (EFFS-UNION PEF (NODE\PEFFS B)))
(PAFFD := (EFFS-UNION PAF (NODE\PAFFD B))))))

(T (ALTER-NODE NODE
(EFFS := ‘ANY)
(AFFD := 'ANY)
(PEFFS := (EFFS-UNION PEF

(NODE\PEFFS (CAR ARGS))))
(PAFFD := (EFFS-UNION PAF

(NODE\PAFFO (CAR ARGS))))))))
(EFFS-ANALYZE (CAR A) REDO)))))

152

CHECK-COMBINATION-PEFFS checks all the argument forms of a combination

(including the function position) to see if they are all independent of each

other with respect to side effects. If not, a warning is issued. This is

because the semantics of SCHEME specify that the arguments may be evaluated in

any order, and the user may not depend on a particular ordering.

The test is made by comparing all pairs of arguments within the

combination. If the side-effects of one can "provably" affect the evaluation of

the other, or if they both cause a side effect of the same category (other than

CONS, which is special), then the results may depend on which order they are

evaluated in. The test is not completely rigorous, and may err in either

direction, but "probably" a reasonably written SCHEME program will satisfy the

test.

This check is controlled by the switch *CHECK-PEFFS* in EFFS-ANALYZE-

COMBINATION. This switch is provided because empirical tests show that
performing the test slows down compilation by twenty to thirty percent. The test

has proved valuable in trapping programming errors, and so is normally on, but it

can be turned off for speed in compiling programs in which one has confidence.

EFFDEF is a macro which expands into a number of DEFPROP forms. This is

used to define side-effect information about primitive functions. For example:

(EFFDEF CADR NONE (RPLACA RPLACD))

states that CADR causes no side-effects, and is “provably" affected by the RPLACA

and RPLACD categories of side-effects. Similarly:

(EFFDEF MENQ NONE (RPLACA RPLACD) T)

specifies the same information for MEMQ, but the "T" means that a call to MEMQ

with constant arguments may be "folded" (evaluated, and the result compiled

instead), despite the fact that some side effects can affect it. This represents

a judgement that it is extremely unlikely that someone will write a program which

modifies a constant argument to be given to MEMQ.

001
002
003
004
005
006
007
008
009
010
0121
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039

RABBIT 568 05/15/78 Page 16
(DEFINE CHECK-COMBINATION-PEFFS

(LAMBDA (FM)
(IF (NOT (COMBINATION\WARNP FM))

(DO ((A (COMBINATION\ARGS FM) (COR A)))
((NULL A))
(DO ((B (CDR A) (CDR B)))

((NULL B))
(IF (NOT (EFFECTLESS (EFFS-INTERSECT (NODE\PEFFS (CAR A))

(NODE\PAFFO (CAR B)))))
(BLOCK (WARN |co-argument may affect later one|

(NODE\SEXPR (CAR A))
"(EFFECTS = ,(NODE\PEFFS (CAR A)))

(NODE\SEXPR (CAR B))
"(AFFECTED BY ,(NODE\PAFFD (CAR B))))

(ALTER-COMBINATION FM (WARNP := T))))
(IF (NOT (EFFECTLESS (EFFS-INTERSECT (NODE\PEFFS (CAR B))

(NODE\PAFFD (CAR A)))))
(BLOCK (WARN |co-argument may affect earlier one|

(NODE\SEXPR (CAR B))
"(EFFECTS = ,(NODE\PEFFS (CAR B)))

(NODE\SEXPR (CAR A))

"(AFFECTED BY ,(NODE\PAFFD (CAR A))))

(ALTER-COMBINATION FM (WARNP := T))))
(IF (NOT (EFFECTLESS-EXCEPT-CONS (EFFS-INTERSECT (NODE\PEFFS (CAR A))

(NODE\PEFFS (CAR B)))))

(BLOCK (WARN [co-arguments may have interfering effects |
(NODE\SEXPR (CAR A))
"(EFFECTS = ,(NODE\PEFFS (CAR A)))

(NODE\SEXPR (CAR B))
"(EFFECTS = ,(NODE\PEFFS (CAR B))))

(ALTER-COMBINATION FM (WARNP := T)))))))))

(DEFMAC EFFDEF (FN EFFS AFFD . FOLD)
"(PROGN (DEFPROP ,FN ,EFFS FN-SIDE-EFFECTS)

(DEFPROP ,FN ,AFFD FN-SIDE-AFFECTED)

(AND FOLD "(DEFPROP ,FN T OKAY-TO-FOLD))))

(DECLARE (/@DEFINE EFFDOEF |SIDE EFFECTS]))

154

This page contains declarations of side-effect information for many

standard primitive functions. The EFFDEF macro used to make the declarations is

described on the previous page.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067

(PROGN 'COMPILE
(EFF DEF
(EFFDEF
(EFFDEF
(EFFOEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFOEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFFOEF
(EFFDEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFF DEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFOEF
(EFFDEF
(EFFDEF
(EFFDEF
(EFFOEF
(EFFDEF

+ NONE NONE)
- NONE NONE)
* NONE NONE)
// NONE NONE)
= NONE NONE)
< NONE NONE)
> NONE NONE)
CAR NONE (RPLACA))
CDR NONE (RPLACD))
CAAR NONE (RPLACA))
CADR NONE (RPLACA RPLACD))
CDAR NONE (RPLACA RPLACD))
CDDR NONE (RPLACO))
CAAAR
CAADR
CADAR
CADDR
CDAAR
CDADR
CODAR
CDDDR
CAAAAR
CAAADR
CAADAR
CAADDR
CADAAR
CADADR
CADDAR
CADDDR
CDAAAR
CDAADR
CDADAR
CDADDR
CDDAAR
CODADR
CODDAR
CODDOR

PRINT (FILE) (FILE RPLACA RPLACD))
PRIN] (FILE) (FILE RPLACA RPLACD))
PRINC (FILE) (FILE RPLACA RPLACD))

NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE.
NONE
NONE
NONE

(RPLACA))
(RPLACA RPLACD)
(RPLACA RPLACD)

(RPLACA RPLACD)
(RPLACA RPLACD)

)
)

(RPLACA RPLACD))
)
)
) (RPLACA RPLACD)

(RPLACD))
(RPLACA))
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA
(RPLACA

RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))
RPLACD))

(RPLACD))
CXR NONE (RPLACA RPLACD))
RPLACA (RPLACA) NONE)
RPLACD (RPLACA) NONE)
RPLACX (RPLACA RPLACD) NONE)
EQ NONE NONE)
ATOM NONE NONE)
NUMBERP NONE NONE)
TYPEP NONE NONE)
SYMBOLP NONE NONE)
HUNKP NONE NONE)
FIXP NONE NONE)
FLOATP NONE NONE)
BIGP NONE NONE)
NOT NONE NONE)
NULL NONE NONE)
CONS (CONS) NONE)
LIST (CONS) NONE)
APPEND (CONS) (RPLACD))
MEMQ NONE (RPLACA RPLACD) T)
ASSQ NONE (RPLACA RPLACD) T)

TERPRI (FILE) (FILE))
TYO (FILE) (FILE))
READ ANY (FILE))
TYI ANY (FILE))

'SIDE-EFFECTS-PROPERTIES)

RABBIT 568 05/15/78 Page 17

156

ERASE-NODE and ERASE-ALL-NODES are convenient mnemonic macros used to

invoke ERASE-NODES.

ERASE-NODES is used by the optimizer to destroy nodes which have been

removed from the program tree because of some optimization. If ALLP is NIL

(ERASE-NODE), then only the given node is erased; if it is T (ERASE-ALL-NODES),

then the given node and all descendants, direct and indirect, are erased.

Erasing a node may involve removing certain properties from property

lists. This is necessary to maintain the consistency of the properties. For

example, if a VARIABLE node is erased, then that node must be removed from the

READ-REFS property of the variable name. The optimizer depends on this so that,

for example, it can determine whether all references to a variable have been

erased.

It should be noted in passing that in principle all occurrences of ASET

on a given variable could be erased, thereby reducing its WRITE-REFS property to

NIL. Because the EFFS-ANALYZE computation on VARIABLE nodes used the WRITE-REFS

property, a VARIABLE node might have ASET in its AFFD set after the optimizer had

removed all the ASET nodes. Because of the tree-walking discipline of the

optimizer, the VARIABLE nodes will not be reanalyzed immediately. This cannot

hurt, however; it may just cause the optimizer later to be more cautious than

necessary when examining a VARIABLE node. (If this doesn't make sense, come back

after reading the description of the optimizer.)

The flag *TESTING* is used to determine whether or not to remove the node

from the NODE property on the node's name. When debugging, it is very useful to

keep this information around to trace the optimizer's actions; but when

compiling a large function for "production" purposes, the discarded nodes may

bloat memory, and so they must be removed from the NODE property in order that

they may be garbage-collected by LISP.

001
002
003
004

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037

038
039
040

RABBIT 568 05/15/78 Page 18
333 THIS ROUTINE IS USED TO UNDO ANY PASS 1 ANALYSIS ON A NODE.

(DEFMAC ERASE-NODE (NODE) "(ERASE-NODES ,NODE NIL))
(DEFMAC ERASE-ALL-NODES (NODE) "(ERASE-NODES ,NODE T))

(DEFINE ERASE-NODES
(LAMBDA (NODE ALLP)

(LET ((FM (NODE\FORM NODE)))
(OR (EQ (TYPE NODE) 'NODE)

(ERROR '[Cannot erase a non-node| NODE ‘FAIL-ACT))
(EQCASE (TYPE FM)

(CONSTANT)

(VARIABLE
(DELPROP (VARIABLE\VAR FM) NODE 'READ-REFS))

(LAMBDA

(IF ALLP (ERASE-ALL-NODES (LAMBDA\BODY FM)))
(1F (NOT *TESTING*)

(AMAPC (LAMBDA (V) (REMPROP V 'BINDING)) (LAMBDA\VARS FM))))
(IF (COND (ALLP (ERASE-ALL-NODES (IF\PRED FM))

(ERASE-ALL-NODES (IF\CON FM))
(ERASE-ALL-NODES (IF\ALT FM)))))

(ASET
(IF ALLP (ERASE-ALL-NODES (ASET\BODY FM)))
(DELPROP (ASET\VAR FM) NODE 'WRITE-REFS))

(CATCH
(IF ALLP (ERASE-ALL-NODES (CATCH\BODY FM)))
(IF (NOT *TESTING#)

(REMPROP (CATCH\VAR FM) 'BINDING)))

(LABELS
(COND (ALLP {AMAPC (LAMBDA (D) (ERASE-ALL-NODES D))

(LABELS\FNDEFS FM))
(ERASE-ALL-NODES (LABELS\BODY FM))))

(1F (NOT *TESTING®)
(AMAPC (LAMBDA (V) (REMPROP V 'BINDING)) (LABELS\FNVARS FM))))

(COMBINATION

(IF ALLP (AMAPC (LAMBDA (A) (ERASE-ALL-NODES A))
(COMBINATION\ARGS FM)))))

(IF (NOT *TESTING*)
(REMPROP (NODE\NAME NODE) 'NODE)))))

158

META-EVALUATE is the top-level function of the optimizer. It accepts a

node, and returns a node (not necessarily the same one) for an equivalent

program.
.

The METAP flags in the nodes are used to control re-analysis. META-

EVALUATE checks this flag first thing, and returns the given node immediately if

its METAP flag is non-NIL, meaning the node has already been properly optimized.

Otherwise it examines the node more carefully.

Some rules about the organization of the optimizer:

[1] A node returned by a call to META-EVALUATE will always have its METAP flag
set.

[2] The descendants of a node must be meta-evaluated before any information in

them is used.

[3] If a node has its METAP flag set, so do all of its descendants. Moreover,

REANALYZE1 has been applied to the node, so all of the information filled in by

pass-1l analysis (ENV-ANALYZE, TRIV-ANALYZE, and EFFS-ANALYZE) is up-to-date.

When COMPILE calls META-EVALUATE, all the METAP flags are NIL, and no

pass-1l analysis has been performed. META-EVALUATE, roughly speaking, calls

itself recursively, and meta-evaluates the node tree from the bottom up. After:

meta-evaluating all the descendants of a node, it applies REANALYZE1 to perform

pass-1] analysis on that node, sets the METAP flag, and returns the node.

Exceptions can be made to this discipline if a non-trivial optimization occurs.

If the (meta-evaluated) predicate part of an IF node is itself an IF node

(and the debugging switch *FUDGE* is set), then META-IF-FUDGE is called. If it

is a constant, then the value of the constant is used to select either the

consequent CON or the alternative ALT. The other one is then erased, and the IF

node is itself erased. The selected component node is then returned (it has

already been meta-evaluated). The statistics counter *DEAD-COUNT* counts

occurrences of this "dead code elimination" optimization.

The other two interesting cases are COMBINATION nodes whose function

position contains either a trivial function or a LAMBDA node. META-COMBINATION-

TRIVFN and META-COMBINATION-LAMBDA handle these respective cases.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068

RABBIT 568 05/15/78 Page 19

33; THE VALUE OF META-EVALUATE IS THE (POSSIBLY NEW) NODE RESULTING FROM THE GIVEN ONE.

(SET' *FUDGE* T) ;SWITCH TO CONTROL META-IF -FUDGE
(SET' *DEAD-COUNT* 0) ;COUNT OF DEAD-CODE ELIMINATIONS

(DEFINE META-EVALUATE
(LAMBDA (NODE)

(IF (NODE\METAP NODE)
NODE
(LET ((FM (NODE\FORM NODE)))

(EQCASE (TYPE FM)
(CONSTANT
(REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))

(VARIABLE
(REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))

(LAMBDA
(ALTER-LAMBDA FM (BODY := (META-EVALUATE (LAMBDA\BODY FM))))
(REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))

(IF
(ALTER-IF FM

(PRED := (META-EVALUATE (IF\PRED FM)))
(CON := (META-EVALUATE (IF\CON FM)))
(ALT := (META-EVALUATE (IF\ALT FM))))

(IF (AND *FUDGE® (EQ (TYPE (NODE\FORM (IF\PRED FM))) ‘IF))
(META-IF-FUDGE NODE)
(IF (EQ (TYPE (NODE\FORM (IF\PRED FM))) ‘CONSTANT)

(LET ((CON (IF\CON FM))
(ALT (IF\ALT FM))
(VAL (CONSTANT\VALUE (NODE\FORM (IF\PRED FM)))))

(ERASE-NODE NODE)
(ERASE-ALL-NODES (IF\PRED FM))
(INCREMENT *DEAD-COUNT#)
(IF VAL

(BLOCK (ERASE-ALL-NODES ALT) CON) -
(BLOCK (ERASE-ALL-NODES CON) ALT)))

(BLOCK (REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T))))))

(ASET
(ALTER-ASET FM (BODY := (META-EVALUATE (ASET\BODY FM))))
(REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))

(CATCH
(ALTER-CATCH FM (BODY := (META-EVALUATE (CATCH\BODY FM))))
(REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))

(LABELS
(DO ((D (LABELS\FNDEFS FM) (CDR D)))

((NULL D))
(RPLACA D (META-EVALUATE (CAR D))))

(ALTER-LABELS FM (BODY := (META-EVALUATE (LABELS\BODY FM))))
(REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))

(COMBINATION
(LET ((FN (NODE\FORM (CAR (COMBINATION\ARGS FM)))))

(COND ((AND (EQ (TYPE FN) 'VARIABLE)
(TRIVEN (VARIABLE\VAR FN)))

(ME TA-COMBINATION-TRIVFN NODE))
((EQ (TYPE FN) ‘LAMBDA)
(ME TA-COMBINATION-LAMBDA NODE))

(T (DO ((A (COMBINATION\ARGS FM) (COR A)))
((NULL A))
(RPLACA A (META-EVALUATE (CAR A))))

(REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))))))))))

160

For an IF nested within another IF, the transformation shown in the

comment is_ performed. This involves constructing an S-expression of the

appropriate form and then calling ALPHATIZE to convert it into a node-tree. (The

node-tree could be constructed directly, but it is easier to call ALPHATIZE.

This is the reason why ALPHATIZE merely returns a NODE if it encounters one in

the S-expression; META-IF-FUDGE inserts various nodes in the S-expression it

constructs.) The original two IF nodes are erased, a statistics counter *FUDGE-

COUNT* is incremented, and the new expression is meta-evaluated and returned in

place of the nested IF nodes.

(The statistics counter shows that this optimization is performed with

modest frequency, arising from cases such as (IF (AND ...)...).)

META-COMBINATION-TRIVFN performs the standard recursive meta-evaluation

of all the arguments, and then checks to see whether the combination can be

"folded". This is possible all the arguments are constants, and if the function

has no side effects and cannot be affected by side-effects, or has an OKAY-TO-

FOLD property. If this is the case, the function is applied to the arguments,

the combination node and its descendants are erased, the statistics counter

FOLD-COUNT is bumped, and a new CONSTANT node containing the result is created

and meta-evaluated. This might typically occur for (NOT NIL) => T, or (+ 3 4) =>

7, or (MEMQ 'BAR '(FOO BAR BAZ)) => '(BAR BAZ). If this optimization is not

permissible, then the usual reanalysis and setting of the METAP flag is

performed.

(The statistics counter shows that even in a very large program such as

RABBIT this optimization is performed fewer than a dozen times. This may be due

to my programming style, or because there are very few macros in the code for

RABBIT which might expand into foldable code.)

001
002
003
004
005
006
007
008
009
010
oll
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064

RABBIT 568 05/15/78 Page 20
335 TRANSFORM (IF (IF ABC) 0 €) INTO:

5 ((LAMBDA (D1 E})
335 (IF A (IF B (O01) (E1)) (IF C (B1) (E1))))
333 (LAMBDA () D)
333 (LAMBDA () E))

(SET' *FUDGE-COUNT* 0) , sCOUNT OF IF-FUDGES

(DEFINE META-IF-FUDGE
(LAMBDA (NODE)

(LET ((FM (NODE\FORM NODE)))
(LET ((PFM (NODE\FORM (IF\PRED FM))))

(LET ((N (ALPHATIZE (LET ((CONVAR (GENTEMP 'META-CON))
(ALTVAR (GENTEMP 'META-ALT)))

"((LAMBDA (,CONVAR ,ALTVAR)
(IF ,(IE\PREO PFM)

(IF ,(IF\CON PFM)
(,CONVAR)
(,ALTVAR))

(1F ,(TE\ALT PEM)
(.CONVAR)
(,ALTVAR))))

(LAMBDA () ,(IF\CON FM))
(LAMBDA () ,(IF\ALT FM))))

(NODE\ENV NODE)))) ;DOESN'T MATTER
(ERASE-NODE NODE)
(ERASE-NODE (IF\PRED FM))
(INCREMENT *FUDGE-COUNT®)
(META-EVALUATE N))))))

33; REDUCE A COMBINATION WITH A SIDE-EFFECT-LESS TRIVIAL
333 FUNCTION AND CONSTANT ARGUMENTS TO A CONSTANT.

(SET' *FOLD-COUNT* 0) ;COUNT OF CONSTANT FOLDINGS

(DEFINE META-COMBINATION-TRIVEN
(LAMBDA (NODE)

(LET ((FM (NODE\FORM NODE)))
(LET ((ARGS (COMBINATION\ARGS FM)))

(RPLACA ARGS (META-EVALUATE (CAR ARGS)))
(DO ((A (COR ARGS) (COR A))

- (CONSTP (LET ((FNNAME (VARIABLE\VAR (NODE\FORM (CAR ARGS)))))
(OR (AND (EQ (GET FNNAME

'FN-SIDE-EFFECTS)
"NONE)

(EQ (GET FNNAME
"EN-SIDE-AFFECTED)

"NONE))
(GET FNNAME 'OKAY-TO-FOLD)))

(AND CONSTP (EQ (TYPE (NODE\FORM (CAR A))) ‘CONSTANT))))
((NULL A)
(COND (CONSTP

(LET ((VAL (APPLY (VARIABLE\VAR (NODE\FORM (CAR ARGS)))
(AMAPCAR (LAMBDA (X)

(CONS TANT\VALUE
(NODE\FORM X)))

(CDR ARGS)))))
(ERASE-ALL-NODES NODE)
(INCREMENT *FOLD-COUNT®)
(META-EVALUATE (ALPHATIZE "(QUOTE ,VAL) NIL))))

(T (REANALYZE1 NODE)
(ALTER-NODE NODE (METAP := T)))))

-(RPLACA A (META-EVALUATE (CAR A))))))))

162

META-COMBINATION-LAMBDA performs several interesting optimizations on

combinations of the form ((LAMBDA ...) ...). It is controlled by several

debugging switches, and Keeps several statistics counters, which we will not
describe further.

First all the arguments, but not the LAMBDA-expression, are meta-

evaluated by the first DO loop. Next, the body of the LAMBDA node is meta-

evaluated and kept in the variable B in the second DO loop. This loop iterates

over the LAMBDA variables and the corresponding arguments. For each variable-

argument pair, SUBST-CANDIDATE determines whether the argument can "probably" be

legally substituted for occurrences of the variable in the body. If so, META-

SUBSTITUTE is called to attempt such substitution. When the loop finishes, B has

the body with all possible substitutions performed. This body is then re-meta-

evaluated. (The reason for this is explained later in the discussion of META-

SUBSTITUTE.)

Next an attempt is made to eliminate LAMBDA variables. A variable and

its corresponding argument may be eliminated if the variable has no remaining

references, and the argument either has no side effects or has been successfully

substituted. (If an argument has side effects, then SUBST-CANDIDATE will give

permission to attempt substitution only if no more than one reference to the

corresponding variable exists. If the substitution fails, then the argument may

not be eliminated, because its side effects must not be lost. It the

substitution succeeds, then the argument must be eliminated, because the side
effects must not be duplicated.) A consistency check ensures that in fact the

variable is unreferenced within the body as determined by its REFS and ASETS

slots; then the argument and variable are deleted, and the nodes of the argument

are erased.

When all possible variable-argument pairs have been eliminated, then

there are two cases. If the LAMBDA has no variables left, then the combination

containing it can be replaced by the body of the LAMBDA node. In this case the

LAMBDA and COMBINATION nodes are erased. Otherwise the LAMBDA and COMBINATION

nodes are reanalyzed and their METAP flags are set.

(The statistics counters show that when RABBIT compiles itself these

three optimizations are performed hundreds of times. This occurs because many

standard macros make use of closures to ensure that variables local to the code

for the macro do not conflict with user variables. These closures often can be

substituted into the code by the compiler and eliminated.)

001
002
003
004

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036.
037
038
039
040
041
042
043
044

045
046
047

048
049
050
051
052
053
054
055
056
057

RABBIT 568 05/15/78 Page 21
(SET' *xFLUSH-ARGS* T) —;SWITCH TO CONTROL VARIABLE ELIMINATION
(SET' *FLUSH-COUNT* 0) ;COUNT OF VARIABLES ELIMINATED
(SET' *CONVERT-COUNT* 0) ;CQUNT OF FULL BETA-CONVERSIONS

(DEFINE
ME TA-COMB INATION-LAMBDA
(LAMBDA (NODE)

(LET ((FM (NODE\FORM NODE)))
(LET ((ARGS (COMBINATION\ARGS FM)))

(DO ((A (CDR ARGS) (COR A)))
((NULL A))
(RPLACA A (META-EVALUATE (CAR A)))
(ALTER-NODE (CAR A) (SUBSTP := NIL)))

(LET ((FN (NODE\FORM (CAR ARGS))))
(DO ((V (LAMBDA\VARS FN) (CDR V))

(A (COR ARGS) (COR A))
(B (META-EVALUATE (LAMBDA\BODY FN))

(IF (SUBST-CANDIDATE (CAR A) (CAR V) B)
(META-SUBSTITUTE (CAR A) (CAR V) B)

B)))
((NULL V)
(ALTER-LAMBDA FN (BODY := (META-EVALUATE B)))
(00 ((V (LAMBDA\VARS FN) (COR V))

(A (CDR ARGS) (CDR A)))
((NULL A))
(1F (AND *FLUSH-ARGS*

(NULL (GET (CAR V) 'READ-REFS))
(NULL (GET (CAR V) 'WRITE-REFS))
(OR (EFFECTLESS-EXCEPT-CONS (NODE\EFFS (CAR A)))

(NODE\SUBSTP (CAR A))))
(BLOCK (IF (OR (MEMQ V (NODE\REFS (LAMBOA\BOOY FN)))

(MEMQ V (NODE\ASETS (LAMBDA\BODY FN))))
(ERROR '|Reanalysis lost - META-COMBINATION-LAMBDA]|

NODE
'FAIL-ACT))

(DELQ (CAR A) ARGS)
(ERASE-ALL-NODES (CAR A))
(INCREMENT *FLUSH-COUNTS)
(ALTER-LAMBDA FN

(VARS := (DELQ (CAR V) (LAMBDA\VARS FN)))
(UVARS := (DELQ (GET (CAR V) 'USER-NAME)

(LAMBDA\UVARS FN)))))))
(COND ((NULL (LAMBDA\VARS FN))

(OR (NULL (CDR ARGS))
(ERROR '|Too many args in META-COMBINATION-LAMBDAj

NODE
'FAIL-ACT))

(LET ((BOD (LAMBDA\BODY FN)))
(ERASE-NODE (CAR ARGS))
(ERASE-NODE NODE)
(INCREMENT *CONVERT-COUNT®*)
BOD))

(T (REANALYZE1 (CAR ARGS))
(ALTER-NODE (CAR ARGS) (METAP := T))
(REANALYZE1] NODE)
(ALTER-NODE NODE (METAP := T)))))))))))

164

(SUBST-CANDIDATE ARG VAR BOD) is a predicate which is true iff it is

apparently legal to attempt to substitute the argument ARG for the variable VAR

in the body BOD. This predicate is very conservative, because there is no

provision for backing out of a bad choice. The decision is made on this basis:

[1] There must be no ASET references to the variable. (This is overly

restrictive, but is complicated to check for correctly, and makes little

difference in practice.)

{2] One of three conditions must hold:

[2a] There is at most one reference to the variable. (Code with possible

side effects must not be duplicated. Exceptions occur, for example, if there

are two references, one in each branch of an IF, so that only one can be

executed. This is hard to detect, and relaxing this restriction is probably

not worthwhile.)
[2b] The argument is a constant or variable. (This is always safe because

the cost of a constant or variable is no worse than the cost of referencing

the variable it replaces.)

[2c] The argument is a LAMBDA-expression, and either:

[2cl1] There is no more than one reference. (This is tested again because

of the presence of debugging switches in SUBST-CANDIDATE which can control

various tests independently to help localize bugs.)

[2c2] The body of the LAMBDA-expression is a combination, all of whose

descendants are constants or variables, and the number of arguments of the

combination (not counting the function) does not exceed the number of

arguments taken by the LAMBDA-expression. (The idea here is’ that
substitution of the LAMBDA-expression into function position of some

combination will later allow reduction to a combination which is no worse

than the original one. This test is a poor heuristic if references to the

variable VAR occur in other than function position within BOD, because then

several closures will be made instead of one, but is very good for code

typically produced by the expansion of macros. In retrospect, perhaps ENV-

ANALYZE should maintain a third property besides READ-REFS and WRITE-REFS

called, say, NON-FN-REFS. This would be the subset of READ-REFS which

occur in other than function position of a combination. SUBST-CANDIDATE

could then use this information. Alternatively, META-SUBSTITUTE could, as

it walked the node-tree of the body, keep track of whether a variable was

encountered in function position, and refuse to substitute a LAMBDA-

expression for a variable not in such a position which had more than one
reference. This might in turn prevent other optimizations, however.)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

RABBIT 568 05/15/78 Page 22
(SET' *SUBSTITUTE® T) ;SWITCH TO CONTROL SUBSTITUTION

(SET! *SINGLE-SUBST* T) ;SWITCH TO CONTROL SUBSTITUTION OF EXPRESSIONS WITH SIDE EFFECTS

(SET *LAMBDA-SUBST* T) ;SWITCH TO CONTROL SUBSTITUTION OF LAMBDA-EXPRESSIONS

(DEFINE SUBST-CANDIDATE
(LAMBDA (ARG VAR BOD)

(AND *SUBSTITUTES
(NOT (GET VAR 'WRITE-REFS)) ;BE PARANOID FOR NOW
(OR (AND *SINGLE-SUBST*

(NULL (COR (GET VAR 'READ-REFS))))
(MEMQ (TYPE (NODE\FORM ARG)) ‘(CONSTANT VARIABLE))
(AND *LAMBDA-SUBST*

(EQ (TYPE (NODE\FORM ARG)) 'LAMBDA)
(OR (NULL (CDR (GET VAR 'READ-REFS)))

(LET ((B (NODE\FORM (LAMBDA\BODY (NODE\FORM ARG)))))
(OR (MEMQ (TYPE B) '(CONSTANT VARIABLE))

(AND (EQ (TYPE B) ‘COMBINATION)
(NOT (> (LENGTH (CDR (COMBINATION\ARGS B)))

(LENGTH (LAMBDA\VARS (NODE\FORM ARG)))))
(DO ((A (COMBINATION\ARGS B) (COR A))

(P T (AND P (MEMQ (TYPE (NODE\FORM (CAR A)))
‘(CONSTANT VARIABLE)))))

((NULL A) P)))))))))))

166

REANALYZE1 calls PASS1-ANALYZE on the given node. The argument T means

that optimization is in effect, and so EFFS-ANALYZE must be invoked after ENV-

ANALYZE and TRIV-ANALYZE (EFFS-ANALYZE information is used only by the

optimizer). The argument *REANALYZE* specifies whether reanalysis should be

forced to all descendant nodes, or whether reanalysis of the current node will

suffice. This variable normally contains the symbol ONCE, meaning reanalyze only

the current node. META-EVALUATE normally ensures, before analyzing a node, that

all descendant nodes are analyzed. Thus the initial pass-1 analysis occurs

incrementally, interleaved with the meta-evaluation process.

The switch *REANALYZE*x may be set to the symbol ALL to force all

descendants of a node to be reanalyzed before analyzing the node itself. This

ability is provided to test for certain bugs in the optimizer. If the

incremental analysis should fail for some reason, then the descendant nodes may

not contain correct information (for example, their information slots may be

empty!). The ALL setting ensures that a consistent analysis is obtained. If the

optimizer's behavior differs depending on whether *REANALYZE* contains ONCE or

ALL, then a problem with the incremental analysis is implicated. This switch has

been very useful for isolating such bugs.

The next group of functions are utilities for META-SUBSTITUTE which deal

with sets of side-effects.

EFFS-INTERSECT takes the intersection of two sets of side-effects. It is

just like INTERSECT, except that it also knows about the two special sets ANY and

NONE.

EFFECTLESS is a predicate which is true of an empty set of side-effects.

EFFECTLESS-EXCEPT-CONS is a predicate true of a set of side-effects which

is empty except possibly for the CONS side-effect.

PASSABLE takes a node and two sets of side-effects, which should be the

EFFS and AFFD sets from some other node. PASSABLE is a predicate which is true

if the given node, which originally preceded the second in the standard

evaluation order, can legitimately be postponed until after the second is

evaluated. That is, it is true iff the first node can "pass" the second during
the substitution process.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050

RABBIT 568 05/15/78 Page 23

(DEFINE REANALYZE1
(LAMBDA (NODE)

(PASSI-ANALYZE NODE *REANALYZE* T)))

(SET' *REANALYZE*® ‘ONCE)

>>; HERE WE DETERMINE, FOR EACH VARIABLE NODE WHOSE VAR IS THE ONE

333 GIVEN, WHETHER IT IS POSSIBLE TO SUBSTITUTE IN FOR IT; THIS IS”
33> DETERMINED ON THE BASIS OF SIDE EFFECTS. THIS IS DONE BY
333 WALKING THE PROGRAM, STOPPING WHEN A SIDE-EFFECT BLOCKS IT.
33> A SUBSTITUTION IS MADE IFF IS VARIABLE NODE IS REACHED IN THE WALK.

333 THERE IS A BUG IN THIS THEORY TO THE EFFECT THAT A CATCH
333 WHICH RETURNS MULTIPLY CAN CAUSE AN EXPRESSION EXTERNAL

333 TO THE CATCH TO BE EVALUATED TWICE. THIS IS A DYNAMIC PROBLEM
333 WHICH CANNOT BE RESOLVED AT COMPILE TIME, AND SO WE SHALL

333 IGNORE IT FOR NOW.

333 WE ALSO RESET THE METAP FLAG ON ALL NODES WHICH HAVE A
;33 SUBSTITUTION AT OR BELOW THEM, SO THAT THE META-EVALUATOR WILL
333 RE-PENETRATE TO SUBSTITUTION POINTS, WHICH MAY ADMIT FURTHER
333 OPTIMIZATIONS.

(DEFINE EFFS-INTERSECT
(LAMBDA (A B)

(COND ((EQ A 'ANY) B)
((EQ B 'ANY) A)
((EQ A 'NONE) A)
((EQ B 'NONE) B)
(T (INTERSECT A B)))))

(DEFINE EFFECTLESS
(LAMBDA (X) (OR (NULL X) (EQ X 'NONE))))

(DEFINE EFFECTLESS-EXCEPT-CONS
(LAMBDA (X) (OR (EFFECTLESS X) (EQUAL X '(CONS)))))

(DEFINE PASSABLE
(LAMBDA (NODE EFFS AFFD)

(BLOCK (IF (EMPTY (NODE\EFFS NODE))
(ERROR '|Pass 1 Analysis Missing - PASSABLE|

NODE

'FAIL-ACT))
(AND (EFFECTLESS (EFFS-INTERSECT EFFS (NODE\AFFO NODE)))

(EFFECTLESS (EFFS-INTERSECT AFFD (NODE\EFFS NODE)))
(EFFECTLESS-EXCEPT-CONS (EFFS-INTERSECT EFFS (NODE\EFFS NODE)))))))

168

META-SUBSTITUTE takes a node-tree ARG, a variable name VAR, and another

node-tree BOD, and wherever possible substitutes copies of ARG for occurrences of

VAR within BOD. The complexity of this process is due almost entirely to the

necessity of determining the extent of "wherever possible".

META-SUBSTITUTE merely spreads out the EFFS and AFFD slots of ARG to make

them easy to refer to, makes an error check, and then passes the buck to the

internal LABELS routine SUBSTITUTE, which does the real work.

SUBSTITUTE recurs over the structure of the node-tree. At each node it

first checks to see whether VAR is in the REFS set of that node. This is purely

an efficiency hack: if VAR is not in the set, then it cannot occur anywhere

below that node in the tree, and so SUBSTITUTE can save itself the work of a

complete recursive search of that portion of the node-tree.

SUBSTITUTE plays another efficiency trick in cahoots with META-EVALUATE

to save work. Whenever SUBSTITUTE actually replaces an occurrence of VAR with a

copy of ARG, the copy of ARG will have its METAP flag turned off (set to NIL).

Now SUBSTITUTE propagates the METAP flag back up the node-tree; when all sub-

nodes of a node have had SUBSTITUTE applied to them, then if the METAP flag of
the current node is still set, it is set to the AND of the flags of the subnodes.

Thus any node below which a substitution has occurred will have its METAP flag

reset. More to the point, any node which after the substitution still has its

METAP flag set has had no substitutions occur below it. META-EVALUATE can then

be applied to BOD after all substitutions have been tried (this occurs in META-

COMBINATION-LAMBDA), and META-EVALUATE will only have to re-examine those parts

of BOD which have changed. In particular, if no substitutions were successful,

META-EVALUATE will not have to re-examine BOD at all.

If the variable is referenced at or below the node, it breaks down into

cases according to the type of the node.

For a CONSTANT, no action is necessary.

For a VARIABLE, no action is taken unless the variable matches VAR, in

which case the node is erased and a copy of ARG is made and returned in its

Place. The SUBSTP slot of the original ARG is set as a flag to META-COMBINATION-
LAMBDA (q.v.), to let it know that at least one substitution succeeded.

. For a LAMBDA, substitution can occur in the body only if ARG has no side-
effects except possibly CONS. This is because evaluation of the LAMBDA-

expression (to produce a closure) will not necessarily cause evaluation of the

side-effect in ARG at the correct time. The special case of a LAMBDA occurring

as the function in a COMBINATION is handled separately below.

For an IF, substitution is attempted in the predicate. It is attempted

in the other two sub-trees only if ARG can pass the predicate.

For an ASET' or a CATCH, substitution is attempted in the body. The same

is true of LABELS, but substitution is also attempted in the labelled function
definitions.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069

RABBIT 568 05/15/78 Page 24
(SET' *SUBST-COUNT* 0) ;COUNT OF SUBSTITUTIONS
(SET' *LAMBDA-BODY-SUBST* T) sSWITCH TO CONTROL SUBSTITUTION IN LAMBDA BODIES
(SET' *LAMBDA-BODY-SUBST-TRY-COUNT* 0) ;COUNT THEREOF - TRIES
(SET' *LAMBDA-BODY-SUBST-SUCCESS-COUNT® 0) ;COUNT THEREOF - SUCCESSES

(DEF INE
ME TA-SUBSTITUTE
(LAMBDA
(ARG VAR BOD)
(LET ((EFFS (NODE\EFFS ARG))

(AFFD (NODE\AFFD ARG)))
(IF (EMPTY EFFS)

(ERROR '|Pass 1 Analysis Screwed Up - META-SUBSTITUTE] ARG 'FAIL-ACT))
(LABELS

((SUBSTITUTE
(LAMBDA (NODE)

(IF (OR (EMPTY (NODE\REFS NODE))
(NOT (MEMQ VAR (NODE\REFS NODE)))) sEFFICIENCY HACK

NODE
(LET ((FM (NODE\FORM NODE)))

(EQCASE (TYPE FM)
(CONSTANT NODE)
(VARIABLE
(IF (EQ (VARIABLE\VAR FM) VAR)

(BLOCK (ERASE-ALL-NODES NODE)
(INCREMENT *SUBST-COUNTS)
(ALTER-NODE ARG (SUBSTP := T))
(COPY-CODE ARG)) .

NODE))
(LAMBDA
(IF (AND (EFFECTLESS-EXCEPT-CONS EFFS) (EFFECTLESS AFFD))

(ALTER-LAMBDA FM (BODY := (SUBSTITUTE (LAMBDA\BODY FM)))))
(1F (NODE\METAP NODE)

(ALTER-NODE NODE (METAP := (NODE\METAP (LAMBDA\BODY FM)))))
NODE)

(IF
(ALTER-IF FM (PRED := (SUBSTITUTE (IF\PRED FM))))
(IF (PASSABLE (IF\PRED FM) EFFS AFFD)

(ALTER-IF FM
(CON :
(ALT

(1F (NODE\METAP NODE)
(ALTER-NODE NODE

(METAP := (AND (NODE\METAP (IF\PRED FM))
(NODE\METAP (JF\CON FM))
(NODE\METAP (IF\ALT FM))))))

(SUBSTITUTE (IF\CON FM)))
(SUBSTITUTE (IF\ALT FM)))))

NODE)
(ASET
(ALTER-ASET FM (BODY := (SUBSTITUTE (ASET\BODY FM))))
(1F (NODE\METAP NODE)

(ALTER-NODE NODE (METAP := (NODE\METAP (ASET\BODY FM)))))
NODE)

(CATCH
(ALTER-CATCH FM (BODY := (SUBSTITUTE (CATCH\BODY FM))))
(1F (NODE\METAP NODE)

(ALTER-NODE NODE (METAP := (NODE\METAP (CATCH\BODY FM)))))
NODE)

(LABELS
(ALTER-LABELS FM (BODY := (SUBSTITUTE (LABELS\BODY FM))))
(DO ((D (LABELS\FNDEFS FM) (COR D))

(MP (NODE\METAP (LABELS\BODY FM))
(AND MP (NODE\METAP (CAR D)))))

((NULL D)
(IF (NODE\METAP NODE)

(ALTER-NODE NODE (METAP := MP))))
(RPLACA D (SUBSTITUTE (CAR 0))))

NODE)

170

The most complicated case is the COMBINATION. First it is determined (in
the variable X) whether ARG can correctly pass all of the arguments of the

combination. (It is not possible to substitute into any argument unless all can
be passed, because at this time it has not been decided in what order to evaluate

them. This decision is the free choice of CONVERT-COMBINATION below.) If it

can, then substitution is attempted in all of the arguments except the function

itself. Then two kinds of function are distinguished. If it is not a LAMBDA, a

straightforward recursive call to SUBSTITUTE is’ used. If it is, then

substitution is attempted in the body of the LAMBDA (not in the LAMBDA itself;
substitution in a LAMBDA requires that ARG be EFFECTLESS-EXCEPT-CONS, but in this

Special case we know that the LAMBDA-expression will be invoked immediately, and

so it is all right if ARG has side-effects).

070
071
072
073
074
075
076
077
078
079
080
061
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101 (SUBSTITUTE BOD)))))

RABBIT 568 05/15/78 Page 24.1
(COMBINATION
(LET ((ARGS (COMBINATION\ARGS FM)))

(DO ((A ARGS (CDR A))
(X T (AND X (PASSABLE (CAR A) EFFS AFFD))))

((NULL A)
(IF X (DO ((A (CDR ARGS) (COR A)))

({NULL A))
(RPLACA A (SUBSTITUTE (CAR A)))))

(1F (AND *LAMBDA-BODY-SUBST*
(EQ (TYPE (NODE\FORM (CAR ARGS))) 'LAMBDA))

(LET ((FN (NODE\FORM (CAR ARGS))))
(INCREMENT *LAMBDA-BODY-SUBST-TRY-COUNT®)
(COND (X

(INCREMENT
*LAMBDA-BODY- SUBST- SUCCESS -COUNT®)
(ALTER-LAMBDA
EN
(BODY := (SUBSTITUTE

(LAMBDA\BODY FN))))))
(IF (NODE\METAP (CAR ARGS))

(ALTER-NODE
(CAR ARGS)
(METAP := (NODE\METAP

. (LAMBDA\BODY FN))))))
(IF X (RPLACA ARGS (SUBSTITUTE (CAR ARGS)))))))

(DO ((A ARGS (COR A))
(MP T (AND MP (NODE\METAP (CAR A)))))

((NULL A)
(IF (NODE\METAP NODE)

(ALTER-NODE NODE (METAP := MP))))))
NODE)))))))

172

COPY-CODE is used by META-SUBSTITUTE to make copies of node-trees

representing code. It invokes COPY-NODES with appropriate additional arguments.

COPY-NODES does the real work. The argument ENV is analogous to the

argument ENV taken by ALPHATIZE. However, variables are not looked-up in ENV by

COPY-NODES; ENV is maintained only to install in the new nodes for debugging

purposes. The argument RNL is a "rename list" for variables. When a node is

copied which binds variables, new variables are created for the copy. RNL

provides a mapping from generated names in the original code to generated names

in the copy (as opposed to ENV, which maps user names to generated names in the

copy). Thus, when a LAMBDA node is copied, new names are generated, and PAIRLIS

is used to pair new names with the LAMBDA\VARS of the old node, adding the new

pairs to RNL.

A neat trick to aid debugging is that the new names are generated by

uSing the old names as the arguments to GENTEMP. In this’ way the name of a

generated variable contains a history of how it was created. For example, VAR-

34-73-156 was created by copying the LAMBDA node which bound VAR-34-73, which in

turn was copied from the node which bound VAR-34. Copies of CATCH and LABELS

variables are generated in the same way.

The large EQCASE handles the different types of nodes. The result is

then given to NODIFY, the same routine which creates nodes for ALPHATIZE. Recall

that NODIFY initializes the METAP slot to NIL; the next meta-evaluation which

comes along will cause pass-1 analysis to be performed on the new copies.

Note particularly that the UVARS list of a LAMBDA node is copied, for the

same reason that ALPHA-LAMBDA makes a copy: META-COMBINATION-LAMBDA may alter it

destructively.

001
002
003
004
005
006
007
008
009
010
0211
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060

RABBIT 568 05/15/78 Page 25

(DEFINE COPY-CODE
(LAMBDA (NODE)

(REANALYZE1 (COPY-NODES NODE (NODE\ENV NODE) NIL))))

(DEFINE
COPY-NODES
(LAMBDA (NODE ENV RNL)

(NODIFY
(LET ((FM (NODE\FORM NODE)))

(EQCASE (TYPE FM)
(CONSTANT
(CONS-CONSTANT (VALUE = (CONSTANT\VALUE FM))))

(VARIABLE
(CONS-VARIABLE (VAR = (LET ((SLOT (ASSQ (VARIABLE\VAR FM) RNL)))

(IF SLOT (CADR SLOT) (VARIABLE\VAR FM))))
(GLOBALP = (VARIABLE\GLOBALP FM))))

(LAMBDA
(LET ((VARS (AMAPCAR GENTEMP (LAMBDA\VARS FM))))

(CONS-LAMBDA (UVARS = (APPEND (LAMBOA\UVARS FM) NIL))
(VARS = VARS)
(BODY = (COPY-NODES

(LAMBDA\BODY FM)
(PAIRLIS (LAMBDA\UVARS FM) VARS ENV)
(PAIRLIS (LAMBDA\VARS FM) VARS RNL))))))

(IF (CONS-IF (PRED = (COPY-NODES (IF\PRED FM) ENV RNL))
(CON = (COPY-NODES (IF\CON FM) ENV RNL))
(ALT = (COPY-NODES (IF\ALT FM) ENV RNL))))

(ASET
(CONS-ASET (VAR = (LET ((SLOT (ASSQ (ASET\VAR FM) RNL)))

(IF SLOT (CADR SLOT) (ASET\VAR FM))))
(GLOBALP = (ASET\GLOBALP FM))
(BODY = (COPY-NODES (ASET\BODY FM) ENV RNL))))

(CATCH
(LET ((VAR (GENTEMP (CATCH\VAR FM)))

(UVAR (CATCH\UVAR FM)))
(CONS-CATCH (UVAR = (CATCH\UVAR FM))

(VAR = VAR)
(BODY = (COPY-NODES

(CATCH\BODY FM)
(CONS (LIST UVAR VAR) ENV)
(CONS (LIST (CATCH\VAR FM) VAR) RNL))))))

(LABELS
(LET ((FNVARS (AMAPCAR GENTEMP (LABELS\FNVARS FM))))

(LET ((LENV (PAIRLIS (LABELS\UFNVARS FM) FNVARS ENV))
(LRNL (PAIRLIS (LABELS\FNVARS FM) FNVARS RNL)))

(CONS-LABELS (UFNVARS = (LABELS\UFNVARS FM))
(FNVARS = FNVARS)
(FNDEFS = (AMAPCAR

(LAMBDA (N) (COPY-NODES N LENV LRNL))
(LABELS\FNDEFS FM)))

(BODY = (COPY-NODES (LABELS\BODY FM)
LENV
LRNL))))))

(COMBINATION
(CONS-COMBINATION (ARGS = (AMAPCAR (LAMBDA (N) (COPY-NODES N ENV RNL))

(COMBINATION\ARGS FM)))
(WARNP = (COMBINATION\WARNP FM))))))

(NODE\SEXPR NODE) |
ENV)))

174

The next several functions process the node-tree produced, analyzed, and

optimized by pass 1, converting it to another representation. This new
representation is a tree structure very similar to the node-tree, but has

different components for the pass-2 analysis. We will call this the "cnode-

tree". The "c" stands for "Continuation-passing style": for the conversion
process transforms the node-tree into a form which uses continuation-passing to

represent the control and data flow within the program.

We define a new collection of data types used to construct cnode-trees.

The CNODE data type is analogous to the NODE data type; one component CFORM

contains a variant structure which is specific to the programming construct

represented by the CNODE.

The types CVARIABLE, CLAMBDA, CIF, CASET, CLABELS, and CCOMBINATION

correspond roughly to their non-C counterparts in pass 1.

Type TRIVIAL is used to represent pieces of code which were designated

trivial in pass 1 (TRIVP slot = T) by TRIV-ANALYZE; the NODE component is simply

the pass-1 node-tree for the trivial code. This is the only case in which part

of the pass-1 node-tree survives the conversion process to be used in pass 2.

A CONTINUATION is just like a CLAMBDA except that it has only one bound

variable VAR. This variable can never appear in a CASET, and so the CONTINUATION

type has no ASETVARS slot; all other slots are similar to those in a CLAMBDA

structure.

A RETURN structure is just like a CCOMBINATION, except that whereas a

CCOMBINATION may invoke a CLAMBDA which may take any number of arguments, a

RETURN may invoke only a CONTINUATION on a single value. Thus, in place of the

ARGS slot of a CCOMBINATION, which is a list of cnodes, a RETURN has two slots

CONT and VAL, each of which is a cnode.

(In retrospect, this was somewhat of a design error. The motivation was

that the world of closures could be dichotomized into LAMBDA-closures' and

continuation-closures, aS a result of the fundamental semantics of the language:

one world is used to pass values "down" into functions, and the other to pass

values "up" from functions. Combinations can similarly be dichotimized, and I

thought it would be useful to reflect this distinction in the data types to

enforce and error-check this dichotomy. However, as it turned out, there is a

great deal of code in pass 2 which had to be written twice, once for each

"world", because the data types involved were different. It would be better to

have a single structure for both CLAMBDA and CONTINUATION, with an additional

Slot flagging which kind it was. Then most code in pass 2 could operate on this

structure without regard for which "world" it belonged to, and code which cared

could check the flag.)

001
002
003
004
005
006
007
008
009
010
011
012

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

RABBIT 568 05/15/76 Page 26
333 CONVERSION TO CONTINUATION-PASSING STYLE

333 THIS INVOLVES MAKING A COMPLETE COPY OF THE PROGRAM IN TERMS
333 OF THE FOLLOWING NEW DATA STRUCTURES:

(DEFTYPE CNODE (ENV REFS CLOVARS CFORM))
[ENV ENVIRONMENT (A LIST OF VARIABLES, NOT A MAPPING; DEBUGGING ONLY)
sREFS VARIABLES BOUND ABOVE AND REFERENCED BELOW THIS CNODE
;CLOVARS VARIABLES REFERRED TO AT OR BELOW THIS CNODE BY CLOSURES
: (SHOULD BE A SUBSET OF REFS)
;CFORM ONE OF THE BELOW TYPES

(DEF TYPE TRIVIAL (NODE))
;NODE A PASS-1 NODE TREE

(DEFTYPE CVARIABLE (VAR))
;VAR —- GENERATED VARIABLE NAME

(DEF TYPE CLAMBDA (VARS BODY FNP TVARS NAME DEP MAXDEP CONSENV CLOSEREFS ASETVARS))
FNP NON-NIL => NEEDN'T MAKE A FULL CLOSURE OF THIS

: CLAMBDA. MAY BE 'NOCLOSE OR 'EZCLOSE (THE FORMER
; MEANING NO CLOSURE JS NECESSARY AT ALL, THE LATTER
: THAT THE CLOSURE IS MERELY THE ENVIRONMENT).
;TVARS THE VARIABLES WHICH ARE PASSED THROUGH TEMP LOCATIONS
: ON ENTRY. NON-NIL ONLY IF FNP='NOCLOSE; THEN IS
; NORMALLY THE LAMBDA VARS, BUT MAY BE DECREASED
: TO ACCOUNT FOR ARGS WHICH ARE THEMSELVES KNOWN NOCLOSE'S,
; OR WHOSE CORRESPONDING PARAMETERS ARE NEVER REFERENCED.
: THE TEMP VARS INVOLVED START IN NUMBER AT DEP.
:NAME THE PROG TAG USED TO LABEL THE FINAL OUTPUT CODE FOR THE CLAMBDA
:DEP DEPTH OF TEMPORARY REGISTER USAGE WHEN THE CLAMBDA IS INVOKED
;MAXDEP MAXIMUM DEPTH OF REGISTER USAGE WITHIN CLAMBDA BODY
;CONSENV THE “CONSED ENVIRONMENT" WHEN THE CLAMBDA IS EVALUATED
;CLOSEREFS VARIABLES REFERENCED BY THE CLAMBDA WHICH ARE NOT IN |
: THE CONSED ENVIRONMENT AT EVALUATION TIME, AND SO MUST BE
; ADDED TO CONSENV AT THAT POINT TO MAKE THE CLOSURE
SASETVARS THE ELEMENTS OF VARS WHICH ARE EVER SEEN IN A CASET

(DEF TYPE CONTINUATION (VAR BODY FNP TVARS NAME DEP MAXDEP CONSENV CLOSEREFS))
;COMPONENTS ARE AS FOR CLAMBDA

(DEF TYPE CIF (PRED CON ALT))
(DEFTYPE CASET (CONT VAR BODY))
(DEFTYPE CLABELS (FNVARS FNDEFS FNENV EASY CONSENV BODY))

;FNENV A LIST OF VARIABLES TO CONS ONTO THE ENVIRONMENT BEFORE
CREATING THE CLOSURES AND EXECUTING THE BODY

ZEASY | NON-NIL IFF NO LABELED FUNCTION IS REFERRED 10
AS A VARIABLE. CAN BE 'NOCLOSE OR 'EZCLOSE
(REFLECTING THE STATUS OF ALL THE LABELLED FUNCTIONS)

“CONSENV AS FOR CLAMBDA
(DEF TYPE CCOMBINATION (ARGS))

";ARGS LIST OF CNODES REPRESENTING ARGUMENTS
(DEF TYPE RETURN (CONT VAL))

;CONT CNODE FOR CONTINUATION
;VAL —- CNODE -FOR VALUE

176

CNODIFY is for cnode-trees what NODIFY was for node-trees. It takes a

CFORM and wraps a CNODE structure around it.

CONVERT is the main function of the conversion process; it is invoked by

COMPILE on the result (META-VERSION) of pass 1. CONVERT dispatches on the type of

node to be converted, often calling some specialist which may call it back

recursively to convert subnodes. CONT may be a cnode, or NIL. If it is a cnode,

then that cnode is the code for a continuation which is to receive as value that

produced by the code to be converted. That is, when CONVERT finishes producing

code for the given node (the first argument to CONVERT), then in effect a RETURN

is created which causes the value of the generated code to be returned to the

code represented by CONT (the second argument to CONVERT). Sometimes this RETURN

cnode is created explicitly (as for CONSTANT and VARIABLE nodes), and sometimes

only implicitly, by passing CONT down to a specialist converter.

MP is T if optimization was performed by pass 1, and NIL otherwise. This

argument is for debugging purposes only: CONVERT compares this to the METAP slot

of the pass-1 nodes in order to detect any failures of the incremental

optimization and analysis process. CONVERT also makes some other consistency

checks.

001
002
003
004
005
006
007
008
009
010
O11
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

RABBIT 568 05/15/78 Page 27

(DEFINE CNODIFY
(LAMBDA (CFORM)

(CONS-CNODE (CFORM = CFORM))))

(DEFINE CONVERT

(LAMBDA (NODE CONT MP)
(LET ((FM (NODE\FORM NODE)))

(IF (EMPTY (NODE\TRIVP NODE))
(ERROR '|Pass 1 analysis missing| NODE 'FAIL-ACT))

(OR (EQ (NODE\METAP NODE) MP)
(ERROR '[Meta-evaluation Screwed Up METAP| NODE 'FAIL-ACT))

(EQCASE (TYPE FM)
(CONSTANT

(OR. (NODE\TRIVP NODE)

(ERROR '|Non-trivial Constant| NODE 'FAIL-ACT))
(MAKE-RETURN (CONS-TRIVJAL (NODE = NODE)) CONT))

(VARIABLE

(OR (NODE\TRIVP. NODE)

(ERROR '|Non-trivial Variable} 'FAIL-ACT))
(MAKE-RETURN (CONS-TRIVIAL (NODE = NODE)) CONT))

(LAMBDA (MAKE-RETURN (CONVERT-LAMBDA-FM NODE NIL MP) CONT))

(IF (OR CONT (ERROR '{Null Continuation to IF] NODE 'FAIL-ACT))
(CONVERT-IF NODE FM CONT MP))

(ASET (OR CONT (ERROR '|Null Continuation to ASET| NODE 'FAIL-ACT))

(CONVERT-ASET NODE FM CONT MP))

(CATCH (OR CONT (ERROR '|Null Continuation to CATCH| NODE 'FAIL-ACT))

(CONVERT-CATCH NODE FM CONT MP))

(LABELS (OR CONT (ERROR '|Nu11 Continuation to LABELS| NODE 'FAIL-ACT))

(CONVERT-LABELS NODE FM CONT MP))

(COMBINATION (OR CONT (ERROR '|Null Continuation to Combination]

NODE

'FAIL-ACT))
(CONVERT-COMBINATION NODE FM CONT MP))))))

178

MAKE-RETURN takes a CFORM (one of the types TRIVIAL, CVARIABLE, ...) and

a continuation, and constructs an appropriate returning of the value of the CFORM

to the continuation. First the CFORM is given to CNODIFY. If the continuation

is in fact NIL (meaning none), this new cnode is returned; otherwise a RETURN

cnode is constructed.

CONVERT-LAMBDA-FM takes a LAMBDA node and converts it into a CLAMBDA

cnode. The two are isomorphic, except that an extra variable is introduced as an

extra first parameter to the CLAMBDA. Conceptually, this variable will be bound

to a continuation when the CLAMBDA is invoked at run time; this continuation is

the one intended to receive the value of the body of the CLAMBDA. This is

accomplished by creating a new variable name CONT-nnn, which is added into the

lambda variables. A new CVARIABLE node is made from it, and given to CONVERT as

the continuation when the body of the LAMBDA node is to be recursively converted.

The CNAME argument is used for a special optimization trick by CONVERT-

COMBINATION, described below.

CONVERT-IF distinguishes several cases, to simplify the converted code.

First, if the entire IF node is trivial, then a simple CTRIVIAL node may be

created for it. Otherwise, the general strategy is to generate code which will

bind the given continuation to a variable and evaluate the predicate. This

predicate receives a continuation which will examine the resulting value (with a

CIF), and then perform either the consequent or alternative, which are converted

using the bound variable as the continuation. The reason that the original

continuation is bound to a variable is because it would be duplicated by using it

for two separate calls to CONVERT, thereby causing duplicate code to be generated

for it. A schematic picture of the general strategy is:

NODE = (IF ab c) and CONT = k becomes

((CLAMBDA (q)
(RETURN (CONTINUATION (p)

(CIF p
(RETURN g b)
(RETURN q c)))

a))
k)

Now there are two special cases which allow simplification. First, if the given

continuation is already a cvariable, there is no point in creating a new one to

bind it to. This eliminates the outer CCOMBINATION and CLAMBDA. Second, if the

predicate a is trivial (but the whole IF is not, because the consequent b or the

alternative c is non-trivial), then the CONTINUATION which binds p is

unnecessary.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064

RABBIT 568 05/15/78 Page 28
(DEFINE MAKE-RETURN

(LAMBDA (CFORM CONT)
(LET ((CN (CNODIFY CFORM)))

(1F CONT
(CNODIFY (CONS-RETURN (CONT = CONT) (VAL = CN)))
CN))))

(DEFINE CONVERT-LAMBDA-FM
(LAMBDA (NODE CNAME MP)

(LET ((CV (GENTEMP 'CONT))
(FM (NODE\FORM NODE)))

(CONS-CLAMBDA (VARS = (CONS CV (LAMBDA\VARS FM)))
(BODY = (CONVERT (LAMBDA\BODY FM)

(CNODIFY
(CONS-CVARIABLE (VAR = (OR CNAME CV))))

MP))))))

;3> ISSUES FOR CONVERTING IF:
33> (1) IF WHOLE IF IS TRIVIAL, MAY JUST CREATE A CTRIVIAL.
333 (2) IF CONTINUATION IS NON-CVARIABLE, MUST BIND A VARIABLE TO IT.

333 (3) IF PREDICATE IS TRIVIAL, MAY JUST STICK IT IN SIMPLE CIF.

(DEFINE CONVERT-IF
(LAMBDA (NODE FM CONT MP)

(IF (NODE\TRIVP NODE)
(MAKE-RETURN (CONS-TRIVIAL (NODE = NODE)) CONT)
(LET ((CVAR (IF (EQ (TYPE (CNODE\CFORM CONT)) 'CVARIABLE)

NIL .
(GENTEMP 'CONT)))

(PVAR (IF (NODE\TRIVP (IF\PRED FM))
NIL
(NODE\NAME (IF\PRED FM)))))

(LET ((ICONT (IF CVAR
(CNODIFY (CONS-CVARIABLE (VAR = CVAR)))
CONT))

(IPRED (IF PVAR
(CNODIFY (CONS-CVARIABLE (VAR = PVAR)))
(CNODIFY (CONS-TRIVIAL (NODE = (IF\PRED FM)))))))

(LET ((CIF (CNODIFY
(CONS-CIF
(PRED = IPRED)
(CON = (CONVERT (IF\CON FM) ICONT MP))
(ALT = (CONVERT (IF\ALT FM)

(CNODIFY
(CONS -CVARIABLE
(VAR = (CVARIABLE\VAR

(CNODE\CFORM ICONT)))))
MP))))))

(LET ((FOO (IF PVAR
(CONVERT (IF\PRED FM)

(CNODIFY (CONS-CONTINUATION (VAR = PVAR)
(BODY = CIF)))

MP)
CIF)))

(1F CVAR
(CNODIFY
(CONS-CCOMBINATION
(ARGS = (LIST (CNODIFY

(CONS-CLAMBDA
(VARS = (LIST CVAR))
(BODY = FOO)))

CONT))))
FOO))))))))

180

This is all done as follows. First CVAR and PVAR are bound to generated

names if necessary, CVAR for binding the continuation and PVAR for binding the

predicate value. Then ICONT and IPRED (the "I" is a mnemonic for "internal") are

bound to the cnodes to be used for the two conversions of consequent and

alternative, and for the predicate of the CIF, respectively. CIF is then bound

to the cnode for the CIF code, including the conversions of consequent and

alternative. Finally, using FOO as an _ =intermediary, CONVERT-IF first

conditionally arranges for conversion of a non-trivial predicate, and then

conditionally arranges for the binding of a non-cvariable continuation. The

result of all this is returned as the final conversion of the original IF node.

CONVERT-ASET is fairly straightforward, except that, as for IF nodes, a

special case is made of trivial nodes, as determined by the TRIVP slot.

The CATCH construct may be viewed as the user's one interface between the

"LAMBDA world" and the "continuation world". CONVERT-CATCH arranges its

conversion in such a way as to eliminate CATCH entirely. Because CONTINUATION

cnodes provide an explicit representation for the continuations involved, there

is no need at this level to have an explicit CCATCH sort of cnode. The general

idea is:

NODE = (CATCH a b) and CONT = k_ becomes

((CLAMBDA (q)
((CLAMBDA (a) (RETURN q b))
(CLAMBDA (*IGNORE* V) (RETURN q V))))

k)

In the case where the given continuation k is already a cvariable, then it need

not be bound to a new one q. Note that the (renamed) user catch variable a is

bound to a CLAMBDA which ignores its own continuation, and returns the argument V

to the continuation of the CATCH. Thus the user variable a is bound not to an

actual CONTINUATION, but to a little CLAMBDA which interfaces properly between

the CLAMBDA world and the CONTINUATION world. The uses of CVAR and ICONT are

analogous to their uses in CONVERT-IF.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

RABBIT 568 05/15/78 Page 29
(DEFINE CONVERT-ASET

(LAMBDA (NODE FM CONT MP)
(IF (NODE\TRIVP NODE)

(MAKE-RETURN (CONS-TRIVIAL (NODE = NODE)) CONT)
(CONVERT (ASET\BODY FM)

(LET ((NM (NODE\NAME (ASET\BODY FM))))
(CNODIFY
(CONS-CONTINUATION
(VAR = NM)
(BODY = (CNODIFY

(CONS-CASET
(CONT = CONT)
(VAR = (ASET\VAR FM))
(BODY = (CNODIFY (CONS-CVARIABLE

(VAR = NM))))))))))
MP))))

333 ISSUES FOR CONVERTING CATCH:
33; (1) MUST BIND THE CATCH VARIABLE TO A FUNNY FUNCTION WHICH IGNORES ITS CONTINUATION:
333 (2) IF CONTINUATION IS NON-CVARIABLE, MUST BIND A VARIABLE TO IT.

(DEFINE
CONVERT-CATCH
(LAMBDA (NODE FM CONT MP)

(LET ((CVAR (IF (EQ (TYPE (CNODE\CFORM CONT)) 'CVARIABLE)
NIL
(GENTEMP 'CONT))))

(LET ((ICONT (IF CVAR
(CNODIFY (CONS-CVARIABLE (VAR = CVAR)))
CONT)))

(LET ((CP (CNODIFY
(CONS-CCOMBINATION
(ARGS = (LIST (CNODIFY

(CONS-CLAMBDA
(VARS = (LIST (CATCH\VAR FM)))
(BODY = (CONVERT (CATCH\BODY FM) ICONT MP))))

(CNODIFY
(CONS-CLAMBDA
(VARS = '(*IGNORE® V))
(BODY = (MAKE-RETURN

(CONS-CVARIABLE (VAR = 'V))
(CNODIFY |
(CONS-CVARIABLE
(VAR = (CVARIABLE\VAR

(CNODE\CFORM ICONT)))))))))))))))
(IF CVAR (CNODIFY

(CONS-CCOMBINATION
(ARGS = (LIST (CNODIFY

(CONS-CLAMBDA (VARS = (LIST CVAR))
(BODY = CP)))

CONT))))
cP))))))

182

CONVERT-LABELS simply converts all the labelled function definitions

using NIL as the continuation for each. This reflects the fact that no code

directly receives the results of closing the definitions; rather, they simply
become part of the environment. The body of the LABELS is converted using the
given continuation. .

To make things much simpler for the pass-2 analysis and the code

generator, it is forbidden to use ASET' on a LABELS-bound variable. This is an

arbitrary restriction imposed by RABBIT (out of laziness on my part and a desire

to concentrate on more important issues), and not one inherent in the SCHEME

language. This restriction is unnoticeable in practice, since one seldom uses

ASET' at all, let alone on a LABELS variable.

The conversion of COMBINATION nodes is the most complex of all cases.

First, a trivial combination becomes simply a TRIVIAL cnode. Otherwise, the

overall idea is that each argument is converted, and the continuation given to

the conversion is the conversion of all the following arguments. The conversion

of the last argument uses a continuation which performs the invocation of

function on arguments, using all the bound variables of the generated

continuations. The end result is a piece of code which evaluates one argument,

binds a variable to the result, evaluates the next, etc., and finally uses the

results to. perform a function call.

To simplify the generated code, the arguments are divided into two

classes. One class consists of trivial arguments and LAMBDA-expressions (this

Class is precisely the class of "trivially evaluable" expressions defined in

{Imperative]), and the other class consists of the remaining arguments. The

successive conversion using successive continuations as in the general theory is

only performed on the latter class of arguments. The trivially evaluable

expressions are included along with the bound variables for non-trivial argument

values in the final function call. For example, one might have something like:

NODE = (FOO (CONS A B) (BAR A) B (BAZ B)) and CONT = k __ becomes

(RETURN (CONTINUATION (x)
(RETURN (CONTINUATION (y)

(FOO k (CONS A B) x B y))
(BAZ B))) :

(BAR A))

where FOO, (CONS A B), and B are trivial, but (BAR A) and (BAZ B) are not.

001
002
003
004

005
006
007
008
009
010
011
012
013
014
015
016
017
018

RABBIT 568 05/15/78 _ Page 30
:33 ISSUES FOR CONVERTING LABELS:
333 (1) MUST CONVERT ALL THE NAMED LAMBDA-EXPRESSIONS, USING A NULL CONTINUATION.
333 (2) TO MAKE THINGS EASIER LATER, WE FORBID ASET ON A LABELS VARIABLE.

(DEFINE CONVERT-LABELS
(LAMBDA (NODE FM CONT MP)

(DO ((F (LABELS\FNDEFS FM) (COR F))
(V (LABELS\FNVARS FM) (COR V))
(CF NIL (CONS (CONVERT (CAR F)

((NULL F)
(CNODIFY (CONS-CLABELS (FNVARS = (LABELS\FNVARS FM))

(FNDEFS = (NREVERSE CF))
(BODY = (CONVERT (LABELS\BODY FM) CONT MP)))))

(AND (GET (CAR V) 'WRITE-REFS)
(ERROR '|Are you crazy, using ASET on a LABELS variable?{

(CAR V)
"FAIL-ACT)))))

NIL MP) CF)))

184

The separation into two classes is accomplished by the outer DO loop.

DELAY-FLAGS is a list of flags describing whether the code can be "delayed" (not

converted using strung-out continuations) because it is trivially evaluable. The

inner DO loop of the three (which loops on variables A, D, and Z, not A, D, and
F') then constructs the final function call, using the “delayed" arguments and

generated continuation variables. The names used for the variables are the names

of the corresponding nodes, which were generated by NODIFY. Finally, the middle

DO loop (which executes last because the "“inner" DO loop occurs in the

initialization, not the body, of the "middle" one) generates the strung-out

continuations, converting the non-delayable arguments in reverse order, so as to

generate the converted result from the inside out.

The net effect is that non-trivial arguments are evaluated from left-to-

right, and trivial ones are also (as it happens, because of MacLISP semantics),

but the two classes are intermixed. This is where RABBIT takes advantage of the

SCHEME semantics which decree that arguments to a combination may be evaluated in

any order. It is also why CHECK-COMBINATION-PEFFS tries to detect infractions of

this rule.

A special trick is that if the given continuation is a variable, and the

combination is of the form ((LAMBDA ...) ...), then it is arranged to use the
given continuation as the continuation for converting the body of the LAMBDA,

rather than the extra variable which is introduced for a continuation in the

LAMBDA variables list (see CONVERT-LAMBDA-FM). This effectively constitutes the

optimization of substituting one continuation variable for another, much as META-

COMBINATION-LAMBDA may substitute one variable for another. (This turns out to

be the only optimization of importance to be done on pass-2 cnode code; rather

than building a full-blown optimizer for pass-2 cnode-trees, or arranging to make

the optimizer usable on both kinds of data structures, it was easier to tweak the

conversion of combinations.) The substitution is effected by passing a non-NIL

CNAME argument to CONVERT-LAMBDA-FORM, as computed by the form (AND (NULL (CDR
A)) ...).

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

RABBIT 568 05/15/78 Page 31
33> ISSUES FOR CONVERTING COMBINATIONS:

333 (1)

333 (2)
333 (3)

eae
vee

(DEFINE

TRIVIAL ARGUMENT EVALUATIONS ARE DELAYED AND ARE NOT BOUND TO THE VARIABLE OF
A CONTINUATION. WE ASSUME THEREBY THAT THE COMPILER IS PERMITTED TO EVALUATE
OPERANDS IN ANY ORDER.
ALL NON-DELAYABLE COMPUTATIONS ARE ASSIGNED NAMES AND STRUNG OUT WITH CONTINUATIONS.
IF CONT IS A CVARIABLE AND THE COMBINATION IS ((LAMBDA ...) ...) THEN WHEN CONVERTING
THE LAMBDA-EXPRESSION WE ARRANGE FOR ITS BODY TO REFER TO THE CVARIABLE CONT RATHER
THAN TO ITS OWN CONTINUATION. THIS CROCK EFFECTIVELY PERFORMS THE OPTIMIZATION OF
SUBSTITUTING ONE VARIABLE FOR ANOTHER, ONLY ON CONTINUATION VARIABLES (WHICH COULON'T
BE CAUGHT BY META-EVALUATE).

CONVERT-COMBINATION
(LAMBDA (NODE FM CONT MP)

(1F (NODE\TRIVP NODE)
(MAKE-RETURN (CONS-TRIVIAL (NODE = NODE)) CONT)
(DO ({A (COMBINATION\ARGS FM) (COR A))

(DELAY-FLAGS NIL
(CONS (OR (NODE\TRIVP (CAR A))

(EQ (TYPE (NODE\FORM (CAR A))) '‘LAMBDA))
DELAY-FLAGS)))

((NULL A)
(DO ((A (REVERSE (COMBINATION\ARGS FM)) (COR A))

(D DELAY-FLAGS (COR D))
(F (CNODIFY

(CONS-CCOMBINATION
(ARGS = (DO ((.A (REVERSE (COMBINATION\ARGS FM)) (COR A))

(D DELAY-FLAGS (CDR D))
(Z NIL ‘(CONS (IF (CAR D)

(IF (EQ (TYPE (NODE\FORM (CAR A)))
"LAMBDA)

(CNODIFY
(CONVERT-LAMBDA-FM
(CAR A)
(AND (NULL (COR A))

(EQ (TYPE
(CNODE\CFORM CONT))
"CVARIABLE)

(CVARIABLE\VAR
(CNODE\CFORM CONT)))

MP))
(CNODIFY
(CONS-TRIVIAL
(NODE = (CAR A)))))

(CNODIFY
(CONS -CVARIABLE
(VAR = (NODE\NAME (CAR A))))))

Z)))
((NULL A) (CONS (CAR Z) (CONS CONT (COR Z))))))))

(IF (CAR D) F
(CONVERT (CAR A)

(CNODIFY (CONS-CONTINUATION
(VAR = (NODE\NAME (CAR A)))
(BODY = F)))

MP))))
((NULL A) F)))))))

186

Once the pass-2 cnode-tree is constructed, a pass-2 analysis is performed

in a manner very similar to the pass-1 analysis. As before, successive routines

are called which recursively process the code tree and pass information up and

down, filling in various slots and putting properties on the property lists of
variable names.

The first routine, CENV-ANALYZE, is similar to ENV-ANALYZE, but differs

in some important respects. Two slots are filled in for each cnode. The slot

ENV is computed from the top down, while REFS is computed from the bottom up.

ENV is the environment, a list of bound variables visible to the cnode.

The ENV slot in the node-tree was a mapping (an alist), but this ENV is only a

list. The argument ENV is used in the analysis of CVARIABLE and CASET nodes.
The cnode slot ENV is included only for debugging purposes, and is never used by

RABBIT itself.

REFS is analogous to the REFS slot of a node-tree: it is the set of
variables bound above and referenced below the cnode. It differs from the pass-1l

analysis in that variables introduced to name continuations and variables bound

by continuations are also accounted for. In the case of a TRIVIAL cnode,

however, the REFS are precisely those of the contained node.

The argument FNP to CENV-ANALYZE in non-NIL iff the given cnode occurs in

"functional position" of a CCOMBINATION or RETURN cnode. This is used when a

variable is encountered; on the property list a VARIABLE-REFP property is placed

iff FNP is NIL, indicating that the variable was referenced in “variable (non-

function) position". This information will be used by the next phase, BIND-

ANALYZE.

001 RABBIT 568 05/15/78 Page 32
002 333 ENVIRONMENT ANALYSIS FOR CPS VERSION

003

004 33; WE WISH TO DETERMINE THE ENVIRONMENT AT EACH CNODE,

005 533; AND DETERMINE WHAT VARIABLES ARE. BOUND ABOVE AND

006 33; REFERREO TO BELOW EACH CNODE.

007
008 333 FOR EACH CNODE WE FILL IN THESE SLOTS:
009 oo ENV THE ENVIRONMENT SEEN AT THAT CNODE (A LIST OF VARS)
010 a35 REFS VARIABLES BOUND ABOVE AND REFERRED TO BELOW THAT CNODE
011 333 FOR EACH VARIABLE REFERRED TO IN NON-FUNCTION POSITION
012 33; BY A CVARIABLE OR CTRIVIAL CNODE WE GIVE A NON-NIL VALUE TO THE PROPERTY:
013 aa3 VARIABLE -REFP
014
015 333 FNP IS NON-NIL IFF CNODE OCCURS IN FUNCTIONAL POSITION

016
017 (DEF INE
018 CENV-ANALYZE
019 (LAMBDA (CNODE ENV FNP)
020 (LET ((CFM (CNODE\CFORM CNODE)))
021 (ALTER-CNODE CNODE (ENV := ENV))
022 (EQCASE (TYPE CFM)
023 (TRIVIAL
024 (CENV-TRIV-ANALYZE (TRIVIAL\NODE CFM) FNP)
025 (ALTER-CNODE CNODE
026 (REFS := (NODE\REFS (TRIVIAL\NODE CFM)))))
027 (CVARIABLE |
028 (LET ((V (CVARIABLE\VAR CFM)))
029 (ADDPROP V CNODE 'READ-REFS)
030 (OR FNP (PUTPROP V T 'VARIABLE-REFP))
031 (ALTER-CNODE CNODE
032 (REFS := (AND (MEMQ V ENV)
033 (LIST (CVARIABLE\VAR CFM)))))))
034 (CLAMBDA
035 (LET ((B (CLAMBDA\BODY CFM)))
036 (CENV-ANALYZE B (APPEND (CLAMBDA\VARS CFM) ENV) NIL)
037 (LET ((REFS (SETDIFF (CNODE\REFS B) (CLAMBDA\VARS CFM))))
038 (ALTER-CNODE CNODE (REFS := REFS)))))
039 (CONTINUATION
040 (LET ((B (CONTINUATION\BODY CFM)))
041 (CENV-ANALYZE B (CONS (CONTINUATION\VAR CFM) ENV) NIL)
042 (LET ((REFS (REMOVE (CONTINUATION\VAR CFM) (CNODE\REFS B))))
043 (ALTER-CNODE CNODE (REFS := REFS)))))
044 (CIF
045 (LET ((PRED (CIF\PRED CFM))
046 (CON (CIF\CON CFM))
047 (ALT (CIF\ALT CFM)))-
048 (CENV-ANALYZE PREO ENV NIL)
049 (CENV-ANALYZE CON ENV NIL)
050 (CENV-ANALYZE ALT ENV NIL)
051 (ALTER-CNODE CNODE
052 (REFS := (UNION (CNODE\REFS PRED)
053 (UNION (CNODE\REFS CON)
054 (CNODE\REFS ALT)))))))
055 (CASET
056 (LET ((V (CASET\VAR CFM))
057 (CN (CASET\CONT CFM))
058 (B (CASET\BODY CFM)))
059 (PUTPROP (CASET\VAR CFM) T 'VARIABLE-REFP)
060 (CENV-ANALYZE CN ENV T)
061 (CENV-ANALYZE B ENV NIL)
062 (ALTER-CNODE CNODE
063 (REFS := (LET ((R (UNION (CNODE\REFS CN)
064 (CNODE\REFS B))))
065 (IF (MEMQ V ENV) (ADJOIN V R) R))))))
066 (CLABELS
067 (LET ((LENV (APPEND (CLABELS\FNVARS CFM) ENV)))
068 (DO ((F (CLABELS\FNDEFS CFM) (COR F))
069 (R NIL (UNION R (CNODE\REFS (CAR F)))))

188

This page intentionally left blank

except for

an annoying and self-referential little sentence.

' 070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102

. 103
104
105

RABBIT 568 05/15/78 Page 32.1
((NULL F):
(LET ((B (CLABELS\BODY CFM)))

(CENV-ANALYZE B LENV NIL)
(ALTER-CNODE CNODE

(REFS := (SETDIFF (UNION R (CNODE\REFS B))
(CLABELS\FNVARS CFM))))))

(CENV-ANALYZE (CAR F) LENV NIL))))
(CCOMBINATION
(LET ((ARGS (CCOMBINATION\ARGS CFM)))

(CENV-ANALYZE (CAR ARGS) ENV T)
(COND ((AND (EQ (TYPE (CNODE\CFORM (CAR ARGS))) ‘TRIVIAL)

(EQ (TYPE (NODE\FORM (TRIVIAL \NODE
(CNODE\CFORM (CAR ARGS)))))

"VARIABLE)
(TRIVFEN (VARIABLE\VAR

(NODE \FORM
(TRIVIAL \NODE
(CNODE\CFORM
(CAR ARGS)))))))

(CENV-ANALYZE (CADR ARGS) ENV T)
(CENV-CCOMBINATION-ANALYZE CNODE

ENV
(CBDR ARGS)
(UNION (CNODE\REFS (CAR ARGS))

(CNODE\REFS (CADR ARGS)))))
(T (CENV-CCOMBINATION-ANALYZE CNODE

ENV
(CDR ARGS)

((CNODE\REFS (CAR ARGS)))))))

RETURN
(LET ((C (RETURN\CONT CFM))

(V (RETURN\VAL CFM)))
(CENV-ANALYZE C ENV T)
(CENV-ANALYZE V ENV NIL)
(ALTER-CNODE CNODE

(REFS := (UNION (CNODE\REFS C) (CNODE\REFS V))))))))))

190

The only purpose of CENV-TRIV-ANALYZE is to go through the code for a

TRIVIAL cnode, looking for variables occurring in other than function position,

in order to put appropriate VARIABLE-REFP properties. Notice that the types

LAMBDA and LABELS do not occur in the EQCASE expression, as nodes of those types

can never occur in trivial expressions.

CENV-CCOMBINATION-ANALYZE is a simple routine which analyzes CCOMBINATION

cnodes; it is a separate routine only because it is used in more than one place

in CENV-ANALYZE. It could have been made a local subroutine by using a LABELS in

CENV-ANALYZE, but I elected not to do so for purely typographical reasons.

001
002
003
004
005
006
007
008
009
010
oll
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

RABBIT 568 05/15/78 Page 33
::; THIS FUNCTION MUST GO THROUGH AND LOCATE VARIABLES APPEARING IN NON-FUNCTION POSITION.

(DEFINE CENV-TRIV-ANALYZE
(LAMBDA (NODE FNP)

| (LET ((FM (NODE\FORM NODE)))
(EQCASE (TYPE FM)

(CONSTANT NIL)
(VARIABLE
(OR FNP (PUTPROP (VARIABLE\VAR FM) T 'VARIABLE-REFP)))

(LAMBDA
(OR FNP |

(ERROR '|Trivial closure - CENV-TRIV-ANALYZE| NODE 'FAIL-ACT))
(CENV-TRIV-ANALYZE (LAMBDA\BODY FM) NIL))

(IF
(CENV-TRIV-ANALYZE (IF\PRED FM) NIL)
(CENV-TRIV-ANALYZE (IF\CON FM) NIL)
(CENV-TRIV-ANALYZE (IF\ALT FM) NIL))

(ASET
(PUTPROP (ASET\VAR FM) T 'VARIABLE-REFP)
(CENV-TRIV-ANALYZE (ASET\BODY FM) NIL))

(COMBINATION |
(DO ((A (COMBINATION\ARGS FM) (CDR A))

(F T NIL))
((NULL A))
(CENV-TRIV-ANALYZE (CAR A) F)))))))

(DEFINE CENV-CCOMBINATION-ANALYZE
(LAMBDA (CNODE ENV ARGS FREFS)

(DO ((A ARGS (COR A))
(R FREFS (UNION R (CNODE\REFS (CAR A)))))

((NULL A)
(ALTER-CNODE CNODE (REFS := R)))

(CENV-ANALYZE (CAR A) ENV NIL))))

192

The binding analysis is the most complicated phase of pass 2. It

determines for each function whether or not a closure structure will be needed

for it at run time (and if so, whether the closure structure must contain a

pointer to the code); it determines for each variable whether or not it can be |

referred to by a run-time closure structure; and it determines for each function

how arguments will be passed to it (because for internal functions not apparent

to the “outside world", any arbitrary argument-passing convention may be adopted

by the compiler to optimize register usage; in particular, arguments which are

never referred to need never even be actually passed). If flow analysis

determines that a given variable always denotes (a closure of) a given functional

(CLAMBDA) expression, then a KNOWN-FUNCTION property is created to connect the

variable directly to the function for the benefit of the code generator.

BIND-ANALYZE is just a simple dispatch to one of many specialists, one

for each type of CNODE. TRIVIAL and CVARIABLE cnodes are handled directly

because they are simple.

The argument FNP is NIL, EZCLOSE, or NOCLOSE, depending respectively on

whether a full closure structure, a closure structure without a code pointer, or

no closure structure will be needed if in fact CNODE turns out to be of type

CLAMBDA (or CONTINUATION). Normally it is NIL, unless determined otherwise by a

parent CLABELS or CCOMBINATION cnode.

The argument NAME is meaningful only if the CNODE argument is of type

CLAMBDA or CONTINUATION. If non-NIL, it is a Suggested name to use for the

cnode. This name will later be used by the code generator as a tag. The only

reason for using the suggestion rather than a generated name (and in fact one

will be generated if the suggested name is NIL) is to make it easier to trace

things while debugging.

REFD-VARS is a utility routine. Given a set of variables, it returns the

subset of them that are actually referenced (as determined by the READ-REFS and
- WRITE-REFS properties which were set up by ENV-ANALYZE and CENV-ANALYZE).

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058

059
060

ewe
oo

eee
ee

ere

eee
ee,

eo
eo

eee
oF

oes
v9

ore
a

eee
99

see
ef

aee
oF

oe
oe 8

eee
poe

eee
vee

cee
se?

eee
so

eee
ee

eee
soe

eae
1

°
°

.
® »

RABBIT 568 05/15/78 Page 34
BINDING ANALYSIS.

FOR EACH CNODE WE FILL IN:
CLOVARS THE SET OF VARIABLES REFERRED TO BY CLOSURES

AT OR BELOW THIS NODE (SHOULD ALWAYS BE A
SUBSET OF REFS)

FOR EACH CLAMBDA AND CONTINUATION WE FILL IN:
FNP NON-NIL IFF REFERENCED ONLY AS A FUNCTION.

WILL BE 'EZCLOSE IF REFERRED TO BY A CLOSURE,
AND OTHERWISE 'NOCLOSE.

TVARS VARIABLES PASSED THROUGH TEMP LOCATIONS WHEN CALLING
THIS FUNCTION

NAME THE NAME OF THE FUNCTION (USED FOR THE PROG TAG)
FOR EACH CLABELS WE FILL IN:

EASY REFLECTS FNP STATUS OF ALL THE LABELLED FUNCTIONS
FOR EACH VARIABLE WHICH ALWAYS DENOTES A CERTAIN FUNCTION WE
PUT THE PROPERTIES:

KNOWN-FUNCTION IFF THE VARIABLE IS NEVER ASET
THE VALUE OF THE KNOWN-FUNCTION PROPERTY IS THE CNODE FOR
THE FUNCTION DEFINITION.
FOR EACH LABELS VARIABLE IN A LABELS OF THE 'EZCLOSE VARIETY
WE PUT THE PROPERTY:

LABELS-FUNCTION
TO INDICATE THAT ITS "EASY" CLOSURE MUST BE COR'D TO GET THE
CORRECT ENVIRONMENT (SEE PRODUCE-LABELS).

> NAME, IF NON-NIL, IS A SUGGESTED NAME FOR THE FUNCTION

(DEFINE BIND-ANALYZE
(LAMBDA (CNODE FNP NAME)

(LET ((CFM (CNODE\CFORM CNODE)))
(EQCASE (TYPE CFM)

(TRIVIAL
(ALTER-CNODE CNODE (CLOVARS := NIL)))

(CVARIABLE
(ALTER-CNODE CNODE (CLOVARS := NIL)))

(CLAMBDA
(BIND-ANALYZE-CLAMBDA CNODE FNP NAME CFM))

(CONTINUATION :
(BIND-ANALYZE,-CONTINUATION CNODE FNP NAME CFM))

(CIF
(BIND-ANALYZE-CIF CNODE CFM))

(CASET
(BIND-ANALYZE-CASET CNODE CFM))

(CLABELS
(BIND-ANALYZE-CLABELS CNODE CFM))

(CCOMBINATION
(BIND-ANALYZE-CCOMBINATION CNODE CFM))

(RETURN
(BIND-ANALYZE-RETURN CNODE CFM))))))

(DEFINE REFO-VARS
(LAMBDA (VARS)

(DO ((V VARS (COR V))
(WONIL (IF (OR (GET (CAR V) 'READ-REFS)

(GET (CAR V) ‘WRITE-REFS))
(CONS (CAR V) W)
W)))

((NULL V) (NREVERSE W)))))

194

For a CLANBDA cnode, BIND-ANALYZE-CLAMBDA first analyzes the body. The

CLOVARS component of the cnode is then calculated. If the CLAMBDA will have a

run-time closure structure created for it, then any variable it references is

obviously referred to by a closure. Otherwise, only the CLOVARS of its body are

included in the set.

The TVARS component is the set of parameters for which arguments will be

passed in a non-standard manner. Non-standard argument-passing is used only for

NOCLOSE-type functions (though in principle it could also be used for EZCLOSE-

type functions also). In this case, only referenced variables (as determined by

REFD-VARS) are actually passed. The code generator uses TVARS for two purposes:

when compiling the CLAMBDA itself, TVARS is used to determine which arguments are

in which registers; and when compiling calls to the function, TVARS determines

which registers to load (see LAMBDACATE).

The FNP slot is just filled in using the FNP parameter. If a name was

not suggested for the NAME slot, an arbitrary name is generated.

BIND-ANALYZE-CONTINUATION is entirely analogous to BIND-ANALYZE-CLAMBDA.

BIND-ANALYZE-CIF straightforwardly analyzes recursively its sub-cnodes,

and then passes the union of their CLOVARS up as its own CLOVARS.

BIND-ANALYZE-CASET tries to be a little bit clever about the obscure case

produced by code such as:

(ASET' FOO (LAMBDA ...))

where the continuation is a CONTINUATION cnode (rather than a CVARIABLE). It is

then known that the variable bound by the CONTINUATION (not the variable set by
the CASET!!) will have as its value the (closure of the) CLAMBDA-expression.

This allows for the creation of a KNOWN-FUNCTION property, etc. This analysis is

very similar to that performed by BIND-ANALYZE-RETURN (see below). Aside from

this, the analysis of a CASET is simple; the CLOVARS component is merely the

union of the CLOVAR slots of the sub-cnodes.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

RABBIT 568 05/15/78 Page 35
(DEFINE BIND-ANALYZE-CLAMBDA

(LAMBDA (CNODE FNP NAME CFM)
(BLOCK (BIND-ANALYZE (CLAMBDA\BODY CFM) NIL NIL)

(ALTER-CNODE CNODE
(CLOVARS := (IF (EQ FNP ‘NOCLOSE)

(CNODE\CLOVARS (CLAMBDA\BODY CFM))
(CNODE\REFS CNODE))))

(ALTER-CLAMBDA CFM
(FNP := FNP)
(TVARS := (IF (EQ FNP 'NOCLOSE)

(REFD-VARS (CLAMBDA\VARS CFM))
NIL))

(NAME := (OR NAME (GENTEMP 'F)))))))

(DEFINE BIND-ANALYZE-CONTINUATION
(LAMBDA (CNODE FNP NAME CFM)

(BLOCK (BIND-ANALYZE (CONTINUATION\BODY CFM) NIL NIL)
(ALTER-CNODE CNODE

(CLOVARS := (IF (EQ FNP 'NOCLOSE)
(CNODE\CLOVARS (CONTINUATION\BODY CFM))
(CNODE\REFS CNODE))))

(ALTER-CONTINUATION CFM
(FNP := FNP)
(TVARS := (IF (EQ FNP 'NOCLOSE)

(REFD-VARS (LIST (CONTINUATION\VAR CFM)))
NIL))

(NAME := (OR NAME (GENTEMP 'C)))))))

(DEFINE BIND-ANALYZE-CIF
(LAMBDA (CNODE CFM)

(BLOCK (BIND-ANALYZE (CIF\PRED CFM) NIL NIL)
(BIND-ANALYZE (CIF\CON CFM) NIL NIL)
(BIND-ANALYZE (CIF\ALT CFM) NIL NIL)
(ALTER-CNODE CNODE

(CLOVARS := (UNION (CNODE\CLOVARS (CIF\PRED CFM))
(UNION (CNODE\CLOVARS (CIF\CON CFM))

(CNODE\CLOVARS (CIF\ALT CFM)))))))))

(DEFINE BIND-ANALYZE-CASET
(LAMBDA (CNODE CFM)

(LET ((CN (CASET\CONT CFM))
(VAL (CASET\BODY CFM)))

(BIND-ANALYZE CN 'NOCLOSE NIL)
(COND ((AND (EQ (TYPE (CNODE\CFORM CN)) ‘CONTINUATION)

(EQ (TYPE (CNODE\CFORM VAL)) 'CLAMBDA))
(LET ((VAR (CONTINUATION\VAR (CNODE\CFORM CN))))

(PUTPROP VAR VAL 'KNOWN-FUNCTION)
(BIND-ANALYZE VAL

(AND (NOT (GET VAR ‘VARIABLE-REFP))
(IF (MEMQ VAR

(CNODE\CLOVARS
(CONTINUATION\BODY
(CNODE\CFORM CN))))

'EZCLOSE
(BLOCK (ALTER-CONTINUATION (CNODE\CFORM CN)

(TVARS := NIL))
"NOCLOSE)))

NIL)))
(T (BIND-ANALYZE VAL NIL NIL)))

(ALTER-CNODE CNODE
(CLOVARS := (UNION (CNODE\CLOVARS CN)

(CNODE\CLOVARS VAL)))))))

196

The binding analysis of a CLABELS is very tricky because of the

possibility of mutually referent functions. For example, suppose a_ single

CLABELS binds two CLAMBDA expressions with names FOO and BAR. Suppose that the

body of FOO refers to BAR, and that of BAR to FOO. Should FOO and BAR be of FNP-

type NIL, EZCLOSE, or NOCLOSE? If either is of type EZCLOSE, then the other must

be also; but the decision cannot be made sequentially. It is even more

complicated if one must be of type NIL.

An approximate solution is used here, to prevent having to _ solve

complicated simultaneous constraints. It is arbitrarily decreed that all

functions of a single CLABELS shall all have the same FNP type. If any one must

be of type NIL, then they all are. Otherwise, it is tentatively assumed that

they all may be of type NOCLOSE. If this assumption is disproved, then the

analysis is retroactively patched up.

The outer DO loop of BIND-ANALYZE-CLABELS creates KNOWN-FUNCTION

properties, and determines (in the variable EZ) whether any of the labelled

functions needs a full closure structure. (This can be done before analyzing the

functions, because it is determined entirely by the VARIABLE-REFP properties

created in the previous phase.) The inner DO loop then analyzes the functions.

When this is done, if EZ is NOCLOSE, and it turns out that it should have been

EZCLOSE after all, then the third DO loop forcibly patches the CLAMBDA cnodes for

the labelled functions, and the AMAPC form creates LABELS-FUNCTION properties as

a flag for the code generator.

BIND-ANALYZE-RETURN simply analyzes the continuation and return value

recursively, and then merges to two CLOVARS sets to produce its own CLOVARS set.

A special case is when the two sub-cnodes are respectively a CONTINUATION and a

CLAMBDA; then special work is done because it is known that the variable bound

by the CONTINUATION will always denote the (closure of the) CLAMBDA-expression.

A nasty trick is that if it turns out that the CLAMBDA can be of type NOCLOSE,

then the TVARS slot of the CONTINUATION is forcibly set to NIL (i.e. the empty

set). This is because no argument will really be passed. (This fact is also

known by the LAMBDACATE routine in the code generator.)

001
002
003
004
005
006
007
008
009
010
O11
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

RABBIT 568 05/15/78 Page 36
(DEFINE BIND-ANALYZE-CLABELS

(LAMBDA (CNODE CFM)
(BLOCK (BIND-ANALYZE (CLABELS\BODY CFM) NIL NIL)

(DO ((V (CLABELS\FNVARS CFM) (COR V))
(D (CLABELS\FNDEFS CFM) (CDR D))
(EZ 'NOCLOSE (AND (NULL (GET (CAR V) 'VARIABLE-REFP)) EZ)))

((NULL V)
(ALTER-CLABELS CFM (EASY := EZ))
(DO ((V (CLABELS\FNVARS CFM) (CDR V))

(D (CLABELS\FNDEFS CFM) (COR D))
(CV (CNODE\CLOVARS (CLABELS\BODY CFM))

(UNION CV (CNODE\CLOVARS (CAR D)))))
((NULL D)
(ALTER-CNODE CNODE (CLOVARS := CV))
(COND ((AND EZ (INTERSECT CV (LABELS\FNVARS CFM)))

(DO ((D (CLABELS\FNDEFS CFM) (COR D))
(CV (CNODE\CLOVARS (CLABELS\BODY CFM))

(UNION CV (CNODE\CLOVARS (CAR 0)))))
((NULL D)
(ALTER-CNODE CNODE (CLOVARS := CV)))

(ALTER-CLAMBDA (CNODE\CFORM (CAR D))
(FNP := ‘EZCLOSE)
(TVARS := NIL))

(ALTER-CNODE (CAR D)
(CLOVARS := (CNODE\REFS (CAR D)))))

(AMAPC (LAMBDA (V) (PUTPROP V T 'LABELS-FUNCTION))
(CLABELS\FNVARS CFM))

(ALTER-CLABELS CFM (EASY := ‘EZCLOSE)))))
(BIND-ANALYZE (CAR D) EZ (CAR V))))

(PUTPROP (CAR V) (CAR D) 'KNOWN-FUNCTION)))))

(DEFINE BIND-ANALYZE-RETURN
(LAMBDA (CNODE CFM)

(LET ((CN (RETURN\CONT CFM))
(VAL (RETURN\VAL CFM)))

(BIND-ANALYZE CN 'NOCLOSE NIL)
(COND ((AND (EQ (TYPE (CNODE\CFORM CN)) 'CONTINUATION)

(EQ (TYPE (CNODE\CFORM VAL)) 'CLAMBDA))
(LET ((VAR (CONTINUATION\VAR (CNODE\CFORM CN))))

(PUTPROP VAR VAL 'KNOWN-FUNCTION)
(BIND-ANALYZE VAL

(AND (NOT (GET VAR ‘VARIABLE -REFP))
(1F (MEMQ VAR

(CNODE\CLOVARS
(CONTINUATION\BODY
(CNODE\CFORM CN))))

"EZCLOSE
(BLOCK (ALTER-CONTINUATION (CNODE\CFORM CN)

(TVARS := NIL))
"NOCLOSE)))

NIL)))
(T (BIND-ANALYZE VAL NIL NIL)))

(ALTER-CNODE CNODE
(CLOVARS := (UNION (CNODE\CLOVARS CN)

(CNODE\CLOVARS VAL)))))))

198

BIND-ANALYZE-CCOMBINATION first analyzes the function position of the

combination. It then distinguishes three cases: a trivial function, a CLAMBDA-

expression function, and all others.

In the case of a trivial function, the continuation (which is the second

item in ARGS) can be analyzed with FNP = NOCLOSE, because the compilation will

essentially turn into “calculate all other arguments, apply the trivial function,

and then give the result to the continuation". A CCOMBINATION which looks like:

(a-trivial-function (CONTINUATION (var) ...) argl ... argn)

is compiled almost as if it were:

((CONTINUATION (var) ...) (a-trivial-function argl ... argn))

and of course the continuation can be treated as of type NOCLOSE.

In the case of a CLAMBDA-expression, the arguments are all analyzed, and

then the AMAPC expression goes back over the TVARS list of the CLAMBDA, and

removes from the TVARS set each variable corresponding to an argument which the

analysis has proved to be a NOCLOSE-type KNOWN-FUNCTION. This is because no

actual argument will be passed at run time for such a function, and so there is

no need to allocate a register through which to pass that argument.

In the third case, the arguments are analyzed straightforwardly by BIND-

CCOMBINATION-ANALYZE.

BIND-CCOMBINATION-ANALYZE does the dirty work of analyzing arguments of a

CCOMBINATION and updating the CLOVARS slot of the CCOMBINATION cnode. If VARS is

non-NIL, then it is the variables of the CLAMBDA-expression which was in the

function position of the CCOMBINATION. As the arguments are analyzed, KNOWN-

FUNCTION properties are put on the variables as appropriate, and the correct

value of FNP is determined for the recursive call to BIND-ANALYZE. If VARS is

NIL, then this code depends on the fact that (CDR NIL)=NIL in MacLISP.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060

RABBIT 568 05/15/78 Page 37

(DEFINE BIND-ANALYZE-CCOMBINATION
(LAMBDA (CNODE CFM)

(LET ((ARGS (CCOMBINATION\ARGS CFM)))
(BIND-ANALYZE (CAR ARGS) 'NOCLOSE NIL)
(LET ((FN (CNODE\CFORM (CAR ARGS))))

(COND ((AND (EQ (TYPE FN) 'TRIVIAL)
(EQ (TYPE (NODE\FORM (TRIVIAL\NODE FN)))

"VARIABLE)
(TRIVEN (VARIABLE\VAR (NODE\FORM (TRIVIAL\NODE FN)))))

(BIND-ANALYZE (CADR ARGS) ‘NOCLOSE NIL)
(BIND-CCOMBINATION-ANALYZE CNODE

(CDOR ARGS)
NIL
(CNODE\CLOVARS (CADR ARGS))))

((EQ (TYPE FN) 'CLAMBDA)
(BIND-CCOMBINATION-ANALYZE CNODE

(COR ARGS)
(CLAMBDA\VARS FN)
(CNODE\CLOVARS (CAR ARGS)))

(AMAPC (LAMBDA (V)
(IF (LET ((KEN (GET V 'KNOWN-FUNCTION)))

(AND KFN
(EQ (EQCASE (TYPE (CNODE\CFORM KFN))

(CLAMBDA
(CLAMBDA\FNP
(CNODE\CFORM KFN)))

(CONTINUATION
(CONT INUATION\F NP
(CNODE\CFORM KFN))))

"NOCLOSE)))
(ALTER-CLAMBDA
FN
(TVARS := (DELQ V (CLAMBDA\TVARS FN))))))

(CLAMBDA\TVARS FN))) .
(T (BIND-CCOMBINATION-ANALYZE CNODE

(CDR ARGS)
NIL
(CNODE\CLOVARS (CAR ARGS)))))))))

333 VARS MAY BE NIL - WE DEPEND ON (COR NIL)=NIL.

(DEFINE BIND-CCOMBINATION-ANALYZE
(LAMBDA (CNODE ARGS VARS FCV)

(DO ((A ARGS (CDR A))
(V VARS (COR V))
(CV FCV (UNION CV (CNODE\CLOVARS (CAR A)))))

((NULL A)
(ALTER-CNODE CNODE (CLOVARS := CV)))

(COND ((AND VARS .
(MEMQ (TYPE (CNODE\CFORM (CAR A))) '(CLAMBDA CONTINUATION))
(NOT (GET (CAR V) 'WRITE-REFS)))

(PUTPROP (CAR V) (CAR A) 'KNOWN-FUNCTION)
(BIND-ANALYZE (CAR A)

(AND (NOT (GET (CAR V) 'VARIABLE-REFP))
(IF (MEMQ (CAR V) FCV)

"EZCLOSE
"NOCLOSE))

NIL))
(T (BIND-ANALYZE (CAR A) NIL NIL))))))

200

DEPTH-ANALYZE allocates registers through which to pass arguments to

NOCLOSE functions, i.e. for arguments corresponding to elements of TVARS sets.

An unclever stack discipline is used for allocating registers. Each function is

assigned a "depth", which is zero for a function whose FNP is NIL or EZCLOSE

(such functions take their arguments in the standard registers **ONEx* through

*kEIGHT**, assuming that **NUMBER-OF-ARG-REGS** is 8, as it is in the current

SCHEME implementation). For a NOCLOSE function the depth is essentially the

depth of the function in whose body the NOCLOSE function appears, plus the number

of TVARS belonging to that other function (if it is of type NOCLOSE) or the

number of standard argument registers used by it (if it is NIL or EZCLOSE). For

example, consider this code:

(CLAMBDA (C X Y)
((CLAMBDA (K F Z)

((CLAMBDA (Q W V)
oe)

CONT-57 ‘3 '4))
(CONTINUATION (V) ...)
(CLAMBDA (H) ...)
"FOO))

Suppose that the outer CLAMBDA is of type EZCLOSE for some reason. Its depth is

0. The two CLAMBDA-expressions and CONTINUATION immediately within it have depth

3 (assuming the CONTINUATION and second CLAMBDA are of type NOCLOSE -- the first

CLAMBDA definitely is). The innermost CLAMBDA is then of depth 4 (for Z, which

will be in TVARS -- K and F will not be because they are names for NOCLOSE

functions, assuming K and F have no WRITE-REFS properties).

To each function is also attached a MAXDEP value, which is in effect the

number of registers used by that function, including all NOCLOSE functions within

it. This is used in only one place in the code generator, to generate a SPECIAL

declaration for the benefit of the MacLISP compiler, which compiles the output of

RABBIT. For most constructs this is simply the numerical maximum over the depths

of all sub-cnodes. Toward this end the maximum depth of the cnode is returned as

the value of DEPTH-ANALYZE.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059

RABBIT 568 05/15/78 Page 38

333 DEPTH ANALYSIS FOR CPS VERSION.

333 FOR EACH CLAMBDA AND CONTINUATION WE FILL IN:
oa8 DEP DEPTH OF TEMP VAR USAGE AT THIS POINT
333 MAXDEP MAX DEPTH BELOW THIS POINT

333 VALUE OF DEPTH-ANALYZE IS THE MAX DEPTH

(DEFINE DEPTH-ANALYZE
(LAMBDA (CNODE DEP)

(LET ((CFM (CNODE\CFORM CNODE)))
(EQCASE (TYPE CFM)

(TRIVIAL DEP)
(CVARIABLE DEP)
(CLAMBDA
(LET ((MD (DEPTH-ANALYZE (CLAMBDA\BODY CFM)

(1F (EQ (CLAMBDA\FNP CFM) 'NOCLOSE)
(+ DEP (LENGTH (CLAMBDA\TVARS CFM)))
(MIN (LENGTH (CLAMBDA\VARS CFM))

(+ 1 **NUMBER-OF -ARG-REGS**))))))
(ALTER-CLAMBDA
CFM
(DEP := (IF (EQ (CLAMBDA\FNP CFM) 'NOCLOSE) DEP 0))
(MAXDEP := MD))

M0))
(CONTINUATION
(LET ((MD (DEPTH-ANALYZE

(CONTINUATION\BODY CFM)
(IF (€Q (CONTINUATION\FNP CFM) 'NOCLOSE)

(+ DEP (LENGTH (CONTINUATION\TVARS CFM)))
2))))

(ALTER-CONTINUATION
CFM
(DEP := (IF (EQ (CONTINUATEON\FNP CFM) 'NOCLOSE) DEP 0))
(MAXDEP := MD))

MD))
(CIF
(MAX (OEPTH-ANALYZE (CIF\PRED CFM) OEP)

(DEPTH-ANALYZE (CIF\CON CFM) DEP)
(DEPTH-ANALYZE (CIF\ALT CFM) DEP)))

(CASET
(MAX (DEPTH-ANALYZE (CASET\CONT CFM) DEP)

(DEPTH-ANALYZE (CASET\BODY CFM) DEP)))
(CLABELS
(LET ((DP (IF (EQ (CLABELS\EASY CFM) 'NOCLOSE)

DEP
(+ DEP (LENGTH (CLABELS\FNVARS CFM))))))

(DO ((D (CLABELS\FNDEFS CFM) (COR D))
(MD (DEPTH-ANALYZE (CLABELS\BODY CFM) OP)

(MAX MD (DEPTH-ANALYZE (CAR D) DP))))
((NULL D0) MD))))

(CCOMBINATION
(DO ((A (CCOMBINATION\ARGS CFM) (COR A))

(MD 0 (MAX MD (DEPTH-ANALYZE (CAR A) DEP))))
((NULL A) MD)))

(RETURN
(MAX (DEPTH-ANALYZE (RETURN\CONT CFM) DEP)

(DEPTH-ANALYZE (RETURN\VAL CFM) DEP)))))))

202

Just as DEPTH-ANALYZE assigns locations in registers ("stack locations")

for variables, so CLOSE-ANALYZE assigns locations in consed ("heap-allocated")

environment structures for variables. The general idea is that if the value of a

an accessible variable is not in a register, then it is in the structure which is

in the register *xENV**. This structure can in principle be any structure

whatsoever, according to the whim of the compiler. RABBIT's whim is to be very

unclever; the structure of *xENV** is always a simple list of variable values.

Thus a variable in the **ENV** structure is always accessed by a series of CDR

operations and then one CAR operation.

(More clever would be to maintain the environment as a chained list of

vectors, each vector representing a non-null contour. Then a variable could be

accessed by a series of "CDR" operations equal to the number of contours (rather

than the number of variables) between the binding and the reference, followed by

a single indexing operation into the contour-vector. The number of "CDR"

operations could be reduced by having a kind of "cache" for the results of such

contour operations; such a cache would in fact be equivalent to the "display"

used in many Algol implementations. If such a display were maintained, a

variable could be accessed simply by a two-level indexing operation.)

Within the compiler an environment structure is also represented as a

simple list, with the name of a variable occupying the position which its value

will occupy in the run-time environment.

For every CLAMBDA, CONTINUATION, and CLABELS, a slot called CONSENV is

filled in, which is a list representing what the environment structure will look

like when the closure(s) for that construct are to be constructed, if any. This

is done by walking over the cnode-tree and doing to the’ environment

representation precisely what will be done to the real environment at run time.

There is a problem with the possibility that a variable may initially be

in a register (because it was passed as an argument, for example), but must be

transferred to a consed environment structure because the variable is referred to

by the code of a closure to be constructed. There are two cases: either the

variable has no WRITE-REFS property, or it does.

If it does not, then there is no problem with the value of the variable

being in two or more places, so it is simply copied and consed into the

environment as necessary. The CLOSEREFS slot of a function is a list of such

variables which must be added to the consed environment before constructing the

closure.

If the variable does have WRITE-REFS, then the value of the variable must

have a single "home", to prevent inconsistencies when it is altered. (This is

far easier than arranging for every ASET' operation to update all extant copies

of a variable's value.) It is arranged that such variables, if they are referred

to be closures (are in the CLOVARS set of the CLAMBDA which binds them) will
exist only in the consed environment. Thus for each CLAMBDA the ASETVARS set is

that subset of the lambda variables which have WRITE-REFS and are in the CLOVARS

set. Before the body of the CLAMBDA is executed, a piece of code inserted by the

code generator will transfer the variables from their registers immediately into
the consed environment, and the values in the registers are thereafter never
referred to.

001 RABBIT 568 05/15/78 Page 39
002 333 CLOSURE ANALYSIS FOR CPS VERSION

003
004 333 FOR EACH CLAMBDA, CONTINUATION, AND CLABELS WE FILL IN:
005 t35 CONSENV THE CONSED ENVIRONMENT OF THE CLAMBDA,
006 tae CONTINUATION, OR CLABELS (BEFORE ANY
007 ar CLOSEREFS HAVE BEEN CONSED ON)
008 +33 FOR EACH CLAMBDA AND CONTINUATION WE FILL IN:
009 tae CLOSEREFS A LIST OF VARIABLES REFERENCED BY THE CLAMBDA
010 tae OR CONTINUATION WHICH ARE NOT IN THE CONSED
011 a35 ENVIRONMENT AT THE POINT OF THE CLAMBDA OR
012 230 CONTINUATION AND SO MUST BE CONSED ONTO THE
013 230 ENVIRONMENT AT CLOSURE TIME; HOWEVER, THESE
014 ar NEED NOT BE CONSED ON IF THE CLAMBDA OR
015 te CONTINUATION IS IN FUNCTION POSITION OF
016 toe A FATHER WHICH IS A ‘CCOMBINATION OR RETURN
017 33> FOR THE CLAMBDA'S IN THE FNDEFS OF A CLABELS, THESE MAY BE
018 333 SLIGHTLY ARTIFICIAL FOR THE SAKE OF OPTIMIZATION (SEE BELOW).
019 >33 FOR EACH CLAMBDA WE FILL IN:
020 ::; ASETVARS A LIST OF THE VARIABLES BOUND IN THE CLAMBDA
021 s:; WHICH ARE EVER ASET AND SO MUST BE CONSED
022 3:3 ONTO THE ENVIRONMENT IMMEDIATELY IF ANY
023. 53; CLOSURES OCCUR IN THE BODY
024 ;;; FOR EACH CLABELS WE FILL IN:
025) 33; FNENV VARIABLES TO BE CONSED ONTO THE CURRENT CONSENV
026 33; BEFORE CLOSING THE LABELS FUNCTIONS
027
028 3 33; CENV IS THE CONSED ENVIRONMENT (A LIST OF VARIABLES)
029
030 (DEFINE FILTER-CLOSEREFS
031 (LAMBDA (REFS CENV)
032 (DO ((X REFS (CDR X))
033 (Y NIL
034 (IF (OR (MEMQ (CAR X) CENV)
035 (LET ((KEN (GET (CAR X) 'KNOWN-FUNCTION)))
036 (AND KFN
037 (EQ (EQCASE (TYPE (CNODE\CFORM KFN))
038 (CLAMBDA
039 (CLAMBDA\FNP (CNODE\CFORM KFN)))
040 (CONTINUATION
041 (CONTINUATION\FNP (CNODE\CFORM KFN))))
042 "NOCLOSE))))
043 Y
044 (CONS (CAR X) Y))))
045 ((NULL X) (NREVERSE Y)))))

204

For each CLABELS a set called FNENV is computed. This is strictly an
efficiency hack, which attempts to arrange it such that the several closures

constructed for a CLABELS share environment structure. The union over all the

variables needed is computed, and these variables are, at run time, all consed
onto the environment before any of the closures is constructed. The hope is that

the intersection of these sets is large, so that the total environment consing is
less than if a separate environment were consed for each labelled closure.

FILTER-CLOSEREFS is a utility routine which, given a set of variables and

an environment representation, returns that subset of the variables which are not

already in the environment and so do not denote known NOCLOSE functions. (Those

variables which are already in the consed environment or which do denote NOCLOSE

functions of course need not be added to that consed environment.)

The argument CENV to CLOSE-ANALYZE is the representation of the consed

environment (in **ENV**) which will be present when the code for CNODE is

executed. The only processing of interest occurs for CLAMBDA, CONTINUATION, and

CLABELS cnodes.

The CLOSEREFS of a CLAMBDA are those which are referred to by the CLAMBDA
and which are not already in CENV, provided the CLAMBDA is not of type NOCLOSE.

The ASETVARS are precisely those VARS which have WRITE-REFS and are in CLOVARS.

The processing for a CONTINUATION is similar. As a consistency check, we

make sure the bound variable has no WRITE-REFS (it should be impossible for an

ASET’ to refer to the bound variable of a CONTINUATION).

For a CLABELS, the FNENV set is first calculated and added to CENV. This
new CENV is then used to process the definitions and body of the CLABELS.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067

RABBIT $68 05/15/78 Page 40
(DEFINE CLOSE-ANALYZE

(LAMBDA (CNODE CENV)

(LET ((CFM (CNODE\CFORM CNODE)))
(EQCASE (TYPE CFM)

(TRIVIAL NIL)
(CVARIABLE NIL)
(CLAMBDA
(LET ((CR (AND (NOT (EQ (CLAMBDA\FNP CFM) 'NOCLOSE))

(FILTER-CLOSEREFS (CNODE\REFS CNODE) CENV)))
(AV (DO ((V (CLAMBDA\VARS (CNODE\CFORM CNODE)) (COR V))

(A NIL (IF (AND (GET (CAR V) ‘WRITE-REFS)
(MEMQ (CAR V)

(CNODE\CLOVARS
(CLAMBDA\BODY CFM))))

(CONS (CAR V) A)

A)))
((NULL V) A))))

(ALTER-CLAMBDA CFM .

(CONSENV := CENV)
(CLOSEREFS := CR)

(ASETVARS := AV))
(CLOSE-ANALYZE (CLAMBDA\BODY CFM)

(APPEND AV CR CENV))))
(CONTINUATION
(AND (GET (CONTINUATION\VAR CFM) 'WRITE-REFS)

(ERROR '|How could an ASET refer to a continuation variable? |

CNODE
"FAIL-ACT))

(LET ((CR (AND (NOT (EQ (CONTINUATION\FNP CFM) ‘NOCLOSE))
(FILTER-CLOSEREFS (CNODE\REFS CNODE) CENV))))

(ALTER-CONTINUATION CFM
(CONSENV := CENV)
(CLOSEREFS := CR))

(CLOSE-ANALYZE (CONTINUATION\BODY CFM)
(APPEND CR CENV))))

(CIF

(CLOSE-ANALYZE (CIF\PRED CFM) CENV)

(CLOSE-ANALYZE (CIF\CON CFM) CENV)
(CLOSE-ANALYZE (CIF\ALT CFM) CENV))

(CASET

(CLOSE-ANALYZE (CASET\CONT CFM) CENV)

(CLOSE-ANALYZE (CASET\BODY CFM) CENV))
(CLABELS
((LAMBDA (CENV)

(BLOCK (AMAPC (LAMBDA (D) (CLOSE-ANALYZE D CENV))

(CLABELS\FNDEFS CFM))
(CLOSE-ANALYZE (CLABELS\BODY CFM) CENV)))

(COND ((CLABELS\EASY CFM)

(DO ((D (CLABELS\FNDEFS CFM) (COR D))
(R NIL (UNION R (CNODE\REFS (CAR D)))))

((NULL D)
(LET ((E (FILTER-CLOSEREFS R CENV)))

(ALTER-CLABELS CFM
(FNENV := E)
(CONSENV := CENV))

(APPEND E CENV)))))
(T (ALTER-CLABELS CFM

(FNENV := NIL)
(CONSENV := CENV))

CENV))))
(CCOMBINATION
(AMAPC (LAMBDA (A) (CLOSE-ANALYZE A CENV))

(CCOMBINATIJON\ARGS CFM)))
(RETURN
(CLOSE-ANALYZE (RETURN\CONT CFM) CENV)

(CLOSE-ANALYZE (RETURN\VAL CFM) CENV))))))

206

We now come to the code generator, which is altogether about one-fourth

of all the code making up RABBIT. Part of this is because much code which is

conceptually singular is duplicated in several places (partly as a result of the

design error in which CCOMBINATION and RETURN nodes, or CLAMBDA and CONTINUATION

nodes, are treated distinctly; and also because a powerful text editor made it

very easy to make copies of the code for various purposes!). The rest is just

because code generation is fairly tricky and requires checking for special cases.

A certain amount of peephole optimization is performed; this is not so much to

improve the efficiency of the output code, as to make the output code easier to

read for a human debugging RABBIT. A large fraction of the output code (perhaps

ten to twenty percent) is merely comments of various kinds intended to help the

debugger of RABBIT figure out what happened.

One problem in the code generator is that most functions need to be able

to return two things: the code generated for a given cnode-tree, and a list of

functions encountered in the cnode-tree, for which code is to generated

separately later. We solve this problem by a stylistic trick, namely the

explicit use of continuation-passing style. Many functions in the code generator

take an argument named "C". This argument is itself a function of two arguments:

the generated code and the deferred-function list. The function which is given C

is expected to compute its two results and then invoke C, giving it the two

results as arguments. (In practice a function which gets an argument C also gets

an argument FNS, which is a deferred-functions list; the function is expected to

add its deferred functions onto this list FNS, and give the augmented FNS list to

C along with the generated code.)

Other arguments which are frequently passed within the code generator are

CENV (a representation of the consed environment); BLOCKFNS, a list describing

external functions compiled together in this "block" or "module" (this is used to

compile a direct GOTO rather than a more expensive call to an external function,

the theory being that several functions might be compiled together in a single

module as with the InterLISP “block compiler"; this theory is not presently

implemented, however, and so BLOCKFNS always has just one entry); PROGNAME, a

symbol which at run time will have as its value the MacLISP SUBR pointer for the

current module (this SUBR pointer is consed into closures of compiled functions,

and so any piece of code which constructs a closure will need to refer to the

value of this symbol); and RNL, the "rename list", an alist pairing internal

variable names to pieces of code for accessing them (when code to reference a

variable is to be generated, the piece of code in RNL is used if the variable is

found in RNL, and otherwise a reference to the variable name itself (which is

therefore global) is output).

COMPILATE is the topmost routine of the code generator. FN is the cnode-

tree for a function to be compiled. The topmost cnode should of course be of

type CLAMBDA or CONTINUATION. For a CLAMBDA, the call to REGSLIST sets up the

initial RNL (rename list) for references to the arguments. Also, when COMP-BODY

has returned the code (the innermost LAMBDA-expression in COMPILATE is the

argument C given to COMP-BODY), SET-UP-ASETVARS is called to take care of copying

the variables in the ASETVARS set into the consed environment. The code for a

CONTINUATION is similar, except that a CONTINUATION has no ASETVARS and only one

bound variable.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

RABBIT 568 05/15/78 Page 41
33; CODE GENERATION ROUTINES

333 PROGNAME : NAME OF A VARIABLE WHICH AT RUN TIME WILL HAVE

tae AS VALUE THE SUBR POINTER FOR THE PROG
333 FN: THE FUNCTION TO COMPILE (A CLAMBDA OR CONTINUATION CNODE)
333 EXTERNALP: NON-NIL IF THE FUNCTION IS EXTERNAL
333 RAL: INITIAL RENAME LIST (NON-NIL ONLY FOR NOCLOSE FNS).

aoe ENTRIES ARE: (VAR . CODE)
333 BLOCKFNS: AN ALIST OF FUNCTIONS IN THIS BLOCK.

rae ENTRIES ARE: (USERNAME CNODE)
333 FNS: A LIST OF TUPLES FOR FUNCTIONS YET TO BE COMPILED;
tee EACH TUPLE IS (PROGNAME FN RNL)
333 C: A CONTINUATION, TAKING:

tae CODE: THE PIECE OF MACLISP CODE FOR THE FUNCTION
aoe FNS: AN AUGMENTED FNS LIST

(DEFINE COMPILATE .
(LAMBDA (PROGNAME FN RNL BLOCKFNS FNS C)

(LET ((CFM (CNODE\CFORM FN)))
(EQCASE (TYPE CFM)

(CLAMBDA
(LET ((CENV (APPEND (CLAMBDA\ASETVARS CFM)

(CLAMBDA\CLOSEREFS CFM)
(CLAMBDA\CONSENV CFM))))

(COMP-BODY (CLAMBDA\BODY CFM)
(REGSLIST CFM T (ENVCARCOR CENV RNL))
PROGNAME
BLOCKFNS
CENV
FNS
(LAMBDA (CODE FNS)

(C (SET-UP-ASETVARS CODE
(CLAMBDA\ASETVARS CFM)
(REGSLIST CFM NIL NIL))

FNS)))))
(CONTINUATION
(LET ((CENV (APPEND (CONTINUATION\CLOSEREFS CFM)

(CONTINUATION\CONSENV CFM))))
(COMP-BODY (CONTINUATION\BODY CFM)

(1F (EQ (CONTINUATION\FNP CFM) 'NOCLOSE)
(IF (NULL (CONTINUATION\TVARS CFM))

(ENVCARCOR CENV RNL)
(CONS (CONS (CONTINUATION\VAR CFM)

(TEMPLOC (CONTINUATION\DEP CFM)))
(ENVCARCOR CENV RNL)))

(CONS (CONS (CONTINUATION\VAR CFM)
(CAR **ARGUMENT-REGISTERS#*))

(ENVCARCOR CENV RNL)))
PROGNAME
BLOCKFNS
CENV
FNS
C)))))))

208

*kARGUMENT-REGISTERS** is a list of the standard "registers" through

which arguments are passed. In the standard SCHEME implementation this list is:

(x*xONEX* *&kTWOkk &KTHREEKK &xkFOURK

KKFIVEKR &kSTX&& &kKSEVENKK &kEIGHTR&)

DEPROGNIFY1 is a peephole optimizer. It takes a MacLISP form and returns

a list of MacLISP forms. The idea is that if the given form is (PROGN ...), the

keyword PROGN is stripped off; also, any irrelevant computations (references to

variables or constants other than in the final position) are removed.

(ATOMFLUSHP, when NIL, suppresses the removal of symbols, which in some cases may

be MacLISP PROG tags). The purpose of this is to avoid multiple nesting of PROGN

forms:

(PROGN (PROGN a b) (PROGN (PROGN c (PROGN d e) f) g))

Any code generation routine which constructs a PROGN with a component Q generated

by another routine generally says:

"(PROGN (SETQ FOO 3) @(DEPROGNIFY Q) (GO ,THE-TAG))

The "@" means that the list of forms returned by the call to DEPROGNIFY (which is

actually a macro which expands into a call to DEPROGNIFY1.) is to be substituted

into the list (PROGN ...) being constructed by the '"' operator. Thus rather

than the nested PROGN code shown above, the code generator would instead produce:

(PROGN a bc def g)

which iS much easier to read when debugging the output of RABBIT.

TEMPLOC is a little utility which given the number (in the DEP ordering

used by DEPTH-ANALYZE) of a register returns the name of that register.

XCONT+ARG-REGS is the same as **ARGUMENT-REGISTERS** except that the name

*xCONT** is tacked onto the front. **CONT** is considered to be register 0. If N

is greater than the number of the highest standard argument register, then a new

register name of the form "-N-" is invented. Thus the additional temporary

registers are called -ll-, -12-, -13-, etc.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

RABBIT 568 05/15/78 Page 42
333 DEPROGNIFY IS USED ONLY TO MAKE THE OUTPUT PRETTY BY ELIMINATING

333 UNNECESSARY OCCURRENCES OF "PROGN".

(DEFMAC DEPROGNIFY (FORM) "(DEPROGNIFY] ,FORM NIL))

(SET' *DEPROGNIFY-COUNT* 0)

(DEFINE DEPROGNIFY1
(LAMBDA (FORM ATOMFLUSHP)

(IF (OR (ATOM FORM) (NOT (EQ (CAR FORM) 'PROGN)))
(LIST FORM)
(DO ((X (CDR FORM) (CDR X))

(Z NIL (COND ((NULL (COR X)) (CONS (CAR X) Z))
((NULL (CAR X))
(INCREMENT *DEPROGNIFY-COUNTS)
Z)

((ATOM (CAR X))
(COND (ATOMFLUSHP

(INCREMENT *DEPROGNIF Y-COUNT®)
Z)

(T (CONS (CAR X) Z))))
((EQ (CAAR X) 'QUOTE)
(INCREMENT *DEPROGNIF Y-COUNT#)
Zz)

(T (CONS (CAR X) Z)))))
((NULL X) (NREVERSE Z))))))

(DEFINE TEMPLOC
(LAMBDA (N)

(LABELS ((LOOP
(LAMBDA (REGS J)

(IF (NULL REGS)
(IMPLODE (APPEND '(-) (EXPLODEN N) '(-)))
(IF (= J 0)

(CAR REGS)
(LOOP (CDR REGS) ¢- J 1)))))))

(LOOP **CONT+ARG-REGS**® N))))

210

ENVCARCDR takes a set of variables VARS representing the consed

environment, and an old rename list RNL, and adds to RNL new entries for the

variables, supplying pieces of code to access the environment structure. For

example, suppose RNL were NIL, and VARS were (A BC). Then ENVCARCDR would

produce the list:

((C . (CAR (CDR (CDR **ENV*x))))
(B . (CAR (CDR *kENV*x)))
(A . (CAR *xENV*x)))

where each variable has been paired with a little piece of code which can be used

to access it at run time. This example is not quite correct, however, because

the peephole optimizer DECARCDRATE is called on the little pieces of code;

DECARCDRATE collapses CAR-CDR chains to make them easier to read, and so the true

result of ENVCARCDR would be:

((C . (CADDR *xkENV*x))
(B . (CADR **ENV#x))
(A . (CAR **ENV*x)))

001
002
003
004
005
006
007

RABBIT 568 05/15/78 Page 43

(DEFINE ENVCARCDR
(LAMBDA (VARS RNL)

(DO ((X '#*ENVae "(CDR ,X))
(V VARS (CDR V))
(R RNL (CONS (CONS (CAR V) (DECARCDRATE "(CAR ,X))) R)))

((NULL V) R))))

212

REGSLIST takes a CLAMBDA cnode, a switch AVP, and a rename list RNL. It

tacks onto RNL new entries which describe how to access the arguments of the

CLAMBDA. This is complicated because there are three cases. (1) A NOCLOSE

function takes its arguments in non-standard registers. (2) Other functions of

not more than **NUMBER-OF-ARGUMENT-REGISTERS** (the length of the *xARGUMENT-

REGISTERS** list) arguments takes their arguments in the standard registers. (3)

All other functions takes a list of arguments in the first argument register

(**ONE**), except for the continuation in **CONT**. The switch AVP tells whether

or not the elements of ASETVARS should be included (non-nil means do not
include).

As an example, suppose the CLAMBDA is a NOCLOSE with DEP = 12 and TVARS =

(A BC D), and suppose that AVP = T and RNL = NIL. Then the result would be:

((D . -15-) (C . -14-) (B . -13-) (A . -12-))

As another example, suppose the CLAMBDA is of type EZCLOSE with VARS = (K X Y Z)

and ASETVARS = (Y), and suppose that AVP = NIL and RNL = ((A . -12-)). Then the

result would be:

((Z . **THREEX*) (X . *XONEX&) (K . &&CONT*X) (A . -12-))

SET-UP-ASETVARS takes a piece of code (the code for a CLAMBDA body), an
ASETVARS set AV, and a rename list. If there are no ASETVARS, then just the code

is returned, but otherwise a PROGN-form is returned, which ahead of the code has

a SETQ which adds the ASETVARS to the environment. (LOOKUPICATE takes a variable

and a RNL and returns a piece of code for referring to that variable.) For

example, suppose we had:

CODE = (GO FOO)
AV = (A C)

RNL = ((C . -14-) (B . -13-) (A . -1l2-))

Then SET-UP-ASETVARS would return the code:

(PROGN (SETQ **ENV**x (CONS -12- (CONS -14- **xENV**))) (GO FOO))

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040

RABBIT 568 05/15/78 Page 44
333 AVP NON-NIL MEANS THAT ASETVARS ARE TO BE EXCLUDED FROM THE CONSED LIST.

(DEFINE REGSLIST
(LAMBDA (CLAM AVP RIL)

(LET ((AV (AND AVP (CLAMBDA\ASETVARS CLAM))))
(1F (EQ (CLAMBDA\FNP CLAM) 'NOCLOSE)

(DO ((J (CLAMBDA\DEP CLAM) (+ J 1))
(TV (CLAMBDA\TVARS CLAM) (CDR TV))
(R RNL

(IF (MEMQ (CAR TV) AV)
R
(CONS (CONS (CAR TV) (TEMPLOC J)) R))))

((NULL TV) R))
(LET ((VARS (CLAMBDA\VARS CLAM)))

(1F (> (LENGTH (CDR VARS)) **NUMBER-OF -ARG-REGS&*#)
(DO ((X (CAR **ARGUMENT-REGISTERS**) "(CDR ,X))

(Vv (CDR VARS) (COR V))
(R (CONS (CONS (CAR VARS) ‘##CONT#*) RNL)

(IF (MEMQ (CAR V) AV)
R
(CONS (CONS (CAR V) (DECARCDRATE "(CAR ,X))) R))))

(({NULL V) R))
(DO ((V VARS (CDR V))

(X *eCONT+ARG-REGS*#* (COR X))
(R RNL

(IF (MEMQ (CAR V) AV)
R
(CONS (CONS (CAR V) (CAR X)) R))))

((NULL V) R))))))))

(DEFINE SET-UP-ASETVARS
(LAMBDA (CODE AV RNL)

(IF (NULL AV)
CODE
"(PROGN (SETQ #xENVes

,(DO ((A (REVERSE AV) (COR A))
(E '*®ENVes "(CONS ,(LOOKUPICATE (CAR A) RNL) .E)))

((NULL A) E)))
@(DEPROGNIFY CODE)))))

214

In the continuation-passing style, functions do not return values;

instead, they apply a continuation to the value. Thus, the body of a CLAMBDA-

expression is a form which is not expected to produce a value. On the other

hand, such a form will have subforms which do produce values, for example

references to variables.

Thus the forms to be dealt with in the code generator can be divided into

those which produce values and those which do not. Initially the latter will

always be attacked, as the body of a "function"; later the former will be seen.

COMP-BODY takes a valueless form and compiles it. The routine ANALYZE, which we

will see later, handles valued forms.

COMP-BODY instantiates a by now familiar theme: it simply dispatches on

the type of BODY to some specialist routine. In the case of a CLABELS, it first

compiles the body of the CLABELS (which itself is valueless if the CLABELS is
valueless, and so a recursive call to COMP-BODY is used), and then goes to

PRODUCE-LABELS. For a CCOMBINATION or RETURN, it does a three-way (for RETURN,

two-way) sub-dispatch on whether the function is a TRIVFN, a CLAMBDA (or

CONTINUATION), or something else.

The PRODUCE series of routines produce code for valueless’ forms.

PRODUCE-IF calls ANALYZE on the predicate (which will produce a value), and COMP-

BODY on the consequent and alternative (which produce no value because the entire

CIF does not). The three pieces of resulting code are respectively called PRED,

CON, and ALT. These are then given to CONDICATE, which generates a MacLISP COND

form to be output.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068

RABBIT 568 05/15/78 Page 45
333; RNL IS THE "RENAME LIST": AN ALIST DESCRIBING HOW TO REFER TO THE VARIABLES IN THE

333 ENVIRONMENT. CENV IS THE CONSED ENVIRONMENT SEEN BY THE BODY.

(DEFINE

COMP - BODY

(LAMBDA (BODY RNL PROGNAME BLOCKFNS CENV FNS C)

- (LET ((CFM (CNODE\CFORM BODY)))

(EQCASE (TYPE CFM)

(CIF

(PRODUCE-IF BODY RNL PROGNAME BLOCKFNS CENV FNS C))

(CASET
(PRODUCE-ASET BODY RNL PROGNAME BLOCKFNS CENV FNS C))

(CLABELS

(OR (EQUAL CENV (CLABELS\CONSENV CFM))

(ERROR '[Environment disagreement| BODY 'FAIL-ACT))
(LET ((LCENV (APPEND (CLABELS\FNENV CFM) CENV)))

(COMP -BODY

(CLABELS\BODY CFM)

(ENVCARCDR LCENV RNL)

PROGNAME

BLOCKFNS

LCENV

FNS

(LAMBDA (LBOD FNS)

(PRODUCE-LABELS BODY LBOD RNL PROGNAME BLOCKFNS FNS C)))))

(CCOMBINATION

(LET ((FN (CNODE\CFORM (CAR (CCOMBINATION\ARGS CFM)))))
(COND ((EQ (TYPE FN) 'CLAMBDA)

(PRODUCE-LAMBDA-COMBINATION BODY RNL PROGNAME BLOCKFNS CENV FNS C))

((AND (EQ (TYPE FN) 'TRIVIAL)
(€Q (TYPE (NODE\FORM (TRIVIAL\NODE FN))) ‘VARIABLE)

(TRIVFN (VARTABLE\VAR (NODE\FORM (TRIVIAL\NODE FN)))))

(PRODUCE-TRIVFN-COMBINATION BODY RNL PROGNAME BLOCKFNS CENV FNS C))

(T (PRODUCE-COMBINATION BODY RNL PROGNAME BLOCKFNS CENV FNS C)))))

(RETURN

(LET ((FN (CNODE\CFORM (RETURN\CONT CFM))))
(TF (EQ (TYPE FN) 'CONTINUATION)

(PRODUCE-CONTINUATION-RETURN BODY RNL PROGNAME BLOCKFNS CENV FNS C)

(PRODUCE-RETURN BODY RNL PROGNAME BLOCKFNS CENV FNS C))))))))

(DEFINE PRODUCE-IF
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C)

(LET ((CFM (CNODE\CFORM CNODE)))
(ANALYZE (CIF\PRED CFM)

RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (PRED FNS)

(COMP-BODY (CIF\CON CFM)
RNL
PROGNAME
BLOCKFNS
CENV
FNS
(LAMBDA (CON FNS) |

(COMP-BODY (CIF\ALT CFM)
RNL
PROGNAME
BLOCKFNS
CENV
ENS 7
(LAMBDA (ALT FNS)

(C (CONDICATE PREO
CON
ALT)

FNS))))))))))

216

PRODUCE-ASET first calls ANALYZE on the body, which must produce a value

(to be assigned to the CASET variable). There are then two cases, depending on

whether the CASET\CONT is a CONTINUATION or not.

If it is, then the body of the continuation is compiled (using COMP-

BODY), and then LAMBDACATE is called to generate the invocation of the

continuation. The routine OUTPUT-ASET generates the actual MacLISP SETQ (or

other construct) for the CASET variable, using the environment location provided

by LOOKUPICATE. All in all this case is very much like a RETURN with an explicit

CONTINUATION, except that just before the continuation is invoked a SETQ is stuck

in.

If the CASET\CONT is not a CONTINUATION, then ANALYZE is called on the

CASET\CONT, and then a piece of code is output which sets **FUN** to the

continuation, **ONE*x* (which is in the car of **xARGUMENT-REGISTERS**) to the

value of the body (after also setting the CASET variable, using OUTPUT-ASET), and
does (RETURN NIL), which is the SCHEME run-time protocol for invoking a

continuation. —

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

052

(DEF INE
PRODUCE -ASET
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C)

(LET ((CEM (CNODE\CFORM CNODE)))
(ANALYZE (CASET\BODY CFM)

RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (BODY FNS)

(LET ((CONTCEM (CNODE\CFORM (CASET\CONT CFM))))
(IF (EQ (TYPE CONTCFM) ‘CONTINUATION)

(COMP-BODY (CONTINUATION\BODY CONTCFM)
(IF (CONTINUATION\TVARS CONTCFM)

(CONS (CONS (CAR (CONTINUATION\TVARS CONTCFM))
(TEMPLOC (CONTINUATION\DEP

CONTCFM)))
(ENVCARCOR CENV RNL))

(ENVCARCOR CENV RNL))
PROGNAME
BLOCKFNS
CENV
FNS
(LAMBDA (CODE FNS)

(C (LAMBDACATE
(LIST (CONTINUATION\VAR CONTCFM))
(CONTINUATION\TVARS CONTCFM)
(CONTINUATION\DEP CONTCFM)
(LIST (OUTPUT-ASET

(LOOKUPICATE (CASET\VAR CFM)
RNL)

BODY))
(REMARK-ON (CASET\CONT CFM))
‘eeENVae

CODE)
FNS)))

(ANALYZE
(CASET\CONT CFM)
RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (CONT FNS)

(C "(PROGN (SETQ *&FUN*® CONT)
(SETQ ,(CAR **ARGUMENT-REGISTERS#*)

, (OUTPUT-ASET
(LOOKUPICATE (CASET\VAR CFM)

RNL)
BODY))

(RETURN NIL))
FNS))))))))))

218

PRODUCE-LABELS takes an already-compiled body LBOD. FNENV-FIX is a

(possibly empty) list of pieces of code which will fix up the consed environment

by adding the variables common to all the closures to be made up (this set was

computed by CLOSE-ANALYZE and put in the FNENV slot of the CLABELS). The code

for this addition is built from the list of variables by CONS-CLOSEREFS.

There are then three cases, depending on the type of closures to be

constructed (NOCLOSE, EZCLOSE, or NIL). Suppose that the CLABELS is:

(CLABELS ((FOO (LAMBDA ...)
(BAR (LAMBDA ...)

<body>)

)
))

Let us see roughly what code is produced for each case.

For a NIL type (full closures), the idea is merely to create all the

closures in standard form (but with a null environment), add them all to the

consed environment, and then go back and clobber the environment portion of the

closures with the new resulting environment, plus any other variables needed.

Now a_ standard closure looks like (CBETA <value of progname> <tag>

<environment>). (At run time the value of the progname will be a MacLISP SUBR

pointer for the module; the tag identifies the particular routine in the

module.) In the DO loop, FNS accumulates the function definitions (to be

compiled separately later), RP accumulates RPLACD forms for clobbering the

closures, and CB accumulates constructors of CBETA lists. For our example, the

generated code looks like:

((LAMBDA (FOO BAR)

(SETQ **xENV** (CONS ... (CONS X43 **ENV&ex)...))

(RPLACD (CDDR BAR) (CONS ... (CONS X72 *x*ENVex)...))

(RPLACD (CDDR FOO) (CONS ... (CONS X69 *x*ENV&e)...))
<body>)

(LIST 'CBETA ?-453 'FOO-TAG)

(LIST 'CBETA ?-453 'BAR-TAG))

where ?-453 is the PROGNAME for the module containing the CLABELS, and FOO-TAG

and BAR-TAG are the tags (whose names will actually look like FNVAR-91) for FOO

and BAR. (Now in fact CLOSE-ANALYZE creates a null FNENV for type NIL CLABELS,

and so the first SETQ would in fact not appear. However, the decision as to the

form of the FNENV is only a heuristic, and so PRODUCE-LABELS is written so as to

be prepared for any possible choice of FNENV and CLOSEREFS of individual labelled

functions. In this way the heuristic in CLOSE-ANALYZE can be freely adjusted

without having to change PRODUCE-LABELS.)

For the EZCLOSE case the "closures" need only contain environments, not

also code pointers. A trick is needed here, however, to build the circular

environment. When adding the labelled functions to the environment, we must

somehow cons in an object; but we want this object to possibly be the

environment itself! What we do instead is to make up a list of the tag, and

later RPLACD this list cell with the environment. The tag is never used, but is

useful for debugging. This method also makes the code very similar to the NIL
case, the only difference being that the atom CBETA and the value of the PROGNAME

are not consed onto each closure.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019.

020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

RABBIT 568 05/15/78 Page 47

(DEFINE
PRODUCE -LABELS
{LAMBDA (CNODE LBOD RNL PROGNAME BLOCKFNS FNS C)

(LET ((CFM (CNODE\CFORM CNODE)))
(LET ((VARS (CLABELS\FNVARS CFM))

(DEFS (CLABELS\FNDEFS CFM))
(FNENV (CLABELS\FNENV CFM))) .

(LET ((FNENV-FIX (IF FNENV "((SETQ **ENVe* ,(CONS-CLOSEREFS FNENV RNL))))))
(EQCASE (CLABELS\EASY CFM)

(NIL
(DO ((V VARS (COR V))

(0 DEFS (COR D))
(FNS FNS (CONS (LIST PROGNAME (CAR 0) NIL) FNS))
(RP NIL (CONS "(RPLACD (CODR ,(CAR V))

, (CONS -CLOSEREFS
(CLAMBDA\CLOSEREFS
(CNODE\CFORM (CAR D)))

RNL))
RP))

(CB NIL (CONS "(LIST 'CBETA ,PROGNAME '.,(CAR V)) CB)))
((NULL .V)
(C "((LAMBDA ,VARS

@FNENV-F IX
eRP
@(DEPROGNIFY LBOD))

@(NREVERSE CB)) Lo
FNS))))

(EZCLOSE
(DO ((V VARS (COR V))

(D DEFS (COR D))
(FNS FNS (CONS (LIST PROGNAME (CAR 0) NIL) FNS))
(RP NIL (CONS "(RPLACD ,(CAR V)

, (CONS -CLOSEREFS
(CLAMBDA\CLOSEREFS
(CNODE\CFORM (CAR D)))

RNL))
RP))

(CB NIL (CONS "(LIST ',(CAR V)) CB)))
((NULL V)
(C "((LAMBDA ,VARS

@FNENV-F IX
eRP
@(DEPROGNIFY LBOD))

@(NREVERSE CB))
FNS))))

(NOCLOSE
(C "(PROGN @FNENV-FIX @(DEPROGNIFY LBOD))

(DO ((V VARS (COR V))
(OD DEFS (CDR 0))
(FNS FNS (CONS (LIST PROGNAME (CAR D) RNL) FNS)))

((NULL V) FNS))))))))))

220

One problem is that these "closures" are not of the same form as ordinary
EZCLOSE closures, which do not have the tag. This is the purpose of the LABELS-

FUNCTION properties which BIND-ANALYZE created; when a call to an EZCLOSE

function is generated, the presence of a LABELS-FUNCTION property indicates that

the "closure" itself is not the environment, but rather its cdr is. (It would be

possible to do without the cell containing the tag, by instead making up the

environment with values of NIL, then constructing the "closures" as simple

environments, and then going back and clobbering the environment structure with

the closure objects, rather than clobbering the closure objects themselves. The

decision not to do this was rather arbitrary.) The generated code for the

EZCLOSE case thus looks like:

((LAMBDA (FOO BAR)
(SETQ *xENV*x (CONS ... (CONS X43 *&xENV*xx)...))
(RPLACD (CDDR BAR) (CONS ... (CONS X72 **xENV%*)...))
(RPLACD (CDDR FOO) (CONS ... (CONS X69 *xENV**)...))
<body>) .

(LIST 'FOO-TAG)
(LIST 'BAR-TAG))

In the NOCLOSE case, no closures are made at run time for the labelled
functions, and so the code consists merely of the FNENV-FIX (which, again, using

the current heuristic in CLOSE-ANALYZE will always be null in the NOCLOSE case)

and the code for the body:

(PROGN (SETQ **ENV** (CONS ... (CONS X43 *kENVe*x)...)) <body>)

In any case, of course, the labelled functions are added to the FNS list which is

handed back to C for later compilation.

PRODUCE-LAMBDA-COMBINATION generates code for the case of ((CLAMBDA ...)

argl ... argn). First a number of consistency checks are performed, to make

Sure the pass-2 analysis is not completely awry. Then code is generated for the

body of the CLAMNBDA, using COMP-BODY. Then all the arguments, which are of

course expected to produce values, are given to MAPANALYZE, which will call

ANALYZE on each in turn and return a list of the pieces of generated code (here

called ARGS in the continuation handed to MAPANALYZE). Finally, LAMBDACATE is

called to generate the code for entering the body after setting up the arguments

in an appropriate manner. Notice the use of SET-UP-ASETVARS to generate any

necessary additional code for adding ASETVARS to the consed environment on

entering the body. (A more complicated compiler would in this situation add the

argument values to the consed environment directly, rather than first putting

them in registers (which is done by LAMBDACATE) and then moving the registers

into the consed environment (which is done by SET-UP-ASETVARS). To do this,

however, would involve destroying the modular distinction between LAMBDACATE and

SET-UP-ASETVARS. The extra complications were deemed not worthwhile because in

practice the ASETVARS set is almost always empty anyway.)

001
002
003
004
005
006
007

008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

* 030
031
032
033
034
035
036
037
038
039

RABBIT 568 05/15/78 Page 48

PRODUCE -LAMBDA-COMBINATION
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C)

(LET ((CFM (CNODE\CFORM CNODE)))
(LET ((FN (CNODE\CFORM (CAR (CCOMBINATION\ARGS CFM)))))

(AND (CLAMBDA\CLOSEREFS FN)

(ERROR '|Functional LAMBDA has CLOSEREFS} CNODE 'FAIL-ACT))

(OR (EQUAL CENV (CLAMBDA\CONSENV FN))

(ERROR 'lEnvironment disagreement] CNODE 'FAIL-ACT))
(OR (EQ (CLAMBDA\FNP FN) 'NOCLOSE)

(ERROR '|Non-NOCLOSE LAMBDA in function position] CNODE 'FAIL-ACT))

(COMP - BODY

(CLAMBDA\BODY FN)
(ENVCARCDR (CLAMBDA\ASETVARS FN)

(REGSLIST FN T (ENVCARCOR CENV RNL)))

PROGNAME

BLOCKFNS

(APPEND (CLAMBDA\ASETVARS FN) CENV)

FNS

(LAMBDA (BODY FNS)

(MAPANALYZE (CDR (CCOMBINATION\ARGS CFM))
RNL

PROGNAME

BLOCKFNS

FNS

(LAMBDA (ARGS FNS)

(C (LAMBDACATE (CLAMBDA\VARS FN)
(CLAMBDA\TVARS FN)

(CLAMBDA\DEP FN)
-ARGS

(REMARK-ON

(CAR (CCOMBINATION\ARGS CFM)))
"ax ENVan

(SET-UP-ASETVARS

BODY

(CLAMBDA\ASETVARS FN)

(REGSLIST FN NIL NIL)))
FNS)))))))))

222

PRODUCE-TRIVFN-COMBINATION handles a case like (CONS continuation argl

arg2), i.e. a CCOMBINATION whose function position contains a TRIVFN. First all

the arguments (excluding the continuation!) are given to MAPANALYZE; then a

dispatch is made on whether the continuation is a CONTINUATION or a CVARIABLE,

and one of two specialists is called.

PRODUCE-TRIVFN-COMBINATION-CONTINUATION handles a case like (CONS

(CONTINUATION (Z) <body>) argl arg2). The idea here is to compile it

approximately as if it were

((CONTINUATION (Z) <body>) (CONS argl arg2))

That is, the arguments are evaluated, the trivial function is given them to

produce a value, and that value is then given to the continuation. Accordingly,

the body of the CONTINUATION is compiled using COMP-BODY, and then LAMBDACATE

takes care of setting up the argument (the fourth argument to LAMBDACATE is a

list of the MacLISP code for invoking the trivial function) and invoking the body

of the (necessarily NOCLOSE) CONTINUATION.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
016
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

. 047
048
049

RABBIT 568 05/15/78 Page 49
(DEFINE PRODUCE -TRIVEN-COMBINATION

(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS c)
(LET ((CFM (CNODE\CFORM CNODE)))

(LET ((EN (CNODE\CFORM (CAR (CCOMBINATION\ARGS CFM))))
(CONT (CNODE\CFORM (CADR (CCOMBINATION\ARGS CFM)))))

(MAPANALYZE (CODR (CCOMBINATION\ARGS CFM))
RNL
PROGNAME
BLOCKENS
FNS
(LAMBDA (ARGS FNS)

(EQCASE (TYPE CONT)
(CONTINUATION
(PRODUCE - TRIVFN-COMB INATION-CONTINUATION
CNODE RNL PROGNAME BLOCKFNS CENV.
FNS C CFM FN CONT ARGS))

(CVARIABLE
(PRODUCE - TRIVFN-COMBINATION-CVARIABLE
CNODE RNL PROGNAME BLOCKFNS CENV
FNS C CFM FN CONT ARGS)))))))))

(DEFINE PRODUCE -TRIVEN-COMBINATION-CONTINUATION
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C CFM FN CONT ARGS)

(BLOCK (AND (CONTINUATION\CLOSEREFS CONT)
(ERROR ‘|CONTINUATION for TRIVFN has CLOSEREFS| CNODE ‘FAIL-ACT))

(OR (EQ (CONTINUATION\FNP CONT) ‘NOCLOSE)
(ERROR '|{Non-NOCLOSE CONTINUATION for TRIVFN| CNODE ‘FAIL-ACT))

(COMP-BODY (CONTINUATION\BODY CONT)
(IF (CONTINUATION\TVARS CONT)

(CONS (CONS (CAR (CONTINUATION\TVARS CONT))
(TEMPLOC (CONTINUATION\DEP CONT)))

(ENVCARCOR CENV -RNL))
(ENVCARCOR CENV RNL))

PROGNAME
BLOCKFNS
CENV
FNS
(LAMBDA (BODY FNS)

(C (LAMBDACATE
(LIST (CONTINUATION\VAR CONT))
(CONTINUATION\TVARS CONT)
(CONTINUATION\DEP CONT)
(LIST "(,(VARIABLE\VAR (NODE\FORM (TRIVIAL\NODE FN)))

ARGS))
(REMARK-ON (CADR (CCOMBINATION\ARGS CFM)))
"xe ENVaex

BODY)
FNS))))))

224

PRODUCE-TRIVFN-COMBINATION-CVARIABLE handles a case like (CONS CONT-43

argl argZ), where the continuation for a trivial function call is a CVARIABLE.

In this situation the continuation is given to ANALYZE to generate MacLISP code

for referring to it; ‘there are then two cases, depending on whether the

CVARIABLE has a KNOWN-FUNCTION property. (Note that before the decision is made,

VAL names the piece of MacLISP code for calling the trivial function on the

arguments.)

If the CVARIABLE denotes a KNOWN-FUNCTION, then it should be possible to

invoke it by adjusting the environment, setting up the arguments in registers,

and jumping to the code. First the environment adjustment is computed; ADJUST-

KNOWNFN-CENV generates a piece of MacLISP code which will at run time compute the

correct new environment in which the continuation will expect to run. There are

then two subcases, depending on whether the KNOWN-FUNCTION is of type NOCLOSE or

not. If it is, then LAMBDACATE is used to set up the arguments in the

appropriate registers (the last argument of NIL indicates that there is no

"body", but rather that the caller of LAMBDACATE takes the responsibility of

jumping to the code). If it is not, then PSETQIFY is used, because the value

will always go in *x*ONEX* (which is the car of **xARGUMENT-REGISTERS**). In

either case, a GO is generated to jump to the code (within the current module, of

course) for the continuation.

If the continuation is not a KNOWN-FUNCTION, then the standard function

linkage mechanism is used: the continuation is put into **FUN**, the value into

XONEx, and then (RETURN NIL) exits the module to request the SCHEME run-time

interface to invoke the continuation in whatever manner is appropriate.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042

RABBIT 568 05/15/78 Page 50
(DEFINE PRODUCE -TRIVFN-COMBINATION-CVARIABLE

(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C CFM FN CONT ARGS)

(ANALYZE
(CADR (CCOMBINATION\ARGS CFM))
RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (CONTF FNS)

(LET ((KF (GET (CVARIABLE\VAR CONT) 'KNOWN-FUNCTION))
(VAL "(,(VAREABLE\VAR (NODE\FORM (TRIVIAL\NODE FN))) @ARGS)))

(IF KF
(LET ((KCFM (CNODE\CFORM KF)))

(LET ((ENVADJ
(ADJUST-KNOWNFN-CENV CENV

(CVARIABLE\VAR CONT)

CONTF

(CONTINUATION\FNP KCFM)

(APPEND
(CONTINUATION\CLOSEREFS KCFM)

(CONTINUATION\CONSENV KCFM)))))
(C "(PROGN

@(IF (EQ (CONTINUATION\FNP KCFM)

"NOCLOSE)
(DEPROGNIFY

(LAMBDACATE (LIST (CONTINUATION\VAR KCFM))
(CONTINUATION\TVARS KCFM)
(CONTINUATION\DEP KCFM)

(LIST VAL)
(REMARK-ON KF)
ENVADJ

NIL))
(PSETQIFY (LIST ENVADJ VAL)

(LIST 'xkENVax
(CAR **ARGUMENT-REGISTERS*#*#))))

(GO ,(CONTINUATION\NAME KCFM)))

FNS)))
(C "(PROGN (SETQ **FUN** ,CONTF)

(SETQ ,(CAR **ARGUMENT-REGISTERS**) ,VAL)

(RETURN NIL))
FNS)))))))

226

PRODUCE-COMBINATION handles combinations whose function positions contain

neither TRIVFNs nor CLAMBDAs. All of the arguments, including the function

position itself and the continuation, are given to MAPANALYZE, resulting in a

list FORM of pieces of MacLISP code. There are then two cases. If the function

position is a VARIABLE (within a TRIVIAL - not a CVARIABLE!), then PRODUCE-

COMBINATION-VARIABLE is used. Otherwise code is generated to use the standard

SCHEME run-time interface: first set *xFUN**x* to the function, then set up the

arguments in the standard argument registers (PSETQ-ARGS generates the code for

this), then set **NARGS** to the number of arguments (this does not include the

continuation), and exit the module with (RETURN NIL).

PRODUCE-COMBINATION-VARIABLE first determines whether the variable has a

KNOWN-FUNCTION property. If so, then the approach is very much as in TRIVFN-

COMBINATION-CVARIABLE: first the environment adjustment is computed, then either

LAMBDACATE or PSETQ-ARGS-ENV is used to adjust the environment and set up the

arguments, and finally a GO to the piece of code for the KNOWN-FUNCTION is
generated.

If the variable is not a KNOWN-FUNCTION, then it may still be in the list

BLOCKFNS (which, recall, is a list of user functions included in this module).

If so, the effect on the code generation strategy is roughly as if it were a

KNOWN-FUNCTION. The environment adjustment is done differently, but a GO is

generated to the piece of code for the called function.

In any other case, the standard interface is used. **FUN** is set to the

function, the arguments are set up, **NARGS** is set to the number of arguments,

and (RETURN NIL) exits the module.

001
002
003
004
005
006
007
008
009
010
01]
012
013
014
015
016

- 017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060

RABBIT 568 05/15/78 Page 51
(DEFINE PRODUCE-COMBINATION

(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C)
(MAPANALYZE (CCOMBINATION\ARGS (CNODE\CFORM CNODE))

RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (FORM FNS)

(C (LET ((F (CNODE\CFORM (CAR (CCOMBINATION\ARGS
(CNODE\CFORM CNODE))))))

(IF (AND (EQ (TYPE F) ‘TRIVIAL)
(EQ (TYPE (NODE\FORM (TRIVIAL\NODE F)))

"VARIABLE))
(LET ((V (VARIABLE\VAR

(NODE\FORM (TRIVIAL\NODE F)))))
(PRODUCE -COMBINATION-VARIABLE
CNODE RNL PROGNAME BLOCKFNS CENV
FNS C FORM V (GET V 'KNOWN-FUNCTION)))

"(PROGN (SETQ *#*FUN*® ,(CAR FORM))
@(PSETQ-ARGS (COR FORM))
(SETQ **NARGS#* ', (LENGTH (coDR FORM)))
(RETURN NIL))))

FNS)))))

(DEFINE PRODUCE -COMBINATION-VARIABLE
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C FORM V KFN)

(IF KFN
(LET ((ENVADJ

(ADJUST-KNOWNFN-CENV CENV
V .

(CAR FORM)
(CLAMBDA\FNP (CNODE\CFORM KFN))
(APPEND (CLAMBDA\CLOSEREFS (CNODE\CFORM KFN))

(CLAMBDA\CONSENV (CNODE\CFORM KFN))))))
(OR (EQ (TYPE (CNODE\CFORM KFN)) ‘CLAMBDA)

(ERROR '|Known function not CLAMBDA| CNODE 'FAIL-ACT))
"(PROGN @(IF (EQ (CLAMBDA\FNP (CNODE\CFORM KFN)) 'NOCLOSE)

(DEPROGNIFY
(LAMBDACATE (CLAMBDA\VARS (CNODE\CFORM KFN))

(CLAMBDA\TVARS (CNODE\CFORM KFN))
(CLAMBDA\DEP (CNODE\CFORM KFN))
(CDR FORM)
(REMARK-ON KFN)
ENVADJ
NIL))

(PSETQ-ARGS-ENV (COR FORM) ENVADJ))
(GO ,(CLAMBDA\NAME (CNODE\CFORM KFN)))))

(IF (ASSQ V BLOCKENS)
"(PROGN @(PSETQ-ARGS (CDR FORM))

@(IF (NOT (EQUAL (CLAMBDA\CONSENV
(CNODE\CFORM
(CADR (ASSQ V BLOCKFNS))))

CENV))
"((SETQ **ENVe® (CODDR ,(CAR FORM)))))

(GO ,(CLAMBDA\NAME (CNODE\CFORM (CADR (ASSQ V BLOCKFNS))))))
"(PROGN (SETQ **FUN®* ,(CAR FORM))

@(PSETQ-ARGS (COR FORM))
(SETQ **NARGS#*® ' (LENGTH (CODR FORM)))
(RETURN NIL)))}))

228

ADJUST-KNOWNFN-CENV computes a piece of code for adjusting the

environment. CENV is the internal representation (as a list of variable names)

of the environment in which the generated code will be used. VAR is the name of

the variable which names the function to be invoked, and for whose sake the

environment is to be adjusted. VARREF is a piece of MacLISP code by which the

run-time value of VAR may be accessed. FNP is the FNP type of the KNOWN-FUNCTION

denoted by VAR. LCENV is the representation of the environment for the function.

Thus, the generated code should compute LCENV given CENV.

The two easy cases are when LCENV=CENV, in which case the environment

does not change, and when LCENV=NIL, in which case the run-time environment will

also be NIL. Otherwise it breaks down into three cases on FNP.

For FNP=NOCLOSE, it must be true that LCENV is some tail of CENV; that

is, there is a stack-like discipline for NOCLOSE functions, and so CENV was

constructed by adding things to LCENV. The piece of code must therefore consist

of some number of CDR operations on **ENV**. If this operation does not in fact

produce LCENV, then there is an inconsistency in the compiler.

For FNP=EZCLOSE, then VARREF can be used to reference the run-time

"closure"; this may require a CDR operation if the function is an EZCLOSE

LABELS-FUNCTION (see PRODUCE-LABELS).

For FNP=NIL, then VARREF will refer to a full closure; the CDDDR of this

closure is the environment.

PRODUCE-CONTINUATION-RETURN is, mutatis mutandis, identical to PRODUCE-

LAMBDA-COMBINATION. This is a good example of the fact that much code was

duplicated because of the early design decision to treat COMBINATION and RETURN

as distinct data types.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
016
019
020

(021
022
023
024
025
026

.027
028
029

. 030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060

RABBIT 568 05/15/78 Page 52

(DEFINE ADJUST-KNOWNFN-CENV

(LAMBDA (CENV VAR VARREF FNP LCENV)

(COND ((EQUAL LCENV CENV) ‘RRENVE®)

((NULL LCENV) 'NIL)
(T (EQCASE FNP

(NOCLOSE

(DO ((X CENV (COR X))

(Y 'eeENVee "(COR ,Y))
(I (- (LENGTH CENV) (LENGTH LCENV)) (- I 1)))

((< 11)
(IF (EQUAL X LCENV)

(DECARCORATE Y)
(ERROR '|Cannot recover environment for known function]

VAR
"FAIL-ACT)))))

(EZCLOSE

(IF (GET VAR 'LABELS-FUNCTION)
"(CDR ,VARREF)
VARREF))

(NIL "(CODOR ,VARREF)))))))

(DEFINE PRODUCE-CONTINUATION-RETURN

(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C)

(LET ((CFM (CNODE\CFORM CNODE)))

(LET ((FN (CNODE\CFORM (RETURN\CONT CFM))))

(AND (CONTINUATION\CLOSEREFS FN)

(ERROR '|Functional CONTINUATION has CLOSEREFS | CNODE 'FAIL-ACT))

(OR (EQUAL CENV (CONTINUATION\CONSENV FN))

(ERROR '|Environment disagreement| CNODE 'FAIL-ACT))

(OR (EQ (CONTINUATION\FNP FN) 'NOCLOSE)

(ERROR '|Non-NOCLOSE CONTINUATION in function position]

CNODE

'FAIL-ACT))
(COMP-BODY (CONTINUATION\BODY FN)

(IF (CONTINUATION\TVARS FN)

(CONS (CONS (CAR (CONTINUATION\TVARS FN))

(TEMPLOC (CONTINUATION\DEP FN)))

(ENVCARCDR CENV RNL))
(ENVCARCOR CENV RNL))

PROGNAME

BLOCKFNS

CENV

FNS

(LAMBDA (BODY FNS)

(ANALYZE (RETURN\VAL CFM)

RNL

PROGNAME

BLOCKFNS

FNS

(LAMBDA (VAL FNS)

(C (LAMBDACATE

(LIST (CONTINUATION\VAR FN))

(CONTINUATION\TVARS FN)

(CONTINUATION\DEP FN)

(LIST VAL)

(REMARK-ON (RETURN\CONT crM))
‘ReRENVE®

BODY)

FNS)))))))))

230

PRODUCE-RETURN and PRODUCE-RETURN-1 together are almost identical to

PRODUCE-COMBINATION and PRODUCE-COMBINATION-VARIABLE, except that the division

between the two parts is different, and the BLOCKFNS trick is not applicable to

RETURN.

PRODUCE-RETURN merely calls ANALYZE on each of the continuation and the
value, and calls PRODUCE-RETURN-1. .

PRODUCE-RETURN-1 checks to see whether the continuation is a KNOWN-

FUNCTION. If so, the environment adjustment is computed, and code is generated

in a way similar to previous routines. If not, the standard interface (involving

(RETURN NIL)) is used. Notice the check to see if VAL is in fact **ONE** (the

car of **ARGUMENT-REGISTERS**); if so, the redundant code (SETQ **ONEx* *x*xONE*x*)
is suppressed.

001
002
003
004

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061

RABBIT 568 05/15/78 Page 53

(DEFINE PRODUCE-RETURN
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C)

(LET ((CFM (CNODE\CFORM CNODE)))
(ANALYZE (RETURN\VAL CFM)

RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (VAL FNS)

(ANALYZE (RETURN\CONT CFM)
RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (CONT FNS)

(PRODUCE -RETURN-1
CNODE RNL PROGNAME BLOCKFNS
CENV FNS C CFM VAL CONT))))))))

(DEFINE PRODUCE -RETURN-1
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS CENV FNS C CFM VAL CONT)

(IF (AND (EQ (TYPE (CNODE\CFORM (RETURN\CONT CFM))) 'CVARIABLE)
(GET (CVARTABLE\VAR (CNODE\CFORM (RETURN\CONT CFM)))

"KNOWN-FUNCTION))
(LET ((KCFM (CNODE\CFORM

(GET (CVARIABLE\VAR
(CNODE\CFORM (RETURN\CONT CFM)))
"KNOWN-FUNCTION))))

(OR (EQ (TYPE KCFM) ‘CONTINUATION)
(ERROR '|Known function not CONTINUATION] CNODE 'FAIL-ACT))

(Ler ((ENVADJ
(ADJUST-KNOWNFN-CENV CENV

(CVARIABLE\VAR (CNODE\CFORM (RETURN\CONT CFM)))
CONT
(CONTINUATION\FNP KCFM)
(APPEND
(CONTINUATION\CLOSEREFS KCFM)
(CONTINUATION\CONSENV KCFM)))))

(C "(PROGN @(IF (EQ (CONTINUATION\FNP KCFM) 'NOCLOSE)
(DEPROGNIFY
(LAMBDACATE (LIST (CONTINUATION\VAR KCFM))

(CONTINUATION\TVARS KCFM)
(CONTINUATION\DEP KCFM)

(LIST VAL)-
(REMARK-ON
(GET (CVARIABLE\VAR

(CNODE\CFORM (RETURN\CONT CFM)))
"KNOWN-FUNCTION))

ENVADJ
NIL))

(PSETQIFY (LIST ENVADJ VAL)

(LIST 'xeENVaexe
(CAR **ARGUMENT- REGISTERS**))))

(GO ,(CONTINUATION\NAME KCFM)))

FNS)))
(C "(PROGN (SETQ **FUN®*® ,CONT)

@(IF (NOT (EQ VAL (CAR **ARGUMENT-REGISTERS#*)))
"((SETQ ,(CAR **ARGUMENT-REGISTERS**) ,VAL)))

(RETURN NIL))

FNS))))

232

LAMBDACATE generates code for invoking a NOCLOSE KNOWN-FUNCTION. It
arranges for the arguments to be evaluated and put in the proper registers, and

also performs some optimizations.

VARS is a list of the variables which are to be bound. TVARS is a list

of those variables (a subset of VARS) which will actually be passed through

registers, as specified by the TVARS slot of the CLAMBDA or CONTINUATION; this

is used for a consistency check on the optimizations of LAMBDACATE. DEP is the

register depth of the function (the DEP slot). ARGS is a list of pieces of

MacLISP code which have been generated for the arguments to the function. REM is

a comment (usually one generated by REMARK-ON) to be included in the generated

code for debugging purposes; this comment typically details the state of the

environment and what variables are being passed through registers at this point.

ENVADJ is a piece of MacLISP code (usually generated by ADJUST-KNOWNFN-CENV) to
whose value **ENV** is to be set, to adjust the environment. BODY may be a list

of pieces of MacLISP code which constitute the body of the known function, to be

executed after the arguments are set up (typically because of a combination like

((LAMBDA ...) ...)), or it may be NIL, implying that the caller of LAMBDACATE

intends to generate a GO to the code.

LAMBDACATE divides ARGS into three classes: (1) arguments which are

themselves NOCLOSE KNOWN-FUNCTIONS -- such arguments actually have no actual run-

time representation as a MacLISP data object, and so are not passed at all; (2)
arguments whose corresponding variables are never referenced -- these are
accumulated in EFFARGS, a list of arguments to be evaluated for effect only

(presumably the optimizer eliminated those unreferenced arguments which had no
Side effects); and (3) arguments whose values are needed and are to be passed

through the registers -- these are accumulated in REALARGS, and the corresponding

variables in REALVARS.

When this loop is done, (the reverse of) REALVARS should equal TVARS, for

it is the set of actually passed arguments.

The generated code first evaluates all the EFFARGS (if any), then sets

all the proper registers to the REALARGS (this code is generated by PSETQ-TEMPS),

then (after the remark REM) executed the BODY (which, if NIL, is empty).

For example, consider generating code for:

((LAMBDA (F A B) ... (F A) ...)

(LAMBDA (X) ...)

(CONS X Y)
(PRINT Z))

where F denotes a NOCLOSE KNOWN-FUNCTION, and B is never referred to. Then the
call to LAMBDACATE might look like this:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

RABBIT 568 05/15/78 Page 54
>3; HANDLE CASE OF INVOKING A KNOWN NOCLOSE FUNCTION OR CONTINUATION.
>33 FOR AN EXPLICIT ((LAMBDA ... BODY) ...), BODY IS THE BODY.
>33 OTHERWISE, IT IS NIL, AND SOMEONE WILL DO AN APPROPRIATE GO LATER.

(DEFINE LAMBDACATE .
(LAMBDA (VARS TVARS DEP ARGS REM ENVADJ BODY)

(LABELS ((LOOP
(LAMBDA (V A REALVARS REALARGS EFFARGS)

;;REALVARS IS COMPUTED PURELY FOR. ERROR-CHECKING
(IF (NULL A)

(LET ((B "(PROGN @(PSETQ-TEMPS (NREVERSE REALARGS) DEP ENVADJ)
»REM

@(DEPROGNIFY BODY)))
(RV (NREVERSE REALVARS)))

(IF (NOT (EQUAL RV TVARS))
(ERROR ‘|TVARS screwup in LAMBDACATE |

"((VARS = ,VARS)
(TVARS = ,TVARS)
(REALVARS = ,RV))

"FAIL-ACT))
(IF EFFARGS

“(PROGN BEFFARGS @(DEPROGNIFY B))

B))
(COND ((LET ((KFN (GET (CAR V) 'KNOWN-FUNCTION)))

(AND KFN
(EQ (EQCASE (TYPE (CNODE\CFORM KFN))

(CLAMBDA
(CLAMBDA\F NP
(CNODE\CFORM KFN)))

(CONTINUATION
(CONTINUATION\F NP
(CNODE\CFORM KFN))))

"NOCLOSE))}
(LOOP (COR V) (COR A) REALVARS REALARGS EFFARGS))

((OR (GET (CAR V) 'READ-REFS)
(GET (CAR V) ‘WRITE-REFS))

(LOOP (COR V)
(COR A)
(CONS (CAR V) REALVARS)
(CONS (CAR A) REALARGS)
EFFARGS))

(T (LOOP (COR Vv)
(COR A)
REALVARS
REALARGS
(CONS (CAR A) EFFARGS))))))))

(LOOP VARS ARGS NIL NIL NIL))))

234

(LAMBDACATE '(F A B)

'(A)
12

"(<illegal> (CONS X43 Y69) (PRINT Z91))

<remark>
*&KXENV dX

<body>)

where <illegal> is an object that should never be looked at (see ANALYZE-
CLAMBDA); X43, Y69, and Z91 are pieces of code which refer to the variables X,
Y, and Z; <remark> is some remark; the environment adjustment is assumed to be

trivial; and <body> is the code for the body of the LAMBDA. The generated code

would look something like this:

(PROGN (PRINT Z91)

(SETQ -12- (CONS X43 Y69))

<remark>

<body>)

Notice that LAMBDACATE explicitly takes advantage of the fact that the execution

of arguments for a combination may be arbitrarily reordered.

The various PSETQ... routines generate code to perform Parallel SETQs,

i.e. the simultaneous assignment of several values to several values. The

parallel nature is important, because some of the values may refer to other

registers being assigned to, and a sequential series of assignments might not

work.

The main routine here is PSETQIFY, which takes a list of arguments

(pieces of MacLISP code which will generate values when executed at run-time) and

a list of corresponding registers. One of two different methods is used

depending on the number of values involved. Method 2 produces better code (this

is obvious only when one understands the properties of the MacLISP compiler which

will compile the MacLISP code into PDP-10 machine language). Unfortunately, it

happened that when RABBIT was written there was a bug in the MacLISP compiler

such that it often found itself unable to compile the code generated by Method 2.

Moreover, the primary maintainer of the MacLISP compiler was on leave for a year.

For this reason Method 3 was invented, which always works, but is considerably

more expensive in terms of the PDP-10 code produced. (I concerned myself with

this low level of detail only for this routine, because the code it produces is

central to the whole code generator, and so its efficiency is of the greatest

importance.) In order to achieve the best code, I determined empirically that

Method 2 never failed as long as fewer than five values were involved. I might

also add that a Method 1 was once used, which happened to provoke a different bug

in the MacLISP compiler; Method 2 was invented in an attempt to circumvent that

first bug! Now that the maintainer of the MacLISP compiler (Jon L White) has
returned, it may soon be possible to remove Method 3 from RABBIT; but I think

this story serves as an excellent example of pragmatic engineering to get around

immediate obstacles (also known as a "kludge").

001
002
003
004
005
006
007
008
009
010
011
012

- 013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

RABBIT 568 05/15/78 Page 55

333 GENERATE PARALLEL SETQ'ING OF REGISTERS TO ARGS.
333 RETURNS A LIST OF THINGS; ONE WRITES @(PSETQIFY ...) WITHIN ".

(DEFINE PSETQIFY
(LAMBDA (ARGS REGISTERS)

(IF (< (LENGTH ARGS) 5)
(PSETQIFY-METHOD-2 ARGS REGISTERS)
(PSETQIFY-METHOD-3 ARGS REGISTERS))))

(DEFINE PSETQIFY-METHOD-2
(LAMBDA (ARGS REGISTERS)

(LABELS ((PSETQ1
(LAMBDA (A REGS QVARS SETQS USED)

(1F (NULL A)
(IF (NULL SETOQS)

NIL
(IF (NULL (CDR SETQS))

"((SETQ ,(CADAR SETQS) ,(CAR USED)))
>; IMPORTANT: DO NOT NREVERSE THE SETQS!
;;MAKES MACLISP COMPILER WIN BETTER.
"(((LAMBDA ,(NREVERSE QVARS) @SETQS)

@(NREVERSE USED)))))
(IF (EQ (CAR A) (CAR REGS)) ;AVOID USELESS SETQ'S

(PSETQ1 (CDR A)
(COR REGS)
QVARS
SETOS
USED)

({LAMBDA (QV)
(PSETQ1 (COR A)

(COR REGS)
(CONS QV QVARS)
(CONS "(SETQ ,(CAR REGS) ,QV) SETQS)
(CONS (CAR A) USED)))

)))
)))

(GENTEMP 'Q))))
(PSETQ] ARGS REGISTERS WIL NIL NIL

236

Method 2 essentially uses local MacLISP LAMBDA variables to temporarily

name the values before assignment to the registers, while Method 3 uses global

variables. (Method 2 produces better code because the MacLISP compiler can

allocate the local variables on a stack, one by one, and then pop them off in

reverse order into the “registers".) Both methods perform two peephole

optimizations: (1) If a value-register pair calls for setting the register to

its own contents, that SETQ is eliminated. (2) If this elimination reduces the

number of SETQs to zero or one, then NIL or a single SETQ is produced, rather

than the more complicated and general piece of code.

As examples, (PSETQIFY '(-12- -12- (CDR -13-)) '(-1ll- -12- -13-)) would

produce:

((LAMBDA (Q-43 Q-44)
(SETQ -13- Q-44)
(SETQ -li- Q-43))

-12-

(CDR -13-))

(note that (SETQ -12- -12-) was eliminated), and

(PSETQIFY '(-23- -21- -24- -25- -22-) '(-2l- -22- -23- -24- -25-))

would produce:

(PROG () (DECLARE (SPECIAL -21--TEMP -22--TEMP -23--TEMP -24--TEMP -25--TEMP)
(SETQ -25--TEMP -22-)
(SETQ -24--TEMP -25-)
(SETQ -23--TEMP -24-)
(SETQ -22--TEMP -21-)
(SETQ -21--TEMP -23-)
(SETQ -25- -25--TEMP)
(SETQ -24- -24--TEMP)
(SETQ -23- -23--TEMP)
(SETQ -22- -22--TEMP)
(SETQ -21- -21--TEMP))

The only reason for using PROG is so that the DECLARE form could be included for

the benefit of the MacLISP compiler.

The examples here are slightly incorrect; PSETQIFY actually produces a
list of MacLISP forms, so that when no SETQs are produced the resulting NIL is

interpreted as no code at all.

In principle the elimination of redundant SETQs should be performed

before choosing which method to use, so that there will be a maximal chance of
using the more efficient Method 2. I chose not to only so that the two methods

would remain distinct pieces of code and thus easily replaceable.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025

RABBIT 568 05/15/78 Page 56

(DEFINE PSETQIFY-METHOD-3
(LAMBDA (ARGS REGISTERS)

(LABELS ((PSETQ)
(LAMBDA (A REGS QVARS SETOS USED)

(1F (NULL A)
(IF (NULL SETQS)

NIL
(IF (NULL (COR SETQS))

"((SETQ ,(CADAR SETQS) ,(CADDR (CAR USED))))
"((PROG () (DECLARE (SPECIAL @QVARS)) @USED @SETQS))))

(1F (EQ (CAR A) (CAR REGS)) ;AVOID USELESS SETQ'S
(PSETQ] (COR A)

(CDR REGS)
QVARS
SETQS
USED)

((LAMBDA (QV)
(PSETQ1 (CDR A)

(CDR REGS)
(CONS QV QVARS)
(CONS "(SETQ ,(CAR REGS) ,QV) SETQS)
(CONS "(SETQ ,QV ,(CAR A)) USED)))

(CATENATE (CAR REGS) '|-TEMP])))))))
(PSETQ1 ARGS REGISTERS NIL NIL NIL))))

238

PSETQ-ARGS is a handy routine which calls PSETQ-ARGS-ENV with an ENVADJ

of **ENV**, knowing that later the redundant "(SETQ *kENVx* *xENV*x*)" will be

eliminated.

PSETQ-ARGS-ENV takes a set of arguments and an environment adjustment,

and arranges to call PSETQIFY so as to set up the standard argument registers.

Recall that how this is done depends on whether the number of arguments exceeds

NUMBER-OF-ARG-REGS; if it does, then a list of the arguments (except the

continuation) is passed in *xONEX*. *&kKENV+CONT+ARG-REGS** is the same as

*xxARGUMENT-REGISTERS**, except that both the names *x*ENV** and **CONT** are

adjoined to the front. It can be quite critical that **ENV** and the argument

registers be assigned to in parallel, because the computation of the argument

values may well refer to variables in the environment, whereas the environment

adjustment may be taken from a closure residing in one of the argument registers.

PSETQ-TEMPS is similar to PSETQ-ARGS-ENV, but is used on registers other

than the standard argument-passing registers. It takes ARGS and ENVADJ as

before, but also a depth DEP which is the number of the first register to be

assigned to. TEMPLOC is used to generate the register names, then **xENV** is

tacked on and PSETQIFY does the real work.

MAPANALYZE is a simple loop which maps over a list of cnode-trees and

calls ANALYZE on each. A list of the results returned by ANALYZE is given to C.

Also, FNS is chained through the calls to ANALYZE, so that all functions to be

compiled later will have been accumulated properly.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

RABBIT 568 05/15/78 Page 57

(DEFINE PSETQ-ARGS
(LAMBDA (ARGS)

(PSETQ-ARGS-ENV ARGS '**ENVe®)))

(DEFINE PSETQ-ARGS-ENV
(LAMBDA (ARGS ENVADJ)

(IF (> (LENGTH ARGS) (+ **NUMBER-OF -ARG-REGS** 1))
(PSETQIFY (LIST ENVADJ (CAR ARGS) (CONS 'LIST (COR ARGS)))

&* ENV+CONT+ARG -REGS&*)
(PSETQIFY (CONS ENVADJ ARGS) **ENV+CONT+ARG-REGS**))))

(DEFINE PSETQ- TEMPS
(LAMBDA (ARGS DEP ENVADJ)

(DO ({A ARGS (COR A))
| (J DEP (+ J 1))

(R NIL (CONS (TEMPLOC J) R)))
((NULL A)
(PSETQIFY (CONS ENVADJ ARGS)

(CONS '*#ENVee (NREVERSE R)))))))

(DEFINE MAPANALYZE
(LAMBDA (FLIST RNL PROGNAME BLOCKFNS FNS C)

(LABELS ((LOOP
(LAMBDA (F Z FNS)

(IF (NULL F)
(C (NREVERSE Z) FNS)
(ANALYZE (CAR F)

RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (STUFF FNS)

(LOOP (COR F)
(CONS STUFF Z)
FNS)))))))

(LOOP FLIST NIL FNS))))

240

ANALYZE is the routine called to compile a piece of code which is

expected to produce a value. ANALYZE itself is primarily a dispatch to

specialists. For the "simple" case of a “trivial” form, TRIVIALIZE is used to
generate the code. For the simple case of a CVARIABLE, ANALYZE simply uses

LOOKUPICATE to get the code for the variable reference.

ANALYZE-CLAMBDA has three cases based on FNP. For type NIL, code is

generated to create a full closure of the form (CBETA <value of progname> <tag> .

<environment>). CONS-CLOSEREFS generates the code to add the CLOSEREFS to the

existing consed environment for making this closure. For type EZCLOSE, just the

environment part is created, again using CONS-CLOSEREFS. For type NOCLOSE, the

generated "code" should never be referenced at all -- it is not even passed as an

argument as such -- and so a little message to the debugger is returned as the

"code", which of course must not appear in the final code for the module. For

all three cases, the code for the function is added to the FNS list for later

compilation.

ANALYZE-CONTINUATION is essentially identical to ANALYZE-CLAMBDA.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055

RABBIT 568 05/15/78 Page 58

(DEFINE ANALYZE
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS FNS C)

(LET ((CFM (CNODE\CFORM CNODE)))
(EQCASE (TYPE CFM)

(TRIVIAL
(C (TRIVIALIZE (TRIVIAL\NODE CFM) RNL) FNS))

(CVARIABLE
(C (LOOKUPICATE (CVARIABLE\VAR CFM) RNL) FNS))

(CLAMBDA
(ANALYZE-CLAMBDA CNODE RNL PROGNAME BLOCKFNS FNS C CFM))

(CONTINUATION
_ (ANALYZE -CONTINUATION CNODE RNL PROGNAME BLOCKFNS FNS C CFM))
(CIF
(ANALYZE-CIF CNODE RNL PROGNAME BLOCKFNS FNS C CFM))

(CLABELS
(ANALYZE-CLABELS CNODE RNL PROGNAME BLOCKFNS FNS C CFM))

(CCOMBINATION
(ANALYZE-CCOMBINATION CNODE RNL PROGNAME BLOCKFNS FNS C CFM))
(RETURN ©
(ANALYZE-RETURN CNODE RNL PROGNAME BLOCKFNS FNS C CFM))))))

(DEFINE ANALYZE-CLAMBDA

(LAMBDA (CNODE RNL PROGNAME BLOCKFNS FNS C CFM)

(EQCASE (CLAMBDA\FNP CFM)

(NIL
(C "(CONS 'CBETA

(CONS ,PROGNAME

(CONS ',(CLAMBDA\NAME CFM)
»(CONS-CLOSEREFS (CLAMBDA\CLOSEREFS CFM)

RNL))))
(CONS (LIST PROGNAME CNODE NIL) FNS)))

(EZCLOSE

(C (CONS-CLOSEREFS (CLAMBDA\CLOSEREFS CFM) RNL)

(CONS (LIST PROGNAME CNODE NIL) FNS)))

(NOCLOSE
(C '|{Shauldn't ever be seen - NOCLOSE CLAMBDA|

(CONS (LIST PROGNAME CNODE RNL) FNS))))))

(DEFINE ANALYZE-CONTINUATION
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS FNS C CFM)

(EQCASE (CONTINUATION\FNP CFM)
(NIL
(C "(CONS 'CBETA

(CONS ,PROGNAME
(CONS ',(CONTINUATION\NAME CFM)

,(CONS-CLOSEREFS (CONTINUATION\CLOSEREFS CFM)

RNL))))
(CONS (LIST PROGNAME CNODE NIL) FNS)))

(EZCLOSE
(C (CONS-CLOSEREFS (CONTINUATION\CLOSEREFS CFM) RNL)

(CONS (LIST PROGNAME CNODE NIL) FNS)))
(NOCLOSE

(C '|Shouldn't ever be seen - NOCLOSE CONTINUATION]
(CONS (LIST PROGNAME CNODE RNL) FNS))))))

242

ANALYZE-CIF merely calls ANALYZE recursively on the _ predicate,

consequent, and alternative, and then uses CONDICATE to construct a MacLISP COND

form.

ANALYZE-CLABELS calls ANALYZE recursively on the body of the CLABELS, and

then calls PRODUCE-LABELS to do the rest. (Unlike the other PRODUCE- functions,

PRODUCE-LABELS does not depend on generating code which does not produce a value.
It accepts an already-compiled body, and builds around that the framework for

constructing the mutually referent functions. If the body was compiled using

COMP-BODY, then the code generated by PRODUCE-LABELS will produce no value; but

if the body was compiled using ANALYZE, then it will produce a value.)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

RABBIT 568 05/15/78 Page 59

(DEFINE ANALYZE-CIF
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS FNS C CFM)

(ANALYZE (CIF\PRED CFM)
RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (PRED FNS)

(ANALYZE (CIF\CON CFM)
RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (CON FNS) |

(ANALYZE (CIF\ALT CFM)
RNL
PROGNAME
BLOCKFNS
FNS
(LAMBDA (ALT FNS)

(C (CONDICATE PRED CON ALT)
FNS)))))))))

(DEFINE ANALYZE-CLABELS
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS FNS C CFM)

(ANALYZE (CLABELS\BODY CFM)
(ENVCARCOR (APPEND (CLABELS\FNENV CFM)

(CLABELS\CONSENV CFM))
RNL)

PROGNAME
BLOCKFNS
FNS
(LAMBDA (LBOD FNS)

(PRODUCE-LABELS CNODE LBOD RNL PROGNAME BLOCKFNS FNS C)))))

244

ANALYZE-CCOMBINATION requires the function to be a CLAMBDA (for if it

were not, then something too complicated for continuation-passing style is going

on). ANALYZE is called on the body of the CLAMBDA, and then on all the arguments

(using MAPANALYZE); finally LAMBDACATE is used to _ generate the code.

(LAMBDACATE is much like PRODUCE-LABELS, in that it is handed a body, and whether

the generated code produces a value depends only on whether the body does.)

ANALYZE-RETURN is essentially just like ANALYZE-CCOMBINATION.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059

- 060
061
062

RABBIT 568 05/15/78 Page 60
(DEF INE
ANALYZE -CCOMBINATION
(LAMBDA (CNODE RNL PROGNAME BLOCKFNS FNS C CFM)

(LET ((FN (CNODE\CFORM (CAR (CCOMBINATION\ARGS CFM)))))
(IF (EQ (TYPE FN) 'CLAMBDA)

(ANALYZE (CLAMBDA\BODY FN)
(ENVCARCOR (CLAMBDA\ASETVARS FN)

(REGSLIST FN T (ENVCARCDR (CLAMBDA\CONSENV FN) RNL)))
PROGNAME
BLOCKFNS
FNS
(LAMBDA (BODY FNS)

(MAPANALYZE
(COR (CCOMBINATION\ARGS CFM))
RNL
PROGNAME
BLOCKFNS
FNS
‘(LAMBDA (ARGS FNS)

(C (LAMBDACATE (CLAMBDA\VARS FN)
(CLAMBDA\TVARS FN)
(CLAMBDA\DEP FN)
ARGS
(REMARK-ON (CAR (CCOMBINATION\ARGS CFM)))
‘xeENVar

(SET-UP-ASETVARS BODY
(CLAMBDA\ASETVARS FN)
(REGSLIST FN NIL NIL)))

FNS)))))
(ERROR '|Non-trivial Function in ANALYZE-CCOMBINATION] CNODE 'FAIL-ACT)))))

(DEFINE ANALYZE-RETURN

(LAMBDA (CNODE RNL PROGNAME BLOCKFNS FNS C CFM)

(LET ((FN (CNODE\CFORM (RETURN\CONT CFM))))

(IF (EQ (TYPE FN) 'CONTINUATION)
(ANALYZE (CONTINUATION\BODY FN)

(IF (CONTINUATION\TVARS FN)

(CONS (CONS (CAR (CONTINUATION\TVARS FN))

(TEMPLOC (CONTINUATION\DEP FN)))
(ENVCARCDR (CONTINUATION\CONSENV FN) RNL))

(ENVCARCDR (CONTINUATION\CONSENV FN) RNL))

PROGNAME

BLOCKFNS

FNS

(LAMBDA (BODY FNS)
(ANALYZE (RETURN\VAL CFM)

RNL

PROGNAME

BLOCKFNS

FNS

(LAMBDA (ARG FNS)
(C (LAMBDACATE

(LIST (CONTINUATION\VAR FN))
(CONTINUATION\TVARS FN)

(CONTINUATION\DEP FN)

(LIST ARG)
(REMARK-ON (RETURN\CONT CFM))
'eeENVaw
BODY)

FNS)))))
(ERROR '|Non-trivial Function in ANALYZE-RETURN]| CNODE 'FAIL-ACT)))))

246

LOOKUPICATE (I make no apology for the choice of the name of this or any

other function; suffice it to say that a function named LOOKUP already existed

in the SCHEME interpreter) takes a variable name VAR and a rename list RNL, and

returns a piece of MacLISP code for referring to that variable. If an entry is

in RNL for the variable, that entry contains the desired code. Otherwise a

global variable reference must be constructed. This will simply be a reference

to the MacLISP variable, unless it is the name of a TRIVFN. In this case a GETL

form is constructed. (This is a big kludge which does not always work, and is

done this way as a result of a rather unclean hack in the SCHEME interpreter

which interfaces MacLISP functions with SCHEME functions.)

CONS-CLOSEREFS constructs a piece of MacLISP code which will cons onto

the value of **ENV** all the variables in the set CLOSEREFS. This is a simple

loop which uses LOOKUPICATE to generate code, and constructs a chain of calls to

CONS. For example, (CONS-CLOSEREFS ‘(A B C) NIL) would produce:

(CONS A (CONS B (CONS C *x*ENV**)))

Notice the use of REVERSE to preserve an order assumed by other routines.

OUTPUT-ASET takes two pieces of code: VARREF, which refers to a

variable, and BODY, which produces a value to be assigned to the variable. From

the form of VARREF a means of assigning to the variable is deduced. (This
implies that OUTPUT-ASET knows about all forms of code which might possibly be

returned by LOOKUPICATE and, a fortiori, which might appear in a RNL.) For

example, if the reference is (CADR (CDDDDR **xENV**x)), OUTPUT-ASET would generate

(RPLACA (CDR (CDDDDR **ENV**)) <body>).

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

(DEFINE LOOKUPICATE
(LAMBDA (VAR RNL)

((LAMBDA (SLOT)
(IF SLOT (CDR SLOT)

(1F (TRIVEN VAR)
"(GETL ',VAR '(EXPR SUBR LSUBR))
VAR)))

(ASSQ VAR RNL))))

(DEFINE CONS-CLOSEREFS
(LAMBDA (CLOSEREFS RNL)

(DO ((CR (REVERSE CLOSEREFS) (CDR CR))
(X 'ekENVex "(CONS ,(LOOKUPICATE (CAR cR) RNL) ,X)))

((NULL CR) X))))

(DEFINE OUTPUT-ASET
(LAMBDA (VARREF BODY)

(COND ((ATOM VARREF)
"(SETQ ,VARREF ,B0DY))

((EQ (CAR VARREF) 'CAR)
"(CAR (RPLACA ,(CADR VARREF) ,BODY)))

((EQ (CAR VARREF) 'CADR)
"(CAR (RPLACA (COR ,(CADR VARREF)) ‘BoDY)))

.((EQ (CAR VARREF) ‘CADDR)
"(CAR (RPLACA (CODR ,(CADR VARREF)) ,B0DY)))

((EQ (CAR VARREF) 'CADDOR)
"(CAR (RPLACA (CDDDR ,(CADR VARREF)) ,B0DY)))

nknown scipline - (T (ERROR ' [Unk ASET di Vi OUTPUT-ASET | VARREF ‘FAIL- ACT)))))

RABBIT 568 05/15/78 Page 61

248

CONDICATE takes the three conponents of an IF conditional, and constructs

a MacLISP COND form. It also performs a simple peephole optimization:

(COND (a b)
(T (COND (c d) ...)))

becomes:

(COND (a b) (c d) ...)

Also, DEPROGNIFY is used to take advantage of the fact that MacLISP COND clauses

are implicitly PROGN forms. Thus:

(CONDICATE ‘(NULL X) '(PROGN (PRINT X) Y) "(COND ((NULL Y) X) (T FOO)))

would produce:

(COND ((NULL X) (PRINT X) Y) ((NULL Y) X) (T FOO))

DECARCDRATE is a peephole optimizer which attempts to collapse CAR/CDR

chains in a piece of MacLISP code to make it more readable. For example:

(CAR (CDR (CDR (CAR (CDR (CAR (CDR (CDR (CDR (CDR X))))))))))

would become:

(CADDR (CADR (CADDDR (CDR X))))

The arbitrary heuristic is that "A" should appear only initially in a "C...R*"

composition. DECARCDRATE also knows that MacLISP ordinarily has defined CAR/CDR

compositions up to four long.

001
002
003
004
005
006
007
008
009
010

© 011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
.030
031
032
033
034
035

RABBIT 568 05/15/78 Page 62

33; CONDICATE TURNS AN IF INTO A COND; IN SO DOING IT TRIES TO MAKE THE RESULT PRETTY.

(DEFINE CONDICATE
(LAMBDA (PRED CON ALT)

(IF (OR (ATOM ALT) (NOT (EQ (CAR ALT) 'COND)))
"(COND (,PRED @(DEPROGNIFY CON))

(T @(DEPROGNIFY ALT)))
"(COND (,PRED @(DEPROGNIFY CON))

@(CDR ALT)))))

333 DECARCDRATE MAKES CAR-COR. CHAINS PRETTIER.

(DEFINE DECARCDRATE
(LAMBDA (X)

(COND ((ATOM X) X)
((EQ (CAR X) 'CAR)
(1F (ATOM (CADR X))

x
(LET ((Y (DECARCORATE (CADR X))))

(COND ((EQ (CAR Y) 'CAR) "(CAAR ,(CADR Y))
((EQ (CAR Y) 'CDR) "(CADR ,(CADR Y))
({EQ (CAR Y) 'CDDR) "(CADDR ,(CADR Y
((EQ (CAR Y) 'CODDR) "(CADDDR ,(CADR
(T "(CAR .¥))))))

((EQ (CAR X) 'CDR)
_ (IF (ATOM (CADR X))

x

)
)
)))
Y)))

(LET ((Y¥ (DECARCDRATE (CADR X))))
(COND ((EQ (CAR Y) 'COR) "(CODR ,(CADR Y)))

: ((EQ (CAR Y) 'CDOR) "(CDDOR ,(CADR Y)))
((EQ (CAR Y) 'CDDDR) "(CODDDR ,(CADR Y)))
(T "(COR .Y))))))

(T X))))

250

TRIVIALIZE is the version of ANALYZE which handles trivial forms. Recall
that these are represented as pass-1 node-trees rather than as pass-2 cnode-

trees. The task of TRIVIALIZE is to take such a node-tree and generate value-

producing code. Recall that the subforms of a trivial form must themselves be

trivial.

For a CONSTANT, a quoted copy of the value of the constant is generated.

For a VARIABLE, a reference to the variable is generated using

LOOKUPICATE.

For an IF, the components are recursively given to TRIVIALIZE and then
CONDICATE is used to generate a MacLISP COND form.

For an ASET, a reference to the ASET variable is generated using

LOOKUPICATE, and code for the body is generated by calling TRIVIALIZE
recursively; then OUTPUT-ASET generates the code for the ASET.

For a COMBINATION, the function must be either a TRIVFN or a LAMBDA-

expression. For the former, a simple MacLISP function call is generated, after
generating code for all the arguments. For the latter, TRIV-LAMBDACATE is
invoked after generating code for the arguments and the LAMBDA body.

TRIV-LAMBDACATE is, so to speak, a trivial version of LAMBDACATE. The

arguments are divided into two classes, those which are referenced and those

which are not (the possibility of a referenced argument which is a KNOWN-FUNCTION

cannot arise). When this is done, a MacLISP ((LAMBDA ...) ---) #form is
generated, preceded by any unreferenced arguments (which presumably have side-

effects). For example:

(TRIV-LAMBDACATE ‘(V1 V2 V3)
"((CAR X) (PRINT Y) (CDR Z))
"(PROGN (PRINT V1) (LIST V1 V3)))

ought to produce:

(PROGN (PRINT Y)
((LAMBDA (V1 V3)

(COMMENT (VARS = (A C)))
(PRINT V1)
(LIST V1 V3))

(CAR X)
(CDR Z)))

Note that a MacLISP LAMBDA body is an implicit PROGN. TRIV-LAMBDACATE also takes

advantage of the ability to arbitrarily reorder the execution of arguments to a

combination.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

035
036
037
038
039
040
041
042

- 043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

RABBIT 568 05/15/78 Page 63
(DEFINE TRIVIALIZE

(LAMBDA (NODE RNL)
(LET ((FM (NODE\FORM NODE)))

(EQCASE (TYPE FM)

(CONSTANT "',(CONSTANT\VALUE FM))
(VARIABLE (LOOKUPICATE (VARIABLE\VAR FM) RNL))
(IF (CONDICATE (TRIVIALIZE (IF\PRED FM) RNL)

(TRIVIALIZE (IF\CON FM) RNL)
(TRIVIALIZE (IF\ALT FM) RNL)))

(ASET
(OUTPUT-ASET (LOOKUPICATE (ASET\VAR FM) RNL)

(TRIVIALIZE (ASET\BODY FM) RNL)))
(COMBINATION
(LET ((ARGS (COMBINATION\ARGS FM)))

(LET ((FN (NODE\FORM (CAR ARGS))))
(IF (AND (EQ (TYPE FN) 'VARIABLE)

(VARIABLE\GLOBALP FN)
(TRIVEN (VARIABLE\VAR FN)))

(CONS (VARIABLE\VAR FN)
(AMAPCAR (LAMBDA (A) (TRIVIALIZE A RNL))

(COR ARGS)))
(IF (EQ (TYPE FN) 'LAMBDA)

(TRIV-LAMBDACATE
(LAMBDA\VARS FN)
(AMAPCAR (LAMBDA (A) (TRIVIALIZE A RNL))

(CDR ARGS))
(TRIVIALIZE (LAMBDA\BODY FN) RNL))

(ERROR ‘'[Strange Trivial Function - TRIVIALIZE |
NODE

"FAIL-ACT))))))))))

(DEFINE TRIV-LAMBDACATE
(LAMBDA (VARS ARGS BODY)

(LABELS ((LOOP
(LAMBDA (V A REALVARS REALARGS EFFARGS)

(1F (NULL A)
(LET ((RV (NREVERSE REALVARS)))

(OR (NULL V) |
(ERROR '|We blew it in TRIV-LAMBDACATE| V ‘FAIL-ACT))

(LET ((B (IF RV
"((LAMBDA ,RV

(COMMENT
(VARS = ,(MAP-USER-NAMES RV)))

@(DEPROGNIFY BODY))
@(NREVERSE REALARGS))

BODY)))
(1F EFFARGS :

"(PROGN @EFFARGS @(DEPROGNIFY B))
B)))

(IF (OR (GET (CAR V) 'READ-REFS)
(GET (CAR V) 'WRITE-REFS))

(LOOP (COR V)
(COR A) |
(CONS (CAR V) REALVARS)
(CONS (CAR A) REALARGS)
EFFARGS)

(LOOP (COR Vv)
(COR A)
REALVARS
REALARGS
(CONS (CAR A) EFFARGS)))))))

(LOOP VARS ARGS NIL NIL NIL))))

252

We have examined the entire code generator, and now turn to high-level

control routines. COMPILATE-ONE-FUNCTION is the highest-level entry to the code

generator, called by COMPILE. It takes a code-tree and the user-name for the

function, and returns a complete piece of MacLISP code constituting a module for

the user function. It generates a global name for use as the module name

(PROGNAME), and invokes COMPILATE-LOOP (which really ought to have been a LABELS

function, but was too big to fit on the paper that way). The last argument is a

list of two MacLISP forms; one causes a SCHEME compiled closure form (a CBETA

list) to be put in the value cell of the user-name, so that it will be a globally

defined SCHEME function, and the other creates a property linking the PROGNAME

with the USERNAME for debugging purposes.

COMPILATE-LOOP repeatedly calls COMPILATE, giving it the next function on

the FNS list. Of course, the invocation of COMPILATE may cause new entries to

appear on the FNS list. COMPILATE-LOOP iterates until the FNS list converges to

emptiness. As it does so it takes each piece of generated code and strings it

together as PROGBODY. It also calculates in TMAX the maximum over all MAXDEP

slots; this is the only place where the MAXDEP slot is ever used.

When FNS is exhausted, a module is constructed. This contains a comment,

a MacLISP DEFUN form for defining a MacLISP function, a SETQ form to put the SUBR

pointer in the value cell of the PROGNAME (for the benefit of code which creates

CBETA forms), and extra "“stuff". TMAX is used to generate a list of all

temporary variables used in the module; a MacLISP SPECIAL declaration is created

to advise the MacLISP compiler.

USED-TEMPLOCS takes a TMAX value and generates the names of all temporary

registers (whose names are of the form -nn-; standard argument registers are not

included) up to that number.

001
002
003
004
005
006
007
006
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

RABBIT 568 05/15/78 Page 64
(DEFINE COMPILATE-ONE-FUNCTION ;COMPL ICATE-ONE-FUNCTION?

(LAMBDA (CNODE USERNAME)
(LET ((PROGNAME (GEN-GLOBAL-NAME)))

(COMPILATE-LOOP USERNAME
PROGNAME
(LIST (LIST USERNAME CNODE))
(LIST (LIST PROGNAME CNODE NIL))
NIL
0
(LIST "(SETQ ,USERNAME

(LIST 'CBETA
, PROGNAME
' (CLAMBDA\NAME (CNODE\CFORM CNODE))))

"(DEFPROP ,PROGNAME ,USERNAME USER-FUNCTION))))))

(DEFINE COMPILATE-LOOP ,

(LAMBDA (USERNAME PROGNAME BLOCKFNS FNS PROGBODY TMAX STUFF)
(IF (NULL FNS)

"(PROGN ‘COMPILE
(COMMENT MODULE FOR FUNCTION ,USERNAME)

(DEFUN ,PROGNAME ()

(PROG ()
(DECLARE (SPECIAL ,PROGNAME @(USED-TEMPLOCS TMAX)))

(GO (PROG2 NIL

(CAR **ENVae)
(SETQ **ENVee (COR *kENVe%))))

@(NREVERSE PROGBODY)))

(SETQ ,PROGNAME (GET ',PROGNAME 'SUBR))

@STUFF)
(COMPILATE (CAR (CAR FNS))

(CADR (CAR FNS))
(CADDR (CAR FNS))
BLOCKFNS
(COR FNS)
(LAMBDA (CODE NEWFNS)

(LET ((CFM (CNODE\CFORM (CADR (CAR FNS)))))

(COMP ILATE-LOOP

USERNAME

PROGNAME

BLOCKFNS

NEWFNS

(NCONC (REVERSE (DEPROGNIFY1 CODE T))

(CONS (REMARK-ON (CADR (CAR FNS)))
(CONS (EQCASE (TYPE CFM)

(CLAMBDA

(CLAMBDA\NAME CFM))

(CONTINUATION
(CONTINUATION\NAME CFM)))

PROGBODY)))
(MAX TMAX

(EQCASE (TYPE CFM)
(CLAMBDA

(CLAMBDA\MAXDEP CFM))
(CONTINUATION

(CONTINUATION\MAXDEP CFM))))

STUFF)))))))

(DEFINE USED-TEMPLOCS
(LAMBDA (N) .

(DO ((J (+ **&NUMBER-OF -ARG-REGS** 1) (+ J 1))
(X NIL (CONS (TEMPLOC J) X)))

((> JN) (NREVERSE X)))))

254

REMARK-ON takes a cnode for a CLAMBDA or CONTINUATION and generates a

comment containing pertinent information about invoking that function. This

comment will presumably be inserted in the output code to guide the debugging

process.

MAP-USER-NAMES takes a list of internal variable names and returns a list

of the corresponding user names for the variables, as determined by the USER-NAME

property. (If a variable is an internally generated one, e.g. for a

continuation, then it will have no USER-NAME property, and the internal name

itself is used.)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

(DEFINE REMARK-ON
RABBIT 568 05/15/78 Page 65

(LAMBDA (CNODE)
(LET ((CFM (CNODE\CFORM CNODE)))

(LABELS ((REMARK1
(LAMBDA (DEP FNP VARS ENV)

"(COMMENT (DEPTH = ,DEP)
(FNP = ,FNP)
@(IF VARS "((VARS = ,(MAP-USER-NAMES VARS))))
@(IF ENV "((ENV = ,(MAP-USER-NAMES ENV))))))))

(EQCASE (TYPE CFM)
(CLAMBDA
(REMARK1 (CLAMBDA\DEP CFM)

(CLAMBDA\FNP CFM)
(1F (EQ (CLAMBDA\FNP CFM) 'NOCLOSE)

(CLAMBDA\TVARS CFM)
(CLAMBDA\VARS CFM))

(APPEND (CLAMBDA\CLOSEREFS CFM)
(CLAMBDA\CONSENV CFM))))

(CONTINUATION
(REMARK1 (CONTINUATION\DEP CFM)

(CONTINUATION\FNP CFM)
NIL ;NEVER INTERESTING ANYWAY
(APPEND (CONTINUATION\CLOSEREFS CFM)

(CONTINUATION\CONSENV CFM)))))))))

(DEFINE MAP-USER-NAMES
(LAMBDA (VARS)

(AMAPCAR (LAMBDA (X) (OR (GET X 'USER-NAME) X)) VARS)))

256

The next few pages contain routines which deal with files. COMFILE takes

a file name, and compiles all the code in that file, producing an output file of

MacLISP code suitable for giving to the MacLISP compiler. It also computes the

CPU time required to compile the file.

FN gets the given file name, processed and defaulted according to

ITS/MacLISP standard conventions. RT and GCT save runtime and gc-runtime

information.

IFILE and OFILE get MacLISP "file objects" created by the OPEN function,

which opens the file specified by its first argument. (The output file names are

initially " RABB OUTPUT", conforming to an ITS standard. These will later be

renamed.)

GLOBAL-GEN-PREFIX is initialized as a function of the file name, to

"directory=firstname". This is to guarantee that the global symbols generated

for two different compiled files of SCHEME code will not conflict should the two

files be loaded into the same SCHEME together. (Notice the use of SYMEVAL. This

is necessary because MacLISP allows names to be used in two different kinds of

contexts, one meaning the "functional" value, and the other meaning the

"variable" value. SCHEME does not make this distinction, and tries to make the

- functional value available, but does not do this consistently. This is a problem

which results from a fundamental difference in semantics between SCHEME and

MacLISP. For such variables as DEFAULTF and TYO, which in MacLISP are used for

both purposes, it is necessary to use SYMEVAL to specify that the variable,

rather than the function, is desired.)

(SYMEVAL 'TYO) refers to the file object for the terminal; this is used

to print out messages to the user while the file is being compiled. Various

information is also printed to the file, including identification and a

timestamp. The DECLARE form printed to the output file contains the names of the

standard argument registers, and also *xENV**, x*xFUN*X*, and **xNARGS**. (This is

why USED-TEMPLOCS need not generate names of standard argument registers -- this

single global declaration covers them.) The second DECLARE form defines to the

MacLISP compiler a function called DISPLACE for obscure reasons having to do with
the implementation of SCHEME macros.

TRANSDUCE does the primary work of processing the input file. When it is
done, another timestamp is printed to the output file, so that the real time

consumed can be determined; then the runtime statistics are calculated and

printed, along with the number of errors if any occurred. The output file is

then renamed as "firstname LISP" and closed. The statistics message is returned

so that it will be printed as the last message on the terminal.

001 RABBIT 568 05/18/78 Page 66

002 (DEFINE COMFILE
003 (LAMBDA (FNAME)
004 (LET ((FN (DEFAULTF (MERGEF FNAME '(* >))))
005 (RT (RUNTIME))
006 (GCT (STATUS GCTIME)))
007 (LET ((IFILE (OPEN FN 'IN))
008 (OFILE (OPEN (MERGEF '(_RABB_ OUTPUT) FN) 'OUT)))

009 (SET' *GLOBAL-GEN-PREF IX*

010 (CATENATE (CADAR (SYMEVAL 'DEFAULTF))
Oli ‘t=

012 (CADR (SYMEVAL 'DEFAULTF))))
013— . (LET ((TN (NAMESTRING (TRUENAME IFILE))))

014 (PRINT "(COMMENT THIS IS THE RABBIT LISP CODE FOR ,TN) OF ILE)

015 (TIMESTAMP OF ILE)

016 (TERPRI OFILE)

017 (TERPRI (SYMEVAL 'TYO))

018 (PRINC '|;Beginning RABBIT compilation on | (SYMEVAL 'TYO))
019 (PRINC TN (SYMEVAL ‘TYO)))
020 (PRINT "(DECLARE (SPECIAL @*&CONT+ARG-REGS*#*& &eENVAe &&FUNRH x eNARGS#®))

021 OF ILE)

022 (PRINT ‘(DECLARE (DEFUN DISPLACE (X Y) Y)) OFILE)

023 (ASET' *TESTING*® NIL)

024 (ASET' *ERROR-COUNT*® 0)

025 (ASET' *ERROR-LIST*® NIL)

026 (TRANSDUCE IFILE

027 OF ILE

028 (LIST NIL)
029 (CATENATE '[INIT-| (CADR (TRUENAME IFILE))))
030 (TIMESTAMP OF ILE)

031 (LET ((X (*QUO (- (RUNTIME) RT) 1.0€6))
032 (Y (*QUO (- (STATUS GCTIME) GCT) 1.0€6)))

033 (LET ((MSG "(COMPILE TIME: ,X SECONDS

034 (GC TIME ,Y SECONDS)

035 (NET ,(-$ X Y) SECONDS)

036 @(IF (NOT (ZEROP *ERROR-COUNT®))

037 "((,*ERROR-COUNT* ERRORS))))))
038 (PRINT "(COMMENT ,MSG) OFILE)
039 (RENAMEF OF ILE

040 (MERGEF (LIST (CADR FN) ‘LISP)
041 FN))
042 (CLOSE OF ILE)
043 MSG))))))

258

TRANSDUCE processes forms from IFILE, one by one, calling PROCESS-FORM to

do the real work on each one. PROCESS-FORM may print results on OFILE, and may

also return a list of "random forms" to be saved.

The business of "random forms" has to do with the fact that the file

being compiled may contains forms which are not function definitions. The

expectation is that when the file is loaded these forms will be evaluated during

the loading process, and this is indeed true if the interpreter loads the

original file of source forms.

Now MacLISP provides a facility for evaluating random forms within a

compiled file, but they are evaluated as MacLISP forms, not SCHEME forms. To get

around this whole problem, I chose another solution. All the random forms in the

file are accumulated, and then compiled as the body of a function named "INIT-

firstname". In this way, once the compiled code is loaded, the user is expected

to say (INIT-firstname) to cause the random forms to be evaluated.

This idea would have worked perfectly except that files typically have a

large number of random forms in them (macro definitions create one or two random

forms as well as the definition of the macro-function). Putting all the random

forms together in a single function often creates a function too big for RABBIT

to compile, given PDP-10 memory limitiations. The four lines of code in

TRANSDUCE for this have therefore been commented out with a ";" at the beginning

of each line.

The final solution was to compile each random form as its own function,

and arrange for all these little functions to be chained; each one executes one

random form and then calls the next. A call to INIT-firstname starts the chain

going.

This, then, is the purpose of the big DO loop in TRANSDUCE: to construct

all. the little functions for the random forms. The third argument to PROCESS-

FORM may be NIL, which suppresses the printing of any messages on the terminal;

this spares the user having to see tens or hundreds of uninteresting messages

concerning the compilation of these initialization functions. However, so that

the user will not be dismayed at the long pause, a message saying how many random

forms there were is printed first.

READIFY implements the MacLISP convention that if the value of the

variable READ is non-nil, then that value is the read-in function to use; while

if it is NIL, then the function READ is the read-in function. (This "hook" is

the method by which CGOL works, for example.)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042

- 043
044
045
046

(DEFINE TRANSDUCE

eo

ee

oe

of

RABBIT 568 05/15/78 Page 67

(LAMBDA (IFILE OFILE EOF INITNAME)
(LABELS ((LOOP

(LAMBDA (FORM RANDOM-FORMS)
(IF (EQ FORM EOF)

(DO ((X (GENTEMP INITNAME) (GENTEMP INITNAME))
(Y NIL X)
(Z RANDOM-FORMS (CDR Z)))

((NULL Z)
(IF RANDOM-FORMS

(PRINT "(,(LENGTH RANDOM-FORMS)
RANDOM FORMS IN FILE TO COMPILE)

(SYMEVAL 'TYO)))
(IF Y (PROCESS-FORM "(DECLARE (SPECIAL ,Y))

OF ILE
T))

(PROCESS-FORM "(DEFINE , INI TNAME
(LAMBDA () .(IF Y (LIST Y) NIL)))

OF ILE

T)) .
(IF Y¥ (PROCESS-FORM "(DECLARE (SPECIAL ,Y))

OF ILE

NIL))

(PROCESS-FORM “(DEFINE ,X

(LAMBDA ()

(BLOCK ,(CAR Z)

CIE Y
(LIST Y)

NIL))))
OF ILE

NIL))
(PROCESS-FORM

"(DEFINE , INI TNAME .
(LAMBDA () (BLOCK @RANDOM-FORMS NIL NIL)))

OFILE)
(LET ((X (PROCESS-FORM FORM OFILE T)))

(LOOP (READIFY IFILE EOF) (NCONC X RANDOM-FORMS)))))))
(LOOP (READIFY IFILE EOF) NIL))))

(DEFINE READIFY ;FUNNY MACLISP CONVENTION - READIFY'LL DO THE JOB!
(LAMBDA, (IFILE EOF)

(IF (SYMEVAL 'READ)
(APPLY (SYMEVAL 'READ) IFILE EOF)
(READ IFILE EOF))))

260

PROCESS-FORM takes a form, an output file, and a switch saying whether to

be "noisy". The form is broken down into one of many special cases and processed

accordingly. The returned value is a list of "random forms" for TRANSDUCE to

save for later handling.

An atom, while pretty useless, is transduced directly to the output file.

A DEFINE-form, which defined a function to be compiled, is given to

PROCESS-DEFINE-FORM. This is the interesting case, which we will discuss on the

next page.

A special hack handed down from MacLISP is that a form (PROGN ‘COMPILE

..-) (and, for SCHEME, the analogous (BLOCK 'COMPILE ...)) should be treated as

if all the subforms of the PROGN (or BLOCK) after the first should be processed

as if they had been read as "top-level" forms from the file. This allows a macro

call to generate more than one form to be compiled, for example. It is necessary

to accumulate all the results of the calls to PROCESS-FORM so that they may be

collectively returned.

A PROCLAIM form contains a set of forms to be evaluated by RABBIT at

compile time. The evaluation is accomplished by constructing a LAMBDA form and

using the SCHEME primitive ENCLOSE to create a closure, and then invoking the

closure. As a special service, the variable OFILE is made apparent to the

evaluated form so that it can print information to the output file if desired.

A DECLARE form is meant to be seen by the MacLISP compiler, and so it is

passed on directly.

A COMMENT form is simply eliminated. (It could be passed through

directly with no harm.)

A DEFUN form is passed directly, for compilation by the MacLISP compiler.

A form which is a macro call is expanded and re-processed. As a special

hack, those which are calls to DEFMAC, SCHMAC, or MACRO are also evaluated

(MacLISP evaluation serves), so that the defined macro will be available for

compiling calls to it later in the file.

Any other form is considered "random", and is returned to TRANSDUCE

provided *BUFFER-RANDOM-FORMS* is non-NIL. This switch is provided in case it is

necessary to force a random form (e.g. an ALLOC form) to be output early in the

file. In this case any random forms must be MacLISP-evaluable as well as SCHEME-

evaluable. (This requirement is the reason RABBIT has random forms like "“(SET'‘

FOO ...)"; SETQ is unacceptable to SCHEME, while ASET' is unacceptable to

MacLISP, but SET' happens to work in both languages for setting a global

variable.) RABBIT itself sets *BUFFER-RANDOM-FORMS* to NIL on page 1 in a

PROCLAIM form.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

(SET' *OPTIMIZE* T)

(SET' *BUFFER-RANDOM-FORMS* T)

(DEFINE PROCESS-FORM
(LAMBDA (FORM OFILE NOISYP)

(COND ((ATOM FORM)

RABBIT 568 05/15/78 Page 68

(PRINT FORM OF ILE)
NIL)

((EQ (CAR FORM) 'DEFINE)
(PROCESS-DEF INE-FORM FORM OF ILE NOISYP)
NIL)

((AND (MEMQ (CAR FORM) ‘(BLOCK PROGN))
(EQUAL (CADR FORM) ''COMPILE))

(DO ((F (CODR FORM) (CDR F))
(Z NIL (NCONC Z (PROCESS-FORM (CAR F) OFILE NOISYP))))

((NULL F) Z)))
((EQ (CAR FORM) 'PROCLAIM)
(AMAPC (LAMBDA (X) ((ENCLOSE "(LAMBDA (OFILE) ,X)) OFILE))

(CDR FORM))
NIL)

((EQ (CAR FORM) 'DECLARE)
(PRINT FORM OF ILE)
NIL)

((EQ (CAR FORM) 'COMMENT)
NIL)

((EQ (CAR FORM) 'DEFUN)
(PRINT FORM OF ILE)
NIL)

((AND (ATOM (CAR FORM))
(EQ (GET (CAR FORM) 'AINT) 'AMACRO)
(NOT (EQ (GET (CAR FORM) 'AMACRO) 'AFSUBR)))

(1F (MEMQ (CAR FORM) '(DEFMAC SCHMAC MACRO))
(EVAL FORM))

(PROCESS-FORM (MACRO-EXPAND FORM) OFILE NOISYP))
(T (COND (*BUFFER-RANDOM-FORMS* (LIST FORM))

(T (PRINT FORM OFILE) NIL))))))

262

PROCESS-DEFINE-FORM disambiguates the three DEFINE formats permitted in

SCHEME:

(DEFINE FOO (LAMBDA (X Y) ...))
(DEFINE FOO (X Y) ...)
(DEFINE (FOO X Y) ...)

and constructs an appropriate LAMBDA-expression in standard form.

PROCESS-DEFINITION takes this LAMBDA-expression and compiles it, after

some error checks. It then cleans up, and if desired prints a message on the

console to the effect that the function was compiled successfully.

CLEANUP is used to clear out garbage left around by the compilation

process which is no longer needed (but is useful during the compilation, whether

for compilation proper or only for debugging should the compilation process

fail).

REPLACE has to do with macros which displace calls to them with the

expanded forms, but retain enough information to undo this. REPLACE undoes this

and throws away the saved information. (The DISPLACE facility is normally turned

off anyway, and is used only to make the compiler run faster when it itself is

being run under the SCHEME interpreter. This was of great use when RABBIT wasn't

running well enough to compile itself!)

GENFLUSH removes from the MacLISP OBARRAY all the temporary generated

symbols created by GENTEMP.

The MAPATOMS form removes from every atom on the OBARRAY the properties

shown. This takes more time but less space than recording exactly which atoms

had such properties created for then.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

RABBIT 568 05/15/78 Page 69

(DEFINE PROCESS-DEF INE-FORM
(LAMBDA (FORM OF ILE NOISYP)

(COND ((ATOM (CADR FORM))
(PROCESS-DEFINITION FORM

OF ILE
NOISYP
(CADR FORM)
(IF (NULL (CDDDR FORM))

(CADDR FORM)
"(LAMBDA ,(CADDR FORM)

(BLOCK . ,(CDDDR FORM))))))
(T (PROCESS-DEFINITION FORM

OF ILE
NOISYP
(CAADR FORM)
"(LAMBDA ,(CDADR FORM)

(BLOCK . ,(CDDR FORM))))))))

(DEFINE PROCESS-DEFINITION

(LAMBDA (FORM OFILE NOISYP NAME LAMBDA-EXP)

(COND ((NOT (EQ (TYPEP NAME) ‘SYMBOL))
(WARN [Function Name Not SYMBOL| NAME FORM))

((OR (NOT (EQ (CAR LAMBDA-EXP) 'LAMBDA))
(AND (ATOM (CADR LAMBDA-EXP))

(NOT (NULL (CADR LAMBDA-EXP)))))
(WARN |[Malformed LAMBDA-expression| LAMBDA-EXP FORM))

(T (PRINT (COMPILE NAME

LAMBDA-EXP
NIL
*OPTIMIZE®)

OF ILE)
(CLEANUP)
(IF NOISYP

(PRINT (LIST NAME 'COMPILED)
(SYMEVAL 'TYO)))))))

(DEFINE CLEANUP
(LAMBDA ()

(BLOCK (REPLACE)
(GENFLUSH)
(MAPATOMS "(LAMBDA (X)

(REMPROP X 'READ-REFS)
(REMPROP X 'WRITE-REFS)
(REMPROP X 'NODE)
(REMPROP X 'BINDING)
(REMPROP X 'USER-NAME)
(REMPROP X 'KNOWN-FUNCTION)
(REMPROP X 'EASY-LABELS-FUNCTION))))))

264

SEXPRFY and CSEXPRFY are debugging aids which take a node-tree or cnode-

tree and produce a fairly readable S-expression version of the code it

represents. They are used by the SX and CSX macros defined earlier. The USERP

switch for SEXPRFY specifies whether internal variables names or user variable

names should be used in the construction.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040

- 041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

INVERSE OF ALPHATIZE. USED BY SX, £.6., FOR DEBUGGING.

(DEFINE SEXPRFY
(LAMBDA (NODE USERP)

(LET ((FM (NODE\FORM NODE)))
(EQCASE (TYPE FM)

(DEFINE CSEXPRFY
(LAMBDA (CNODE)

(LET ((CFM (CNODE\CFORM CNODE)))
(EQCASE (TYPE CFM)

RABBIT 568 05/15/78 Page 70

(CONSTANT "(QUOTE ,(CONSTANT\VALUE FM)))
(VARIABLE (IF (AND USERP (NOT (VARIABLE\GLOBALP FM)))

(GET (VARIABLE\VAR FM) 'USER-NAME)
(VARIABLE\VAR FM)))

(LAMBDA "(LAMBDA ,(IF USERP (LAMBDA\UVARS FM) (LAMBDA\VARS FM))
»(SEXPRFY (LAMBDA\BODY FM) USERP)))

(IF “(IF ,(SEXPRFY (IF\PRED FM) USERP)
.(SEXPRFY (IF\CON FM) USERP)

.,(SEXPRFY (IF\ALT FM) USERP)))
(ASET "(ASET' ,(IF (AND USERP (NOT (ASET\GLOBALP FM)))

(GET (ASET\VAR FM) 'USER-NAME)
(ASET\VAR FM))

.(SEXPRFY (ASET\BODY FM) USERP)))
(CATCH "(CATCH ,(I1F USERP

(GET (CATCH\VAR FM) 'USER-NAME)
(CATCH\VAR FM))

»(SEXPRFY (CATCH\BODY FM) USERP)))
(LABELS "(LABELS ,(AMAPCAR (LAMBDA (VD) "(,(IF USERP

(GET V 'USER-NAME)
Vv)

,(SEXPRFY D USERP)))
(LABELS\FNVARS FM)
(LABELS\FNDEFS FM))

,(SEXPRFY (LABELS\BODY FM) USERP)))
(COMBINATION
(AMAPCAR (LAMBDA (A) (SEXPRFY A USERP))}

(COMBINATION\ARGS FM)))))))

(TRIVIAL "(TRIVIAL ,(SEXPRFY (TRIVIAL\NODE CFM) NIL)))
(CVARIABLE (CVARIABLE\VAR CFM)) |
(CLAMBDA "(CLAMBDA ,(CLAMBDA\VARS CFM)

,(CSEXPRFY (CLAMBDA\BODY CFM))))
(CONTINUATION
"(CONTINUATION (,(CONTINUATION\VAR CFM))

,(CSEXPRFY (CONTINUATION\BODY CFM))))
(CIF "(CIF ,(CSEXPRFY (CIF\PRED CFM))

,(CSEXPRFY (CIF\CON CFM))
,(CSEXPRFY (CIF\ALT CFM))))

(CASET "(CASET' ,(CSEXPRFY (CASET\CONT CFM))
,(CASET\VAR CFM)
,(CSEXPRFY (CASET\BODY CFM))))

(CLABELS "(CLABELS ,(AMAPCAR (LAMBDA (VD) "(,V
,(CSEXPRFY 0)))

(CLABELS\FNVARS CFM)
(CLABELS\FNDEFS CFM))

.(CSEXPRFY (CLABELS\BODY CFM))))
(CCOMBINATION |
(AMAPCAR CSEXPRFY (CCOMBINATION\ARGS CFM)))

(RETURN
“(RETURN ,(CSEXPRFY (RETURN\CONT CFM))

: ,(CSEXPRFY (RETURN\VAL CFM))))))))

266

CHECK-NUMBER-OF-ARGS is used by COMPILE and ALPHA-COMBINATION to make

sure that function calls and definitions agree on the number of arguments taken

by a function. If a mismatch is detacted, a warning is issued. This check

frequently catches various typographical errors. The argument DEFP is NIL unless

this call is on behalf of a definition rather than a call. The DEFINED property

is used only so that a more comprehensive warning may be given.

*EXPR and *LEXPR are two special forms suitable for use in a PROCLAIM

form for declaring that certain names refer to MacLISP functions rather than

SCHEME functions. An example, for PRINT-SHORT, occurs on page 1 of RABBIT.

DUMPIT establishes a simple user interface for RABBIT. After loading a

compiled RABBIT into a SCHENE run-time system, the call (DUMPIT) initializes the

RABBIT, then suspends the MacLISP environment, with an argument which is an ITS

command for dumping the core image. When this core image is later loaded and

resumed, DUMPIT prints "FILE NAME:" and reads a line. All the user need do is

typoe a file name and a carriage return to compile the file. When this is done,

the call to QUIT kills the RABBIT job.

STATS prints out statistics accumulated in the counters listed in *STAT-

VARS*. RESET-STATS resets all the counters.

001
002
003
004
005
006
007

008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

RABBIT 568 05/15/78 Page 71
(DEFINE CHECK-NUMBER-OF -ARGS

(LAMBDA (NAME NARGS DEFP)
(OR (GETL NAME '(*LEXPR LSUBR))

(LET ((N (GET NAME 'NUMBER-OF -ARGS)))
(IF N

(IF (NOT (= N NARGS))
(IF DEFP

(WARN [definition disagrees with earlier use on number of args |

NAME

NARGS

N)
(IF (GET NAME 'DEFINED)

(WARN |use disagrees with definition on number of args |

NAME
NARGS

N)
(WARN |two uses disagree before definition on number of args]

NAME
NARGS

N))))
(PUTPROP NAME NARGS 'NUMBER-OF -ARGS))

(IF DEFP (PUTPROP NAME 'T 'DEFINED))))))

(DEFUN *EXPR FEXPR (X)
(MAPCAR ‘(LAMBDA (Y) (PUTPROP Y 'T '®EXPR)) X))

(DEFPROP *EXPR AFSUBR AMACRO) (DEFPROP *EXPR AMACRO AINT)

(OEFUN *LEXPR FEXPR (X)
(MAPCAR ‘(LAMBDA (Y) (PUTPROP Y 'T '*LEXPR)) X))

(DEFPROP *LEXPR AFSUBR AMACRO) (DEFPROP *LEXPR AMACRO AINT)

(DEFINE DUMPIT

(LAMBDA ()
(BLOCK (INIT-RABBIT)

(SUSPEND '|:POUMP OSK:SCHEME;TS RABBIT])
(TERPRI)
(PRINC '|[File name: |)
(COMFILE (READLINE))
(QUIT))))

(DEFINE STATS
(LAMBDA ()

(AMAPC (LAMBDA (VAR)
(BLOCK (TERPRI)

(PRINI VAR)
(PRINC '[= |)
(PRIN1 (SYMEVAL VAR))))

STAT-VARS)))

(DEFINE RESET-STATS
(LAMBDA () (AMAPC (LAMBDA (VAR) (SET VAR 0)) *STAT-VARS*)))

Symbol Table for: QUUX; RABBIT 568 05/15/78 Page I

Wee ee ee ee eee SIDE EFFECTS 017 005
WEMPR Co ce eee eens FEXPR cee cee eee 071 026
WEXPR 2... cc ce eee eens PROPERTY--.0405- 071 027
WEXPR Co ce ene ene AMACRO 2-0 e ee eens 071 029
WEXPR Lo ee ee ee es we AINT Coo cece cee ee eee 071 029
RLEXPR 22. eee eet FEXPR08. ee 071 031
WLEXPR 02 ee ee ees PROPERTY-- 00sec eeuee 071 032
WLEMPR 22 ce tee AMACRO .. 1... cee ee eee eee 071 034
WLEXPR 220 ce ees AINT 2... eee cc cee ee eee 071 034
Po ee eee eee ees SIDE EFFECTS ...0......... 017 003
Te ee eee eee eee eee SIDE EFFECTS 017 004
Foc cee eee eee eee ees SIDE EFFECTS 017 006
Kc ee eee eee eee eee SIDE EFFECTS 017 008
Bee ee eee eee ee etn SIDE EFFECTS 017 007
De ee ee eee eens SIDE EFFECTS 017 009
ACCESSFN 2... ce ee eee @DEFINE cece eee eee 004 002
ACCESSFN 22. Le ee ee ee MACLISP MACRO 004 004
ADDPROP 0... cee ee eee SCHEME FUNCTION 006 004
ADJOIN 2.0... eee eee SCHEME FUNCTION 006 029
ADJUST-KNOWNFN-CENV 2.0 0.0....0....006. SCHEME FUNCTION 052 002
AINT 22. ec cece eee ee PROPERTY0. 0000s 071 029
AINT 2.0. ccc eee eee eee PROPERTY0 eee eee 071 034
ALPHA-ASET 22... cc eee ee eee SCHEME FUNCTION 010 010
ALPHA-ATOM 2... 0. cece eee SCHEME FUNCTION 009 032
ALPHA-BLOCK .. 2... ee ee ee eee SCHEME FUNCTION +. O11 011
ALPHA-CATCH 00... ce ee eee eee SCHEME FUNCTION 010 029
ALPHA-COMBINATION04.4. SCHEME FUNCTION 011 037
ALPHA-IF 2... eee eee eee SCHEME FUNCTION 010 002
ALPHA-LABELS: ee eee eee SCHEME FUNCTION 010 040
ALPHA-LABELS-DEFN0.0.. SCHEME FUNCTION 011 002
ALPHA-LAMBDA 0.022000 e SCHEME FUNCTION 009 042
ALPHATIZE 2... 0. ce ee eee ee eee SCHEME FUNCTION 009 005
AMACRO 2.6. ee ee ees PROPERTY2 cee eens 071 029
AMACRO 2... ee eee ee PROPERTY cece eee eee 071 034
ANALYZE 261. eee ene SCHEME FUNCTION 058 002
ANALYZE-CCOMBINATION SCHEME FUNCTION 060 003
ANALYZE-CIF 2.2... 0. ee ee eee SCHEME FUNCTION 059 002
ANALYZE-CLABELS04. SCHEME FUNCTION 059 025
ANALYZE-CLAMBDA 200006. SCHEME. FUNCTION 058 023
ANALYZE-CONTINUATION SCHEME FUNCTION 058 040
ANALYZE-RETURN-. 0.200006. SCHEME FUNCTION 060 033
APPEND 0... ee cece ee eee eee SIDE EFFECTS 017 057
ASET De eee eee ee eee eens DATA TYPE cee ee eee 008 042
ASK Loc cee ee eee eee PDP-10 SCHEME MACRO 003 024
ASSQ ee ee ee eee ee ene SIDE EFFECTS 017 059
ATOM 2. ee eee eee eee SIDE EFFECTS 017 045
BIGP eee ee eee eee eee SIDE EFFECTS 017 052
BIND-ANALYZE 0... 2. ce eee eee SCHEME FUNCTION 034 030
BIND-ANALYZE-CASET00-. SCHEME FUNCTION 035 040
BIND-ANALYZE-CCOMBINATION SCHEME FUNCTION 037 002
BIND-ANALYZE-CIF06. SCHEME FUNCTION 035 030
BIND-ANALYZE-CLABELS-.. SCHEME FUNCTION 036 002
BIND-ANALYZE-CLAMBDA-.... SCHEME FUNCTION 035 002
BIND-ANALYZE-CONTINUATION SCHEME FUNCTION 035 016
BIND-ANALYZE-RETURN0.. SCHEME FUNCTION 036 033
BIND-CCOMBINATION-ANALYZE SCHEME FUNCTION 037 043
CAAAAR 2... eee cee tees SIDE EFFECTS 017 024
CAAADR 2.1. ce eee ene SIDE EFFECTS 017 025
CAAAR 2... ce eee eee eee SIDE EFFECTS 017 016
CAADAR ... 0. ee ee tee te ene SIDE EFFECTS 017 026
CAADDR .. 1... ce eee ee eee SIDE EFFECTS 017 027
CAADR 2... eee eee SIDE EFFECTS 017 017
CAAR Lee cee eee eee teen eee SIDE EFFECTS 017 012
CADAAR . 2.6... ee ee eee SIDE EFFECTS 017 028
CADADR ... 0. eee eee SIDE EFFECTS 017 029
CADAR 216. ccc cee eee eee SIDE EFFECTS 017 016

Symbol Table for: QUUX; RABBIT 568 05/15/78 Page II

CADDAR . 2... eee eee SIDE EFFECTS 017 030
CADDOR 2... cee ee ee eee SIDE EFFECTS 017 031

CADDR 2... cee ce ee eee eee eee SIDE EFFECTS 017 019
CADR 2... cece eet eee eee SIDE EFFECTS 017 013

| SIDE EFFECTS 017 010
CASET 2... cc cc ce eee eee DATA TYPE vee. 026 039
CATCH 2.26. cee ee eee DATA TYPE-0 ee eee 008 046
CATENATE 2... cc cee cee tee MACLISP MACRO 002 016
CCOMBINATION Seer teens DATA TYPE202 eee 026 047
CDAAAR .. 0... eee eee eee eee SIDE EFFECTS 017 032
COAADR 2.2... cee eee eee SIDE EFFECTS 017 033
CDAAR 2.1... ccc ee ee ete twee SIDE EFFECTS 017 020
CDADAR. 2.0... ce ce ee ee ees SIDE EFFECTS 017 034
CDADDR 2.2... ee eee SIDE EFFECTS 017 035
CDOADR 2... cee eee ee ee eee SIDE EFFECTS 017 021
CDAR 2... cee ee eee eee SIDE EFFECTS 017 014
CDDAAR 2... ee ee ee eee eee SIDE EFFECTS 017 036
CDODADR 2... eee eens SIDE EFFECTS 017 037
CODAR 2... ce nee er eens SIDE EFFECTS 017 022
CDODAR .. 1... ee ccc ec eee eee SIDE EFFECTS 017 038
CDODDDR .. ce cee eee SIDE EFFECTS 017 039
CODDR 2... ee eee ee eee SIDE EFFECTS 017 023
CODR 2. cc cee ee eens SIDE EFFECTS 017 015
COR 2. ce ee eee eee SIDE EFFECTS 017 011
CENV-ANALYZE 2.0... ce ec eee SCHEME FUNCTION 032 018
CENV-CCOMBINATION-ANALYZE SCHEME FUNCTION 033 028
CENV-TRIV-ANALYZE 2.0.0... eee ee eee SCHEME FUNCTION 033 004
CHECK-COMBINATION-PEFFS SCHEME FUNCTION 016 002
CHECK-NUMBER-OF-ARGS00. SCHEME FUNCTION *. 071 002
CIF CL cc eee eee eee eee DATA TYPE-0 ee eens 026 038
CE Lc ce eee eee eee PDP-10 SCHEME MACRO 007 049
CLABELS 2... ec cee eee DATA TYPE- ccc recess 026 040
CLAMBDA .. 0... ec ee eee DATA TYPE-.. cece aeee 026 017
CLEANUP 22... cee ee eee SCHEME FUNCTION 069 038
CLOBBER eee MACLISP MACRO 004 025
CLOSE-ANALYZE 2.0... ee eee eee eee SCHEME FUNCTION 040 002
CNAME 26... eee ee eee ee MACLISP MACRO 004 015
CNODE 2... cee eee nee DATA TYPE 0. ee eee 026 007
CNODIFY 2... ec ce eee eee eee SCHEME FUNCTION 027 002
COMBINATION 2.2... ce ee eee eee eee DATA TYPE cece eevee 008 055
COMFILE ... 0... ee eee eee SCHEME FUNCTION 066 002
COMP-BODY ... 0... ee cc eee eee eee SCHEME FUNCTION 045 006
COMPILATE ... 20... . ee cece eee eee SCHEME FUNCTION 041 0186
COMPILATE-LOOP 0.00.00. SCHEME FUNCTION 064 017

COMPILATE-ONE-FUNCTION SCHEME FUNCTION 064 002
COMPILE 2.2... . ee eee ees SCHEME FUNCTION 007 010
COMPONENT-NAMES 2... 0. . ee ee eee eee PROPERTY cc eee eee 005 060
CONDICATE 2.1... ec eee ee ee ees SCHEME FUNCTION 062 004
CONS 2 eee ee eee eee SIDE EFFECTS 017 055
CONS-CLOSEREFS «1.2... cee eee ee ee SCHEME FUNCTION 061 011
CONSTANT 2... cc cece eee eee DATA TYPE 1.1... cece eee ee 008 028
CONTINUATION .. 0.0... cee eee eee ee DATA TYPE-0- caus 026 036
CONVERT 2... cc eee ee eee eee SCHEME FUNCTION 027 006
CONVERT-ASET 2.0... cece ee eee ee eee SCHEME FUNCTION 029 002
CONVERT-CATCH 1... 0... ccc ee ee eee SCHEME FUNCTION 029 024
CONVERT-COMBINATION SCHEME FUNCTION 031 014
CONVERT-IF04.. Vee eee ee eee SCHEME FUNCTION 028 024
CONVERT-LABELS 2.00. c eae SCHEME FUNCTION 030 006
CONVERT-LAMBDA-FM2 000 oee SCHEME FUNCTION 028 009
COPY-CODE kee eee ee eee SCHEME FUNCTION 025 002
COPY-NODES «2.0... cece cee ee ee eee SCHEME FUNCTION 025 007
CSEXPRFY 2... occ eee ee eee SCHEME FUNCTION 070 036
CSK Loe ee eee eee eens MACLISP MACRO 003 029
CVARIABLE 1.2.0... ., ccc eee eee eee DATA TYPE-500- 026 015
CXR LL ec ee ee eens SIDE EFFECTS 017 040
DECARCDRATE ... 0... ccc eee eee eee SCHEME FUNCTION 062 015
DEFINE 2... ee eee c ee eee @DEFINE ee eee 001 062

Symbol Table for: QUUX; RABBIT 568

DEFMAC 2... ce eee er eee @DEFINE 2... . eee eee ne 001
DEF TYPE 2.20. ce ee eee eens @DEFINE 00, 005
DEF TYPE 22... ce ccc eee MACLISP MACRO 005
DELPROP ©... eee eee eee SCHEME FUNCTION 006
DEPROGNIFY 0... cece eee eee MACLISP MACRO 042
DEPROGNIFY) 2.0.02... eee eee eee ee SCHEME FUNCTION 042
DEPTH-ANALYZE 02. c cece eee eee SCHEME FUNCTION 038
DISPLACE beeen eens EXPR wo... cece eee eee 001
DUMPIT 2.1... cc eee ee ee eee SCHEME FUNCTION 071

EFFDEF ©. cece ee ee nee @DEFINE00.. 016
EFFDEF 2.1... ee ee eee MACLISP MACRO 016
EFFECTLESS ©... 0... ce eee SCHEME FUNCTION 023
EFFECTLESS-EXCEPT-CONS SCHEME FUNCTION 023
EFFS-ANALYZE 20.0.0 SCHEME FUNCTION 014
EFFS-ANALYZE-COMBINATION SCHEME FUNCTION 015
EFFS-ANALYZE-IF 2.0... .. 2... cee eee eee SCHEME FUNCTION 015
EFFS-INTERSECT 02... cee eee SCHEME FUNCTION 023
EFFS-UNION 2.0... cee ce eee eee SCHEME FUNCTION 015
EMPTY 2.22 cee cee ee ee ns SCHEME FUNCTION (teens 002
ENV-ANALYZE 2.0... eee eens SCHEME FUNCTION 012
ENVCARCOR .. 0... ccc ee ee ees SCHEME FUNCTION 043
EQ ee eee tees SIDE EFFECTS 017
EQCASE 2... ce eee eens MACLISP MACRO 003
ERASE-ALL-NODES20 2.00008. MACLISP MACRO 018
ERASE-NODE 2.1... 1. cee eee eee MACLISP MACRO 018
ERASE-NODES 2.2... ... ccc ee ee ees SCHEME FUNCTION 018
FILTER-CLOSEREFS0...-0006. SCHEME FUNCTION 039
FIXP 02 ee ee eee eee SIDE EFFECTS 017
FLOATP 2.1. eee ees SIDE EFFECTS 017
a FN-SIDE-EFFECTS 016
2 FN-SIDE-AFFECTED 016
FN Lc ee cee eee eee eens OKAY-TO-FOLD 016
FN-SIDE-AFFECTED000.- PROPERTY-.0 cc cueee 016
FN-SIDE-EFFECTS 00... ee eee eee PROPERTY20020005 016
GEN-GLOBAL-NAME 0000 e ee eee SCHEME FUNCTION 002
GENFLUSH 22... eee eee SCHEME FUNCTION 002
GENTEMP 1.20... cee eee eee SCHEME FUNCTION 002
HUNKFN 2.0... ec cee eee eens @DEFINE 2. eee eee 004
HUNKFN 2.1. ee ee eens MACLISP MACRO46. 004
HUNKP 222 ee eee SIDE EFFECTS 017
a DATA TYPE 1.1... cee ee ee eee 008
INCREMENT 0... cece cee eee eee MACLISP MACRO 002
INTERSECT 2... ee eee SCHEME FUNCTION 006
LABELS 2... eee cee cee DATA TYPE- eee eeee 008
LAMBDA 2.0... cc cc eee DATA TYPE teens 008
LAMBDACATE cece eee eee eee SCHEME FUNCTION 054
LIST 22 ec ce ee ee eee “SIDE EFFECTS 017
LOOKUPICATE 0... ee eee eee ee eee SCHEME FUNCTION 062
MACRO 2. eee eee eee eee @DEFINE4.., 001
MACRO-EXPAND cece eee eee ee eee SCHEME FUNCTION 011
MAKE-RETURN 2.00... 2 ccc ee eee eee eee SCHEME FUNCTION 028
MAP-USER-NAMES 2.2.0... .. ccc ee ee ee eee SCHEME FUNCTION 065
MAPANALYZE 2.0... . ccc eee eee SCHEME FUNCTION 057

| | © SIDE EFFECTS 017
ME TA-COMBINATION-LAMBDA SCHEME FUNCTION 021
META-COMBINATION-TRIVFN085 SCHEME FUNCTION 020
META-EVALUATE 0... cece e eee SCHEME FUNCTION 019
META-IF-FUDGE ccc eee eee ee eee SCHEME FUNCTION 020
META-SUBSTITUTE0.000- SCHEME FUNCTION 024

| MACLISP MACRO 004
a rrr ACCESS MACRO 004
NAME 200. ee ee eee eee COMPONENT-NAMES 005

| <r SUPPRESSED-COMPONENT-NAMES 005
NODE 2.1. eee ee ce eens DATA TYPE22.0008. 008
NODIFY 2... 2. cc eee ee eee eee SCHEME FUNCTION 008
NOT 2 ce ee tee eee nee SIDE EFFECTS 017
NULL 2 cee eee ee SIDE EFFECTS 017

063
002

008
012
005
009
010
006
037

039
034
036
039
006
031
010
028
002
005
018
002
044
032
005
004
007
030
050
051
035
036
037
036
035

04)
036
030
028
030
049
038
014
039
050
034
006
056
002
065
026
002
028
023
058
007
037
007
010
009
011
031
060
061
012
059
053
054

05/15/78 Page III

Symbol Table for: QUUX; RABBIT 568

NUMBERP ... 0... cee eee SIDE EFFECTS 017
OKAY-TO-FOLD «0.2... eee eee PROPERTY 2. eee eens 016
OUTPUT-ASET 2.0.2... eee eee SCHEME FUNCTION 061
PAIRLIS (Le eee ee eee SCHEME FUNCTION 007
PASSI-ANAL1HZE Lo ee eee SCHEME FUNCTION 007
PASSABLE 2.2... . cece ee ee eens SCHEME FUNCTION 023
PRIN] 2.0... ee eee eee SIDE EFFECTS 017
PRINC 2... eee ee eens SIDE EFFECTS 017
PRINT 2... cee cee ees SIDE EFFECTS 017
PRINT-SHORT 2.0... 0... cee eee ees EXPR .. ccc ccc cee eee eee 003
PRINT-WARNING0..........-- 2c ee eee SCHEME FUNCTION 003
PROCESS-DEFINE-FORM 0008s SCHEME FUNCTION 069
PROCESS-DEFINITION00008. SCHEME FUNCTION 069
PROCESS-FORM 2.0... cee eee eee SCHEME FUNCTION 068
PRODUCE-ASET «2.0... ee ee eee SCHEME FUNCTION 046
PRODUCE -COMBINATION0 00000 SCHEME FUNCTION 052
PRODUCE -COMBINATION-VARIABLE SCHEME FUNCTION 051
PRODUCE -CONTINUATION-RETURN SCHEME FUNCTION 052
PRODUCE-IF ... ee eee SCHEME FUNCTION 045
PRODUCE-LABELS 0.0.00 SCHEME FUNCTION 047
PRODUCE -LAMBDA-COMBINATION SCHEME FUNCTION 046
PRODUCE-RETURN0 000008] SCHEME FUNCTION 053
PRODUCE-RETURN-1 2.2.0... ee eee eee eee SCHEME FUNCTION 053
PRODUCE -TRIVFN-COMBINATION SCHEME FUNCTION 049
PRODUCE - TRIVFN-COMBINATION-CONTINUATION SCHEME FUNCTION 049
PRODUCE-TRIVFN-COMBINATION-CVARIABLE .. SCHEME FUNCTION 050
PSETQ-ARGS 2... eee eee ee SCHEME FUNCTION 057
PSETQ-ARGS-ENV 2... 0... eee ee ee ees SCHEME FUNCTION 057
PSETQ-TEMPS 2.2... cc cee ee eee SCHEME FUNCTION 057
PSETQIFY 2... ec eee ee eee SCHEME FUNCTION 055
PSETQIFY-METHOD-22.006- SCHEME FUNCTION 055
PSETQIFY-METHOD-30....0.. SCHEME FUNCTION 056
READ 2... 0... eee et eee SIDE EFFECTS 017
READIFY 2.2... ce ce eee eens SCHEME FUNCTION 067
REANALYZEL 2... ce eee eee SCHEME FUNCTION 023
REFD-VARS 2... . cc cc eee ee ene SCHEME FUNCTION 034
REGSLIST 2.0... ec ccc cc eee ee SCHEME FUNCTION 044
REMARK-ON 2.0... cee ee eee ee ene SCHEME FUNCTION 065
REMOVE 2.2... . ce eee ee eens SCHEME FUNCTION 006
RESET-STATS 1.20.0... . 0. eee eee ee eee SCHEME FUNCTION 071
RETURN 2... 2... ee cee eee eens DATA TYPE eee eens 026
RPLACA 2.2... eee eee ene SIDE EFFECTS 017
RPLACD 2.2... cc eee eee es SIDE EFFECTS 017
RPLACK 2.2... cc ec ee eee eee SIDE EFFECTS 017
SCHMAC 2.0... eee ee ees @DEFINE0.0008.6., 001
SET-UP-ASETVARS 0... 00. ee eee eee SCHEME FUNCTION 044
SETDIFF 22... eee eee SCHEME FUNCTION 006
SETPROP 2.0... .. cece cee cee ee eee SCHEME FUNCTION 006
SEXPRFY 2... ce cc cee ee teens SCHEME FUNCTION 070
STATS 22. cee eee SCHEME FUNCTION 071
SUBST-CANDIDATE4.. SCHEME FUNCTION 022
SUPPRESSED-COMPONENT-NAMES PROPERTY000 eee 005

> MACLISP MACRO 003
SYMBOLP 0 eee eee eee SIDE EFFECTS 017
TEMPLOC 2... ee eee eee ees SCHEME FUNCTION 042
TERPRI 2... ee ee eee ee eee SIDE EFFECTS 017
TEST-COMPILE 0. eee eee eee eee SCHEME FUNCTION 007
TRANSDUCE 2.0... ee eee eee ee SCHEME FUNCTION 067
TRIV-ANALYZE 2... 0... cece ee eee eee SCHEME FUNCTION 013
TRIV-ANALYZE-FN-P cee ee eee eee ee SCHEME FUNCTION 013
TRIV-LAMBDACATE 1.0... . cece eee eee SCHEME FUNCTION 063
TRIVFN 22. eee ee eee ees SCHEME FUNCTION 002
TRIVIAL 2... ee ee eee ee eee DATA TYPE cece eeaee 026
TRIVIALIZE 2.0.2 ee eee SCHEME FUNCTION 063
1 SIDE EFFECTS 017
TYO Lo nce eee nes SIDE EFFECTS 017
TYPE 2. ee eee ees HUNK ACCESS MACRO 005

046
037
017
002
041
042
061
062
060
016
005
002
020
006
003
002
026
023
042
003
003
002
021
002
023
002
002
006
013
005
012
002
065
042
002
053
004
002
047

055
049
041
042
043
064
032
058
018
004
046
006
061
028
048
029
063
051
002
012
056
033
009
013
002
066
064
006

05/15/78 Page IV

Symbol Table for: QUUX; RABBIT 568

TYPEP 22 ee eee eens SIDE EFFECTS 017 047
UNION 2.2. eee SCHEME FUNCTION 006 033
USED-TEMPLOCS Pec e cence eens SCHEME: FUNCTION 064 059
VARIABLE eee ee ee eee DATA TYPE ccc eee eens 008 030
WARN 2.2. ee cee eee eee MACLISP MACRO-. 003 002

05/15/78 Page V

