
’

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo No. 514 March 1979

Design of LISP-Based Processors

or, SCHEME: A Dielectric LISP

or, Finite Memories Considered Harmful

or, LAMBDA: The Ultimate Opcode

by

Guy Lewis Steele Jr.* and Gerald Jay Sussman**

Abstract:

We present a design for a class of computers whose "instruction sets"

are based on LISP. LISP, like traditional stored-program machine languages

and unlike most high-level languages, conceptually stores programs and data in

the same way and explicitly allows programs to be manipulated as data. LISP

is therefore a suitable language around which to design a stored-program

computer architecture. LISP differs from traditional machine languages in

that the program/data storage is conceptually an unordered set of linked

record structures of various sizes, rather than an ordered, indexable vector

of integers or bit fields of fixed size. The record structures can be

organized into trees or graphs. An instruction set can be designed for

programs expressed as such trees. A processor can interpret these trees in a

recursive fashion, and provide automatic storage management for the record

structures.

We describe here the basic ideas behind the architecture, and for

congreteness give a specific instruction set (on which variations are

certainly possible). We also discuss the similarities and differences between

these ideas and those of traditional architectures.

A prototype VLSI microprocessor has been designed and fabricated for

testing. It is a small-scale version of the ideas presented here, containing

a sufficiently complete instruction interpreter to execute small programs, and

a rudimentary storage allocator. We intend to design and fabricate a

full-scale VLSI version of this architecture in 1979.

Keywords: microprocessors, LISP, SCHEME, large scale integration, integrated

circuits, VLSI, list structure, garbage collection, storage management

This report describes research done at the Artificial Intelligence Laboratory

of the Massachusetts Institute of Technology. This work was supported in part

by the National Science Foundation under Grant MCS77-04828, and in part by Air

Force Office of Scientific Research Grant AFOSR-78-3593.

*® Fannie and John Hertz Fellow

kk Esther and Harold E. Edgerton Associate Professor of Electrical Engineering

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY WY

Steele and Sussman 1 Design of LISP-Based Processors

Introduction

An idea which has increasingly gained attention is that computer

architectures should reflect specific language structures to be supported.

This is an old idea; one can see features in the machines of the 1960's

intended to support COBOL, FORTRAN, ALGOL, and PL/I. More recently research

has been conducted into architectures to support string or array processing as

in SNOBOL or APL.

An older and by now well-accepted idea is that of the stored-program

computer. In such a computer the program and the data reside in the same

memory; that is, the program is itself data which can be manipulated as any

other data by the processor. It is this idea which allows the implementation

of such powerful and incestuous software as program editors, compilers,

interpreters, linking loaders, debugging systems, etc.

One of the great failings of most high-level lenguages is that they

‘have abandoned this idea. It is extremely difficult, for example, for a PL/I

(PASCAL, FORTRAN, COBOL ...) program to manipulate PL/I (PASCAL, FORTRAN,

~ COBOL ...). programs.

On the other hand, many of these high-level languages have introduced

other powerful ideas not present in standard machine languages. Among these

are (1) recursively defined, nested data structures; and (2) the use of

functional composition to allow programs to contain expressions as well as (or

. instead of) statements. The LISP language in fact has both of these features.

It is unusual among high-level languages in that it also explicitly supports

the stored-program idea: LISP programs are represented in a standardized way

as recursively defined, nested LISP data structures. By contrast with some

APL implementations, for example, which allow programs to be represented as

arrays of characters, LISP also reflects the structure of program expressions

in the structure of the data which represents the program. (An array of APL

characters must be parsed to determine the logical structure of the APL

expressions represented by the array. Similar remarks apply to SNOBOL

statements represented as SNOBOL strings.)

It is for this reason that LISP is often referred to as a "high-level

machine language". As with standard stored-program machine’ languages,

programs and data are made of the same stuff. In a standard machine, however,

the "stuff" is a homogeneous, linear (ordered) vector of fixed-size bit

‘fields; a program is represented as an ordered sequence of bit fields

(instructions) within the overall vector. In LISP, the "stuff" is a

heterogeneous, unordered set of records linked to form lists, trees, and

graphs; a program is represented as a tree (a "parse tree" or “expression

tree") of linked records (a subset of the overall set of records). Standard

machines usually exploit the linear nature of the "stuff" through = such

mechanisms as indexing by additive offset and linearly advancing program

counters. A computer based on LISP can similarly exploit tree structures.

The counterpart of indexing is component selection; the counterpart of linear

instruction execution is evaluation of expressions by recursive tree-walk.

Steele and Sussman 2 Design of LISP-Based Processors

Just as the "linear vector" stored-program-computer model leads to a

variety of specific architectures, so with the "linked record" model. For

concreteness we present here one specific architecture based on the linked

record model which has actually been constructed.

List Structure and Programs

One of the central ideas of the LISP language is that storage

management should be completely invisible to the programmer, so that he need

not concern himself with the issues involved. LISP is an object-oriented

language, rather than a value-oriented language. The LISP programmer does not

think of variables as the objects of interest, bins in which values can be

held. Instead, each data item is itself an object, which can be examined and

modified, and which has an identity independent of the variable(s) used to

name it.

In this section we discuss LISP data structures at the conceptual

level; the precise form of LISP data objects is not of concern here. Later

we will discuss specific representations within the machine. LISP data is

collectively referred to as "S-expressions" ("S" for "symbolic"). For our

purposes we will need only the special cases of S-expressions called atoms and

lists. An atom is an "indivisible" data object, which we denote by writing a

string of letters and digits; if only digits are used, then the atom is

considered to be a number. Many special characters such as "-", "+", "@", and

"x" are considered to be letters; we will see below that it is not necessary

to specially reserve them for use as operator symbols. A list is a (possibly

empty) sequence of LISP data objects, notated by (recursively) notating the

objects in order, between a set of parentheses and separated by blank space.

A list of the atoms "roo", "43", and "sar" would be written "(FOO 43 BAR)".

Notice that the definition of a list is recursive. For example,

(DEFINE SECOND (LAMBDA (X) (CAR (CDR X))))

is a list of three things: the atomic symbol DEFINE, ‘the atomic symbol SeEcono,

and another list of three things LAMBDA, (xX), and (CAR (COR X)).

A convenient way use lists to represent algebraic expressions is to

use "Cambridge Polish" notation, essentially a parenthesized version of prefix

Polish notation. Numeric constants are encoded as numeric atoms; variables

are encoded as non-numeric atoms (which henceforth we will call symbols); and

‘procedure invocations (function calls) are encoded as lists, where the first

- element of the list represents the procedure and the rest represent the

arguments. For example, the algebraic expression "axb+cxd" can be represented

as "(+ (* ab) (* cd))". Notice that LISP does not need the usual precedence

_ rules concerning whether multiplication or addition is performed first; the

parentheses (or rather, the structure of the lists) explicitly define the

order. Also, all procedure invocations have a uniform syntax, no matter how

“many arguments are involved. Infix, superscript, and subscript notations are

. Mot used; thus the expression "J y(x#1)" would be written "(J p (+ (t x 2) 1))".

Steele and Sussman 3 Design of LISP-Based Processors

To encode a conditional expression "if p then x else y"” we write:

(IF p x y)

Expressions are made into procedures (functions) by the use of

Church's lambda-notation. For example,

(LAMBDA (X Y) (+ (* 3 Y) X))

evaluates to a function of two arguments x and y which computes 3*Y+X. The

list of variables names after the Lamspa indicates how the variables names in

the expression are to be matched positionally to supplied arguments when the

function is applied.

We can also encode recursive LISP programs as list data. For example,

to compute N factorial (N!):

(DEFINE FACTORIAL
(LAMBDA (N)

(IF (= NO) 1
(* N (FACTORIAL (- N 1))))))

Suppose that we now want to write a LISP program which will take such

a data structure and perform some useful operation on it, such as determining

the value of an algebraic expression represented as a list structure. We need

some procedures for categorizing, decomposing, and constructing LISP data.

The predicate atom, when applied to a LISP datum, produces true when

given an atom and false otherwise. The empty list ("()") is considered to be

an atom. The predicate Nutt is true of only the empty list; its argument

need not be a list, but may be any LISP datum. The predicate NumBerP is true

of numbers and false of symbols and lists. The predicate £0, when applied to

two symbols, is true if the two atomic symbols are identical. It is false

when applied to two distinct symbols, or to a symbol and any other datum.

The decomposition operators for lists are traditionally called car and

cor for historical reasons. car extracts the first element of a list, while

COR produces a list containing all elements but the first. Because

compositions of caAR and coR are commonly used in LISP, an abbreviation is

provided: all the C's and R's in the middle can be squeezed out. For

example, "(cor (COR (CAR (COR X))))" can be written as "(CDDADR x)".

The construction operator cons, given any datum and a list, produces a

new list whose car is the datum and whose cdr is the given list; that is,

cons adds a new element to the front of a list. The operator LIST can take any

number of arguments (a special feature), and produces a list of its arguments.

Notice that cons (and LIST) conceptually create new data structures.

As far as the LISP programmer is concerned, new data objects are available in

endiess supply. They can be conveniently called forth to serve some immediate

purpose and discarded when they are no longer of use. While creation is

Steele and Sussman 4 Design of LISP-Based Processors

explicit, discarding is not; a data object simply disappears into limbo when

the program throws away all references (direct or indirect) to that object.

The immense freedom this gives the programmer may be seen by an

example taken from current experience. A sort of error message familar to

most programmers is "too many nested DO loops" or "more than 200 declared

-. arrays" or "symbol table overflow". Such messages typically arise within

compilers or assemblers which were written in languages requiring data tables

to be pre-allocated to some fixed length. The author of a compiler, for

example, might well guess, "No one will ever use more than, say, ten nested DO

loops; I'll double that for good measure, and make the nested-DO-loop-table

20 long." Inevitably, someone eventually finds some reason to write 21 nested

DO loops, and finds that the compiler overflows its fixed table and issues an

error message (or, worse yet, doesn't issue an error message!). On the other

hand, had the compiler writer made the table 100 long or 1000 long, most of

the time most of the memory space devoted to that table would be wasted.

A compiler written in LISP would be much more likely to keep a linked

list of records describing each DO loop. Such a list could be grown at any

time by creating a new record on demand and adding it to the list. In this

way aS many or as few records as needed could be accommodated.

Now one could certainly write a compiler in any language and provide

such dynamic storage management with enough programming. The point is that

LISP provides automatic storage management from the outset and encourages its

use (in much the same way that FORTRAN provides floating-point numbers and

encourages their use, even though the particular processor on which a FORTRAN

program runs may or may not have floating-point hardware).

Using CAR, CDR, and CONS, we can now write some interesting programs in

LISP to deal with LISP data. For example, we can write a program append, which

given two lists produces their concatenation as a new list:

(DEFINE APPEND

(LAMBDA (X Y)

(IF (NULL X) Y

(CONS (CAR X) (APPEND (COR X) Y)))))

Because LISP programs are represented as LISP data structures, there

is a difficulty with representing constants. For example, suppose we want to

determine whether or not the value of the variable x is the symbol "Foo". We

might try writing:

(EQ X FOO)

This doesn't work. The occurrence of "Foo" does not refer to the symbol Foo as

a constant; it is treated as a variable, just as "x" is.

The essential problem is that we want to be able to write any LISP

datum as a constant in a program, but some data objects must be used to

represent other things, such as variables and procedure invocations. To solve

Steele and Sussman 5 Design of LISP-Based Processors

this problem we invent a new notation: (QUOTE 46) in a program represents the

constant datum d. Thus we can write our test as "(EQ xX (QUOTE FOO))".

Similarly,

(APPEND X (LIST Y Z))

constructs a list from the values of y and Z, and appends the result to the

value of x, while

(APPEND X (QUOTE (LIST Y Z)))

appends to the value of x the constant list "(LIst y z)". Because the QUOTE

construction is used so frequently in LISP, we use an abbreviated notation:

"FOO" ("Foo" with a preceding quote-mark) is equivalent to "(quote Foo)". This

is only a notational convenience; the two notations denote the same list.

A LISP Interpreter

Here is one possible interpreter for the LISP dialect we have

described, written in that dialect (this fact makes this interpreter

meta-circular — it can interpret itself):

(DEFINE EVAL
(LAMBDA (EXP ENV)

(IF (ATOM EXP)
(IF (NUMBERP EXP) EXP (VALUE EXP ENV))
(IF (EQ (CAR EXP) 'QUOTE)

(CADR EXP)
(1F (EQ (CAR EXP) 'LAMBDA)

(LIST '&PROCEDURE (CADR EXP) (CADDR EXP) ENV)
(1F (EQ (CAR EXP) 'IF)

(IF (EVAL (CADR EXP) ENV)
(EVAL (CADDR EXP) ENV)
(EVAL (CADDOR EXP) ENV))

(APPLY (EVAL (CAR EXP) ENV)
(EVLIS (CDR EXP) ENV))))))))

(DEFINE APPLY
(LAMBDA (FUN ARGS)

(IF (PRIMOP FUN) (PRIMOP-APPLY FUN ARGS)
(1F (EQ (CAR FUN) '&PROCEDURE)

(EVAL (CADDR FUN)
(BIND (CADR FUN) ARGS (CADDOR FUN)))

(ERROR)))))

(DEFINE EVLIS

(LAMBDA (ARGLIST ENV) .
(1F (NULL ARGLIST) '()

(CONS (EVAL (CAR ARGLIST) ENV)

“(EVLIS (CDR ARGLIST) ENV)))))

Steele and Sussman 6 Design of LISP-Based Processors

The evaluator is divided into two conceptual components: eEvAL and

APPLY. EVAL classifies expressions and directs their evaluation. Simple

expressions (such as constants and variables) can be evaluated directly. For

the complex case of procedure invocations (technically called "combinations"),

EVAL looks up the procedure definition, recursively evaluates the arguments

(using EvVLIS), and then calls appLy. apply classifies procedures and directs

their application. Simple procedures (primitive operators) are applied

directly. For the complex case of user-defined procedures, APPLY uSeS_ BIND

(see below) to add to the lexical environment, a kind of symbol table, of the

procedure, by associating the formal parameters from the procedure definition

with the actual argument values provided by Eval. The body of the procedure

definition is then passed to e€vat, along with the environment just

constructed, which is used to determine the values of variables occurring in

the body.

In more detail, evAL is a case analysis on the structure of the

S-expression exp. If it is an atom, there are two subcases. Numeric atoms

evaluate to themselves. Atomic symbols, however, encode variables; the value

associated with that symbol is extracted from the environment ENV using the

function value (see below).

If the expression to be evaluated is not atomic, then it may be a

Quote form, a LAMBDA form, an IF form, or a combination. For a quote form, EVAL

extracts the S-expression constant using CADR. LAMBDA forms evaluate to

procedure objects (here represented as lists whose cars are the atom

"SPROCEDURE") containing the lexical environment and the "text" of the

procedure definition. For an IF form, the predicate part is recursively

evaluated; depending on whether the result is true or false, the consequent

or alternative is selected for evaluation. For combinations, the procedure is

obtained, the arguments evaluated (using EvLIS), and apply called as described

earlier.

EVLIS is a simple recursive function which calls eval on successive

arguments in ARGLIST and produces a list of the values in order.

APPLY distinguishes two kinds of procedures: primitive and

user-defined. For now we avoid describing the precise implementation of

primitive procedures by assuming the existence of a predicate primop which is

true only of primitive procedures, and a function PRimop-ApPLY which deals with

the application of such primitive procedures. We consider’ primitive

procedures to be a kind of atomic S-expression other than numbers and atomic

symbols; we define no particular written notation for them here. However,

primitive procedures are not to be confused with the atomic symbols used as

their names. The actual procedure involved in the combination (car x) is not

the atomic symbol car, but rather some bizarre object (the value of the atomic

symbol car) which is meaningful only to PRIMOP-APPLY.

The interpreter uses several utility procedures for maintaining

environments. An environment is represented as a list of buckets; each

bucket is a list whose car is a list of names and whose cdr is a list of

corresponding values. (Note that this representation is not the same as the

Steele and Sussman 7 Design of LISP-Based Processors

_“a-list" representation traditionally used in LISP interpreters.) If a

variable name occurs in more than one bucket, the most recently added such

bucket has priority; in this way new symbol definitions added to the front of

the list can supersede old ones. The code for manipulating environments is

below.

(DEFINE BIND

(LAMBDA (VARS ARGS ENV)

(IF (= (LENGTH VARS) (LENGTH ARGS))

(CONS (CONS VARS ARGS) ENV)

(ERROR)))) |

(DEFINE VALUE

(LAMBDA (NAME ENV)

(VALUEL NAME (LOOKUP NAME ENV))))

(DEFINE VALUE1
(LAMBDA (NAME SLOT)

(3F (EQ SLOT '&UNBOUND) (ERROR)
(CAR SLOT))))

(DEFINE LOOKUP

(LAMBDA (NAME ENV)

(IF (NULL ENV) '&UNBOUND

(LOOKUP1 NAME (CAAR ENV) (CDAR ENV) ENV))))

(DEFINE LOOKUP1
(LAMBDA (NAME VARS VALS ENV)

(1F (NULL VARS) (LOOKUP NAME (CDR ENV))
(1F (EQ NAME (CAR VARS)) VALS

(LOOKUP1 NAME (COR VARS) (CDR VALS) ENV)))))

BIND takes a list of names, a list of values, and a symbol table, and

produces a new symbol table which is the old one augmented by an extra bucket

containing the new set of associations. (It also performs a useful error

‘check — LENGTH returns the length of a list.)

VALUE is essentially an interface to Lookup. The check for &UNBOUND

catches incorrect references to undefined variables.

LOOKUP takes a name and a symbol table, and returns that portion of a

- bucket whose car is the associated value.

State-Machine Implementation

The LISP interpreter we have presented is recursive. It implicitly

relies on a hidden control mechanism which retains the state information which

must be saved for each recursive invocation. Here we make this control

information explicit. Below we present an interpreter in the form of a state

machine controller. The controller manipulates a small set of registers, and

Steele and Sussman 8 Design of LISP-Based Processors

also issues commands to ae list memory: system. The recursion control

information which is typically kept on a Stack will be maintained in the

Llinked-list memory.

This evaluator, written in LISP, has five global variables which are

used to simulate the registers of a machine. EXP is used to hold the

expression or parts of the expression under evaluation. ENV is used to hold

the pointer to the environment structure which is the context of evaluation of

the current expression. vat is used to hold the value developed in evaluation

of expressions. It is set whenever a primitive operator is invoked, or

whenever a variable is evaluated, a quoted expression iS evaluated, or a

lambda expression is evaluated. arés is used to hold the list of evaluated

arguments (the "actual parameters") being accumulated for a combination.

Finally, cCLINK is the pointer to the top of the list structure which is the

control stack. (It is called "ctink" for historical reasons stemming from

CONNIVER [McDermott 1974] and "spaghetti stacks" [Bobrow 1973].)

. The style of coding here depends on "tail-recursion" (although the

current implementations of MacLISP are not really tail-recursive); that is,

iterative loops are implemented as patterns of function calls.

EVAL-DISPATCH is the procedure which dispatches on the type of an

expression — implementing the action of EvAL. When EVAL-DISPATCH is called, ExP

contains an expression to be evaluated, ENV contains the environment for the

evaluation, and the top element of CLINK is a "return address", i.e. the name

of a function to call when the value has been determined and placed in va.

(QEFUN EVAL-DISPATCH ()

(COND ((ATOM EXP) ;If an atomic expression:

(COND ((NUMBERP EXP) ; Mumbers evaluate

(SETQ VAL EXP)

(POPJ-RETURN))

; to themselves

; (i.e. are "self-quoting"),

(T ; but symbols must be looked

(SETQ VAL (VALUE EXP ENV)) ; up in the environment.

(POPJ-RETURN))))

((EQ (CAR EXP) 'QUOTE) © ;If a QUOTE expression

—(SETQ VAL (CADR EXP)) ; extract the quoted constant

(POPJ-RETURN)) ; and return it.

((EQ (CAR EXP) 'LAMBDA) ;I]f a LAMBDA expression

(SETQ VAL (CADR EXP)) ; get the formal parameters,

(SETQ EXP (CADDR EXP)) ; get the body,

(SETQ VAL (LIST '&PROCEDURE VAL EXP ENV)) ; and construct a closure

(POPJ-RETURN)) ; which includes ENV.

((EQ (CAR EXP) ‘IF) ;If a conditional,

(SETQ CLINK (CONS ENV CLINK)) ; save the environment

(SETQ CLINK (CONS EXP CLINK)) ; save the expression,

(SETQ CLINK (CONS 'EVIF-DECIDE CLINK)) ; set up a return address,

(SETQ EXP (CADR EXP)) ; then extract the predicate

(EVAL-DISPATCH)) ; and evaluate it.

Steele and Sussman 9 Design of LISP-Based Processors

((NULL (CDR EXP)) ;If a call with no arguments,

(SETQ CLINK (CONS 'APPLY-NO-ARGS CLINK)) ; set up a return address,

(SETQ EXP (CAR EXP)) ; get the function position

(EVAL-DISPATCH)) ; and evaluate it.

(T ;Otherwise,

(SETQ CLINK (CONS ENV CLINK)) ; save ENV,

(SETQ CLINK (CONS EXP CLINK)) > save EXP,
(SETQ CLINK (CONS 'EVARGS CLINK)) ; set up return address,

(SETQ EXP (CAR EXP))

(EVAL-DISPATCH))))

; get the function position

; and evaluate it.

When the process evolved by the evaluator has finished the evaluation of a

subexpression, it must continue executing the rest of the expression. The

place in the evaluator to continue executing was pushed onto cLINK when the

evaluation of the subexpression was begun. This return address is now at the

top of the cLINK, where it can be popped off and called:

(DEFUN POPJ-RETURN () ;Return to caller:

(SETQ EXP (CAR CLINK)) ; Save return address in EXP,

(SETQ CLINK (COR CLINK)) ; and pop it off CLINK.

(FUNCALL EXP)) ; Transfer control.

After the predicate part of a conditional is evaluated, the process comes back

to here to look at vat to see whether the consequent or the alternative branch

is "to be taken. One of these is selected and made the exp to be further

evaluated.

(DEFUN EVIF-DECIDE ()

(SETQ EXP (CAR CLINK)) ;Restore expression

(SETQ CLINK (COR CLINK)) ; and pop it off.

(SETQ ENV (CAR CLINK)) ;Restore ENV

(SETQ CLINK (CDR CLINK)) ; and pop it off.

(COND (VAL ;I1f predicate was true,

(SETQ EXP (CADDR EXP))) ; extract consequent.

(T ;Otherwise

(SETQ EXP (CADDDR EXP)))) ; extract alternative.

(EVAL -DISPATCH)) ;In either case, evaluate it.

The following procedures are the states the evaluator must go through to

evaluate the arguments to procedures before applying them. There is a

special-case check in EVAL-DISPATCH for functions with no arguments. In this

. case, it is not necessary to save the state of the evaluator when evaluating

the function position because there are no further arguments to evaluate. One

may just apply the procedure which comes back in val. This is a case of

"evlis tail-recursion" (see [Wand 1977]). We will see this idea again in

EVARGS] where we have a special-case check for evaluation of the last argument.

(DEFUN APPLY-NO-ARGS ()

(SETQ ARGS NIL) co ;Set up null argument list

(SAPPLY)) ; and apply function in VAL.

Steele and Sussman 10 Design of LISP-Based Processors

General argument evaluations come to evarcs. This segment of the evaluator

incorporates some cleverness in that it checks for the special case of the

last argument in a combination. However, for the sake of clarity and

uniformity we did not try to remove all unnecessary pushing and popping.

There are many cleverer ways to write this code, as we will see later. The

following procedure is the initialization of the argument evaluation loop.

(DEFUN EVARGS ()

(SETQ EXP (CAR CLINK)) ;Restore EXP

(SETQ CLINK (COR CLINK)) ; and pop it off.

(SETQ ENV (CAR CLINK)) ;Restore ENV,

(SETQ CLINK (COR CLINK)) ; and pop it.

{SETQ CLINK (CONS VAL CLINK)) ;Save function.

(SETQ EXP (CDR EXP)) ;Get rid of function part.

(SETQ ARGS NIL) ;Initialize argument list.

(EVARGS1)) ;Evaluate arguments.

This is the top of the argument evaluation loop.

(DEFUN EVARGS1 ()

(COND ((NULL (CDR EXP)) ;Is this the last argument?

(SETQO CLINK (CONS ARGS CLINK)) ;If so, save argument list,

(SETQ CLINK (CONS 'LAST-ARG CLINK)) ; set up return address,

(SETQ EXP (CAR EXP)) ; set up last argument,

(EVAL-DISPATCH)) ; and evaluate it.

(T ;Otherwise,

(SETQ CLINK (CONS ENV CLINK)) ; save ENV,

(SETQ CLINK (CONS EXP CLINK)) > save EXP,

(SETQ CLINK (CONS ARGS CLINK)) ; Save argument list,

(SETQ CLINK (CONS ‘EVARGS2 CLINK)) ; set up return address,

(SETQ EXP (CAR EXP)) ; set up next argument,

(EVAL-DISPATCH)))) * and evaluate it.

This is the place where we end up after each argument is evaluated. The

evaluated argument is accumulated into ArGs.

(DEFUN EVARGS2 ()

(SETQ ARGS (CAR CLINK)) ;Restore argument list,

(SETQ CLINK (CDR CLINK)) ; and pop it off.

(SETQ EXP (CAR CLINK)) ;Restore EXP,

(SETQ CLINK (CDR CLINK)) ; and pop it off.

(SETQ ENV (CAR CLINK)) ;Restore ENV,

(SETQ CLINK (CDR CLINK)) ; and pop it off.

(SETQ ARGS (CONS VAL ARGS)) :Add value to argument list.

(SETQ EXP (COR EXP)) ;Flush form just evaluated.

(EVARGS1)) ;Go evaluate next argument.

When the last argument has been evaluated we come back here. The value is

accumulated onto the arcs and the function is restored from the stack. The

whole mess is then shipped to sape_ty for application.

Steele and Sussman _ll Design of LISP-Based Processors

(DEFUN LAST-ARG ()

(SETQ ARGS (CAR CLINK)) ;Restore argument list,

(SETQ CLINK (COR CLINK)) ; and pop it off.

(SETQ ARGS (CONS VAL ARGS)) ;Add last value to it.

(SETQ VAL (CAR CLINK)) ;Retrieve function,

(SETQ CLINK (CDR CLINK)) ; and pop it off.

(SAPPLY)) sApply function to arguments.

SAPPLY is the state machine analog of apply. This procedure checks out what

kind of procedure is to be applied. If it is primitive, the appropriate magic

occurs. If it is a procedural closure, we evaluate the body of the closed

_ procedure in an environment constructed by binding the formal parameters of

the closed procedure to the actual parameters (in arGs) in the environment

carried in the closure.

(DEFUN SAPPLY () ;Apply function in VAL to ARGS.

(COND ((PRIMOP? VAL) ;If a primitive procedure,

(SETQ VAL (PRIMOP-APPLY VAL ARGS)) ; do it!

(POPJ-RETURN)) ; then return value to caller.

((EQ (CAR VAL) '&PROCEDURE) ;1f a defined procedure,

(SETO ENV ; set up its environment

(BIND (CADR VAL) ; by binding the formals

ARGS ; to the actuals

(CADDDR VAL))) ; in the closure environment

~(SETQ EXP (CADOR VAL)) ; then get the procedure body

(EVAL -DISPATCH))_ ; and evaluate it.

(T (ERROR)))) ;Otherwise, error.

In this state-machine code we have avoided functional composition.

Each statement is an assignment or a conditional. (We have used the usual

LISP cond conditional form, rather than If, for reasons of convenience. This

interpreter is not meta-circular. Instead, it is working MacLISP code which

implements a non-MacLISP version of LISP.) An assignment can contain at most

one call to a storage management procedure such as cons or car (we allow calls

to e.g. CaADDR, realizing that (SETQ x (CADDR Y)) can be considered an abbreviation

for the sequence (SETQ X (CDR Y)), (SETQ X (CDR X)), (SETQ X (CAR X))). ALSO, VALUE

and BIND can be considered here to be complex storage operations (defined

essentially as before).

Representing List Data

Lists are normally represented by records each of which contains two

pointers to other records. One pointer is the car, and the other is the cdr.

In this way a list (A (BC) 0) can be visualized by the following diagram:

Steele and Sussman 12 Design of LISP-Based Processors

 —

>
<
}
-
e

f
v
D NIL

Gy
: ¥

Atoms are represented as records of other types.

The exact representation of a pointer is not of interest here. All we

really care about is that if we give the pointer to the memory system, it can

return the contents of the record pointed to. (In particular, there is

nothing at this level requiring the parts of a record to be "contiguous".

Later we will discuss ways to represent LISP data within standard linear

memories.)

In our particular architecture, we find it convenient to associate

with each pointer a type field describing the nature of the record pointed to.

This type field can be exploited for other purposes as well; in particular,

we shall use it to encode "opcodes" and "return addresses". We will say that

the type field is a part of the pointer, and that the other part of the

pointer (that which identifies another record) is the address part. The list

shown above, with type fields added, looks like this:

One efficiency problem with the version of the LISP interpreter given

above is that the repeated consecutive tests for atoms, LAMBDA, IF, etc. take

| time. Conceptually what these tests are doing is a dispatch on the syntactic

category of the expression. Each expression is distinguished by a special

symbol in the car position — except for atoms and procedure calls. The

evaluator could be made faster and simpler if it could dispatch in a more

uniform way.

Another efficiency problem is that Lookup must search for the values of

variables. Because our dialect of LISP is lexically scoped like ALGOL, we can

arrange for variable references to specify "n levels back, and then j over" in

Steele and Sussman 13 Design of LISP-Based Processors

much the same way used by the ALGOL "display" technique, eliminating the

search.

To allow these efficiencies we systematically alter the representation

of programs. They will still be represented as trees of list records, but we

encode the syntactic categories in the type fields of pointers to the

expressions. EVAL can then simply dispatch on this type code. For a pointer

whose type is “variable reference", we use the address part as "immediate

data" indicating the values of n and j for the environment lookup. We draw a

piece of program in this way:

(IF A '(X Y¥) (IF C 'D (CONS E 69)))

VAR {LIST LrsT | IF VAR |LIST SYMBOL | COMB

TF 0 >3 e- e oe i

D

SYMBoL | SYBol, VAR | MoRE NUMBER| CONS

 v Y NS ue 7

Because variable references and other constructs have separate types, lists

and symbols can be "self-evaluating" in the same way as numbers. Also, we

assume that cons is a "built-in" primitive operator, and encode that operator

in the type field at the end of the list representing the call to cons. The

encoding of if forms has been changed to reduce space requirements; the car

of a conditional is the predicate, and the cdr is a cons cell whose car is the

consequent and whose cdr is the alternative.

We ought perhaps to define a printed representation for all these new

data types. We do not do this here, however. We assume that in practice one

will write LISP code in the usual style, and a simple "compiler" program will

transform it into the typed-pointer representation.

To describe the evaluator for this new representation, we introduce a

construct TYPE-DISPATCH which is not part of the LISP language, but which we use

to indicate the underlying mechanism. We also use a primitive operator

TYPED-CONS, Which creates a new list-like cell with a specified type. The new

evaluator is very much like the old one: eEvcoms is sort of like EvLIS combined

with the entry point to apPLy. ,

Steele and Sussman 14 Design of LISP-Based Processors

(DEFINE EVAL

(LAMBDA (EXP ENV)

(TYPE-DISPATCH EXP

("NUMBER" EXP)

("SYMBOL" EXP)

("LIST" EXP)

("VARIABLE" (DISPLAY-LOOKUP EXP ENV))

("PROCEDURE” (TYPED-CONS "CLOSURE" (CDR EXP) ENV))

("IE" (IF (EVAL (CAR EXP) ENV)

(EVAL (CADR EXP) ENV)

(EVAL (CODR EXP) ENV)))

("COMBINATION" (EVCOMB (COR EXP)

ENV

(CONS (EVAL (CAR EXP) ENV)

"())))
(OTHERWISE (ERROR)))))

(DEFINE EVCOMB
(LAMBDA (EXP ENV ARGS)

(TYPE-DISPATCH EXP
("MORE-ARGS" (EVCOMB (CDR EXP)

ENV
(CONS (EVAL (CAR EXP) ENV)

ARGS)))
(OTHERWISE (APPLY EXP ARGS)))))

(DEFINE APPLY

(LAMBDA (FUN ARGS)

(TYPE-DISPATCH FUN

("FUNCALL" (EVAL (CDAAR ARGS)

(DISPLAY-BIND (CDR ARGS)

(CDAR ARGS))))

("CONS" (CONS (CADR ARGS) (CAR ARGS)))

("CAR" (CAAR ARGS))

("CDR" (CDAR ARGS))

("ATOM" (ATOM (CAR ARGS)))

(OTHERWISE (ERROR)))))

When a non-"MORE-ARGS" type code is seen in EVCOMB, it indicates that a

primitive operation is to be performed on the argument values. eEvcoms then

calls apply to perform this operation. (As shown here, appty needlessly

duplicates the dispatching operation in EvcomB; we have done this to exhibit

the similarity of this interpreter to the previous one. Later we will remove

this duplication.) One of these primitive operations, "FUNCALL", is used to

invoke user-defined procedures (closures). (The type codes used to indicate

primitive operations may overlap those used to distinguish syntactic

categories, because they are used in different contexts. Compare this to the

way in which the same bits in an instruction can be used for different

purposes depending on the opcode; for example, in the PDP-1]1 the same bits of

an instruction word can be a register number, part of a branch offset, or

Steele and Sussman 15 Design of LISP-Based Processors

”

condition code bits.)

Combining these Ideas

The state machine implementation of a LISP interpreter can be combined

with the typed pointer dispatch idea to form a very efficient interpreter for

LISP which can be easily implemented directly in hardware. We now present

such an interpreter, written in a statement-oriented language to emphasize

that we are describing a hardware interpreter. As before, the controller

manipulates a small set of registers, and also issues commands to a list

memory system. The recursion-control information is, as before, stored in a

push-down control list maintained in linked-list memory. Type fields in the

cdr pointers of the control list will be used to retain "return addresses"

Within the state machine; in this way return addresses do not require any

extra conses in the cLINK. (Compare this with the previous state-machine

interpreter, which used separate tokens in the cLINK as return addresses.)

This is possible because the set of return addresses is small.

BEGIN "EVALUATOR"

DECLARE REGISTERS

EXP IGENERALLY HOLDS EXPRESSION BEING EVALUATED

ENV !HOLDS CURRENT ENVIRONMENT

VAL - 'tRESULT OF EVALUATION; ALSO. SCRATCH

ARGS !ACCUMULATES EVALUATED ARGUMENTS OF A COMBINATION

CLINK !"CONTROL LINK": RECURSION CONTROL STACK

EVAL: | TYPE-DISPATCH ON EXP INTO

"NUMBER": GOTO SELF

"SYMBOL": GOTO SELF

"LIST": GOTO SELF

"VARIABLE": GOTO LOOKUP

"PROCEDURE": GOTO PROC

"IE": GOTO IF1

"COMBINATION": GOTO EVCOMB

HCTAPSID-EPYT

SELF :- VAL := EXP; GOTO RETURN

PROC: VAL := TYPED-CONS("CLOSURE", EXP, ENV); GOTO RETURN
IFl: VAL := COR(EXP)

CLINK := CONS(ENV, CLINK)

CLINK := TYPED-CONS("IF2", VAL, CLINK)

EXP := CAR(EXP); GOTO EVAL

IRECURSIVE EVALUATION OF PREDICATE RETURNS HERE

1F2: EXP := CAR(CLINK)

CLINK := COR(CLINK)

ENV := CAR(CLINK)

CLINK := COR(CLINK)

IF NULL(VAL)

THEN EXP :

ELSE EXP :

FI

CDR(EXP); GOTO EVAL
CAR(EXP); GOTO EVAL

Steele and Sussman 16 Desion of LISP-Based Processors

EVCOMB: ARGS := '()

EVCOM1: TYPE-DISPATCH ON EXP INTO

"COMBINATION": GOTO EVCOM2

"FUNCALL": GOTO CALL

"CONS": GOTO CONS

"CAR": GOTO CAR

"CDR": GOTO CDR

HCTAPSID-EPYT

EVCOM2: CLINK := CONS(ENV, CLINK)

CLINK := CONS(ARGS, CLINK)

VAL := COR(EXP)

CLINK := TYPED-CONS("EVCOM3", VAL, CLINK)

EXP := CAR(EXP); GOTO EVAL

'RECURSIVE EVALUATION OF ARGUMENT RETURNS HERE

EVCOM3: EXP := CAR(CLINK) 1UNWIND STACK

CLINK := CDR(CLINK) .

ARGS := CAR(CLINK)

CLINK := CDR(CLINK)

ENV := CAR(CLINK)

CLINK := CDR(CLINK)

ARGS := CONS(VAL, ARGS); GOTO EVCOM1

nt

. CALL: ARGS := CDR(ARGS) IN.B. VAL = CAR(ARGS)
EXP := CAR(VAL)
VAL := CDR(VAL)
ENV := CONS(ARGS, VAL); GOTO EVAL.

CONS: ARGS := CDR(ARGS) 11.E. ARGS := CADR(ARGS)
ARGS := CAR(ARGS) {(ALREADY HAD VAL := CAR(ARGS), IN EFFECT)
VAL := CONS(ARGS, VAL); GOTO RETURN

CAR: VAL := CAR(VAL); GOTO RETURN
COR: VAL _:= CDR(VAL); GOTO RETURN

RETURN: TYPE-DISPATCH ON CLINK INTO

"IF2": GOTO IF2

"EVCOM3": GOTO EVCOM3

HCTAPSID-EPYT ISESOL ARTSKJID

END "EVALUATOR"

In this state-machine code we have avoided functional composition

rigorously. Each statement is an assignment or a dispatch operation

~ (IF -THEN-ELSE being a kind of dispatch). As assignment can contain at most one

call to a simple storage management procedure such as CONS or CAR. Each

Statement goes to another statement (to the one textually following, if no

GoTo clause is present).

. We have omitted the details of the Lookup operation (it gets the value

| from the environment and then goes to’ RETURN). We have, however, shown

DISPLAY-BIND (beginning at catt). These are not done as subroutines (as they

were in the previous state-machine interpreter); they are coded "in-line" as

_State-machine code.

Steele and Sussman a. 17 Design of LISP-Based Processors

Recursive evaluation of subexpressions is handled by using an explicit

stack. When for an IF or a COMBINATION a recursive evaluation is needed, any

required registers (e.g. ENV) are consed onto the control structure CLINK. The

last cons onto cCLINK uses the type code to encode the “return address” (IF2 or

EVCOM3) within the state machine. (These return address codes may be the same

codes used as "opcodes" or “primitive operator codes" — this is a third,

distinct context in which type bits are used for some funny purpose unrelated

to the type of the data.) The expression to be recursively evaluated is put

into exp, and then state eval is entered. When the evaluation finishes, the

code at RETURN decodes the type field of cLINK and resumes execution of the

caller, which retrieves the saved information from cLInNkK and carries on. Thus

CLINK, though implemented as linked records, behaves as a stack.

This is in fact how we have implemented a LISP evaluator in the form

of a VLSI microprocessor. There are five registers on a common bus (the E

bus). The state machine is in the form of a read-only memory plus a

"“mitro-PC" which encodes the current state. At each transition the EVAL state

machine can read one register onto the E bus, load one or more other registers

from the E bus, request some storage operation to occur, and enter some new

State (possibly computed by dispatching on bits obtained from the E bus).

Only one operand can be passed at a time to the storage manager (via the bus),

and so an operation such as car is actually managed as two operations:

(1) pass operand to storage manager and request Car;

(2) retrieve result of storage operation.

Similarly, cons is managed as three operations:

(1) pass the cdr part to storage manager;

(2) pass the car part, and request CONS;

(3) retrieve result.

Often operations can be "bummed out"; for example, after requesting a CAR,

the result need not be retrieved if it is to be used immediately as one

operand of a cons. In this case (CONS (CAR X) C) takes only three transactions,

not five.

Storage Management

A complete LISP system, as implied in the previous section, is

conveniently divided into two parts: (1) a storage system, which provides an

operator for the creation of new data objects and also other operators (such

as pointer traversal) on those objects; and (2) a program interpreter (EVAL),

which executes programs expressed as data structures within the storage

system. (Note that this memory/processor division characterizes the usual von

Neumann architecture also. The differences occur in the nature of the

processor and the memory system.)

Most hardware memory systems which are currently available

commercially are not organized as sets of linked lists, but rather as the

usual linearly-indexed vectors. (More precisely, commercially available RAMs

are organized as Boolean N-cubes indexed by bit vectors. The usual practice

is to impose a total ordering on the memory cells by ordering their addresses

lexicographically, and then to exploit this total ordering by using indexing

Steele and Sussman 18 Design of LISP-Based Processors

hardware typically containing an addition unit (or, more rarely, a subtraction

unit, as on the IBM 7094).)

Commercially available memories are, moreover, available only in

finite sizes (more's the pity). Now the free and wasteful throw-away use of

data objects would cause no problem if infinite memory were available, but

- within a finite memory it is an ecological disaster. In order to make such

memories useable to our processor we must interpose between EVAL and the

storage system a storage manager which makes a finite vector memory appear to

the evaluation mechanism to be an infinite linked-record memory. This would

seem impossible, and it is; the catch is that at no time may more records be

active than will fit into the finite memory actually provided. The memory is

"apparently infinite" in the sense that an indefinitely large number of new

“records can be "created" using the cons operator. The storage manager

recycles discarded records in order to create new ones in a manner completely

invisible to the evaluator.

The storage manager therefore consists of routines which implement the

Operations CAR, CDR, CONS, etc. in terms of the vector memory, plus a garbage

collector which deals with the finiteness of the memory by locating records

which have been discarded and making them available to the cons routine for

~recycling. .

The method we use for implementing car, coR, and cOoNS is the usual one

of using two consecutive words of memory to hold a list cell, the first being

the cdr and the second the car, where each word of memory can hold a type

field and an address field. The address part of a pointer is in turn the

address within the linear memory of the record pointed to. (This may seem

obvious, but remember that until now we have been noncommittal about the

precise representation of pointers, as until this point all that was necessary

was that the memory system associate records with pointers by any convenient

means whatsoever. The evaluator is completely unconcerned with the format or

meaning of addresses; it merely accepts them from the memory system and

eventually gives them back later to retrieve record components. One may think

of an address as a capability for accessing a record using certain defined

operations.)

Many techniques for garbage collection are well-documented in the

literature [McCarthy 1962] [Minsky 1963] {Hart 1964] [Saunders 1964]

[Schorr 1967] [Conrad 1974] [Baker 1978] [Morris 1978], and will not be

discussed here. Suffice it to say here that, in the prototype processor we

have designed, the storage manager is implemented as a second state machine.

It also has a small set of registers on a second bus (the G bus). The storage

manager runs continuously, performing services for the evaluator. When the

storage manager has completed a request, it then advances the evaluator to its

next state, and dispatches on the new request from the evaluator. The storage

manager can connect the E bus and G bus together in order to retrieve an

operand or return a result (which, if either, is to be done is determined by

the request protocol). The storage manager can also read from or write into

the off-chip memory.

Steele and Sussman 19 Design of LISP-Based Processors

(In fact, in the prototype processor, the storage manager includes no

garbage collector. The prototype was one project of a "project set" including

some two dozen separate circuits, all of which had to be fit onto a single

chip together. This imposed severe area limitations which restricted the

address size to eight bits, and required the elimination of the microcode for

the garbage collector. We anticipate no obstacles to including a garbage

collector in a full-sized single-chip processor. The complexity of a simple

garbage collector is comparable to that of the evaluator shown above.)

Physical Layout of the Prototype Processor

The evaluator and the storage manager are each implemented in the same

way aS an individual processor. Each processor has a state-machine controller

and a set of registers. On each clock cycle the state-machine outputs control

Signals for the registers and also makes a transition to a new state.

The contents of any register is a pointer, containing an address field

(8 bits in the prototype) and a type field (3 bits in the prototype). The

registers of a processor are connected by a common bus (E bus in the

evaluator, G bus in the storage manager). Signals from the controller can

read at most one register onto the bus, and load one or more other registers

from the bus. One register in each controller has associated incrementation

logic; the controller can cause the contents of that register, with 1 added

to its address part, to be read onto the bus. The controller can also force

certain constant values onto the bus rather than reading a register.

The processors can communicate with each other by causing the E and G

busses to be connected. The address and type parts of the busses can be

connected separately. (Typically the E bus might have its address part driven

from the G bus and its type part driven by a constant supplied by the

evaluator controller.) The G bus can also be connected to the address/data

lines for the off-chip memory system. The storage-manager controller produces

additional Signals (ADR and WRITE) to control the external memory. In a

--Similar manner, the evaluator controller produces signals which control the

storage Manager. (Remember that from the point of view of the evaluator, the

storage manager is the memory interface!)

| Each controller effectively has an extra "state register" which may be

thought of as its "micro-PC". At each step the next state is computed by

combining its current state with external signals in the following manner.

Each “microinstruction” has a field explicitly specifying the next desired

state, as well as bits specifying possible modifications of that state. If

specified, external signals are logically OR'd into the desired state number.

In the prototype evaluator these external signals are: (1) the type bits from

the E bus; (2) a bit which is 1 iff the E bus type field is zero and a bit

which is 1 iff the E bus address is zero. In the storage manager these

Signals are: (1) the four control bits from the evaluator controller; (2) a

bit which is 1 iff the G bus address is zero. This is the way in which

dispatching is achieved.

Steele and Sussman 20 Design of LISP-Based Processors

Once this new state is computed, it is passed through a three-way

selector before entering the state register. The other two inputs to the

selector are the current state and the data lines from the external memory

system. In this way the selector control can "freeze" a controller in its

current state by recirculating it, or jam an externally supplied state into

the state register (both useful for debugging operations). The "freeze"

mechanism is used by the storage manager to suspend the evaluator until it is

ready to process the next request. In the same way, the external memory can

suspend the storage manager by asserting the external FREEZE signal, thereby

causing a "wait state".

(The FREEZE signal is provided aS a separate control because the

dynamic logic techniques usual in NMOS were used; if one stopped the

processor simply by stopping the clock, the register contents would dissipate.

The clocks must keep cycling in order to "refresh" the registers. The state

recirculation control allows the machine to be logically stopped despite the

fact that data is still circulating internally. We discovered that this

technique imposed constraints on other parts of the design: the

incrementation logic is the best example. It was originally intended to

design an incrementing counter register, which would increment its contents in

place during the recirculation of a clock cycle in which an "increment" signal

was asserted. If this had been done, however, and the processor were frozen

during an instruction which asserted this signal, the counter would continue

to count while the processor was stopped! This could have been patched by

having the FREEZE signal override the increment signal, but it was deemed

Simpler to adopt a design strategy in which nothing at the microcode level

called for any data to be read, modified, and stored back into the same place.

Thus in the actual design one must read data through modification logic and

then onto the bus, to be stored in a different register; then if this

operation is repeated many times because of the FREEZE signal it makes no

difference.)

Each state-machine controller consists of a read-only memory

(implemented as a_- programmed-logic-array), two half-registers (clocked

inverters, one at each input and one at each output), and some random logic

(e.g. for computing the next state). The controllers are driven by externally

supplied two-phase non-overlapping clock signals; on phase 1 the registers

are clocked and the next state is computed, and on phase 2 the next-state

Signals appear and are latched.

All of the signals from the two controllers (62 = 34+28 in the

prototype) are multiplexed onto twelve probe lines by six unary probe-control

signals. (These signals are derived from three binary-encoded off-chip

Signals.) When a probe-control signal is asserted, the memory output pads (11

data pads plus the ADR signal in the prototype) are disconnected from the G

bus and connected to the twelve probe lines. In this way the chip can be

frozen and then all controller outputs verified (by cycling the probe-control

Signals through all six states). Also recall that the controller states can

be jammed into the state registers from the memory input pads. This should

allow the controller microcode to be tested completely without depending on

the registers and busses working.

. Steele and Sussman él Design of LISP-Based Processors

- The following diagram shows the physical layout of the prototype chip.

The two controllers are side by side, with the evaluator on the left and the

storage manager on the right. Above each controller is the next-state logic

and probe multiplexor for that controller. Above those are the register

arrays, with the busses running horizontally through’ them. The bus

connections are in the center. The input pads are on the left edge, and the

output pads on the right edge. The input pads are bussed through the

evaluator's register array parallel to the E bus lines, so that they can

connect to the G bus. (Unfortunately, there was no time to design tri-state

pads for this project.) _ ,

22

LA7 | ew ul| OA?
U

IA6 OL OAS
BUS uy T

IAS EVAL GC TP OAS
INTER- t

LAY REGISTERS REGISTERS Pll OAY
CONNECT v *

IA3 TR OA3

zB; EVAL GC OR2

DRIVERS PRIVERS

d, — GND — OA

y NEXT EVAL

STUFF) | STATE | PROBE MUX GC OT2

STATE | PROBE MUX
IAI OTS

LAG EVAL) ADR

6c
IT2 p S

MICROCODE Rp
ITI MICROCODE B E

¢
E T

Lm Rom
Rom a
° ' “a “ 3/4

Physical layout of a millimeters — ve

prototype LISP processor mils

3.96 mm x 3.33 mm

156 mils x 133 mils

Steele and Sussman 23 Design of LISP-Based Processors

Discussion

A perhaps mildly astonishing feature of this computer is that it

contains no arithmetic-logic unit (ALU). More precisely, it does have

arithmetic and logical capabilities, but the arithmetic units can only add l,

and the logical units can only test for zero. (Logicians know that this

suffices to build a "three-counter machine", which is known to be as universal

(and as convenient!) as a Turing Machine. However, our LISP architecture is

also universal, and considerably more convenient.)

LISP itself is so simple that the interpreter needs no arithmetic to

run interesting programs (such as computing symbolic derivatives and

integrals, or pattern matching). All the LISP interpreter has to do is

‘shuffle pointers to and from memory, and occasionally dispatch on the type of

a pointer. The incrementation logic is included on the chip for two reasons.

In the evaluator it is used for counting down a list when looking up lexical

variables in the environment; this is not really necessary, for there are

alternative environment representation strategies. In the storage manager

incrementation is necessary (and, in the prototype, sufficient) for imposing a

total ordering on the external memory, so as to be able to enumerate all

possible addresses. The only reason for adding 1 is to get to the next memory

address. (One might note that the arithmetic properties of general

two-argument addition are not exploited here. Any bijective mapping from the

set of external memory addresses onto itself (i.e. a permutation function)

would work just fine (but the permutation should contain only one cycle if

memory is not to be wasted!). For example, subtracting 1 instead of adding,

or. Gray-code incrementation, would do.)

This is not to say that real LISP programs do not ever use arithmetic.

It is just that the LISP interpreter itself docs not require binary arithmetic

of the usual sort (but it does require cons, car, and cor, which in a formal

sense indeed form a kind of "number system" [Levin 1974], where cons

corresponds to "add 1" and both car and cor to "Subtract 1" — in this view,

the purpose of the storage manager is to interface between two kinds. of

arithmetic, namely "LISP arithmetic" and Peano arithmetic). This architecture

is intended to use devices which are addressed as memory, in the same manner

used by the PDP-11, for example. We envision having a set of devices on the

external memory bus which do arithmetic. One would then write operands into

specific "memory locations" and then read arithmetic results from others.

Such devices could be very complex processors in themselves, such as

specialized array or string processors. In this way the LISP computer could

serve aS a convenient controller for other processors, for one thing LISP does

well is to provide recursive control and environment handling without much

prejudice (or expertise!) as to the data being operated upon.

Expanding on this idea, one could arrange for additional signals to

the external memory system from the storage manager, such as "this data item

is needed (or not needed)", which would enable external processors to do their

own storage management cooperatively with the LISP processor. One might

imagine, for example, an APL machine which provided tremendous’ array

processing power, controlled by a LISP interpreter specifying which operations

to perform. The APL machine could manage its own array storage, using a

Steele and Sussman 24 Design of LISP-Based Processors

relatively simple storage manager cued by "mark" signals from the LISP storage

manager. ,

The possibility of additional processors aside, this architecture

exhibits an interesting layered approach to machine design. One can draw

boundaries at various places such that everything above the boundary is a

processor which treats everything below the boundary as a memory system with

certain operations. If the boundary is drawn between the evaluator and the

storage manager, then everything below the boundary together constitutes a

list-structure memory system. If it is drawn between the storage manager and

the external memory, then everything below the boundary is the external

memory. Supposing the external memory to be a cached virtual memory system,

then we could draw boundaries between the cache and main memory, or between

main memory and disks, and the same observation would hold. At the other end

of the scale, a complex data base management system could be written in LISP,

and then the entire LISP chip (plus some software, perhaps in an external ROM)

would constitute a memory system for a data base query language interpreter.

In this manner we have a layered series of processors, each of which provides

a more sophisticated memory system to the processor above it in terms of the

less sophisticated memory system below it.

" Another way to say this is that we have a hierarchy of data

abstractions, each implemented in terms of a more primitive one. Thus the

storage manager makes a finite, linear memory look "infinite" and

tree-structured. A cache system makes a large, slow memory plus a small, fast

memory look like a large, fast memory.

Yet another way to view this is aS a hierarchy of interpreters running

in virtual machine. Each layer implements a virtual machine within which the

next processor up operates.

It is important to note that we may choose any boundary and then build

everything below it in hardware and everything above it in software. Our LISP

system is actually quite similar to those before it, except that we have

pulled the hardware boundary much higher. One can also put different layers

on different chips (as with the LISP chip and its memory). We choose to put

the evaluator and the storage manager on the same chip only because (a) they

‘fit, and (b) in the planned full-scale version, the storage manager would need

_ too many pins as a separate chip.

Each of the layers in this architecture has much the- same

organization: it is divided into a controller ("state machine") and a data

base ("registers"). There is a reason for this. Each layer implements a

memory system, and so has state; this state is contained in the data base

-(which may be simply a small set of references into the next memory system

down). Each layer also accepts commands from the layer above it, and

transforms them into commands for the layer below it; this is the task of the

controller.

_ We have already mentioned some of the analogies between a LISP-based

processor and a traditional processor. Corresponding to indexing there is

Steele and Sussman | 25 Design of LISP-Based Processors

component selection; corresponding to a linearly advancing program counter

there is recursive tree-walk of expressions. Another analogy we might draw is

to view the instruction set as consisting of variable-length instructions

(whose pieces are joined by pointers rather than being arranged in sequential

memory locations). Each instruction (variable reference, call to cons, call

to use function, etc.) takes a number of operands. We may loosely say that

there are two addressing modes in this architecture, one being immediate data

(as in a variable reference), and the other being a recursive evaluation. In

the latter case, merely referring to an operand automatically calls for the

execution of an entire routine to compute it!

Project History

In January 1978 one of us (Sussman) attended a course given at MIT by

Charles Botchek about the problems of integrated circuit design. There he saw

pictures of processors such as 8080's which showed that half of the chip area

was devoted to arithmetic and logical operations and associated data paths.

On the basis of our previous work on LISP and SCHEME [Sussman 1975]

[Steele 1976a] [Steele 1976b] [Steele 1977] [Steele 1978a] [Steele 1978b] it

occurred to him that LISP was sufficiently simple that almost all the

operations performed in a LISP interpreter are dispatches and register

shuffles, and require almost no arithmetic. He concluded that if you could

get rid of the ALU in a microprocessor, there would be plenty of room for a

garbage collector, and one could thus get an entire LISP system onto a chip.

He also realized that typed pointers could be treated as instructions, with

the types treated as "opcodes" to be dispatched on by a state machine. (The

idea of typed pointers came from many previous implementations of LISP-like

languages, such as MUDDLE [Galley 1975], ECL [Wegbreit 1974], and the LISP

Machine [Greenblatt 1974]. However, none of these uses the types as opcodes

in the evaluator. This idea stemmed from an aborted experiment in nonstandard

LISP compiler design which we performed in 1976.)

"THEY LAUGHED WHEN I SAT DOWN AT THE PIANO...

but when I started to play!—"

— John Caples [Caples 1925]

Jon Allen thought building such a processor was a fine idea, but everyone else

laughed. The other of us (Steele) laughed loudest, but promised to help work

on it. In February 1978 we wrote down a state machine specification for a

LISP evaluator and put it on the shelf.

In the summer of 1978 Sussman wrote a LISP interpreter based on the

state machine specification. It worked.

. In the fall of 1978 Lynn Conway came to MIT from Xerox PARC as a

visiting professor to teach a subject (i.e. course) on VLSI design which she

developed with Carver Mead of Caltech. Sussman suggested that Steele take the

course "because it would be good for him" (and also because he couldn't sit in

himself because of his. own teaching duties). Steele decided that it might be

interesting. So why not?

Steele and Sussman 26 Design of LISP-Based Processors

The course dealt with the structured design of NMOS circuits. As part

of the course each student was to prepare a small project, either individually

- or. collaboratively. (This turned out to be a great success. Some two dozen

projects were submitted, and nearly all were fit together onto a single 7 mm x

10 mm project chip for fabrication by an outside semiconductor manufacturer

and eventual testing by the students.)

. Now Steele remembered that Sussman had claimed that a LISP processor

on a chip would be simple. A scaled-down version seemed appropriate to design

for a class project. Early estimates indicated that the project would occupy

2.7 mm x 3.7 mm, which would be a little large but acceptable. (The average

student project was a little under 2 mm x 2 mm.) The LISP processor prototype

‘project would have a highly regular structure, based on programmed logic array

cells provided in a library as part of the course, and on a Simple register

cell which could be replicated. Hence the project looked feasible. Steele

began the design on November 1, 1978.

The various register cells and other regular components took about a

week to design. Another week was spent writing some support software in LISP,

including a microassembler for the microcode PLAs; software to produce

iterated structures automatically, and rotate and scale them; and an attempt

to write a logic simulator (which was "completed", but never debugged, and was

abandoned after three days).

The last three weeks were spent doing random interconnect of PLA's to

registers and registers to pads. The main obstacle was that there was no

design support software for the course other than some plotting routines. All

projects had to be manually digitized and the numbers typed into computer

files by keyboard (the digitization language was the Caltech Intermediate

Format (CIF)). This was rather time-consuming for all the students involved.

In all the design, layout, manual digitization, and computer data

entry for this project took one person (Steele) five weeks of full-time work

Spanning five and one-half weeks (with Thanksgiving off). This does not

include the design of the precise instruction set to be used, which was done

in the last week of October (and later changed!). (The typical student

project also took five weeks, but presumably with somewhat less than full-time

effort.)

During this time some changes to the design were made to keep the area

down, for as the work progressed the parts inexorably grew by 20 microns here

and 10 microns there. The number of address bits was chopped from ten to

eight. A piece of logic to compare two addresses for equality (to implement

the LISP £Q operation) was scrapped (this logic was to provide an additional

dispatch bit to the evaluator in the same group as the E-bus-type-zero bit and

the E-bus-address-zero bit). The input pad cell provided in the library had

to be redesigned to save 102 microns on width. The WRITE pad was connected to

the bottom of the PLA because there was no room to route it to the top, which

changed the clock phase on which the WRITE signal rose, which was compensated

for by rewriting the microcode on the day the project was due (December 6,

1978). Despite these changes, the area nevertheless increased. The final

Steele and Sussman 27 Design of LISP-Based Processors

design occupied 3.378 mm x 3.960 mn.

The prototype processor layout file was merged with the files for the

other students' projects, and the project chip was sent out for fabrication.

Samples were packaged in 40-pin DIPs and in the students' hands by mid-January

1979. As of March 1979, several (more than three) of the nineteen projects on

the chip had been tested and found to work.

We intend to implement a full-scale version of a LISP processor in

1979, using essentially the same design strategies. The primary changes will

be the introduction of a full garbage collector and an increase in the address

Space and number of types. We have tentatively chosen a 41-bit word, with 3l

bits of address, 5 bits of type, 3 bits of "cdr code", and 2 bits for the

garbage collector.

Conclusions

We have presented a general design for and a specific example of a new

class of hardware processors. This model is "classical" in that it exhibits

the stored-program, program-as-data idea, as well as the processor/memory

dichotomy which leads to the so-called "von Neumann bottleneck" [Backus 1978].

It differs from the usual stored-program computer in organizing its memory

differently, and in using an instruction set based on this memory

Organization. Where the usual computer treats memory as a linear vector and

executes a linear instruction stream, the architecture we present treats

“memory as linked records, and executes a tree-shaped program by recursive

expression evaluation.

The processor described here is not to be confused with the "LISP

Machine" designed and built at MIT by Greenblatt and Knight [Greenblatt 1974

[Knight 1974] [LISP Machine 1977] [Weinreb 1978]. The current generation of

LISP Machine is built of standard TTL logic, and its hardware is organized as

‘a very general-purpose microprogrammed processor of the traditional kind. It

has a powerful arithmetic-logic unit and a large writable control store.

Almost none of the hardware is specifically designed to handle LISP code; it

is the microcode which customizes it for LISP. Finally, the LISP Machine

executes a compiled order code which is of the linearly-advancing-PC type;

the instruction set deals with a powerful stack machine. Thus the LISP

Machine may be thought of as a hybrid architecture that takes advantage of

linear vector storage organization and stack organization as well as

linked-list organization. In contrast, the class of processors we present

here is organized purely around linked records, especially in that the

instruction set is embedded in that organization. The LISP Machine is a

well-engineered machine for general-purpose production use, and so uses a

variety of storage-management techniques as appropriate. The processor

described here is instead intended as an illustration of the abstracted

essence of a single technique, with as little additional context or irrelevant

detail as possible.

We have designed and fabricated a prototype LISP-based processor. The

Steele and Sussman 28 Design of LISP-Based Processors

actual hardware design and layout was done by Steele as a term project for a

course on VLSI given at MIT by Lynn Conway in Fall 1978. The prototype

processor has a small but complete expression evaluator, and an incomplete

storage manager (everything but the garbage collector). We plan to design and

fabricate by the end of 1979 a full-scale VLSI processor having a complete

garbage collector, perhaps more built-in primitive operations, and a more

complex Storage representation (involving "CDR-coding" [Hansen 1969]

(Greenblatt 1974]) for increased bit-efficiency and speed.

A final philosophical thought: it may be worth considering kinds of

"stuff" other than vectors and linked records to use for representing data.

For example, in LISP we generally organize the records only into trees rather

than general graphs. Other storage organizations should also be explored.

The crucial idea, however, is that the instruction set should then be fit into

the new storage structure in some natural and interesting way, thereby

representing programs in terms of the data structures. Continuing the one

example, we might look for an evaluation mechanism on general graphs rather

than on trees, or on whatever other storage structure we choose. Finally, the

instruction set, besides being represented in terms of the data structures,

must include means for manipulating those structures. Just as the usual

computer has aodD and AND; just as the LISP architecture presented here must

supply CAR, COR, and CONS; so a graph architecture must provide = graph

manipulation primitives, etc. Following this paradigm we may discover yet

other interesting architectures and interpretation mechanisms.

Acknowledgements

We are very grateful to Lynn Conway for coming to MIT, teaching the

techniques for NMOS design, and providing an opportunity for us to try our

ideas as part of the course project chip. The text used for the course was

written by Carver Mead and Lynn Conway [Mead 1978]. Additional material was

written by Bob Hon and Carlo Sequin (Hon 1978]. It should be mentioned that

the course enabled a large number of students to try interesting and

imaginative LSI designs as part of the project chip. This paper describes

only one project of the set, but many of these student projects may have

useful application in the future.

Paul Penfield and Jon Allen made all this possible by organizing the

LSI design project at MIT and arranging for Charles Botchek and Lynn Conway to

teach.

Charles Botchek provided our first introduction to the subject and

started our wheels spinning.

The course and project chip were executed with the cooperation,

generosity, and active help of the Xerox Palo Alto Research Center [Xerox

PARC] (which provided software and design support), Micromask (which generated

‘the masks), and Hewlett-Packard (which fabricated the wafers at their Deer

Creek facility).

Steele and Sussman . 29 Design of LISP-Based Processors

Dick Lyon and Alan Bell of Xerox PARC performed plots of the projects

ahd assembled the projects into the final mask specifications. They were of

particular direct aid to Steele in debugging his project.

Glen Miranker and William Henke maintained the plotting software used

at MIT to produce intermediate plots of student projects during the design

cycle, and were helpful in making modifications to the software to accommodate

_ this project.

Dmitri Antoniadis of MIT packaged and bonded the chips in 40-pin DIPs.

Prof. Antoniadis was also a source of good advice concerning device physics

and fabrication.

Peter Deutsch and Fernando Corbato were kind enough to hand-carry

project plots from California to Boston to help meet the project deadline.

Tom Knight and Jack Holloway provided useful suggestions and sound

engineering advice, as usual. (In particular, Knight helped Steele to design

a smaller pad to reduce the area of the project, and Holloway suggested the

probe multiplexor technique for testing internal signals.)

Peter Deutsch suggested the first subtitle of this paper, for which we

gleefully thank him.

Guy Steele's graduate studies during 1978-1979 are supported by a

Fannie and John Hertz Fellowship. In the spring of 1978 they were supported

by a National Science Foundation Graduate Fellowship.

A condensed version of this report, less the appendix, appeared as

[Steele 1979].

Steele and Sussman 30 Design of LISP-Based Processors

APPENDIX

Prototype LISP Processor Technical Specifications

The November 1978 prototype LISP processor bears the working name

SIMPLE (Small Integrated Micro-Processor for Lisp Expressions). Here we

present complete technical specifications, schematic circuit diagrams, and

microcode. Bear in mind that this is only a prototype intended to test the

ideas involved, and does not constitute a complete working processor. It is

expected, however, that if it works at all, it should be able to execute some

small but interesting complete LISP programs.

External Pin Specifications

SIMPLE is expected to be connected to a memory system providing 256

words of 11 bits. Each word is divided into three type bits TO-T2 and eight

address bits A0O-A7. SIMPLE communicates with the outside world via

thirty-three pins:

11) ITO-IT2, IAQ-IA7 (input) [Input Type, Input Address]

Input data from the memory system.

(11) OTO-OTZ2, OAO-0A7 (output) [Output Type, Output Address]

. QOutput data to the memory system. Addresses and write data are

multiplexed on OAQ-OA7 according to the ADR and WRITE pins. (The

output pads actually contain this information only if the probe

controls are zero — see below.)

(2) ADR, WRITE (output) |

. When ADR is high, the outputs OA0-OA7 contain an address for the

memory system; in this case OT0-OT2 are irrelevant. When WRITE is

high, the outputs OT0-OT2, OAO-OA7 contain write data for the memory

system. In either case, the outputs are maintained for a short time

after the control signal goes from high to low to permit proper

latching of the data. When both lines are low, the memory system is

expected to be presenting to the input pins ITO-IJIT2, IAO-IA7 the

memory data for the address last latched. SIMPLE never raises both

ADR and WRITE simultaneously. There is no handshake procedure; the

memory is assumed to be able to respond within the clock cycle time

used, or to be able to use the FREEZE signal if necessary.

(3) PCO-PC2 (input) [Probe Control]

These signals are for testing only, and are normally tied to ground.

The output pins OTO0-OTZ, OAQ-OA7, and ADR normally contain addresses

or write data and the ADR signal for the memory system. If the probe

controls PCO-PC2 are non-zero, then various signals internal to the

chip are gated onto these output pins instead.

Steele and Sussman 31 Design of LISP-Based Processors

(1) STUFF (input)

This signal is for testing only, and is normally tied to ground. If

this signal is high, the state bits which serve as the "micro-PC's"

for the internal controllers are forcibly loaded from the input pins

ITO-IT2, IAQ-IAZ2. The same six bits are used to load both micro-PC's.

In this way the controllers can be forced into any given state, and

the resulting output signals probed. (This facility is also used to

initialize the chip; for this purpose the input pins ITO-IT2, IAO-IAZ

should all be zero.)

(1) FREEZE (input)

This signal is for testing only, and is normally tied to ground. If

this signal is high, the controllers recirculate in the same state

instead of advancing. This signal defers to STUFF.

(2) PHI1, PHI2 (input)

Two-phase non-overlapping clock signals.

(2) VDD, GND (input)

Power supply lines.
n

(33) pins total.

Instruction Set

The "instruction set" processed by SIMPLE is actually a modified

version of SCHEME, a dialect of LISP. The tree-like expressions are

essentially LISP S-expressions which constitute a slightly "compiled" version

of the usual LISP code. The main effect of this compilation is to

pre-calculate the positions of variables in the environment so that variable

references do not require search. This in turn simplifies the structure of

the environment and of procedures.

When the chip is initialized, it takes a given expression (how it is

given is described below), and uses a null environment to evaluate it. If

that evaluation ever terminates, the result of the evaluation is stored in

. memory and the chip halts, with the evaluator looping in a dead state. The

chip also halts if it runs out of memory (i.e. after consing the last of the

256 words), with the storage manager looping in a dead state.

When the chip is asked to evaluate an expression, it examines the

3-bit type field. This provides eight "op codes":

0 = constant list

l = constant symbol

2 = variable reference

3 = constant closure

procedure

conditional (if-then-else)

procedure call

quoted constant N
O
O
O

it

_ The address part of the word has different purposes depending on the type.

For type 2, it is the negative (two's complement) of the position in the

Steele and Sussman 32 Design of LISP-Based Processors

environment of the variable to be referenced, with the first element of the

environment being number 1 (hence referenced as -1). For types 0, 1, 3, 5,

and 6, the address points to the first of two consecutive words; the first is

the cdr, and the second the car. For types 4 and 7, the address points to a

single word (a record containing a single pointer), referred to as the "cdr"

for compatibility with the previous case.

The evaluation of a type 0 (list), 1 (symbol), or 3 (closure) object

simply results in that object; such objects are "self-evaluating". (Notice

that symbols are not the same as variables here; this usage has’ been

"compiled out". The only purpose for symbols here is that they are atomic, as

opposed to lists, which are not.)

. The evaluation of type 7 (quote) returns the cdr of the object. In

this way any object whatsoever, not just a list, symbol, or closure, can be

included as a constant datum in a program.

The evaluation of type 2 (variable reference) chains (CDRs) down the

environment one less than the negative of the number in the address part of

the expression pointer. It then takes the car, and returns the value so

found.

The evaluation of type 4 (procedure) results in a pointer to a

newly-allocated word pair. This pointer has type 3 (closure). The car of the

pair contains the cdr of the procedure; this is the code body of the

procedure. The cdr of the pair contains the current environment (the

environment within which the procedure object is being evaluated). In this

way the code and the environment are bound up together (as a closuree, or

"FUNARG") for later application.

A conditional (type 5) points to a two-word cell, the cdr of which

points to another two-word cell. The car of the conditional object is a

predicate expression (IF), the cadr is a consequent expression (THEN), and the

cddr is an alternative expression (ELSE). The predicate expression is

evaluated first; depending on whether the result is non-NIL or NIL, then the

consequent or alternative is evaluated, throwing away the other one, to

produce the value of the conditional.

A procedure call (type 6) is the most complicated of the lot. It is a

list of indefinite length, chained together by cdr pointers. Each cdr pointer

except the last NUST have type 0 (list). The last cdr pointer should have a

zero address and a NON-zero type. This last type specifies the operation to

be performed. In CDRing down the list, SIMPLE evaluates each of the

expressions in the car, saving the resulting values. These values are

available as arguments to the operation to be performed. The operations

available are:

0 = <more arguments> 4 = ATOM

1 = CAR 5 = PROGN

2 = CDR 6 = LIST

3 = CONS 7 = FUNCALL

Steele and Sussman 33 Design of LISP-Based Processors

For operations CAR, CDR, and ATOM there should be one argument; for CONS,

“two. No checking is performed for this. For PROGN, LIST, and FUNCALL there

may be any non-zero number of arguments.

CAR, CDR, CONS, ATOM, and LIST are the standard LISP primitive

operations. LIST is actually a REVERSE-LIST, because it produces a list of

the arguments in reverse order; this matters only if the calculations of the

arguments have side effects which could interfere with each other. PROGN is a

‘standard LISP primitive which evaluates any number of arguments and returns

only the last one. This is useful only when side effects are used. It was

included in the prototype primarily to replace EQ when it was removed from the

design, because PROGN was fortunately so trivial that it required no extra

microcode (it shares a word with the POPJ code).

-FUNCALL is the operation which calls a user procedure (actually a

closure). The last argument (not the first!) must be a closure (this is not

checked for!), which is applied to the preceding arguments. (No checking is

performed to see whether the correct number of arguments has been supplied!)

The body (car) of the closure is evaluated in an environment produced by

tacking (NCONCing) all the arguments onto the front of the environment (cdr)

of the closure. In this way “lexical scoping" is achieved as in SCHEME or

ALGOL. (Because successive sets of variables are tacked together using NCONC

rather than being consed onto a display, the environment in the prototype

processor takes the form of a simple list of values rather than a list of

buckets of values. This is done so that a variable reference can be simply

"n back" rather than "n back and j over".) Notice that the closure itself is

added to the environment along with the other arguments. In this way the

procedure can refer to itself recursively.

As an example, an expression calling for the evaluation of the

expression

(APPEND '(A BC) ‘(D0 E F))

including the definition of APPEND itself, is shown in an accompanying

diagram.

34

SIMPLE Expresston For

CAPPEND ‘(A BC) (DE F))

CALL

(f=) oe LIST SYMfoL| LIST S ¥A7foz 5Y¥ 4 Bou.

LI5T| e |e e |i ele

(i A B co WEL
Cra) pra LIST ere LIST i SYA BL

bra 9 9 o— 9 e— 9 #

v V vv

D E. F NIL

¢ Try, IF @ [2257 VAR | ATOM
| PRoc e | CALL e -3 i

NIL WI

| VAR -3 = X
- VAR -2 = Y

VAR -| = APPEWD

CALL | MORE CALL | CoWS

q e- >__ 9

NIL.

VAR | GAR CALL | MORE VAR | MORE

“3 j) ¢@ 9 e— -24 |

VAR | SDR VAR | Fuseale

-3 @ —-! | @

APPEWD =

CLAMBPA (x YD

CzF (ATOM x) ¥

(cevs (cAR x)

CAPPEND (ePR x) YD)

Steele and Sussman 35 Design of LISP-Based Processors

Initialization

The chip is initialized by holding the input pins ITO-1IT2, IAQ-IA2 low

while raising STUFF, and stepping the clock for a few cycles. Then STUFF

should be lowered. Whenever FREEZE is also low during a clock cycle, the chip

will run.

The initial contents of memory should be as follows:

Location Contents Remarks

0 0|000 Cdr part of NIL (points to NIL)

1 01000 Car part of NIL (points to NIL)

2 X| XXX Cdr part of T

3 Xx | XXX Car part of T

4 0|nnn Beginning of free storage

5 exp Expression to be evaluated

6 x | XXX Reserved for result of evaluation

The notation "tla" means a pointer with type "t" and address "aaa".

NIL must be at location 0, and T at location 2. These are used as

returned values by the built-in predicate ATOM. Notice that NIL is considered

to be alist. Location 5 should contain the expression to be evaluated.

Additional cells in the expression may occupy other memory words above

location 6 as appropriate. Location 4 should point at the last word used in

the initial expression. Words after the one pointed to by location 4 are

assumed to be free for allocation by the “garbage collector". (Actually,

SIMPLE has no garbage collector. When Storage has been once allocated, it

drops dead.) The actual free storage pointer is not maintained in location 4;

location 4 is in general not changed. It is only used to initialize the free

_Storage pointer internal to the chip. Location 6 is reserved for the result

_ Of the evaluation; if evaluation of the expression in location 5 ever

terminates, the resulting pointer is written into location 6, and the

processor halts.

Register/Logic Level Description

‘Internally SIMPLE is organized into two parts. One part, EVAL, is

concerned with the evaluation algorithm. The other part is concerned with

storage management, and is called GC. One way to think about this division is

that GC supplies a set of "subroutines" which are used by EVAL to deal with

the memory system. In this way EVAL can deal with the details of the

evaluation of the code in terms of a linked-list memory system. GC implements

this memory system in terms of the usual "linear-array" memory system.

Each of the two parts, EVAL and GC, is itself divided into two parts:

registers and controller. The registers provide storage for type/pointer

words, and are connected by a common bus in each part. Each controller is a

finite-state machine implemented as a PLA, plus some random logic. Each PLA

iS organized as a micro-code ROM, addressed by a "micro-PC" and yielding a set

Steele and Sussman 36 Design of LISP-Based Processors

of control signals, including register controls and a new micro-PC indicating

the next state.

EVAL has five registers, called V (Value), X (Expression), N

(Environment), L (List of arguments), and C (Control stack). Each can hold an

eleven-bit word of three type bits T0-T2 and eight address bits AO-A7. (These

bits are therefore referred to as VTO, VTI, XAO, NAG, etc.) They are

connected together by a common bus called the E bus. Any of these registers

can be loaded from the bus (according to the signals LDV, LDX, LDN, LDL, LDC)

or read from the bus (according to the signals RDV, RDX, RDN, RDL, RDC). In

addition, register X has incrementation logic associated with it. The signal

RDX+ causes the contents of X, plus 1, to be read onto the E bus. (This

incrementer constitutes the "arithmetic" portion of EVAL's "ALU".) The type

bits do not participate in the incrementation, only the address bits. (If the

address bits of X are all ones, then incrementing X reads an all-zero address

part, but does not read an incremented type.)

GC has three-and-a-half registers, called P, Q, R, and S. They are

connected by a common bus called the G bus. They can be loaded from the G bus

(according to the signals LDP, LDQ, LDR, LDS) and read back onto the G bus

(according to the signals RDP, RDQ, RDR). Register S cannot be read back onto

the G bus. The output pads O are ordinarily driven from the contents of

register 8S; thus register S serves as the latch for the output pads. Register

P, like register X, has associated incrementation logic; the contents of P,

plus 1, can be read onto the G bus according to the signal RDP+. Register P

is also special (and unlike X) in that its type bits are always zero. Reading

register P always forces zeroes onto GT0-GTZ, and loading P always discards

the type bits.

Here is a complete list of the signals produced by the two controllers

of EVAL and GC. (Unfortunately, the hyphen character "-" is used both as a

break character within a signal name and to indicate a series of signal names

ending in consecutive digits. The two cases can be distinguished by whether

or not a digit appears before the hyphen.)

 EVAL Signal name Remarks

6 ENSTATEO-ENSTATE5 Next state

6 EOSTATEO-EOSTATES5S Old (current) state

2 ET-DISP, EAZ-ETZ-DISP Dispatch selectors

5 LDV, LDX, LDN, LDL, LDC Register load controls

6 RDV, RDX, RDX+, RDN, RDL, RDC Register read controls

4 GCOPO-GCOP3 GC OPeration request

3 LITO-LIT2 Three-bit literal value

2 EA-LIT, ET-LIT Literal read controls

34 signals total

Steele and Sussman 37 Design of LISP-Based Processors

Gc ' Signal name | Remarks
6 GNSTATEO-GNSTATES5 Next state

6 GOSTATEO-GOSTATES Old (current) state

2 GCOP-DISP, GA-ZERO-DISP Dispatch selectors

4 LDP, LDQ, LDR, LDS Register load controls

4 RDP, RDP+, RDQ, RDR Register read controls

3 CONN-I, CONN-EA, CONN-ET _ Internal bus connections

1 STEP-EVAL .— Advance EVAL controller
2 ADR, WRITE Memory controls

28 signals total

Actually, some signals are required only in their inverted (active low) state;

rather than have additional random inverters, the PLA programming is inverted

so that the signal emerges from the PLA in the active low sense. Thus these

actual signals emerge from the PLA's: -ENSTATE3, -ENSTATE4, -ENSTATES,

-GNSTATEZ, -GNSTATE3, -GNSTATE4, -GNSTATE5, and -STEP-EVAL. (This is a third

use of the hyphen in signal names: a leading hyphen means an "active low" or

"inverted" signal.)

The two controllers are clocked in parallel. At each step a new state

is latched for each controller. This new state can come from one of three

sources: the old state (OSTATE), the next state (NSTATE), or the input pads

(I). It comes from I if STUFF is high. It comes from OSTATE if STUFF is low

and FREEZE is high. Otherwise, it comes from NSTATE.

° The preceding contains two inaccuracies. One is that the EVAL

controller uses not FREEZE, but rather FREEZE-EVAL, which is a signal computed

as the OR of FREEZE and -STEP-EVAL. Thus the EVAL controller actually uses

OSTATE if either FREEZE is high OR if STEP-EVAL is not asserted by the GC

controller (i.e. if -STEP-EVAL is asserted); in this way GC can control the

advance of EVAL.

The other inaccuracy is that each controller has two dispatch control

lines which can cause NSTATE to be modified before entering the FREEZE/STUFF

selector. If either one is asserted (it should never occur that both are

asserted), then certain control signals are OR'd with the low bits of NSTATE

to produce the new state (if so selected by STUFF and FREEZE). This facility

provides for conditional dispatching in the "microcode" for the controllers:

if the microword provides zero-bits in the low bits of NSTATE, then the next

microinstruction is selected according to the control signals specified. Some

of the control signals may be effectively masked by specifying one-bits in

NSTATE corresponding to those signals. The control signals which may be

dispatched on, and their corresponding dispatch selectors, are:

Controller Selector Signals selected to OR with NSTATE

EVAL ET-DISP ETO-ET2 (8-way dispatch)

EVAL EAZ-ETZ-DISP EA-ZERO, ET-ZERO (4-way dispatch)

GC GCOP-DISP GCOPO0-GCOP3 (16-way dispatch)

GC GA-ZERO-DISP GA-ZERO (2-way dispatch)

EA-ZERO is asserted if the address bits on the E bus (EA0Q-EA7) are all

Steele and Sussman 38 Design of LISP-Based Processors

zero. ET-ZERO similarly is asserted if the type bits on the E bus (ETO-ET2)

are all zero. (There was originally to be a third signal in this group called

EQV, asserted if the address on the E bus was equal to the address in the V

register. This was eliminated late in the design to conserve area. However,

it left an after-effect: the 4-way dispatch on EA-ZERO and ET-ZERO affects

bits 3 and 4 of NSTATE, not bits 4 and 5, breaking the intended general design

rule that dispatching affects the low n bits of NSTATE.) GA-ZERO is asserted

if all the address bits on the G bus are zero.

The EVAL controller can read certain constants onto the E bus, rather

than reading the contents of a register. This is done by asserting EA-LIT or

ET-LIT. These respectively read the address (0,0,0,0,LIT0,LIT1,L1T2,0) onto

-- EAQ-EA7, and LITO-LIT2 onto ETO-ETZ. In this way any constant type can be

specified, and a small range of even addresses (0, 2, 4, 6, 10, 12, 14, 16

octal — as it turned out only the first four are used).

The GC controller can connect the busses in certain ways. The signal

CONN-I connects the input pads I to the G bus; the input pads thus serve as a

"read-only register" to the G bus in much the same way that the S register (to

‘which the output pads are normally tied) serves as a "write-only register".

The signal CONN-EA connects the address bits of the E and G@ busses together;

Similarly CONN-ET independently connects the type bits of the E and G@ busses.

“When they are so tied, only one of EVAL and GC should be attempting to read

something onto its bus; the other may then load one or more registers from

' this source. Thus this bus connection facility provides for bidirectional

communication between the two sets of registers; only one direction may be

used per EVAL step, however. The reason for being able to specify the address

and type connections separately is that frequently GC will supply an address

to the E bus from the G bus, while simultaneously EVAL will supply type bits

to the E bus using ET-LIT.

All the signals emerging from the PLA's pass through a structure

called the probe multiplexor. Under the control of the external signals

PCO-PC2 these signals can be gated to the output pads OT0-OT2Z, OAO-OA7, and

ADR for external testing purposes.

The signals PCO-PC2 are decoded from binary to l-of-7, producing the

mutually exclusive signals PCA, PCB, PCC, PCD, PCE, PCF, and -PROBE. -PROBE

is normally asserted (PCO-PC2 = 000), which allows the output pads to function

normally. The other signals gate internal signals to the pads as follows:

Steele and Sussman 39 Design of LISP-Based Processors

Pad PCA=001 PCB=010 PCC=011 PCD=101 PCE=110 PCF=111 Probe bus

ADR GOSTATES -GNSTATE5 LDR RDQ ~-- --- GP6

OTO GOSTATE4 -GNSTATE4 LDQ LDP “ee --- GP5

OT1 GOSTATE3 -GNSTATE3 RDP RDP+ --- ~-- GP4

OTZ GOSTATE2 -GNSTATE2 CONN-ET CONN-EA --- --- GP3

OAO GOSTATE1 GNSTATE1 CONN-I -STEP-EVAL ADR WRITE GP2

OA1 GOSTATEO GNSTATEO GA-ZERO-DISP GCOP-DISP LDS RDR GP1

OA2 EOSTATE5 -ENSTATE5 LDC RDL “=> --- EP6

OA3 EOSTATE4 -ENSTATE4 LDL RDN GCOP3 GCOP2 EP5

OA4 EOSTATE3 -ENSTATE3 LDN RDV GCOP] GCOPO EP4

OA5 EOSTATEZ2 ENSTATE2 LDV RDX+ LIT2 LIT1 EP3

OA6 EOSTATE] ENSTATE1 RDX LDX LITO ET-LIT EP2

OA7 EOSTATEO ENSTATEO EAZ-ETZ-DISP ET-DISP EA-LIT RDC EP 1

When PCO-PC2 = 100, then the output pads are not driven from any source.

Also, entries "---" in the table indicate an output which is not driven. (It

was originally intended that the numbering of the probed OSTATE and NSTATE

bits should follow the ordering of the OT and OA bits. In the last-minute

haste of the design effort, the probe lines were accidentally hooked up

backwards. This is "only" a matter of elegance — the probe multiplexor will

still do its job.)

Signals which must control more than a few gates (e.g. register

controls) are actually used to drive superbuffers. The signal is first NANDed

with PHI1 and then used to control an inverting superbuffer. The superbuffer

allows the long control lines passing through the register array to be driven

faster; while this may not be necessary in the prototype, it will probably be

a good idea in a larger version with 40-bit registers. The gating by PHI1 was

intended to permit the pre-charging of the bus lines during PHI2 if desired;

but later it was decided to omit pre-charging from the prototype.

SIMPLE Microcode

Here we present the microcode for the two controllers. Remember, in

reading it, that the two machines are clocked in parallel, but EVAL advances

~ only when stepped by the STEP-EVAL signal from GC (rather, when not inhibited

by -STEP-EVAL).

The basic protocol is that GC is in a loop, constantly performing

GCOP-DISP according to the operation GCOP requested by the current EVAL

microcode word. When GC has performed the requested operation, it steps EVAL

and then returns to its loop.

There are basically five kinds of operation EVAL can request:

CONS/XCONS, RPLACD, and load/store Q.

NOP,
CAR/CDR,

| NOP means "do nothing"; it is used when EVAL just wants to shuffle

' things on the E bus. GC takes two cycles to perform a NOP: one to dispatch

on the GCOP, and one to do STEP-EVAL. (The synchrony of the two controllers

prevents these two operations from being Simultaneous. There are ways to

Steele and Sussman 40 Design of LISP-Based Processors

avoid this problem, which should be used in a full-scale version. In the

prototype we wanted to avoid complicated timing problems.) Thus EVAL proceeds

at at most half the speed of GC.

CAR/CDR operations request GC to perform a CAR or CDR operation on

memory. Many variants of this are provided to optimize data shuffling between

the E and G busses. A general convention is that after a CAR/CDR operation

the result of the operation is left in Q, and the original operand is left in

R. The basic CAR and CDR operations take their operand from the E bus; the

result is left in Q. The CDRQ, CARQ, CARR variants take their operands from

the indicated register (Q or R), and return the result to the E bus (and also

put it in Q). The CDRRX, CARRX, CDRQX variants take their operands from the

indicated register, put the result in Q, and make no attempt to use the E bus.

In this way EVAL can request GC to do something useful while simultaneously

doing something else with the E bus.

The CONS operation accepts a car pointer from the E bus, takes the

contents of Q to be the cdr pointer, and then allocates a new two-word cell

containing that car and cdr. A pointer to the result, with type 0 (list), is

left in Q.

The RPLACDR operation alters the cdr of the cell pointed to by R to be

the pointer passed from the E bus.

The load/store Q operations allow EVAL to access the Q register. RDQ

requests GC to pass the contents of Q back to the E bus. RDQA asks for just

‘the address bits; EVAL typically supplies the type bits from a literal using

ET-LIT. LDQ stuffs the E bus contents into Q. (Note that the names RDQ and

LDQ are meant to be suggestive of the standard register control signals; but

in this context they are not such signals, but rather particular values for

the GCOP field which request GC to apply its register control signals of the

same name.)

RDQCDRRX is a combination of RDQ and CDRRX useful in odd

circumstances; that is, a CDRRX is performed, and then the old contents of Q

are passed back to the E bus. This operation breaks the Q-and-R convention:

Q is indeed set. to the result of the CDRRX, but R is used to contain the old

value of Q, and not the operand of the CDRRX.

The reason there are such complex variants on the CAR/CDR operations

has to do, strangely enough, with geometrical layout constraints. The

original design for the prototype had only three GCOP control lines, and thus

eight possible requests (NOP, CAR, CDR, CONS, XCONS, RDQ, RDQA, and one unused

Spare). With this design EVAL required about 80 words of microcode and GC

only about 30 words. This imbalance would have made the EVAL PLA much too

large, and the project would have had an awkward shape. Thus it was decided

to look for common operation sequences in EVAL and make them into single GC

operations, thus shrinking EVAL and expanding GC by adding’ extra

"subroutines". Making EVAL just a little larger than GC allowed a better

balance and an overall rectangular shape.

Steele and Sussman 41 Design of LISP-Based Processors

The initialization protocol is a bit peculiar. EVAL begins at state

INIT, and GC at state GC; these states are both state zero. The first thing

EVAL does is put a pointer in register C with type 2 (which in this context is

a "return address" code). This 2 is also gated into the address bits, thus

providing a 4 there. The 4 is irrelevant to the value placed in C, but is

" needed by GC, which will connect the E and G busses on that cycle. This 4 is

used to fetch the initial free storage pointer, and is also placed in Q so

that EVAL can later request CARQ to get the expression to be evaluated from

location 5. EVAL also initializes register N to contain NIL (a zero type/zero

address pointer). This is all rather kludgy, but the multiple uses of certain

magic numbers allows the initialization to occupy only two microwords in each

PLA.

Multiple magic numbers are also used in the implementation of aAToM.

The symbol T must be at location 2 in the memory because the same literal 1 is

used to generate both the type (1 = SYMBOL) and the address (twice 1 = 2) when

generating a result of 1. Similarly, a 0 type and 0 address is used for Nit.

This unfortunately results in (ATOM (ATOM <any list>)) = NIL, despite the fact that

in LISP nit is defined to be an atom. This is a defect in the design of the

prototype. In preceding diagrams we have shown NIL as a Symbol rather than as

a list. Ideally it should be treated as a Special object which is both a list

and an atom, depending on context.

Register C always contains a control stack for the recursive

evaluation. Quantities which need to be saved are consed onto this stack.

The cdr pointers which chain the stack cells together are usually of type 0

(list), but sometimes have other type codes which encode "return addresses"

within the EVAL microcode. At the state labelled POPJ, the EVAL controller

dispatches on the type code of what is in C. This specifies what to do next on

a return from a "recursive call" to EVAL. The type 2 ("“TOPLEVEL") pointer

which is initially placed in C specifies that EVAL should "drop dead", as the

expression evaluation has been completed, after storing the result of the

evaluation into memory location 6.

The microcode is written in a "LISPy" form, as a list of four things.

The first thing is the symbol «ucode, which indicates that this is microcode.

The* second thing is the name of the controller (tvAL or 6c) for which this is

the microcode.

The third thing is a list beginning with the symbol Fietos. This is a

declaration of the names and sizes of all fields of the microword. If a

declaration is a symbol (e.g. tov), then it is the name of a single bit. If

it is a list, then the car of the list is the name of the field. The cadr of

the list may be a number, which is the width of the field in bits; this is

optionally followed by NSTATE or OSTATE (which indicate special treatment for

those fields by the microassembler). If the cadr is not a number, then some

number of items will follow the field name. The number of such items must be

a power of two, and these items are names (or lists of names) for the possible

binary values of the field. For example, in the EVAL microcode, the

declaration of Lit indicates that it has 8 values (hence is logs 3 = 8 bits

wide). The names LIST, Ev2, and NIL each indicate the value 0 in the context

Steele and Sussman 42 Design of LISP-Based Processors

of the tit field; closure and RESULT each indicate the value 3 in that context;

IF indicates the value 5; and so on.

The fourth thing is a list beginning with the symbol cove; following

this symbol is the microcode proper, which is a series of items. A symbol is

a tag denoting the address of the following microinstruction (example: INIT

or poPJl). A list is a set of signals forming a single microcode word. In

general, a signal like LDC is asserted iff its name Loc is present in the

microinstruction. Multi-bit fields are specified by a list of the field name

and the value (example: (LIT 1F2) specifies: the value 1 for the LIT field,

meaning LITO=0, LIT1=0, LIT2=1).

Fields tagged in the Figtos declaration as NSTATE and OSTATE fields are

handled specially by the microassembler. OSTATE is just the address of the

current state. NSTATE may be explicitly specified by (GOTO <tag>), or

implicitly specified by the rule that omitting a (GOTO <tag>) means that the

next state is the textually following microinstruction. (This does not imply

that the microinstructions have consecutive "addresses", but only that one has

the address of another in its NSTATE field.) The microassembler fills in

NSTATE and OSTATE fields automatically after it has assigned addresses to all

the instructions.

The address of a microinstruction may be constrained by an "="

specifier (this idea is borrowed from the microassembler used by DEC for KLI0

microcode, largely because the dispatching technique was borrowed from that

used by the KLIO, which Steele has had some experience microprogramming).

This address-alignment facility is used primarily for aligning dispatch

tables. A specification such as "(= %1»**)" means that the addresses of the

next four (2 to the power <number of *'s>) microinstructions are constrained

to end in 100, 101, 110, 111 in that order. Thus an explicit 1 (or 0, but

. this is never used in practice) forces an address bit to be 1 (0), while a *

indicates that either may be used, and all combinations are used in

lexicographic order for textually successive instructions. After the

-2-to-the-power-<number-of-*'s> instructions, one writes "(= 7)" to mark the

end of the table; this is used for error-checking by the microassembler. The

_ character "%" may be any single character; it is used to make sure the two

"=""specifications match, and is also used in the microcode assembly listing

to show where the dispatch table was placed. As an example, the specification

(= + 1% 1) at ATOM) Causes the next instruction to have an address ending in

binary 101, and the one textually following that at an address ending in 111.

If a number follows the "=" rather than a one-character symbol (for

example, "(= 0)"), then the address of the next microinstruction is forced to

be that number. In this case no matching "=" construct follows’ the

instruction whose location was forced. In the listings that follow, this is

used to force the first instruction of each controller to be at location 0.

Steele and Sussman 43 Design of LISP-Based Processors

(*xUCODE EVAL

(FIELDS (ENSTATE 6 NSTATE)

(EOSTATE 6 OSTATE)

(LIT (LIST EV2 NIL)

(SYMBOL IF2 T)

(VARIABLE TOPLEVEL)

(CLOSURE. RESULT)

(PROCEDURE)

(IF)
(COMBINATION)

(QUOTE))

(GCOP NOP CDR CAR CDRQ CARQ CARR CUORRX CARRX CDROQX

CONS XCONS RPLACOR LOQ RDQ ROQA RDQCORRX)

LDV LOX LON LDL LDC RDV RDX RDX+ RDN RDL RDC

ET-DISP EAZ-ETZ-EQV-DISP EA-LIT ET-LIT)

(CODE INIT

(= 0)

(ET-LIT EA-LIT (LIT TOPLEVEL) LDC) ;TOPLEVEL = 2!3!

(EA-LIT ET-LIT (LIT NIL) LON (GOTO INIT1))

EVAL

(= @ # * *)

(RDX LDV (GOTO POPJ)) sLIST

(RDX LDV (GOTO POPJ)) ; SYMBOL

((GCOP LDQ) RON (GOTO VAR1)) ;VARIABLE

(RDX LDV (GOTO POPJ)) ; CLOSURE

((GCOP COR) RDX (GOTO PROC1)) ; PROCEDURE

((GCOP CDR) RDX (GOTO IF1)) ;1F

(EA-LIT ET-LIT (LIT NIL) LDL (GOTO EVARGS)) ;COMBINATION

((GCOP COR) RDX (GOTO STOREV)) ;QUOTE

(= @)

" VARI

(ROX+ LDV EAZ-ETZ-EQV-DISP)

(= #* 11) ;EA ZERO DISP

((GCOP CDRQX) RDV LOX (GOTO VAR1)) ;NONZERO

((GCOP CARQ) LDV (GOTO POPJ)) ; ZERO

(= #)

POPJ1

(= $1] * *) ;ONLY ET1-ET2 RELEVANT

((GCOP CONS) RDV (GOTO EV3)) sEV2

((GCOP RDQCDRRX) LON (GOTO IF3)) ;1F2

((GCOP CDR) EA-LIT ET-LIT

(LIT RESULT) (GOTO STORE6)) ;TOP LEVEL (RESULT = LOCATION 6)

DEAD ((GOTO DEAD)) ;?2?? SHOULDN'T HAPPEN

(= $)

IFl

({GCOP XCONS) RDC)

((GCOP CONS) RDN)

((GCOP RDQA) ET-LIT (LIT IF2) LOC (GOTO IF1A))

1F3

((GCOP CDRQ) LOC)

((GCOP CARRX) RDV EAZ-ETZ-EQV-DISP (GOTO IF4))

. Steele and Sussman

1F4

(= %* 11)

INIT

((GCOP

((GCOP

(= %)
EVARGS

(= & * * &)

((GCoOP

((GCOP
((GCOP

((GCOP

44

CARQ) LOX ET-DISP (GOTO EVAL))

CDRQ) LDX ET-DISP (GOTO EVAL))

CDR) RDX (GOTO EV1))

CAR) RDV (GOTO STOREV))

CDR) RDV (GOTO STOREV))

CDR) ROL (GOTO CONS1))

(RDV EAZ-ETZ-EQV-DISP (GOTO ATOM1))

POPJ ((GCOP CAR) RDC ET-DISP (GOTO POPJ1))

(RDL LDV (GOTO POPJ))

((GCOP

(= &)
CONS1

((GCOP

((GCOP

STOREV

((GCOP

ATOM)

° (= + 1 * 1)

CDR) RDV (GOTO FUN1))

CARQ))
XCONS) RDV)

RDO) LDV (GOTO POPJ))

(EA-LIT ET-LIT (LIT T) LDV (GOTO POPJ))

(EA-LIT ET-LIT (LIT NIL) LDV (GOTO POPJ))

(= 4)
FUNI

((GCOP RDQ) LDN)

((GCOP CDR) ROL EAZ-ETZ-EQV-DISP)

FUN2

(= * 11)

((GCOP CDRQ) EAZ-ETZ-EQV-DISP (GOTO FUN2))

((GCOP RPLACOR) RDN (GOTO FUN3))

(= \)

FUN3

(RDL LDN)

((GCOP CAR) RDV (GOTO FUN4))

EVI

((GCOP XCONS) RDC)

((GCOP CONS) RDN)

(({GCOP CONS) RDL)

((GCOP RDQA) ET-LIT (LIT EV2) LDC)
IFIA

((GCOP CAR) RDX)

FUNG

((GCOP RDQ) LOX ET-DISP (GOTO EVAL))

Design of LISP-~Based Processors

;EA ZERO DISP

;NONZERO

;ZERO

>MORE

sCAR

;CDR

;CONS

; ATOM

;PROGN

;LIST

>FUNCALL

;PUT Q INTO V, POPJ

,ET ZERO DISP

> ATOM

;LIST

;EA ZERO DISP

sNONZERO

> ZERO

Steele and Sussman 45 Design of LISP-Based Processors

EV3

PROC]

((GCOP RDQ) LOL)

((GCOP CDR) RDC)

(({GCOP CARQ) LON)

((GCOP CORRX))

((GCOP CORQ) LOC)

((GCOP CARR) LDX ET-DISP (GOTO EVARGS))

((GCOP XCONS) RDN)

((GCOP RDQA) ET-LIT (LIT CLOSURE) LDV (GOTO POPJ))

STORE6

(({GCOP RPLACOR) RDV (GOTO DEAD))

)) END OF *UCODE EVAL

(*UCODE GC
(FIELDS (GNSTATE 6 NSTATE)

(GOSTATE 6 OSTATE)

STEP-EVAL CONN-EA CONN-ET CONN-I

LDP LDQ LDR LOS RDP RDP+ RDQ RDR

ADR WRITE GCOP-DISP GA-ZERO-DISP)

(CODE GC

(= 0)
(CONN-EA LDS LDQ ADR) sEVAL SUPPLIES 4

(CONN-I LDP STEP-EVAL (GOTO LOOP)) ;READ INITIAL FREE PTR

LOOP

(GCOP-DISP)

“(= @ kk & &)

(STEP-EVAL (GOTO LOOP)) ;NOP

(CONN-EA CONN-ET LDS LOR ADR (GOTO COR1)) ;COR

(RDP LDQ (GOTO CAR1)) sCAR

(RDQ LOS ADR (GOTO CDRO])) CORO
CARQO (RDP LDR (GOTO CARQ1)) ;CARQ

(RDR LDQ (GOTO CARQO)) sCARR

(ROR LOS ADR (GOTO CDR1)) :CDRRX

(RDP LDQ (GOTO CARRX1)) ;CARRX

(RDQ LDS LOR ADR (GOTO CDR1)) ;CDRQX

(RDP+ LDS LDR ADR GA-ZERO-DISP (GOTO CONS1)) ;CONS

(ROP+ LDS LDR ADR GA-ZERO-DISP. (GOTO XCONS1)) :XCONS

(RDR LOS ADR (GOTO RPLACDR1)) ;RPLACOR

(CONN-EA CONN-ET LOQ STEP-EVAL (GOTO LOOP)) ;LDQ

(CONN-EA CONN-ET RDQ STEP-EVAL (GOTO LOOP)) ;RDO

(CONN-EA RDQ STEP-EVAL (GOTO LOOP)) - ;RDQA

(ROR LDS ADR (GOTO RDQCORRX1)) ;ROQCORRX

(= @)

Steele and Sussman 46 Design of LISP-Based Processors

CARI
(CONN-EA CONN-ET LDP LDR)

CAR?
(RDP+ LDS)
(RDQ LDP)

CDR1
CAR3

(CONN-I LDQ STEP-EVAL (GOTO LOOP))
CARQ]

(RDQ LDP)
(RDP+ LDS)
(RDR LDP)

coRQ]
(RDQ LDR)
(CONN-I CONN-EA CONN-ET LDQ STEP-EVAL (GOTO LOOP))

CARRX1
(RDR LOP (GOTO CAR2))

. RPLACDRI
(CONN-EA CONN-ET LDS LDQ) LEAVE GAP BETWEEN ADR AND WRITE
(WRITE STEP-EVAL (GOTO LOOP))

XCONS}
(= $ *)

(RDR LDP (GOTO XCONS2))
GCDEAD ((GOTO GCDEAD)) :FREE PTR WRAPPED AROUND
(= $)

XCONS2
(RDQ LDR)
(CONN-EA CONN-ET LDS (GOTO CONS3))

CONS]
(27)

(ROR LOP (GOTO CONS2))

((GOTO GCDEAD))

= 7)

CONS2

(CONN-EA CONN-ET LDR)

(RDQ LDS)

CONS3

(RDP LDQ WRITE)

(RDP+ LDS ADR GA-ZERO-DISP)

= & *)

(ROR LDS (GOTO CONS4)) ;LEAVE GAP BETWEEN WRITE AND ADR

((GOTO GCDEAD))

(= &)
CONS4

(WRITE ROP+ LDR)

(RDR LOP STEP-EVAL (GOTO LOOP))

RDQOCORRX1
(RDQ LOR)

(CONN-1 LDQ)

(RDR CONN-EA CONN-ET STEP-EVAL (GOTO LOOP))

)) ;END OF *UCODE GC

Steele and Sussman 47 Design of LISP-Based Processors

A remnant of the planned logic for the £Q operation survives in that

in the actual EVAL microcode the name “EAZ-ETZ-EQV-DISP" was still used instead

of the more correct "EAZ-ETZ-DISP".

It may be noticed that this code has been tightly bummed to share

instructions among several different paths of code (for example at IF1A and

FUNG). This is no accident. The microassembler looks for assembled

microwords which have the same value (except for OSTATE fields) and flags them

in the assembly listing precisely so that such instructions may be merged if

desired.

° The assembly listing actually used to produce the PLA programming for

the prototype is reproduced here. The listing is designed to be readable both

by. people (and so it is arranged in columns) and by LISP (and so it is

parenthesized). All numbers in the listing are octal. The listing for each

program is a single list, beginning with the symbol ucopE and the name of the

program (EvAL or Gc). Then is the maximum number of words of microcode memory

needed to contain the program; this is actually two to the power <size of the

NSTATE field>. After this is a comment specifying the width of the microword.

Next comes the definitions of all fields, as assigned by the

microassembler. (These definitions have nothing to do with the order of the

Signals emerging from the PLA. They simply indicate where in each assembled

microword the microassembler has placed the value for each field. The

software which produces the PLA programming from the assembly listing permutes

the bits in an arbitrarily specified fashion to suit the layout. It also

automatically inverts the programming for such bits as -STEP-EVAL. In this

way the written microcode can mention these bits in the positive sense rather

than the negative (active low) sense.)

Each field definition has the word FIELD, a numeric value with a l bit

in every bit position of the field and 0 bits elsewhere, and a 4-list. The

4-list contains the name of the field; the type of the field (81T, NSTATE,

OSTATE, Or the list of symbolic values from the declaration); the width of the

field; and the position of the field in the assembled microword, measured

from the right.

If a field is more than one bit wide, then the assembler automatically

defines name for each of the bits of the field, by methodically appending

decimal numbers to the field name, and numbering the bits of the field from

left to right.

Following the field definitions are the assembled instructions, in

address order (which in general will not be the same as the textual order of

the instructions in the input program). For each instruction is listed the

address; the assembled microword value; a single character if the

instruction is part of a dispatch table, or a "!" if the instructions

location was forced by "(= <number>)", or a blank otherwise; if the instruction

had a tag or tags, then that tag or a list of the tags, followed by a colon;

the symbolic instruction; and an arrow "=>" followed by the address in the

NSTATE field.

Steele and Sussman 48 Design of LISP-Based Processors

Following the assembled instructions is a remark indicating the actual

number of assembled microwords. This need not be greater than the last

address used (though it is in the actual cases shown here), because the

microassembler may leave gaps in the address space to accommodate dispatch

tables.

The comments before and after the listings are timestamp information

generated by the microassembler.

;THIS IS THE ASSEMBLED MICROCODE FOR ((DSK SCHIP) USIMPL /22)

;It is 6 days, 15 hours, and 3 minutes past the new moon.

;The sun 1s 41*56'59" east of south, 13*5'50" above the horizon.

;That means it is now 8:36 AM on Wednesday, December 6, 1978.

(UCODE EVAL

(100 WORDS)

(REMARK MICROWORDS ARE 42 (OCTAL) BITS WIDE)

(FIELD 100000000000 (ET-LIT BIT 1 41))

(FIELD 040000000000 (EA-LIT BIT 1 40))

(FIELD 020000000000 (EAZ-ETZ-EQV-DISP BIT 1 37))

(FIELD 010000000000 (ET-DISP BIT 1 36))

(FIELD 004000000000 (ROC BIT 1 35))

(FIELD 002000000000 (RDL BIT 1 34))

(FIELD 001000000000 (RDN BIT 1 33))

(FIELD 000400000000 (RDX+ BIT 1 32))

(FIELD 000200000000 (RDX BIT 1 31))

(FIELD 000100000000 (RDV BIT 1 30)

(FIELD 000040000000 (LOC BIT 1 27)

(FIELD 000020000000 (LDL BIT 1 26)

(FIELD 000010000000 (LON BIT 1 25)

(FIELD 000004000000 (LDX BIT 1 24)

(FIELD 000002000000 (LDV BIT 1

(FIELD 000001700000 (GCOP (NOP CDR CAR CDRQ CARQ CARR CDRRX CARRX CDRQX CONS XCONS RPLACDR

LDQ RDO RDQA RDOCDRRX) 4 17))

(FIELD 000001000000 (GCoPO BIT 1 22))

(FIELD 000000400000 (GCOP1 BIT 1 21))

(FIELD 000000200000 (GCOP2 BIT 1 20))

(FIELD 000000100000 (GCOP3 BIT 1 17))

(FIELD 000000070000 (LIT ((LIST EV2 NIL) (SYMBOL IF2 T) (VARIABLE TOPLEVEL) (CLOSURE RESULT)

(PROCEDURE) (IF) (COMBINATION) (QUOTE)) 3 14))

(FIELD 000000040000 (LITO BIT 1 16))

(FIELD 000000020000 (LIT1 BIT 1 15))

(FIELD 000000010000 (LIT2 BIT 1 14))

(FIELD 000000007700 (EOSTATE OSTATE 6 6))

(FIELD 000000004000 (EOSTATEO BIT 1 13))

(FIELD 000000002000 (EOSTATE1 BIT 1 12))

(FIELD 000000001000 (EOSTATE2 BIT 1 11))

(FIELD 000000000400 (EOSTATE3 BIT 1 10))

(FIELD 000000000200 (EOSTATE4 BIT 1 7))

(FIELD 000000000100 (EOSTATES BIT 1 6))

Steele and Sussman 49 Design of LISP-Based Processors

(FIELD 000000000077 (ENSTATE NSTATE 6 0))

(FIELD 000000000040 (ENSTATEO BIT 1 5))

(FIELD 000000000020 (ENSTATE1 BIT 1 4))

(FIELD 000000000010 (ENSTATE2 BIT 1 3))

(FIELD 000000000004 (ENSTATE3 BIT 1 2))

(FIELD 000000000002 (ENSTATE4 BIT 1 1))

(FIELD 000000000001 (ENSTATES BIT 1 0))

(00 140040020001 ! INIT : (ET-LIT EA-LIT (LIT TOPLEVEL) LOC) => 01)

(01 140010000133 (EA-LIT ET-LIT (LIT NIL) LDN (GOTO INIT1)) => 33)

(02 020402000223 VARI : (RDX+ LDV EAZ-ETZ-EQV-DISP) => 23)

(03 004001200320 IFl: ((GCOP XCONS) RDC) => 20)

(04 000101100464 $ POPJ] : ((GCOP CONS) RDV (GOTO EV3)) => 64)

(05 000011700522 $ ((GCOP RDQCDRRX) LDN (GOTO IF3)) => 22)

(06 140000130671 $ ((GCOP CDR) EA-LIT ET-LIT (LIT RESULT) (GOTO STORE6)) => 71)

(07 000000000707 $ DEAD : ((GOTO DEAD)) => 07)

(10 000202001045 @ EVAL : (RDX LDV (GOTO POPJ)) => 45)

(11 000202001145 @ (RDX LOV (GOTO POPJ)) => 45)

(12 001001401202 @ ((GCOP LDQ) RDN (GOTO VAR1)) => 02)

(13 000202001345 @ (RDX LDV (GOTO POPJ)) => 45)

(14 000200101453 @ ((GCOP CDR) RDX (GOTO PROC1)) => 53)

(15 000200101503 @ ((GCOP CDR) RDX (GOTO IF1)) => 03)

(16 140020001640 @ (EA-LIT ET-LIT (LIT NIL) LDL (GOTO EVARGS)) => 40)

(17 000200101730 @ ((GCOP CDR) RDX (GOTO STOREV)) => 30)

(20 001001102021 ((GCOP CONS) RON) => 21)

(21 100041612161] ((GCOP RDQA) ET-LIT (LIT IF2) LDC (GOTO IF1A)) => 61)

(22 000040302224 1F3: ((GCOP CDRQ) LDC) => 24)

(23 000105002302 # ((GCOP CDRQX) RDV LOX (GOTO VAR1)) => 02)

(24 020100702433 ((GCOP CARRX) RDV EAZ-ETZ-EQV-DISP (GOTO IF4)) => 33)

(25 000000402526 CONS] : ((GCOP CARQ)) => 26)

"(26 000101202630 ({GCOP XCONS) RDV) => 30)

(27 000002402745 # ((GCOP CARQ) LDV (GOTO POPJ)) => 45)

(30° 000003503045 STOREV : ((GCOP RDQ) LDV (GOTO POPJ)) => 45)

(31 000011503132 FUNI : ((GCOP RDQ) LON) => 32)

(32 022000103263 ((GCOP CDR) RDL EAZ-ETZ-EQV-DISP) => 63)

(33 010004403310 % (INIT1 IF4): ((GCOP CARQ) LOX ET-DISP (GOTO EVAL)) => 10)

(34 002010003435 FUN3 : (RDL LDN) => 35)

(35 000100203562 ((GCOP CAR) RDV (GOTO FUN4)) => 62)

(36 004001203654 EV1 : ((GCOP XCONS) RDC) => 54)

(37 010004303710 % ((GCOP CORQ) LDX ET-DISP (GOTO EVAL)) => 10)

(40 000200104036 & EVARGS : | ((GCOP CDR) RDX (GOTO EV1)) => 36)

(41 000100204130 & ((GCOP CAR) RDV (GOTO STOREV)) => 30)

(42 000100104230 & ((GCOP CDR) RDV (GOTO STOREV)) => 30)

(43 002000104325 & ((GCOP CDR) RDL (GOTO CONS1)) => 25)

(44 020100004455 & (RDV EAZ-ETZ-EQV-DISP (GOTO ATOM1)) => 55)

(45 014000204504 & POPU : ((GCOP CAR) RDC ET-DISP (GOTO POPJ1)) => 04)

(46 002002004645 8 (RDL LDV (GOTO POPJ)) => 45)

(47 000100104731 & ((GCOP CDR) RDV (GOTO FUN1)) => 31)

(50 000000605051 ({GCOP CORRX)) => 51)

(51 000040305152 ({GCOP CORQ) LOC) => 52)

(52 010004505240 ((GCOP CARR) LDX ET-DISP (GOTO EVARGS)) => 40)

(53 001001205370 PROC] : ((GCOP XCONS) RDN) => 70)

Steele

(54
(55
(56
(57
(60
(61
(62
(63
(64
(65
(66
(67
(70
(71

and Sussma

001001105456

140002015545

002001105660

140002005745

100041606061

000200206162

010005506210

020000306363

000021506465

004000106566

000010406650

001001306734

100003637045

000101307107

n

+ ATOM]

IFIA :

FUN4

\ FUN2

EV3 :

STORE6 :

(REMARK NUMBER OF INSTRUCTIONS

;END OF UCODE EVAL)

(UCODE GC

(100 WORDS)

(REMARK MICROWORDS ARE 34 (OCTAL) BITS WIDE)

(GA-ZERO-DISP BIT 1 33)) (FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD
(FIELD

“(FIELD
(FIELD
(FIELD

1000000000

0400000000

0200000000

0100000000

0040000000

0020000000

0010000000

0004000000

0002000000

0001000000

0000400000

0000200000

0000100000

0000040000

0000020000

0000010000

0000007700

0000004000

0000002000

0000001000

0000000400

0000000200

0000000100

0000000077

0000000040

0000000020

0000000010

0000000004

0000000002

0000000001

(GCOP-DISP BIT 1 32))

(GCOP

(GCOP

50 Design of LISP-Based Processors

CONS) RDN) => 56)

CONS) RDL) => 60)

(
(EA-LIT ET-LIT (LIT T) LDV (GOTO POPJ)) => 45)

(
(EA-LIT ET-LIT (LIT NIL) LDV (GOTO POPJ)) => 45)

((GCOP

((GCOP

((GCOP

((GCOP

((GCOP

RDQA) ET-LIT (LIT EV2) LDC) => 61)

CAR) RDX) => 62)

ROQ) LDX ET-DISP (GOTO EVAL)) => 10)

CDRQ) EAZ-ETZ-EQV-DISP (GOTO FUNZ2)) => 63)

RDQ) LDL) => 65)

CDR) RDC) => 66)

CARQ) LDN) => 50)

RPLACDR) RDN (GOTO FUN3)) => 34)

RDQA) ET-LIT (LIT CLOSURE) LDV (GOTO POPJ)) => 45)

RPLACDR) RDV (GOTO DEAD)) => 07)

72 (OCTAL))

(WRITE BIT 1 31))

(ADR BIT 1 30))

(RDR BIT 1 27))

(RDQ BIT 1 26))

(RDP+ BIT 1 25))

24))
23))

22))

21)).

20))
(CONN-1 BIT 1 17))

(RDP BIT

(LOS BIT

(LOR BIT

(LOQ BIT

(LOP BIT

(CONN-ET BIT 1 16))

(CONN-EA BIT 1 15))

(STEP-EVAL BIT 1 14))

(GOSTATE OSTATE 6 6))

(GOSTATEO BIT 1 13))

(GOSTATE] BIT 1 12))

(GOSTATE2 BIT 1 11))

(GOSTATE3 BIT 1 10))

(GOSTATE4 BIT 1 7))

(GOSTATES BIT 1 6))

(GNSTATE NSTATE 6 0))

(GNSTATEO BIT 1 5))

(GNSTATEL BIT 1 4))

(GNSTATE2 BIT 1 3))

(GNSTATE3 BIT 1 2))

(GNSTATE4 BIT 1 1))

(GNSTATES BIT 1 0))

(00 0102420001 ! GC

1

]

1

1

1

(CONN-EA LDS LDQ ADR) => 01)

Steele

(01

(02

(03

(04

(05

(06

(07.

(10

(11

(12

(13

(14

(15

(16

(17

(20

(21

(22

(23

(24

(25

(26

0000310102
0400000220
0001260304
0012000405
0020200506
0000510602
0020200710
0012001011
0040201112
0021001213
0000571302
0040201404
0002461516
0200011602
0021001742
0000012002
0103062106
0004402203
0122002312
0005002407
0040402524
0142002606

(27 0004402714

(30

(31

(32

(33

(34

(35

(36

(37

(40

(41

(42

(43

(44

(45

(46

(47

(50

(51

(52

(53

(54

(55

(56

(57

(REMARK NUMBER OF INSTRUCTIONS

)

0123003006

1113003144

1113003240

0142003315

0000473402

0020073502

0020033602

0142003755

0040204017

000000414]

0002064247

0001064346

0040204443

0000004541

0022004647

0204404750

1112005052

0211005154

0042005251

000000534]

0040215402

0021005556

0000505657

0040075702

and. Sussman

LOOP

CARL

CAR2°:

(CAR3 CDR1):

CARQ]

CDRQI

CARRX]

RPLACDRI

XCONS2

CARQO

XCONS1

GCDEAD

CONS2

CONS]

CONS3

CONS4

RDQCORRX1

;END OF UCODE GC

51 Design of LISP-Based Processors

(CONN-I LDP STEP-EVAL (GOTO LOOP)) => 02)

(GCOP-DISP) => 20)

(CONN-EA CONN-ET LOP LOR) => 04)

(RDP+ LOS) => 05) .

(ROQ LOP) => 06)

(CONN-I LDQ STEP-EVAL (GOTO LOOP)) => 02)

(RDQ LDP) => 10)

(RDP+ LOS) => 11)
(RDR LDP) => 12)
(RDQ LDR) => 13)
(CONN-I CONN-EA CONN-ET LDQ STEP-EVAL (GOTO LOOP)) => 02)
(RDR LDP (GOTO CAR2)) => 04)
(CONN-EA CONN-ET LDS LDQ) => 16)
(WRITE STEP-EVAL (GOTO LOOP)) => 02)
(RDQ LDR) => 42)
(STEP-EVAL (GOTO LOOP)) => 02)
(CONN-EA CONN-ET LDS LDR ADR (GOTO CDR1)) => 06)
(RDP LDQ (GOTO CAR1)) => 03)
(RDQ LDS ADR (GOTO CORQL)) => 12)
(RDP LDR (GOTO CARQ1)) => 07)
(RDR LDQ (GOTO CARQO)) => 24)
(RDR LDS ADR (GOTO CDR1)) => 06)
(RDP LDQ (GOTO CARRX1)) => 14)
(RDQ LDS LDR ADR (GOTO CDR1)) => 06)
(RDP+ LDS LOR ADR GA-ZERO-DISP (GOTO CONS1)) => 44)
(RDP+ LOS LOR ADR GA-ZERO-DISP (GOTO XCONS1)) => 40)
(RDR LDS ADR (GOTO RPLACDR1)) => 15)
(CONN-EA CONN-ET LDQ STEP-EVAL (GOTO LOOP)) => 02)
(CONN-EA CONN-ET RDQ STEP-EVAL (GOTO LOOP)) => 02)
(CONN-EA RDQ STEP-EVAL (GOTO LOOP)) => 02)
(RDR LDS ADR (GOTO RDQCORRX1)): => 55)
(RDR LDP (GOTO XCONS2)) => 17)
((GOTO GCDEAD)) => 41)
(CONN-EA CONN-ET LDS (GOTO CONS3)) => 47)
(CONN-EA CONN-ET LDR) => 46)
(ROR LDP (GOTO CONS2)) => 43)
((GOTO GCDEAD)) => 41)
(RDQ LDS) => 47)
(RDP LDQ WRITE) => 50)
(RDP+ LOS ADR GA-ZERO-DISP) => 52)
(WRITE RDP+ LOR) => 54)
(RDR LDS (GOTO CONS4)) => 51)
((GOTO GCDEAD)) => 41)
(ROR LDP STEP-EVAL (GOTO LOOP)) => 02)
(RDQ LOR) => 56)
(CONN-I LDQ) => 57)
(ROR CONN-EA CONN-ET STEP-EVAL (GOTO LOOP)) => 02)

= 60 (OCTAL))

Steele and Sussman 52 Design of LISP-Based Processors

;It is 6 days, 15 hours, 4 minutes, and 2 seconds past the new moon.

;The sun is 41*44'49" east of south, 13*13'18" above the horizon.

;That means it is now 8:37 AM on Wednesday, December 6, 1978.

Logic-Level Circuit Diagrams

We conclude by giving a complete set of logic-level circuit diagrams

for the SIMPLE prototype _ processor. The geometry of these diagrams

approximately reflects the physical layout. It should be noted particularly

that, while the WRITE signal emerges from the PLA at the top, clocked by PHI2,

so that it can enter the probe multiplexor with the other signals, it also

emerges from the bottom of the PLA before being clocked by PHI2, and goes

directly to the WRITE output pad. Hence this signal appears on the output pad

half a clock cycle earlier than might otherwise be expected. The timing

-diagram should make the external memory signals clear.

The circuits were designed to occupy minimum area with almost no

thought given to speed. The register cell is a modification of that used in

the OM2 data chip [Mead 1978] [Johannsen 1978]. Many of the other structures

are based on ideas discussed in [Mead 1978] and [Hon 1978]. In particular,

_ the output pads and PLA structures were taken from a library described in

{Hon 1978].

For those readers not familiar with the symbology employed, here is a

brief (and approximate!) explanation. The symbol

GATE

_L
x—I ty

represents a pass (enhancement-mode) transistor. When the gate voltage is

high (VDD), then the two arms X and Y are effectively connected; when it is

low (GND), X and Y are effectively disconnected.

A transistor symbol with a filled-in body represents a transistor

treated with an ion implant process so that it is always on (depletion mode).

In SIMPLE this is always used in a certain configuration to get the effect of

a resistor:

cs , Ge /

The first two symbols above are used interchangeably; the intent of either is

to represent a resistor attached to VDD, as shown by the third symbol.

Steele and Sussman 53 Design of LISP-Based Processors

Such depletion-mode transistors are used to build logic gates. For

example, this circuit is an inverter. If the input X is high (near VDD), the

output will be low (close to GND), and vice versa. . (The enhancement-mode

transistor, when on, hasS a much lower resistance than the depletion-mode

transistor. Hence when X is high the two transistors form a voltage divider

which brings the output close enough to (but not actually at) GND.) This

circuit is represented by the triangular logic symbol shown (which elides the

essential but uninteresting details of the connections to VDD and GND).

Vop

x x —\>o— -x

xX ——+

SM.

An extension of this idea allows one to construct a NAND gate easily,

a circuit whose output is high iff not both inputs are high. This circuit is

represented by either of two logic symbols depending on context (to emphasize

one or the other of the two notations which are equivalent by DeMorgan's Law).

Vop

x— —_—_
| XY

 Y—
X MAND Y

x—
Y— oT)

GNP

‘Space constraints do not permit us to exhibit complete geometrical

layout diagrams. However, following the logic-level diagrams is’ the

geometrical layout of a single register cell.

54

EVAL REGISTERS

xX V N L Cc
reo “~ ron a, —_

IA7
IAT

R REG
VAT LA7 cA? EA?

LAGE ZAG

REG REG
VAG CAG EAG

TAS LAS

REG RES
Vv cA EAS

LAY BAY

RES
My EAY

TAS LA3

EAS

LAZ TA2

EAz2

zAl ZA}

EAI

LAG LAW

EAD

TT2 TT2

ETZ

LT / {Tl

ET |

ETD

manm . ,

yaszg SNS CES TS SS BE
wwe FS Bz Se FE FS » ” x < Vv Yr >»

4 = honinver ting superbuiter

55

BUS INTERCONNECT

% x ~)

GA7
EAT

IAG

GAG EAC

LAS

GAS EAS

TAY

GAY EAY

IA3

GAZ £A3

TAZ

GAZ EA2

TAI

GAl EA!

LAD

GAG BAD:

IT2

GT2 ETz

<T/

GT] ET!

I7Te

CT

ET D

@)
CONN-ET

g,"
C
o
v

-
B
A

p,"
C
O
N
N

-I

L
I
T
2

4£2TIl

LIT

DB, E
T
-
L
7
T

B,
E
A
-
L
I
T

56

GC REGISTERS

P Q R VDD

EG EG REG Lew ine
SAT

GAT PAZ QA SAF

REG Iwe REG

GAG A PAG OAE sae

REG Ive

on PAS 74S

REG KMe :
GAY PAY SAY

G REG Ewe
AZ PAR S$A3

GAZ REG Ie PAZ SAZ

PAI SAI!

C REG Iwe
AG PAS SAL

ZEPo Twe
6T2 pr2 STZ

Feto Ive

oTl PT! ST!

GTP STS

4

: SSS BB BSR Y
NW yo RPK . 6 > ~

mn PIP RR RFR
3 + QP

4 = non-inver-ting super butter

57

EVAL DRIVERS

ET-l2T
8a

3

BA-LIT
Gi "LPs

U
s

LDS

P,'
hdc

RDe
POR

b

RPR

PD, WDe
Loc

WY
By LbR

b

LDR

P,* ROL
RPL

ui
RPO.

DB
ROO.

Dhol
LpL

rt
DB, Lo.

B

LO

s
3

D,RDN
ROM

a

D
L
o
P

e
LDP

Dy bow
LDN

5

Gy RoP
D

ROP

Py ROV
RoV

gF
L——

RDP+

D,
‘LDV

-
L
D
V

GD,
Cown-

ET
e

C
O
M
A

~
£
T

PD," RDX+
Abxt

Dy CONN -EA
D
D

cONW-BA

Dy
RPX

ROX
coun -L

B

COWM-T

Mm
D1

LOX
e

LOX
5 e

:

ver
oD
GMD

N ‘ i ®
KF ke & 8

uw a wo @ &

GND rt bd EA@-ET2-DrsP

(UU ET-DIsp

~ENSTATES

op ENSTATEY

ne ~ENSTATES

“J ENMSTATE 2

x
a

EMSTATE/
ww Q) :

Wj
EMSTATED

Wo of /

al
Ta

*EOSTATES

EOSTATE Y

EOSTATE3

« FOSTATE2

4EOSTATE!

if I dr + tf {[EOSTATED
ye yy |

d ; -
qb TL 1 TL L |

ITZ Bt

rT] ryt

ET2 a

as TA
2 —4—

4

TAZ IT

STUFF |

» >» 2 >» z z
+ ot + + 5 >
™m mn m m m ms

Uy <= w i) ~! Q

EVAL <= Mm x< —
 ITATE

59

2
ni
x
‘S GC

oP
r3

G
N
D

G
C
o
P
r
2

6N
MP

o
c
o
P
 |

6
p

GL
OP

DS

GA-ZEPO- Disp

Gcop-DIsp

— GNSTATES

—GNSTATEY

- GNSTATES

-6 MSTATEZ

GNSTATE!

GNSTATED

F
R
E
E
Z
E

GOSTATES

GOST ATEY

GOsTATES

GOSTATEZ

GOST ATE

GOSTATED

ITg

IT}

ITZ

LAG

ZAl

TAZ

STUFF

J
z
1
v
l
s
S
 0) e u g %

4 4 + 4 y F SS
& <& W N

GC NEXT STATE

P
3
1
L
y
i
s
O

P
R
O
B
E

MU
X

E
V
A
L

W
v
a.

yt
ad EP

2

£P
Y

£P
6

EP
I

60

EP
S

E
P
S

PC
B

Po
d

pe
r

GeoPrs

GCOP2

GCoPp]|

GLOPpe

LIT2

LIT!

LIT@

ET-LIT

BA-LIT

RDc

LPC

RDL

LoL

RDN

LPM

m
e
a
n
s

ve RPV

LDV

RDX+

RDX

LDX

EAZ-E&T#2-prsP

ET-DISP

EOSTATES

— EN STATES

EOSTATEY

—- ENSTATEY

EOSTATE 3

—ENSTATE3
LOSTATEZ

EWVSTATEZ

EOSTATE|

EWSTATE |

EOSTATED

ENSTATE. &

P
R
O
B
E

M
U
X

GC

pc
e

p
a
c

Pc
A

G
P
2

GP
Y

GP
é

oP

GP
3

GP
S

Pe
gs

Po
p

pe
r

ADR
WRITE
Los
ROR

LDR

RPO
LDA.

LDP

RPP

m
e
a
n
s

-6
-

 RDP +

CONN ~ET

CONN-EA

CONW-T

~STEP- EVAL

GA-ZEPLO-pIspP

GcoPp~prsp

GOSTATES

—- GNSTATES

GOSTATEY

~ GNSTATEY

GOSTATES

~ GNSTATE3

GOosTATEZ

—- GNSTATEZ

GOSTATE!

GWSTATE |

GOSTATED

GNSTATESD

62

OUTPUT MULTIPLEXOR

SA7 oA?

SAG OAG

SAS OAS

sf oA
SAB OA

SAZ OAZ

SAl oA!

5 AD OAD

$Tz oT2

ST! oT!)
STP¢ oTe

ADR APR

OMT PUT
ey PADS

Z PRO fe ROBE
Se SELECT
GF6
of!
G6F3
oTs

paz

pC|

Pcp

VDD

63

REGISTER CELL

Symbol

td, Pu Bi Rp

Vop Vor

Bus Bus

GND Gnep :

Circuit xy Py 2,-RD

#40 p BRP

 Vop Tt ”
tH : H

GMD

 GMP

fy LP De Si RP

Deseript jon

Th 1S 1s re one — bic re is ter ce MH, The signel

LD od uring P ; loads the cel/ from the bus,

The Signal AD durin P) drives the hus

from he cell, The cel! IK refresh ed

during og,»

64

OUTPUT REGISTER

Sym bo/ Ble /

Vep | REG Vop
BUS | " REG
GNP | OUT

B,-LP g,

Siew A? Be
—-

Vop Vp
BUS

r 2 REG

GwD

Py LD 2

Desers pe| off

A "write - only " register cell, The. register

Contents are. cont invously available. This is

inten ded for USe. iY

out put pads.

latching ata for

65

REGISTER WLTH INCREMENTER

Fymnbo |
ie 2h) Sir -IN CIN

Vpp Upp

£US REG INC Bus
GYD GWDP

COUT

PLD , BP Boke “Dut

Sireyt BD, OR Brkt “CIN IW

‘LD J 4
TL

Upp , : Vpp hoe T TT ee

a ‘ | int

GND GND

BLP £, Gpp Bye RPE ~covT couVT

Deseription

A fre] 5 Cer ce) Ww? th ncrementetion /, O / c,

[he Signal RDtr wil! read the conten€s

ot the <e& if ples cry On te the é VS,

Jenn ting COUT. The. carry oe hain wes

des! thed for mint ff a/ OME. and 15 slow,

66

— Low BIT REGISTER wiTH INGCREMENTER

Symbol Ay jl [” By RDt

Vp ————— 7 | Vop

bus REG Low zWwe PO 845
enp———— GwP

Hi | |
Dy p, Grev D Pp4 ~COUT

COUT

Circuit

By Lp Pr Prt py BY

i V

we TT I + T | i e0:

H 1H HL
+4

. oH
Gp Eup

Py 6D f: orp By kPr cour couT-

Dese r)ption

This cell is like REG re be with cw

assimed te be forced to /, Te 1s therefore

surteble for the Jow bye &£ ew field +o be

Incremen ted,

67

REG INC (WrTHouT THE INC)

Symbol BLP 2 RP " RO

Vop Vop

Bus REG NO INC | BUS

OND GND

TT |
Dy LP GB, B-R0 Deh

Cirevit Z, PRD B,-RD+

Si LP

Th

Vep T rT Vep

Bus BUS

GND GNwD
gt? $2 Birp Py RPF

Des Cription

This is jist an or dinary re jeter ce// oe laned.

+o be vused with REG IWe. Either 2° RD

or By RD+ wi}! reed the Cunincrenented |)

Contenes Onto the bus °

68

ZERO REGISTER

Symbo Dy Ld 2, i. BRD +

Vop ————— | Vap

BUS ZERO INC Bus
GMD | | GMD

LYLD gs Dro 5, Rot

Circuit

BRD, Be eRD+
BLD a" ‘

Vop Vop

Bus Tt ? BUS

GND © \ GMP

@,'D 22 BRD BRP +

Description

This is a dummy register cell ter use

web REG LIwe, Te throws away bres

wher loaded and always supplies A.

vero when re ad ’

69

CLOCKED DRIVER

Symbol

Px

Vpp Vpp

g e @
GND Gwp

x

Vop Vey

 GMD OMP

Description

This 75 Just a MAND gate pls anh

Inver ing super — butter, Tt is jntended to

drive long signal Ines , during 2, on|y

(S60 thot Surin g @ busses bn don be.

pre charge d, ‘for example),

70

READ CYCLE

ADR

~
MEMORY SYSTE™M
LATCHES APDRESS

oa YUU 2 55 LLL

WRITE

CONN -T

ft
PROCESSOR

LATCHES TwPUT pATA

o__| | LJ
TWO-PHASE JfOM~-OVERLAPPING CLOCK

a TL

APR

T
MEMORY SYSTEM

LATCHES ADPRESS
v

Memory SYSTEM
LATCHES errr DATA

y

WRITE

WRITE CYCLE

MEMORY CYCLE TIMING

71

REGISTER CELL LAYOUT

Il wyecrons

S
u
g
t
r
i
m

o
T
]

cuts contact

1s & micros, lon iffus poly and ol rd-th, Tor wi line Minimum

o

mICrOnSs. metal is g wide for ng
o

Minimum |

+
YW

YY

s
g

>

a

C
a
w

n
>
"

se
8

8

q

S
W
 =

~
>

, Vo
s

~

Yy
o
Y

A,
~
>
 8

a

L
—~

s
=

u
ly
i

5
3

\
p

g 8

u
£ yw

>

Steele and Sussman 72 Design of LISP-Based Processors

References

[Backus 1978]

Backus, John. "Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs." Comm. ACM 2i, 8

(August 1978), 613-641.

{Baker 1978]

Baker, Henry B., Jr. List Processing in Real Time on a Serial Computer.

. Comm. ACM 21, 4 (April 1978), 280-294.

[Berkeley 1964]

: Berkeley, Edmund C., and Bobrow, Daniel G. (Eds.) The Programming

Language LISP: Its Operation and Applications. Information

International, Inc. (Cambridge, 1964).

[Bobrow 1973]

Bobrow, Daniel G. and Wegbreit, Ben. "A Model and Stack Implementation

of Multiple Environments." Comm. ACM 16, 10 (October 1973) pp.

591-603.

[Caples 1925]

Caples, John. "They Laughed When I Sat Down At the Piano But When I

Started to Play!—" Advertisement for the U.S. School of Music.

Reprinted in Rowsome, Frank Jr. They Laughed When I Sat Down: An

informal history of advertising in words and pictures. Bonanza Books

(New York, 1959), page 153.

[Conrad 1974]

Conrad, William R. A compactifying garbage collector for ECL's

non-homogeneous heap. Technical Report 2-74. Center for Research in

Computing Technology, Harvard U. (Cambridge, February 1974).

[Galley 1975]

Galley, S.W. and Pfister, Greg. The MDL Language. Programming

Technology Division Document SYS.11.01. Project MAC, MIT (Cambridge,

November 1975).

[Greenblatt 1974]

Greenblatt, Richard. The LISP Machine. Artificial Intelligence Working

Paper 79, MIT (Cambridge, November 1974).

[Hansen 1969]

Hansen, Wilfred J. "Compact List Representation: Definition, Garbage

Collection, and System Implementation." Comm. ACM 12, 9 (September

1969), 499-507.

[Hart 1964]

Hart, Timothy P., and Evans, Thomas G. "Notes on implementing LISP for

“the M-460 computer." In Berkeley and Bobrow, The Programming Language

LISP, 191-203.

[Hon 1978]

Hon, Robert, and Sequin, Carlo. A Guide to LSI Implementation. Xerox

PARC (Palo Alto, September 1978).

[Johannsen 1978]

Johannsen, David L. “Our Machine: A Microcoded LSI Processor."

Proceedings of MICRO-11 11th Annual Microprogramming Workshop (November

1978). SIGMICRO Newsletter 9, 4 (December 1978), 1-7.

~ Steele and Sussman ; 73 Design of LISP-Based Processors

[Knight 1974]

Knight, Tom. The CONS Microprocessor. Artificial Intelligence Working

Paper 80, MIT (Cambridge, November 1974).

[Levin 1974]

- Levin, Michael. Mathematical Logic for Computer Scientists. MIT
Project MAC TR-131 (Cambridge, June 1974).

[LISP Machine 1977]

| The LISP Machine Group: Bawden, Alan; Greenblatt, Richard; Holloway,

Jack; Knight, Thomas; Moon, David; and Weinreb, Daniel. LISP Machine

Progress Report. AI Memo 444. MIT AI Lab (Cambridge, August 1977).

[McCarthy 1962]

McCarthy, John, et al. LISP 1.5 Programmer's Manual. The MIT Press

(Cambridge, 1962).

[McDermott 1974]

McDermott, Drew V. and Sussman, Gerald Jay. The CONNIVER Reference

Manual. AI Memo 295a. MIT AI Lab (Cambridge, January 1974).
[Mead 1978]

Mead, Carver A., and Conway, Lynn A. Introduction to VLSI Systems

(draft). (1978). To be published in 1979.

(Minsky 1963]

Minsky, M. L. A LISP garbage collector using serial secondary storage.

Artificial Intelligence Memo No. 58 (revised), MIT (Cambridge, December

1963). |

{Morris 1978]

Morris, F. Lockwood. "A Time- and Space-Efficient Garbage Compaction

Algorithm." Comm. ACM 21, 8 (August 1978), 662-665.

[Saunders 1964]

Saunders, Robert A. "The LISP system for the Q-32 computer." In

Berkeley and Bobrow, The Programming Language LISP, 220-231.

[Schorr 1967]

Schorr, H., and Waite, W. M. "An efficient machine-independent

procedure for garbage collection in various list structures." Comm.

ACM 10, 8 (August 1967), 501-506.

[Steele 1976a]} .

Steele, Guy Lewis Jr., and Sussman, Gerald Jay. LAMBDA: The Ultimate

Imperative. AI Memo 353. MIT AI Lab (Cambridge, March 1976).

{Steele 1976b]

Steele, Guy Lewis Jr. LAMBDA: The Ultimate Declarative. AI Memo 379.

MIT AI Lab (Cambridge, November 1976).

[Steele 1977]

Steele, Guy Lewis Jr. Compiler Optimization Based on Viewing LAMBDA as

Rename plus Goto. S.M. thesis. MIT (Cambridge, May 1977). operations.

[Steele 1978a]

Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report on

SCHEME: A Dialect of LISP. MIT AI Memo 452 (Cambridge, January 1978).

[Steele 1978b]

Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Art of the

Interpreter; or, The Modularity Complex (Parts Zero, One, and Two).

MIT AI Memo 453 (Cambridge, January 1978).

Steeig and Sussmm™ 74 Design of LISP-Based Processors
Me

[Steele 1979]
Steele, Guy Lewis Jr., and Sussman, Gerald Jay. "Storage Management in

a LISP-Based Processor." Proc. Caltech Conference on Very Large Scale

. Integration (Pasadena, January 1979).

[Sussman 1975]

Sussman, Gerald Jay, and Steele, Guy Lewis Jr. SCHEME: An Interpreter

for Extended Lambda Calculus. AI Memo 349. MIT AI Lab (Cambridge,

December 1975).

[Wand 1977]

Wand, Mitchell. Continuation-Based Program Transformation Strategies

Technical Report 61. Computer Science Department, Indiana University

(Bloomington, March 1977).

[Wegbreit 1974]

Wegbreit, Ben, et al. ECL Programmer's Manual. Technical Report 23-74.

Center for Research in Computing Technology, Harvard U. (Cambridge,

December 1974).

[Weinreb 1978]

Weinreb, Daniel, and Moon, David. LISP Machine Manual (Preliminary

Version). MIT AI Lab (Cambridge, November 1978).

