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Preface

A precise description of a programming language is a prerequisite for its im-
plementation and for its use. The description can take many forms, each
suited to a different purpose. A common form is a reference manual, which
is usually a careful narrative description of the meaning of each construction
in the language, often backed up with a formal presentation of the gram-
mar (for example, in Backus-Naur form). This gives the programmer enough
understanding for many of his purposes. But it is ill-suited for use by an
implementer, or by someone who wants to formulate laws for equivalence of
programs, or by a programmer who wants to design programs with mathe-
matical rigour.

This document is a formal description of both the grammar and themean-
ing of a language which is both designed for large projects and widely used.
As such, it aims to serve the whole community of people seriously concerned
with the language. At a time when it is increasingly understood that pro-
grams must withstand rigorous analysis, particularly for systems where safety
is critical, a rigorous language presentation is even important for negotiators
and contractors; for a robust program written in an insecure language is like
a house built upon sand.

Most people have not looked at a rigorous language presentation before.
To help them particularly, but also to put the present work in perspective
for those more theoretically prepared, it will be useful here to say something
about three things: the nature of Standard ML, the task of language def-
inition in general, and the form of the present Definition. We also briefly
describe the recent revisions to the Definition.

Standard ML

Standard ML is a functional programming language, in the sense that the
full power of mathematical functions is present. But it grew in response to a
particular programming task, for which it was equipped also with full imper-
ative power, and a sophisticated exception mechanism. It has an advanced
form of parametric modules, aimed at organised development of large pro-
grams. Finally it is strongly typed, and it was the first language to provide a
particular form of polymorphic type which makes the strong typing remark-
ably flexible. This combination of ingredients has not made it unduly large,
but their novelty has been a fascinating challenge to semantic method (of
which we say more below).



ML has evolved over twenty years as a fusion of many ideas from many
people. This evolution is described in some detail in Appendix F of the
book, where also we acknowledge all those who have contributed to it, both
in design and in implementation.

‘ML’ stands for meta language; this is the term logicians use for a lan-
guage in which other (formal or informal) languages are discussed and anal-
ysed. Originally ML was conceived as a medium for finding and performing
proofs in a logical language. Conducting rigorous argument as dialogue be-
tween person and machine has been a growing research topic throughout
these twenty years. The difficulties are enormous, and make stern demands
upon the programming language which is used for this dialogue. Those who
are not familiar with computer-assisted reasoning may be surprised that a
programming language, which was designed for this rather esoteric activity,
should ever lay claim to being generally useful. On reflection, they should
not be surprised. LISP is a prime example of a language invented for esoteric
purposes and becoming widely used. LISP was invented for use in artificial
intelligence (AI); the important thing about AI here is not that it is esoteric,
but that it is difficult and varied; so much so, that anything which works well
for it must work well for many other applications too.

The same can be said about the initial purpose of ML, but with a dif-
ferent emphasis. Rigorous proofs are complex things, which need varied and
sophisticated presentation – particularly on the screen in interactive mode.
Furthermore the proof methods, or strategies, involved are some of the most
complex algorithms which we know. This all applies equally to AI, but one
demand is made more strongly by proof than perhaps by any other applica-
tion: the demand for rigour.

This demand established the character of ML. In order to be sure that,
when the user and the computer claim to have together performed a rigorous
argument, their claim is justified, it was seen that the language must be
strongly typed. On the other hand, to be useful in a difficult application, the
type system had to be rather flexible, and permit the machine to guide the
user rather than impose a burden upon him. A reasonable solution was found,
in which the machine helps the user significantly by inferring his types for
him. Thereby the machine also confers complete reliability on his programs,
in this sense: If a program claims that a certain result follows from the rules
of reasoning which the user has supplied, then the claim may be fully trusted.

The principle of inferring useful structural information about programs is
also represented, at the level of program modules, by the inference of signa-



tures. Signatures describe the interfaces between modules, and are vital for
robust large-scale programs. When the user combines modules, the signature
discipline prevents him from mismatching their interfaces. By programming
with interfaces and parametric modules, it becomes possible to focus on the
structure of a large system, and to compile parts of it in isolation from one
another – even when the system is incomplete.

This emphasis on types and signatures has had a profound effect on the
language Definition. Over half this document is devoted to inferring types
and signatures for programs. But the method used is exactly the same as for
inferring what values a program delivers; indeed, a type or signature is the
result of a kind of abstract evaluation of a program phrase.

In designing ML, the interplay among three activities – language design,
definition and implementation – was extremely close. This was particularly
true for the newest part, the parametric modules. This part of the language
grew from an initial proposal by David MacQueen, itself highly developed;
but both formal definition and implementation had a strong influence on the
detailed design. In general, those who took part in the three activities cannot
now imagine how they could have been properly done separately.

Language Definition

Every programming language presents its own conceptual view of computa-
tion. This view is usually indicated by the names used for the phrase classes
of the language, or by its keywords: terms like package, module, structure,
exception, channel, type, procedure, reference, sharing, . . . . These terms also
have their abstract counterparts, which may be called semantic objects; these
are what people really have in mind when they use the language, or discuss
it, or think in it. Also, it is these objects, not the syntax, which represent the
particular conceptual view of each language; they are the character of the
language. Therefore a definition of the language must be in terms of these
objects.

As is commonly done in programming language semantics, we shall loosely
talk of these semantic objects as meanings. Of course, it is perfectly possible
to understand the semantic theory of a language, and yet be unable to un-
derstand the meaning of a particular program, in the sense of its intention
or purpose. The aim of a language definition is not to formalise everything
which could possibly be called the meaning of a program, but to establish
a theory of semantic objects upon which the understanding of particular



programs may rest.
The job of a language-definer is twofold. First – as we have already sug-

gested – he must create a world of meanings appropriate for the language, and
must find a way of saying what these meanings precisely are. Here, he meets
a problem; notation of some kind must be used to denote and describe these
meanings – but not a programming language notation, unless he is passing
the buck and defining one programming language in terms of another. Given
a concern for rigour, mathematical notation is an obvious choice. Moreover,
it is not enough just to write down mathematical definitions. The world
of meanings only becomes meaningful if the objects possess nice properties,
which make them tractable. So the language-definer really has to develop a
small theory of his meanings, in the same way that a mathematician develops
a theory. Typically, after initially defining some objects, the mathematician
goes on to verify properties which indicate that they are objects worth study-
ing. It is this part, a kind of scene-setting, which the language-definer shares
with the mathematician. Of course he can take many objects and their theo-
ries directly from mathematics, such as functions, relations, trees, sequences,
. . . . But he must also give some special theory for the objects which make
his language particular, as we do for types, structures and signatures in this
book; otherwise his language definition may be formal but will give no in-
sight.

The second part of the definer’s job is to define evaluation precisely. This
means that he must define at least what meaning, M , results from evaluating
any phrase P of his language (though he need not explain exactly how the
meaning results; that is he need not give the full detail of every computation).
This part of his job must be formal to some extent, if only because the phrases
P of his language are indeed formal objects. But there is another reason for
formality. The task is complex and error-prone, and therefore demands a high
level of explicit organisation (which is, largely, the meaning of ‘formality’);
moreover, it will be used to specify an equally complex, error-prone and
formal construction: an implementation.

We shall now explain the keystone of our semantic method. First, we
need a slight but important refinement. A phrase P is never evaluated in
vacuo to a meaning M , but always against a background; this background
– call it B – is itself a semantic object, being a distillation of the meanings
preserved from evaluation of earlier phrases (typically variable declarations,
procedure declarations, etc.). In fact evaluation is background-dependent –
M depends upon B as well as upon P .



The keystone of the method, then, is a certain kind of assertion about
evaluation; it takes the form

B ⊢ P ⇒ M

and may be pronounced: ‘Against the background B, the phrase P evaluates
to the meaning M ’. The formal purpose of this Definition is no more, and no
less, than to decree exactly which assertions of this form are true. This could
be achieved in many ways. We have chosen to do it in a structured way, as
others have, by giving rules which allow assertions about a compound phrase
P to be inferred from assertions about its constituent phrases P1, . . . , Pn.

We have written the Definition in a form suggested by the previous re-
marks. That is, we have defined our semantic objects in mathematical nota-
tion which is completely independent of Standard ML, and we have developed
just enough of their theory to give sense to our rules of evaluation.

Following another suggestion above, we have factored our task by describ-
ing abstract evaluation – the inference and checking of types and signatures
(which can be done at compile-time) – completely separately from concrete
evaluation. It really is a factorisation, because a full value in all its glory –
you can think of it as a concrete object with a type attached – never has to
be presented.

The Revision of Standard ML

The Definition of Standard ML was published in 1990. Since then the im-
plementation technology of the language has advanced enormously, and its
users have multiplied. The language and its Definition have therefore incited
close scrutiny, evaluation, much approval, sometimes strong criticism.

The originators of the language have sifted this response, and found that
there are inadequacies in the original language and its formal Definition.
They are of three kinds: missing features which many users want; complex
and little-used features which most users can do without; and mistakes of
definition. What is remarkable is that these inadequacies are rather few, and
that they are rather uncontroversial.

This new version of the Definition addresses the three kinds of inadequacy
respectively by additions, subtractions and corrections. But we have only
made such amendments when one or more aspects of SML – the language
itself, its usage, its implementation, its formal Definition – have thus become
simpler, without complicating the other aspects. It is worth noting that



even the additions meet this criterion; for example we have introduced type
abbreviations in signatures to simplify the use of the language, but the way
we have done it has even simplified the Definition too. In fact, after our
changes the formal Definition has fewer rules.

In this exercise we have consulted the major implementers and several
users, and have found broad agreement. In the 1990 Definition it was pre-
dicted that further versions of the Definition would be produced as the lan-
guage develops, with the intention to minimise the number of versions. This
is the first revised version, and we foresee no others. The changes that have
been made to the 1990 Definition are enumerated in Appendix G.

The resulting document is, we hope, valuable as the essential point of ref-
erence for Standard ML. If it is to play this role well, it must be supplemented
by other literature. Many expository books have already been written, and
this Definition will be useful as a background reference for their readers. We
became convinced, while writing the 1990 Definition, that we could not dis-
cuss many questions without making it far too long. Such questions are:
Why were certain design choices made? What are their implications for pro-
gramming? Was there a good alternative meaning for some constructs, or
was our hand forced? What different forms of phrase are equivalent? What
is the proof of certain claims? Many of these questions are not answered
by pedagogic texts either. We therefore wrote a Commentary on the 1990
Definition to assist people in reading it, and to serve as a bridge between the
Definition and other texts. Though in part outdated by the present revision,
the Commentary still largely fulfils its purpose.

There exist several textbooks on programming with Standard ML[46, 44,
56, 50]. The second edition of Paulson’s book[46] conforms with the present
revision.

We wish to thank Dave Berry, Lars Birkedal, Martin Elsman, Stefan
Kahrs and John Reppy for many detailed comments and suggestions which
have assisted the revision.

Robin Milner Mads Tofte Robert Harper David MacQueen

November 1996





1 Introduction

This document formally defines Standard ML.
To understand the method of definition, at least in broad terms, it helps

to consider how an implementation of ML is naturally organised. ML is an
interactive language, and a program consists of a sequence of top-level decla-
rations; the execution of each declaration modifies the top-level environment,
which we call a basis, and reports the modification to the user.

In the execution of a declaration there are three phases: parsing, elabora-
tion, and evaluation. Parsing determines the grammatical form of a declara-
tion. Elaboration, the static phase, determines whether it is well-typed and
well-formed in other ways, and records relevant type or form information
in the basis. Finally evaluation, the dynamic phase, determines the value
of the declaration and records relevant value information in the basis. Cor-
responding to these phases, our formal definition divides into three parts:
grammatical rules, elaboration rules, and evaluation rules. Furthermore, the
basis is divided into the static basis and the dynamic basis; for example, a
variable which has been declared is associated with a type in the static basis
and with a value in the dynamic basis.

In an implementation, the basis need not be so divided. But for the
purpose of formal definition, it eases presentation and understanding to keep
the static and dynamic parts of the basis separate. This is further justified
by programming experience. A large proportion of errors in ML programs
are discovered during elaboration, and identified as errors of type or form,
so it follows that it is useful to perform the elaboration phase separately.
In fact, elaboration without evaluation is part of what is normally called
compilation; once a declaration (or larger entity) is compiled one wishes to
evaluate it – repeatedly – without re-elaboration, from which it follows that
it is useful to perform the evaluation phase separately.

A further factoring of the formal definition is possible, because of the
structure of the language. ML consists of a lower level called the Core lan-
guage (or Core for short), a middle level concerned with programming-in-the-
large called Modules, and a very small upper level called Programs. With
the three phases described above, there is therefore a possibility of nine com-
ponents in the complete language definition. We have allotted one section
to each of these components, except that we have combined the parsing,
elaboration and evaluation of Programs in one section. The scheme for the
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ensuing seven sections is therefore as follows:

Core Modules Programs
Syntax Section 2 Section 3

Static Semantics Section 4 Section 5 Section 8
Dynamic Semantics Section 6 Section 7

The Core provides many phrase classes, for programming convenience.
But about half of these classes are derived forms, whose meaning can be
given by translation into the other half which we call the Bare language.
Thus each of the three parts for the Core treats only the bare language; the
derived forms are treated in Appendix A. This appendix also contains a few
derived forms for Modules. A full grammar for the language is presented in
Appendix B.

In Appendices C and D the initial basis is detailed. This basis, divided
into its static and dynamic parts, contains the static and dynamic meanings
of a small set of predefined identifiers. A richer basis is defined in a separate
document[18].

The semantics is presented in a form known as Natural Semantics. It
consists of a set of rules allowing sentences of the form

A ⊢ phrase ⇒ A′

to be inferred, where A is often a basis (static or dynamic) and A′ a semantic
object – often a type in the static semantics and a value in the dynamic
semantics. One should read such a sentence as follows: “against the back-
ground provided by A, the phrase phrase elaborates – or evaluates – to the
object A′”. Although the rules themselves are formal the semantic objects,
particularly the static ones, are the subject of a mathematical theory which
is presented in a succinct form in the relevant sections.

The robustness of the semantics depends upon theorems. Usually these
have been proven, but the proof is not included.



2 Syntax of the Core

2.1 Reserved Words

The following are the reserved words used in the Core. They may not (ex-
cept = ) be used as identifiers.

abstype and andalso as case datatype do else

end exception fn fun handle if in infix

infixr let local nonfix of op open orelse

raise rec then type val with withtype while

( ) [ ] { } , : ; ... _ | = => -> #

2.2 Special constants

An integer constant (in decimal notation) is an optional negation symbol
(~) followed by a non-empty sequence of decimal digits 0, . . , 9. An integer
constant (in hexadecimal notation) is an optional negation symbol followed
by 0x followed by a non-empty sequence of hexadecimal digits 0, . . , 9 and
a, . . , f. (A, . . , F may be used as alternatives for a, . . , f.)

A word constant (in decimal notation) is 0w followed by a non-empty
sequence of decimal digits. A word constant (in hexadecimal notation) is 0wx
followed by a non-empty sequence of hexadecimal digits. A real constant is
an integer constant in decimal notation, possibly followed by a point (.) and
one or more decimal digits, possibly followed by an exponent symbol (E or
e) and an integer constant in decimal notation; at least one of the optional
parts must occur, hence no integer constant is a real constant. Examples:
0.7 3.32E5 3E~7 . Non-examples: 23 .3 4.E5 1E2.0 .

We assume an underlying alphabet of N characters (N ≥ 256), numbered
0 to N − 1, which agrees with the ASCII character set on the characters
numbered 0 to 127. The interval [0, N − 1] is called the ordinal range of
the alphabet. A string constant is a sequence, between quotes ("), of
zero or more printable characters (i.e., numbered 33–126), spaces or escape
sequences. Each escape sequence starts with the escape character \ , and
stands for a character sequence. The escape sequences are:

\a A single character interpreted by the system as alert (ASCII 7)
\b Backspace (ASCII 8)
\t Horizontal tab (ASCII 9)
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\n Linefeed, also known as newline (ASCII 10)
\v Vertical tab (ASCII 11)
\f Form feed (ASCII 12)
\r Carriage return (ASCII 13)
\^c The control character c, where c may be any character with number

64–95. The number of \^c is 64 less than the number of c.

\ddd The single character with number ddd (3 decimal digits denoting
an integer in the ordinal range of the alphabet).

\uxxxx The single character with number xxxx (4 hexadecimal digits de-
noting an integer in the ordinal range of the alphabet).

\" "

\\ \

\f · ·f\ This sequence is ignored, where f · ·f stands for a sequence of one
or more formatting characters.

The formatting characters are a subset of the non-printable characters
including at least space, tab, newline, formfeed. The last form allows long
strings to be written on more than one line, by writing \ at the end of one
line and at the start of the next.

A character constant is a sequence of the form #s, where s is a string
constant denoting a string of size one character.

Libraries may provide multiple numeric types and multiple string types.
To each string type corresponds an alphabet with ordinal range [0, N−1] for
some N ≥ 256; each alphabet must agree with the ASCII character set on the
characters numbered 0 to 127. When multiple alphabets are supported, all
characters of a given string constant are interpreted over the same alphabet.
For each special constant, overloading resolution is used for determining the
type of the constant (see Appendix E).

We denote by SCon the class of special constants, i.e., the integer, real,
word, character and string constants; we shall use scon to range over SCon.

2.3 Comments

A comment is any character sequence within comment brackets (* *) in
which comment brackets are properly nested. No space is allowed between the
two characters which make up a comment bracket (* or *). An unmatched
(* should be detected by the compiler.
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2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 1. We use vid ,
tyvar to range over VId, TyVar etc. For each class X marked “long” there
is a class longX of long identifiers; if x ranges over X then longx ranges over
longX. The syntax of these long identifiers is given by the following:

longx ::= x identifier
strid1.···.stridn.x qualified identifier (n ≥ 1)

The qualified identifiers constitute a link between the Core and the Mod-
ules. Throughout this document, the term “identifier”, occurring without an
adjective, refers to non-qualified identifiers only.

An identifier is either alphanumeric: any sequence of letters, digits, primes
(’) and underbars ( ) starting with a letter or prime, or symbolic: any non-
empty sequence of the following symbols

! % & $ # + - / : < = > ? @ \ ~ ‘ ^ | *

In either case, however, reserved words are excluded. This means that for
example # and | are not identifiers, but ## and |=| are identifiers.
The only exception to this rule is that the symbol = , which is a reserved
word, is also allowed as an identifier to stand for the equality predicate. The
identifier = may not be re-bound; this precludes any syntactic ambiguity.

A type variable tyvar may be any alphanumeric identifier starting with
a prime; the subclass EtyVar of TyVar, the equality type variables, consists
of those which start with two or more primes. The classes VId, TyCon
and Lab are represented by identifiers not starting with a prime. However,
* is excluded from TyCon, to avoid confusion with the derived form of tuple
type (see Figure 23). The class Lab is extended to include the numeric labels
1 2 3 ···, i.e. any numeral not starting with 0. The identifier class StrId is
represented by alphanumeric identifiers not starting with a prime.

TyVar is therefore disjoint from the other four classes. Otherwise, the
syntax class of an occurrence of identifier id in a Core phrase (ignoring de-
rived forms, Section 2.7) is determined thus:

VId (value identifiers ) long
TyVar (type variables )
TyCon (type constructors ) long
Lab (record labels )
StrId (structure identifiers ) long

Figure 1: Identifiers



2 SYNTAX OF THE CORE 6

1. Immediately before “.” – i.e. in a long identifier – or in an open

declaration, id is a structure identifier. The following rules assume
that all occurrences of structure identifiers have been removed.

2. At the start of a component in a record type, record pattern or record
expression, id is a record label.

3. Elsewhere in types id is a type constructor.

4. Elsewhere, id is a value identifier.

By means of the above rules a compiler can determine the class to which
each identifier occurrence belongs; for the remainder of this document we
shall therefore assume that the classes are all disjoint.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a
special constant or a long identifier. Comments and formatting characters
separate items (except within string constants; see Section 2.2) and are oth-
erwise ignored. At each stage the longest next item is taken.

2.6 Infixed operators

An identifier may be given infix status by the infix or infixr directive,
which may occur as a declaration; this status only pertains to its use as a vid
within the scope (see below) of the directive, and in these uses it is called an
infixed operator. (Note that qualified identifiers never have infix status.) If
vid has infix status, then “exp1 vid exp2” (resp. “pat1 vid pat2”) may occur –
in parentheses if necessary – wherever the application “vid{1=exp1,2=exp2}”
or its derived form “vid(exp1,exp2)” (resp “vid(pat1,pat2)”) would other-
wise occur. On the other hand, an occurrence of any long identifier (qualified
or not) prefixed by op is treated as non-infixed. The only required use of op
is in prefixing a non-infixed occurrence of an identifier vid which has infix
status; elsewhere op, where permitted, has no effect. Infix status is cancelled
by the nonfix directive. We refer to the three directives collectively as
fixity directives.

The form of the fixity directives is as follows (n ≥ 1):

infix ⟨d⟩ vid1 ··· vidn
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infixr ⟨d⟩ vid1 ··· vidn

nonfix vid1 ··· vidn

where ⟨d⟩ is an optional decimal digit d indicating binding precedence. A
higher value of d indicates tighter binding; the default is 0. infix and
infixr dictate left and right associativity respectively. In an expression of
the form exp1 vid1 exp2 vid2 exp3, where vid1 and vid2 are infixed operators
with the same precedence, either both must associate to the left or both
must associate to the right. For example, suppose that << and >> have equal
precedence, but associate to the left and right respectively; then

x << y << z parses as (x << y) << z

x >> y >> z parses as x >> (y >> z)

x << y >> z is illegal
x >> y << z is illegal

The precedence of infixed operators relative to other expression and pat-
tern constructions is given in Appendix B.

The scope of a fixity directive dir is the ensuing program text, except
that if dir occurs in a declaration dec in either of the phrases

let dec in ··· end

local dec in ··· end
then the scope of dir does not extend beyond the phrase. Further scope
limitations are imposed for Modules (see Section 3.3).

These directives and op are omitted from the semantic rules, since they
affect only parsing.

2.7 Derived Forms

There are many standard syntactic forms in ML whose meaning can be ex-
pressed in terms of a smaller number of syntactic forms, called the bare lan-
guage. These derived forms, and their equivalent forms in the bare language,
are given in Appendix A.

2.8 Grammar

The phrase classes for the Core are shown in Figure 2. We use the variable
atexp to range over AtExp, etc. The grammatical rules for the Core are
shown in Figures 3 and 4.
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AtExp atomic expressions
ExpRow expression rows
Exp expressions
Match matches
Mrule match rules

Dec declarations
ValBind value bindings
TypBind type bindings
DatBind datatype bindings
ConBind constructor bindings
ExBind exception bindings

AtPat atomic patterns
PatRow pattern rows
Pat patterns

Ty type expressions
TyRow type-expression rows

Figure 2: Core Phrase Classes

The following conventions are adopted in presenting the grammatical
rules, and in their interpretation:

� The brackets ⟨ ⟩ enclose optional phrases.

� For any syntax class X (over which x ranges) we define the syntax class
Xseq (over which xseq ranges) as follows:

xseq ::= x (singleton sequence)
(empty sequence)

(x1,···,xn) (sequence, n ≥ 1)

(Note that the “···” used here, meaning syntactic iteration, must not
be confused with “...” which is a reserved word of the language.)

� Alternative forms for each phrase class are in order of decreasing prece-
dence; this resolves ambiguity in parsing, as explained in Appendix B.

� L (resp. R) means left (resp. right) association.
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� The syntax of types binds more tightly than that of expressions.

� Each iterated construct (e.g. match, ···) extends as far right as pos-
sible; thus, parentheses may be needed around an expression which
terminates with a match, e.g. “fn match”, if this occurs within a
larger match.

atpat ::= wildcard
scon special constant
⟨op⟩longvid value identifier
{ ⟨patrow⟩ } record
( pat )

patrow ::= ... wildcard
lab = pat ⟨ , patrow⟩ pattern row

pat ::= atpat atomic
⟨op⟩longvid atpat constructed pattern
pat1 vid pat2 infixed value construction
pat : ty typed
⟨op⟩vid⟨: ty⟩ as pat layered

ty ::= tyvar type variable
{ ⟨tyrow⟩ } record type expression
tyseq longtycon type construction
ty -> ty ′ function type expression (R)
( ty )

tyrow ::= lab : ty ⟨ , tyrow⟩ type-expression row

Figure 3: Grammar: Patterns and Type expressions

2.9 Syntactic Restrictions

� No expression row, pattern row or type-expression row may bind the
same lab twice.

� No binding valbind , typbind , datbind or exbind may bind the same
identifier twice; this applies also to value identifiers within a datbind .
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� No tyvarseq may contain the same tyvar twice.

� For each value binding pat = exp within rec, exp must be of the form
fn match. The derived form of function-value binding given in Ap-
pendix A, page 67, necessarily obeys this restriction.

� No datbind , valbind or exbind may bind true, false, nil, :: or ref.
No datbind or exbind may bind it.

� No real constant may occur in a pattern.

� In a value declaration val tyvarseq valbind , if valbind contains another
value declaration val tyvarseq ′ valbind ′ then tyvarseq and tyvarseq ′ must
be disjoint. In other words, no type variable may be scoped by two
value declarations of which one occurs inside the other. This restric-
tion applies after tyvarseq and tyvarseq ′ have been extended to include
implicitly scoped type variables, as explained in Section 4.6.
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atexp ::= scon special constant
⟨op⟩longvid value identifier
{ ⟨exprow⟩ } record
let dec in exp end local declaration
( exp )

exprow ::= lab = exp ⟨ , exprow⟩ expression row

exp ::= atexp atomic
exp atexp application (L)
exp1 vid exp2 infixed application
exp : ty typed (L)
exp handle match handle exception
raise exp raise exception
fn match function

match ::= mrule ⟨ | match⟩

mrule ::= pat => exp

dec ::= val tyvarseq valbind value declaration
type typbind type declaration
datatype datbind datatype declaration
datatype tycon -=- datatype longtycon datatype replication
abstype datbind with dec end abstype declaration
exception exbind exception declaration
local dec1 in dec2 end local declaration
open longstrid1 ··· longstridn open declaration (n ≥ 1)

empty declaration
dec1 ⟨;⟩ dec2 sequential declaration
infix ⟨d⟩ vid1 ··· vidn infix (L) directive
infixr ⟨d⟩ vid1 ··· vidn infix (R) directive
nonfix vid1 ··· vidn nonfix directive

valbind ::= pat = exp ⟨and valbind⟩
rec valbind

typbind ::= tyvarseq tycon = ty ⟨and typbind⟩

datbind ::= tyvarseq tycon = conbind ⟨and datbind⟩

conbind ::= ⟨op⟩vid ⟨of ty⟩ ⟨ | conbind⟩

exbind ::= ⟨op⟩vid ⟨of ty⟩ ⟨and exbind⟩
⟨op⟩vid = ⟨op⟩longvid ⟨and exbind⟩

Figure 4: Grammar: Expressions, Matches, Declarations and Bindings



3 Syntax of Modules

For Modules there are further reserved words, identifier classes and derived
forms. There are no further special constants; comments and lexical analysis
are as for the Core. The derived forms for modules appear in Appendix A.

3.1 Reserved Words

The following are the additional reserved words used in Modules.

eqtype functor include sharing sig

signature struct structure where :>

3.2 Identifiers

The additional identifier classes for Modules are SigId (signature identifiers)
and FunId (functor identifiers). Functor and signature identifiers must be
alphanumeric, not starting with a prime. The class of each identifier oc-
currence is determined by the grammatical rules which follow. Henceforth,
therefore, we consider all identifier classes to be disjoint.

3.3 Infixed operators

In addition to the scope rules for fixity directives given for the Core syn-
tax, there is a further scope limitation: if dir occurs in a structure-level
declaration strdec in any of the phrases

let strdec in ··· end

local strdec in ··· end

struct strdec end

then the scope of dir does not extend beyond the phrase.
One effect of this limitation is that fixity is local to a basic structure

expression — in particular, to such an expression occurring as a functor
body.
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StrExp structure expressions
StrDec structure-level declarations
StrBind structure bindings

SigExp signature expressions
SigDec signature declarations
SigBind signature bindings

Spec specifications
ValDesc value descriptions
TypDesc type descriptions
DatDesc datatype descriptions
ConDesc constructor descriptions
ExDesc exception descriptions
StrDesc structure descriptions

FunDec functor declarations
FunBind functor bindings
TopDec top-level declarations

Figure 5: Modules Phrase Classes

3.4 Grammar for Modules

The phrase classes for Modules are shown in Figure 5. We use the variable
strexp to range over StrExp, etc. The conventions adopted in presenting the
grammatical rules for Modules are the same as for the Core. The grammatical
rules are shown in Figures 6, 7 and 8.

3.5 Syntactic Restrictions

� No binding strbind , sigbind , or funbind may bind the same identifier
twice.

� No description valdesc, typdesc, datdesc, exdesc or strdesc may describe
the same identifier twice; this applies also to value identifiers within a
datdesc.

� No tyvarseq may contain the same tyvar twice.
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strexp ::= struct strdec end basic
longstrid structure identifier
strexp:sigexp transparent constraint
strexp:>sigexp opaque constraint
funid ( strexp ) functor application
let strdec in strexp end local declaration

strdec ::= dec declaration
structure strbind structure
local strdec1 in strdec2 end local

empty
strdec1 ⟨;⟩ strdec2 sequential

strbind ::= strid = strexp ⟨and strbind⟩

sigexp ::= sig spec end basic
sigid signature identifier
sigexp where type type realisation

tyvarseq longtycon = ty

sigdec ::= signature sigbind

sigbind ::= sigid = sigexp ⟨and sigbind⟩

Figure 6: Grammar: Structure and Signature Expressions

� Any tyvar occurring on the right side of a datdesc of the form tyvarseq tycon =

··· must occur in the tyvarseq ; similarly, in signature expressions of the
form
sigexp where type tyvarseq longtycon = ty , any tyvar occurring in ty
must occur in tyvarseq .

� No datdesc, valdesc or exdesc may describe true, false, nil, :: or
ref. No datdesc or exdesc may describe it.
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spec ::= val valdesc value
type typdesc type
eqtype typdesc eqtype
datatype datdesc datatype
datatype tycon -=- datatype longtycon replication
exception exdesc exception
structure strdesc structure
include sigexp include

empty
spec1 ⟨;⟩ spec2 sequential
spec sharing type sharing

longtycon1 = ··· = longtyconn (n ≥ 2)

valdesc ::= vid : ty ⟨and valdesc⟩

typdesc ::= tyvarseq tycon ⟨and typdesc⟩

datdesc ::= tyvarseq tycon = condesc ⟨and datdesc⟩

condesc ::= vid ⟨of ty⟩ ⟨ | condesc⟩

exdesc ::= vid ⟨of ty⟩ ⟨and exdesc⟩

strdesc ::= strid : sigexp ⟨and strdesc⟩

Figure 7: Grammar: Specifications

fundec ::= functor funbind

funbind ::= funid ( strid : sigexp ) = strexp functor binding
⟨and funbind⟩

topdec ::= strdec ⟨topdec⟩ structure-level declaration
sigdec ⟨topdec⟩ signature declaration
fundec ⟨topdec⟩ functor declaration

Restriction: No topdec may contain, as an initial segment, a strdec followed
by a semicolon.

Figure 8: Grammar: Functors and Top-level Declarations



4 Static Semantics for the Core

Our first task in presenting the semantics – whether for Core or Modules,
static or dynamic – is to define the objects concerned. In addition to the
class of syntactic objects, which we have already defined, there are classes
of so-called semantic objects used to describe the meaning of the syntac-
tic objects. Some classes contain simple semantic objects; such objects are
usually identifiers or names of some kind. Other classes contain compound
semantic objects, such as types or environments, which are constructed from
component objects.

4.1 Simple Objects

All semantic objects in the static semantics of the entire language are built
from identifiers and two further kinds of simple objects: type constructor
names and identifier status descriptors. Type constructor names are the
values taken by type constructors; we shall usually refer to them briefly as
type names, but they are to be clearly distinguished from type variables and
type constructors. The simple object classes, and the variables ranging over
them, are shown in Figure 9. We have included TyVar in the table to make
visible the use of α in the semantics to range over TyVar.

α or tyvar ∈ TyVar type variables
t ∈ TyName type names
is ∈ IdStatus = {c, e, v} identifier status descriptors

Figure 9: Simple Semantic Objects

Each α ∈ TyVar possesses a boolean equality attribute, which determines
whether or not it admits equality, i.e. whether it is a member of EtyVar
(defined on page 5).

Each t ∈ TyName has an arity k ≥ 0, and also possesses an equality
attribute. We denote the class of type names with arity k by TyName(k).

With each special constant scon we associate a type name type(scon)
which is either int, real, word, char or string as indicated by Section 2.2.
(However, see Appendix E concerning types of overloaded special constants.)
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4.2 Compound Objects

When A and B are sets FinA denotes the set of finite subsets of A, and

A
fin→ B denotes the set of finite maps (partial functions with finite domain)

from A to B. The domain and range of a finite map, f , are denoted Dom f
and Ran f . A finite map will often be written explicitly in the form {a1 7→
b1, ···, ak 7→ bk}, k ≥ 0; in particular the empty map is {}. We shall use the
form {x 7→ e ; ϕ} – a form of set comprehension – to stand for the finite
map f whose domain is the set of values x which satisfy the condition ϕ, and
whose value on this domain is given by f(x) = e.

When f and g are finite maps the map f + g, called f modified by g, is
the finite map with domain Dom f ∪Dom g and values

(f + g)(a) = if a ∈ Dom g then g(a) else f(a).

The compound objects for the static semantics of the Core Language are
shown in Figure 10. We take ∪ to mean disjoint union over semantic object
classes. We also understand all the defined object classes to be disjoint.

Note that Λ and ∀ bind type variables. For any semantic object A,
tynamesA and tyvarsA denote respectively the set of type names and the
set of type variables occurring free in A.

Also note that a value environment maps value identifiers to a pair of a
type scheme and an identifier status. If VE(vid) = (σ, is), we say that vid
has status is in VE. An occurrence of a value identifier which is elaborated
in VE is referred to as a value variable, a value constructor or an exception
constructor, depending on whether its status in VE is v, c or e, respectively.

4.3 Projection, Injection and Modification

Projection: We often need to select components of tuples – for example,
the value-environment component of a context. In such cases we rely on
metavariable names to indicate which component is selected. For instance
“VE of E” means “the value-environment component of E”.

Moreover, when a tuple contains a finite map we shall “apply” the tuple to
an argument, relying on the syntactic class of the argument to determine the
relevant function. For instance C(tycon) means (TE of C)tycon and C(vid)
means (VE of (E of C))(vid).
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τ ∈ Type = TyVar ∪ RowType ∪ FunType ∪ ConsType
(τ1, ···, τk) or τ (k) ∈ Typek

(α1, ···, αk) or α
(k) ∈ TyVark

ϱ ∈ RowType = Lab
fin→ Type

τ → τ ′ ∈ FunType = Type× Type

ConsType = ∪k≥0ConsType
(k)

τ (k)t ∈ ConsType(k) = Typek × TyName(k)

θ or Λα(k).τ ∈ TypeFcn = ∪k≥0TyVar
k × Type

σ or ∀α(k).τ ∈ TypeScheme = ∪k≥0TyVar
k × Type

(θ, VE) ∈ TyStr = TypeFcn× ValEnv

SE ∈ StrEnv = StrId
fin→ Env

TE ∈ TyEnv = TyCon
fin→ TyStr

VE ∈ ValEnv = VId
fin→ TypeScheme× IdStatus

E or (SE, TE, VE) ∈ Env = StrEnv × TyEnv × ValEnv
T ∈ TyNameSet = Fin(TyName)
U ∈ TyVarSet = Fin(TyVar)

C or T, U,E ∈ Context = TyNameSet× TyVarSet× Env

Figure 10: Compound Semantic Objects

Finally, environments may be applied to long identifiers. For instance if
longvid = strid1.···.stridk.vid then E(longvid) means

(VE of (SE of ···(SE of (SE of E)strid1)strid2···)stridk)vid .

Injection: Components may be injected into tuple classes; for example,
“VE in Env” means the environment ({}, {}, VE).

Modification: The modification of one map f by another map g, written
f + g, has already been mentioned. It is commonly used for environment
modification, for example E + E ′. Often, empty components will be left
implicit in a modification; for example E + VE means E + ({}, {}, VE). For
set components, modification means union, so that C + (T, VE) means

( (T of C) ∪ T, U of C, (E of C) + VE )

Finally, we frequently need to modify a context C by an environment E (or a
type environment TE say), at the same time extending T of C to include the
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type names of E (or of TE say). We therefore define C ⊕ TE, for example,
to mean C + (tynamesTE, TE).

4.4 Types and Type functions

A type τ is an equality type, or admits equality, if it is of one of the forms

� α, where α admits equality;

� {lab1 7→ τ1, ···, labn 7→ τn}, where each τi admits equality;

� τ (k)t, where t and all members of τ (k) admit equality;

� (τ ′)ref.

A type function θ = Λα(k).τ has arity k; the bound variables must be dis-
tinct. Two type functions are considered equal if they only differ in their
choice of bound variables (alpha-conversion). In particular, the equality at-
tribute has no significance in a bound variable of a type function; for example,
Λα.α → α and Λβ.β → β are equal type functions even if α admits equal-
ity but β does not. If t has arity k, then we write t to mean Λα(k).α(k)t
(eta-conversion); thus TyName ⊆ TypeFcn. θ = Λα(k).τ is an equality type
function, or admits equality, if when the type variables α(k) are chosen to
admit equality then τ also admits equality.

We write the application of a type function θ to a vector τ (k) of types as
τ (k)θ. If θ = Λα(k).τ we set τ (k)θ = τ{τ (k)/α(k)} (beta-conversion).

We write τ{θ(k)/t(k)} for the result of substituting type functions θ(k) for
type names t(k) in τ . We assume that all beta-conversions are carried out
after substitution, so that for example

(τ (k)t){Λα(k).τ/t} = τ{τ (k)/α(k)}.

4.5 Type Schemes

A type scheme σ = ∀α(k).τ generalises a type τ ′, written σ ≻ τ ′, if τ ′ =
τ{τ (k)/α(k)} for some τ (k), where each member τi of τ

(k) admits equality if
αi does. If σ′ = ∀β(l).τ ′ then σ generalises σ′, written σ ≻ σ′, if σ ≻ τ ′ and
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β(l) contains no free type variable of σ. It can be shown that σ ≻ σ′ iff, for
all τ ′′, whenever σ′ ≻ τ ′′ then also σ ≻ τ ′′.

Two type schemes σ and σ′ are considered equal if they can be obtained
from each other by renaming and reordering of bound type variables, and
deleting type variables from the prefix which do not occur in the body. Here,
in contrast to the case for type functions, the equality attribute must be
preserved in renaming; for example ∀α.α → α and ∀β.β → β are only equal
if either both α and β admit equality, or neither does. It can be shown that
σ = σ′ iff σ ≻ σ′ and σ′ ≻ σ.

We consider a type τ to be a type scheme, identifying it with ∀().τ .

4.6 Scope of Explicit Type Variables

In the Core language, a type or datatype binding can explicitly introduce
type variables whose scope is that binding. Moreover, in a value declaration
val tyvarseq valbind , the sequence tyvarseq binds type variables: a type
variable occurs free in val tyvarseq valbind iff it occurs free in valbind and
is not in the sequence tyvarseq . However, explicit binding of type variables
at val is optional, so we still have to account for the scope of an explicit
type variable occurring in the “: ty” of a typed expression or pattern or in
the “of ty” of an exception binding. For the rest of this section, we consider
such free occurrences of type variables only.

Every occurrence of a value declaration is said to scope a set of explicit
type variables determined as follows.

First, a free occurrence of α in a value declaration val tyvarseq valbind
is said to be unguarded if the occurrence is not part of a smaller value dec-
laration within valbind . In this case we say that α occurs unguarded in the
value declaration.

Then we say that α is implicitly scoped at a particular value declara-
tion val tyvarseq valbind in a program if (1) α occurs unguarded in this
value declaration, and (2) α does not occur unguarded in any larger value
declaration containing the given one.

Henceforth, we assume that for every value declaration val tyvarseq ···
occurring in the program, every explicit type variable implicitly scoped at
the val has been added to tyvarseq (subject to the syntactic constraint in
Section 2.9). Thus for example, in the two declarations

val x = let val id:’a->’a = fn z=>z in id id end
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val x = (let val id:’a->’a = fn z=>z in id id end; fn z=>z:’a)

the type variable ’a is scoped differently; they become respectively

val x = let val ’a id:’a->’a = fn z=>z in id id end

val ’a x = (let val id:’a->’a = fn z=>z in id id end; fn z=>z:’a)

Then, according to the inference rules in Section 4.10 the first example
can be elaborated, but the second cannot since ’a is bound at the outer value
declaration leaving no possibility of two different instantiations of the type
of id in the application id id.

4.7 Non-expansive Expressions

In order to treat polymorphic references and exceptions, the set Exp of ex-
pressions is partitioned into two classes, the expansive and the non-expansive
expressions. An expression is non-expansive in context C if, after replacing
infixed forms by their equivalent prefixed forms, and derived forms by their
equivalent forms, it can be generated by the following grammar from the
non-terminal nexp:

nexp ::= scon nexprow ::= lab = nexp⟨, nexprow⟩
⟨op⟩longvid
{⟨nexprow⟩} conexp ::= (conexp⟨:ty⟩)
(nexp) ⟨op⟩longvid
conexp nexp
nexp:ty
fn match

Restriction: Within a conexp, we require longvid ̸= ref and is of C(longvid) ∈
{c, e}.

All other expressions are said to be expansive (in C). The idea is that the
dynamic evaluation of a non-expansive expression will neither generate an
exception nor extend the domain of the memory, while the evaluation of an
expansive expression might.

4.8 Closure

Let τ be a type and A a semantic object. Then ClosA(τ), the closure of τ with
respect to A, is the type scheme ∀α(k).τ , where α(k) = tyvars(τ) \ tyvarsA.
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Commonly, A will be a context C. We abbreviate the total closure Clos{}(τ)
to Clos(τ). If the range of a value environment VE contains only types
(rather than arbitrary type schemes) we set

ClosAVE = {vid 7→ (ClosA(τ), is) ; VE(vid) = (τ, is)}

Closing a value environment VE that stems from the elaboration of a value
binding valbind requires extra care to ensure type security of references and
exceptions and correct scoping of explicit type variables. Recall that valbind
is not allowed to bind the same variable twice. Thus, for each vid ∈ DomVE
there is a unique pat = exp in valbind which binds vid . If VE(vid) = (τ, is),
let ClosC,valbindVE(vid) = (∀α(k).τ, is), where

α(k) =
{
tyvars τ \ tyvarsC, if exp is non-expansive in C;
(), if exp is expansive in C.

4.9 Type Structures and Type Environments

A type structure (θ, VE) is well-formed if either VE = {}, or θ is a type
name t. (The latter case arises, with VE ̸= {}, in datatype declarations.)
An object or assembly A of semantic objects is well-formed if every type
structure occurring in A is well-formed.

A type structure (t, VE) is said to respect equality if, whenever t admits
equality, then either t = ref (see Appendix C) or, for each VE(vid) of the
form (∀α(k).(τ → α(k)t), is), the type function Λα(k).τ also admits equality.
(This ensures that the equality predicate = will be applicable to a con-
structed value (vid , v) of type τ (k)t only when it is applicable to the value v
itself, whose type is τ{τ (k)/α(k)}.) A type environment TE respects equality
if all its type structures do so.

Let TE be a type environment, and let T be the set of type names t such
that (t, VE) occurs in TE for some VE ̸= {}. Then TE is said to maximise
equality if (a) TE respects equality, and also (b) if any larger subset of T
were to admit equality (without any change in the equality attribute of any
type names not in T ) then TE would cease to respect equality.

For any TE of the form

TE = {tycon i 7→ (ti, VEi) ; 1 ≤ i ≤ k},

where no VEi is the empty map, and for any E we define Abs(TE,E) to
be the environment obtained from E and TE as follows. First, let Abs(TE)
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be the type environment {tycon i 7→ (ti, {}) ; 1 ≤ i ≤ k} in which all value
environments VEi have been replaced by the empty map. Let t′1, ···, t′k be
new distinct type names none of which admit equality. Then Abs(TE,E)
is the result of simultaneously substituting t′i for ti, 1 ≤ i ≤ k, throughout
Abs(TE) +E. (The effect of the latter substitution is to ensure that the use
of equality on an abstype is restricted to the with part.)

4.10 Inference Rules

Each rule of the semantics allows inferences among sentences of the form

A ⊢ phrase ⇒ A′

where A is usually a context, phrase is a phrase of the Core, and A′ is a
semantic object – usually a type or an environment. It may be pronounced
“phrase elaborates to A′ in (context) A”. Some rules have extra hypotheses
not of this form; they are called side conditions.

In the presentation of the rules, phrases within single angle brackets
⟨ ⟩ are called first options, and those within double angle brackets ⟨⟨ ⟩⟩ are
called second options. To reduce the number of rules, we have adopted the
following convention:

In each instance of a rule, the first options must be either all
present or all absent; similarly the second options must be either
all present or all absent.

Although not assumed in our definitions, it is intended that every context
C = T, U,E has the property that tynamesE ⊆ T . Thus T may be thought
of, loosely, as containing all type names which “have been generated”. It is
necessary to include T as a separate component in a context, since tynamesE
may not contain all the type names which have been generated; one reason is
that a context T, ∅, E is a projection of the basis B = T, F,G,E whose other
components F and G could contain other such names – recorded in T but
not present in E. Of course, remarks about what “has been generated” are
not precise in terms of the semantic rules. But the following precise result
may easily be demonstrated:

Let S be a sentence T, U,E ⊢ phrase ⇒ A such that tynamesE ⊆
T , and let S′ be a sentence T ′, U ′, E ′ ⊢ phrase ′ ⇒ A′ occurring
in a proof of S; then also tynamesE ′ ⊆ T ′.
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Atomic Expressions C ⊢ atexp ⇒ τ

C ⊢ scon ⇒ type(scon)
(1)

C(longvid) = (σ, is) σ ≻ τ

C ⊢ longvid ⇒ τ
(2)

⟨C ⊢ exprow ⇒ ϱ⟩
C ⊢ { ⟨exprow⟩ } ⇒ {}⟨+ ϱ⟩ in Type

(3)

C ⊢ dec ⇒ E C ⊕ E ⊢ exp ⇒ τ tynames τ ⊆ T of C

C ⊢ let dec in exp end ⇒ τ
(4)

C ⊢ exp ⇒ τ

C ⊢ ( exp ) ⇒ τ
(5)

Comments:

(2) The instantiation of type schemes allows different occurrences of a single
longvid to assume different types. Note that the identifier status is not
used in this rule.

(4) The use of ⊕, here and elsewhere, ensures that type names generated
by the first sub-phrase are different from type names generated by the
second sub-phrase.The side condition prevents type names generated
by dec from escaping outside the local declaration.

Expression Rows C ⊢ exprow ⇒ ϱ

C ⊢ exp ⇒ τ ⟨C ⊢ exprow ⇒ ϱ⟩
C ⊢ lab = exp ⟨ , exprow⟩ ⇒ {lab 7→ τ}⟨+ ϱ⟩

(6)

Expressions C ⊢ exp ⇒ τ

C ⊢ atexp ⇒ τ

C ⊢ atexp ⇒ τ
(7)

C ⊢ exp ⇒ τ ′ → τ C ⊢ atexp ⇒ τ ′

C ⊢ exp atexp ⇒ τ
(8)
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C ⊢ exp ⇒ τ C ⊢ ty ⇒ τ

C ⊢ exp : ty ⇒ τ
(9)

C ⊢ exp ⇒ τ C ⊢ match ⇒ exn → τ

C ⊢ exp handle match ⇒ τ
(10)

C ⊢ exp ⇒ exn

C ⊢ raise exp ⇒ τ
(11)

C ⊢ match ⇒ τ

C ⊢ fn match ⇒ τ
(12)

Comments:

(7) The relational symbol ⊢ is overloaded for all syntactic classes (here
atomic expressions and expressions).

(9) Here τ is determined by C and ty . Notice that type variables in ty
cannot be instantiated in obtaining τ ; thus the expression 1:’a will not
elaborate successfully, nor will the expression (fn x=>x):’a->’b. The
effect of type variables in an explicitly typed expression is to indicate
exactly the degree of polymorphism present in the expression.

(11) Note that τ does not occur in the premise; thus a raise expression has
“arbitrary” type.

Matches C ⊢ match ⇒ τ

C ⊢ mrule ⇒ τ ⟨C ⊢ match ⇒ τ⟩
C ⊢ mrule ⟨ | match⟩ ⇒ τ

(13)

Match Rules C ⊢ mrule ⇒ τ

C ⊢ pat ⇒ (VE, τ) C + VE ⊢ exp ⇒ τ ′ tynamesVE ⊆ T of C

C ⊢ pat => exp ⇒ τ → τ ′

(14)
Comment: This rule allows new free type variables to enter the context.
These new type variables will be chosen, in effect, during the elaboration of
pat (i.e., in the inference of the first hypothesis). In particular, their choice
may have to be made to agree with type variables present in any explicit
type expression occurring within exp (see rule 9).
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Declarations C ⊢ dec ⇒ E

U = tyvars(tyvarseq)
C + U ⊢ valbind ⇒ VE VE ′ = ClosC,valbindVE U ∩ tyvarsVE ′ = ∅

C ⊢ val tyvarseq valbind ⇒ VE ′ in Env
(15)

C ⊢ typbind ⇒ TE

C ⊢ type typbind ⇒ TE in Env
(16)

C ⊕ TE ⊢ datbind ⇒ VE, TE ∀(t, VE ′) ∈ RanTE, t /∈ (T of C)
TE maximises equality

C ⊢ datatype datbind ⇒ (VE, TE) in Env
(17)

C(longtycon) = (θ, VE) TE = {tycon 7→ (θ, VE)}
C ⊢ datatype tycon -=- datatype longtycon ⇒ (VE, TE) in Env

(18)

C ⊕ TE ⊢ datbind ⇒ VE, TE ∀(t, VE ′) ∈ RanTE, t /∈ (T of C)
C ⊕ (VE, TE) ⊢ dec ⇒ E TE maximises equality

C ⊢ abstype datbind with dec end ⇒ Abs(TE,E)
(19)

C ⊢ exbind ⇒ VE

C ⊢ exception exbind ⇒ VE in Env
(20)

C ⊢ dec1 ⇒ E1 C ⊕ E1 ⊢ dec2 ⇒ E2

C ⊢ local dec1 in dec2 end ⇒ E2

(21)

C(longstrid1) = E1 ··· C(longstridn) = En

C ⊢ open longstrid1 ··· longstridn ⇒ E1 + ···+ En

(22)

C ⊢ ⇒ {} in Env
(23)

C ⊢ dec1 ⇒ E1 C ⊕ E1 ⊢ dec2 ⇒ E2

C ⊢ dec1 ⟨;⟩ dec2 ⇒ E1 + E2

(24)

Comments:
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(15) Here VE will contain types rather than general type schemes. The
closure of VE allows value identifiers to be used polymorphically, via
rule 2.

The side-condition on U ensures that the type variables in tyvarseq are
bound by the closure operation, if they occur free in the range of VE.

On the other hand, if the phrase val tyvarseq valbind occurs inside some
larger value binding val tyvarseq ′ valbind ′ then no type variable α listed
in tyvarseq ′ will become bound by the ClosC,valbindVE operation; for α
must be in U of C and hence excluded from closure by the definition of
the closure operation (Section 4.8, page 22) since U of C ⊆ tyvarsC.

(17),(19) The side conditions express that the elaboration of each datatype
binding generates new type names and that as many of these new names
as possible admit equality. Adding TE to the context on the left of the
⊢ captures the recursive nature of the binding.

(18) Note that no new type name is generated (i.e., datatype replication is
not generative).

(19) The Abs operation was defined in Section 4.9, page 23.

(20) No closure operation is used here, as this would make the type sys-
tem unsound. Example: exception E of ’a; val it = (raise E

5) handle E f => f(2) .

Value Bindings C ⊢ valbind ⇒ VE

C ⊢ pat ⇒ (VE, τ) C ⊢ exp ⇒ τ ⟨C ⊢ valbind ⇒ VE ′⟩
C ⊢ pat = exp ⟨and valbind⟩ ⇒ VE ⟨+ VE ′⟩

(25)

C + VE ⊢ valbind ⇒ VE tynamesVE ⊆ T of C

C ⊢ rec valbind ⇒ VE
(26)

Comments:

(25) When the option is present we have DomVE ∩ DomVE ′ = ∅ by the
syntactic restrictions.

(26) Modifying C by VE on the left captures the recursive nature of the
binding. From rule 25 we see that any type scheme occurring in VE
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will have to be a type. Thus each use of a recursive function in its own
body must be assigned the same type. Also note that C + VE may
overwrite identifier status. For example, the program datatype t =

f; val rec f = fn x => x; is legal.

Type Bindings C ⊢ typbind ⇒ TE

tyvarseq = α(k) C ⊢ ty ⇒ τ ⟨C ⊢ typbind ⇒ TE⟩
C ⊢ tyvarseq tycon = ty ⟨and typbind⟩ ⇒

{tycon 7→ (Λα(k).τ, {})} ⟨+ TE⟩

(27)

Comment: The syntactic restrictions ensure that the type function Λα(k).τ
satisfies the well-formedness constraint of Section 4.4 and they ensure tycon /∈
DomTE.

Datatype Bindings C ⊢ datbind ⇒ VE, TE

tyvarseq = α(k) C, α(k)t ⊢ conbind ⇒ VE arity t = k
⟨C ⊢ datbind ′ ⇒ VE ′, TE ′ ∀(t′, VE ′′) ∈ RanTE ′, t ̸= t′⟩
C ⊢ tyvarseq tycon = conbind ⟨and datbind ′⟩ ⇒

(ClosVE⟨+ VE ′⟩, {tycon 7→ (t,ClosVE)} ⟨+ TE ′⟩

(28)

Comment: The syntactic restrictions ensure DomVE ∩ DomVE ′ = ∅ and
tycon /∈ DomTE ′.

Constructor Bindings C, τ ⊢ conbind ⇒ VE

⟨C ⊢ ty ⇒ τ ′⟩ ⟨⟨C, τ ⊢ conbind ⇒ VE⟩⟩
C, τ ⊢ vid ⟨of ty⟩ ⟨⟨ | conbind⟩⟩ ⇒
{vid 7→ (τ, c)} ⟨+ {vid 7→ (τ ′ → τ, c)} ⟩ ⟨⟨+ VE⟩⟩

(29)

Comment: By the syntactic restrictions vid /∈ DomVE.

Exception Bindings C ⊢ exbind ⇒ VE

⟨C ⊢ ty ⇒ τ⟩ ⟨⟨C ⊢ exbind ⇒ VE⟩⟩
C ⊢ vid ⟨of ty⟩ ⟨⟨and exbind⟩⟩ ⇒

{vid 7→ (exn, e)} ⟨+ {vid 7→ (τ → exn, e)} ⟩ ⟨⟨+ VE⟩⟩

(30)
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C(longvid) = (τ, e) ⟨C ⊢ exbind ⇒ VE⟩
C ⊢ vid = longvid ⟨and exbind⟩ ⇒ {vid 7→ (τ, e)} ⟨+ VE⟩

(31)

Comments:

(30) Notice that τ may contain type variables.

(30),(31) For each C and exbind , there is at most one VE satisfying C ⊢
exbind ⇒ VE.

Atomic Patterns C ⊢ atpat ⇒ (VE, τ)

C ⊢ ⇒ ({}, τ)
(32)

C ⊢ scon ⇒ ({}, type(scon))
(33)

vid /∈ Dom(C) or is of C(vid) = v

C ⊢ vid ⇒ ({vid 7→ (τ, v)}, τ)
(34)

C(longvid) = (σ, is) is ̸= v σ ≻ τ (k)t

C ⊢ longvid ⇒ ({}, τ (k)t)
(35)

⟨C ⊢ patrow ⇒ (VE, ϱ)⟩
C ⊢ { ⟨patrow⟩ } ⇒ ( {}⟨+ VE⟩, {}⟨+ ϱ⟩ in Type )

(36)

C ⊢ pat ⇒ (VE, τ)

C ⊢ ( pat ) ⇒ (VE, τ)
(37)

Comments:

(34), (35) The context C determines which of these two rules applies. In
rule 34, note that vid can assume a type, not a general type scheme.

Pattern Rows C ⊢ patrow ⇒ (VE, ϱ)

C ⊢ ... ⇒ ({}, ϱ)
(38)

C ⊢ pat ⇒ (VE, τ)
⟨C ⊢ patrow ⇒ (VE ′, ϱ) DomVE ∩DomVE ′ = ∅⟩

C ⊢ lab = pat ⟨ , patrow⟩ ⇒ (VE⟨+ VE ′⟩, {lab 7→ τ}⟨+ ϱ⟩)
(39)
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Comment:

(39) The syntactic restrictions ensure lab /∈ Dom ϱ.

Patterns C ⊢ pat ⇒ (VE, τ)

C ⊢ atpat ⇒ (VE, τ)

C ⊢ atpat ⇒ (VE, τ)
(40)

C(longvid) = (σ, is) is ̸= v σ ≻ τ ′ → τ C ⊢ atpat ⇒ (VE, τ ′)

C ⊢ longvid atpat ⇒ (VE, τ)
(41)

C ⊢ pat ⇒ (VE, τ) C ⊢ ty ⇒ τ

C ⊢ pat : ty ⇒ (VE, τ)
(42)

vid /∈ Dom(C) or is of C(vid) = v

⟨C ⊢ ty ⇒ τ⟩ C ⊢ pat ⇒ (VE, τ) vid /∈ DomVE

C ⊢ vid⟨: ty⟩ as pat ⇒ ({vid 7→ (τ, v)}+ VE, τ)
(43)

Type Expressions C ⊢ ty ⇒ τ

tyvar = α

C ⊢ tyvar ⇒ α
(44)

⟨C ⊢ tyrow ⇒ ϱ⟩
C ⊢ { ⟨tyrow⟩ } ⇒ {}⟨+ ϱ⟩ in Type

(45)

tyseq = ty1···tyk C ⊢ ty i ⇒ τi (1 ≤ i ≤ k)
C(longtycon) = (θ, VE)

C ⊢ tyseq longtycon ⇒ τ (k)θ
(46)

C ⊢ ty ⇒ τ C ⊢ ty ′ ⇒ τ ′

C ⊢ ty -> ty ′ ⇒ τ → τ ′
(47)

C ⊢ ty ⇒ τ

C ⊢ ( ty ) ⇒ τ
(48)

Comments:

(46) Recall that for τ (k)θ to be defined, θ must have arity k.



4 STATIC SEMANTICS FOR THE CORE 31

Type-expression Rows C ⊢ tyrow ⇒ ϱ

C ⊢ ty ⇒ τ ⟨C ⊢ tyrow ⇒ ϱ⟩
C ⊢ lab : ty ⟨ , tyrow⟩ ⇒ {lab 7→ τ}⟨+ ϱ⟩

(49)

Comment: The syntactic constraints ensure lab /∈ Dom ϱ.

4.11 Further Restrictions

There are a few restrictions on programs which should be enforced by a
compiler, but are better expressed apart from the preceding Inference Rules.
They are:

1. For each occurrence of a record pattern containing a record wildcard,
i.e. of the form {lab1=pat1,···,labm=patm,...} the program context
must determine uniquely the domain {lab1, ···, labn} of its row type,
wherem ≤ n; thus, the context must determine the labels {labm+1, ···, labn}
of the fields to be matched by the wildcard. For this purpose, an ex-
plicit type constraint may be needed.

2. In a match of the form pat1 => exp1 | ··· | patn => expn the pattern
sequence pat1, . . . , patn should be irredundant; that is, each pat j must
match some value (of the right type) which is not matched by pat i for
any i < j. In the context fn match, the match must also be exhaustive;
that is, every value (of the right type) must be matched by some pat i.
The compiler must give warning on violation of these restrictions, but
should still compile the match. The restrictions are inherited by de-
rived forms; in particular, this means that in the function-value binding
vid atpat1 ··· atpatn⟨: ty⟩ = exp (consisting of one clause only), each
separate atpat i should be exhaustive by itself.

3. For each value binding pat = exp the compiler must issue a report
(but still compile) if pat is not exhaustive. This will detect a mistaken
declaration like val nil = exp in which the user expects to declare
a new variable nil (whereas the language dictates that nil is here a
constant pattern, so no variable gets declared). However, this warning
should not be given when the binding is a component of a top-level
declaration val valbind; e.g. val x::l = exp1 and y = exp2 is not
faulted by the compiler at top level, but may of course generate a Bind

exception (see Section 6.5).



5 Static Semantics for Modules

5.1 Semantic Objects

The simple objects for Modules static semantics are exactly as for the Core.
The compound objects are those for the Core, augmented by those in Fig-
ure 11.

Σ or (T)E ∈ Sig = TyNameSet× Env
Φ or (T)(E, (T ′)E ′) ∈ FunSig = TyNameSet× (Env × Sig)

G ∈ SigEnv = SigId
fin→ Sig

F ∈ FunEnv = FunId
fin→ FunSig

B or T, F,G,E ∈ Basis = TyNameSet× FunEnv × SigEnv × Env

Figure 11: Further Compound Semantic Objects

The prefix (T ), in signatures and functor signatures, binds type names.
Certain operations require a change of bound names in semantic objects; see
for example Section 5.2. When bound type names are changed, we demand
that all of their attributes (i.e. equality and arity) are preserved.

The operations of projection, injection and modification are as for the
Core. Moreover, we define C of B to be the context (T of B, ∅, E of B),
i.e. with an empty set of explicit type variables. Also, we frequently need to
modify a basis B by an environment E (or a structure environment SE say),
at the same time extending T of B to include the type names of E (or of SE
say). We therefore define B⊕SE, for example, to mean B+(tynamesSE, SE).

There is no separate kind of semantic object to represent structures:
structure expressions elaborate to environments, just as structure-level dec-
larations do. Thus, notions which are commonly associated with structures
(for example the notion of matching a structure against a signature) are
defined in terms of environments.

5.2 Type Realisation

A (type) realisation is a map φ : TyName → TypeFcn such that t and φ(t)
have the same arity, and if t admits equality then so does φ(t).
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The support Suppφ of a type realisation φ is the set of type names t for
which φ(t) ̸= t. The yield Yieldφ of a realisation φ is the set of type names
which occur in some φ(t) for which t ∈ Suppφ.

Realisations φ are extended to apply to all semantic objects; their effect
is to replace each name t by φ(t). In applying φ to an object with bound
names, such as a signature (T)E, first bound names must be changed so that,
for each binding prefix (T ),

T ∩ (Suppφ ∪ Yieldφ) = ∅ .

5.3 Signature Instantiation

An environment E2 is an instance of a signature Σ1 = (T1)E1, written Σ1≥E2,
if there exists a realisation φ such that φ(E1) = E2 and Suppφ ⊆ T1.

5.4 Functor Signature Instantiation

A pair (E, (T ′)E ′) is called a functor instance. Given Φ = (T1)(E1, (T
′
1)E

′
1),

a functor instance (E2, (T
′
2)E

′
2) is an instance of Φ, written Φ≥(E2, (T

′
2)E

′
2),

if there exists a realisation φ such that φ(E1, (T
′
1)E

′
1) = (E2, (T

′
2)E

′
2) and

Suppφ ⊆ T1.

5.5 Enrichment

In matching an environment to a signature, the environment will be allowed
both to have more components, and to be more polymorphic, than (an in-
stance of) the signature. Precisely, we define enrichment of environments
and type structures recursively as follows.

An environment E1 = (SE1, TE1, VE1) enriches another environment
E2 = (SE2,
TE2, VE2), written E1 ≻ E2, if

1. DomSE1 ⊇ DomSE2, and SE1(strid) ≻ SE2(strid) for all strid ∈
DomSE2

2. DomTE1 ⊇ DomTE2, and TE1(tycon) ≻ TE2(tycon) for all tycon ∈
DomTE2
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3. DomVE1 ⊇ DomVE2, and VE1(vid) ≻ VE2(vid) for all vid ∈ DomVE2,
where (σ1, is1) ≻ (σ2, is2) means σ1 ≻ σ2 and

is1 = is2 or is2 = v

Finally, a type structure (θ1, VE1) enriches another type structure (θ2, VE2),
written (θ1, VE1) ≻ (θ2, VE2), if

1. θ1 = θ2

2. Either VE1 = VE2 or VE2 = {}

5.6 Signature Matching

An environment E matches a signature Σ1 if there exists an environment E−

such that Σ1 ≥ E− ≺ E. Thus matching is a combination of instantiation
and enrichment. There is at most one such E−, given Σ1 and E.

5.7 Inference Rules

As for the Core, the rules of the Modules static semantics allow sentences of
the form

A ⊢ phrase ⇒ A′

to be inferred, where in this case A is either a basis, a context or an envi-
ronment and A′ is a semantic object. The convention for options is as in the
Core semantics.

Although not assumed in our definitions, it is intended that every ba-
sis B = T, F,G,E in which a topdec is elaborated has the property that
tynamesF ∪ tynamesG ∪ tynamesE ⊆ T . The following Theorem can be
proved:

Let S be an inferred sentence B ⊢ topdec ⇒ B′ in which B
satisfies the above condition. Then B′ also satisfies the condition.

Moreover, if S′ is a sentence of the form B′′ ⊢ phrase ⇒ A occur-
ring in a proof of S, where phrase is any Modules phrase, then
B′′ also satisfies the condition.

Finally, if T, U,E ⊢ phrase ⇒ A occurs in a proof of S, where
phrase is a phrase of Modules or of the Core, then tynamesE ⊆ T .
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Structure Expressions B ⊢ strexp ⇒ E

B ⊢ strdec ⇒ E

B ⊢ struct strdec end ⇒ E
(50)

B(longstrid) = E

B ⊢ longstrid ⇒ E
(51)

B ⊢ strexp ⇒ E B ⊢ sigexp ⇒ Σ Σ ≥ E ′ ≺ E

B ⊢ strexp:sigexp ⇒ E ′ (52)

B ⊢ strexp ⇒ E B ⊢ sigexp ⇒ (T ′)E ′

(T ′)E ′ ≥ E ′′ ≺ E T ′ ∩ (T of B) = ∅
B ⊢ strexp:>sigexp ⇒ E ′ (53)

B ⊢ strexp ⇒ E
B(funid)≥(E ′′, (T ′)E ′) , E ≻ E ′′

(tynamesE ∪ T of B) ∩ T ′ = ∅
B ⊢ funid ( strexp ) ⇒ E ′ (54)

B ⊢ strdec ⇒ E1 B ⊕ E1 ⊢ strexp ⇒ E2

B ⊢ let strdec in strexp end ⇒ E2

(55)

Comments:
(54) The side condition (tynamesE∪T ofB)∩T ′ = ∅ can always be satisfied

by renaming bound names in (T ′)E ′; it ensures that the generated
datatypes receive new names.

Let B(funid) = (T )(Ef , (T
′)E ′

f ). Let φ be a realisation such that
φ(Ef , (T

′)E ′
f ) = (E ′′, (T ′)E ′). Sharing between argument and result

specified in the declaration of the functor funid is represented by the
occurrence of the same name in both Ef and E ′

f , and this repeated
occurrence is preserved by φ, yielding sharing between the argument
structure E and the result structure E ′ of this functor application.

(55) The use of ⊕, here and elsewhere, ensures that type names generated
by the first sub-phrase are distinct from names generated by the second
sub-phrase.
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Structure-level Declarations B ⊢ strdec ⇒ E

C of B ⊢ dec ⇒ E

B ⊢ dec ⇒ E
(56)

B ⊢ strbind ⇒ SE

B ⊢ structure strbind ⇒ SE in Env
(57)

B ⊢ strdec1 ⇒ E1 B ⊕ E1 ⊢ strdec2 ⇒ E2

B ⊢ local strdec1 in strdec2 end ⇒ E2

(58)

B ⊢ ⇒ {} in Env
(59)

B ⊢ strdec1 ⇒ E1 B ⊕ E1 ⊢ strdec2 ⇒ E2

B ⊢ strdec1 ⟨;⟩ strdec2 ⇒ E1 + E2

(60)

Structure Bindings B ⊢ strbind ⇒ SE

B ⊢ strexp ⇒ E ⟨B + tynamesE ⊢ strbind ⇒ SE⟩
B ⊢ strid = strexp ⟨and strbind⟩ ⇒ {strid 7→ E} ⟨+ SE⟩

(61)

Signature Expressions B ⊢ sigexp ⇒ E

B ⊢ spec ⇒ E

B ⊢ sig spec end ⇒ E
(62)

B(sigid) = (T )E T ∩ (T of B) = ∅
B ⊢ sigid ⇒ E

(63)

B ⊢ sigexp ⇒ E tyvarseq = α(k) C of B ⊢ ty ⇒ τ
E(longtycon) = (t, VE) t /∈ T of B

φ = {t 7→ Λα(k).τ} Λα(k).τ admits equality, if t does φ(E) well-formed

B ⊢ sigexp where type tyvarseq longtycon = ty ⇒ φ(E)
(64)

Comments:

(63) The bound names of B(sigid) can always be renamed to satisfy T ∩
(T of B) = ∅, if necessary.
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B ⊢ sigexp ⇒ Σ

B ⊢ sigexp ⇒ E T = tynamesE \ (T of B)

B ⊢ sigexp ⇒ (T )E
(65)

Comment: A signature expression sigexp which is an immediate constituent of
a signature binding, a signature constraint, or a functor binding is elaborated
to a signature, see rules 52, 53, 67 and 86.

Signature Declarations B ⊢ sigdec ⇒ G

B ⊢ sigbind ⇒ G

B ⊢ signature sigbind ⇒ G
(66)

Signature Bindings B ⊢ sigbind ⇒ G

B ⊢ sigexp ⇒ Σ ⟨B ⊢ sigbind ⇒ G⟩
B ⊢ sigid = sigexp ⟨and sigbind⟩ ⇒ {sigid 7→ Σ} ⟨+ G⟩

(67)

Specifications B ⊢ spec ⇒ E

C of B ⊢ valdesc ⇒ VE

B ⊢ val valdesc ⇒ ClosVE in Env
(68)

C of B ⊢ typdesc ⇒ TE ∀(t, VE) ∈ RanTE, t does not admit equality

B ⊢ type typdesc ⇒ TE in Env
(69)

C of B ⊢ typdesc ⇒ TE ∀(t, VE) ∈ RanTE, t admits equality

B ⊢ eqtype typdesc ⇒ TE in Env
(70)

C of B ⊕ TE ⊢ datdesc ⇒ VE, TE ∀(t, VE ′) ∈ RanTE, t /∈ T of B
TE maximises equality

B ⊢ datatype datdesc ⇒ (VE, TE) in Env
(71)
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B(longtycon) = (θ, VE) TE = {tycon 7→ (θ, VE)}
B ⊢ datatype tycon -=- datatype longtycon ⇒ (VE, TE) in Env

(72)

C of B ⊢ exdesc ⇒ VE

B ⊢ exception exdesc ⇒ VE in Env
(73)

B ⊢ strdesc ⇒ SE

B ⊢ structure strdesc ⇒ SE in Env
(74)

B ⊢ sigexp ⇒ E

B ⊢ include sigexp ⇒ E
(75)

B ⊢ ⇒ {} in Env
(76)

B ⊢ spec1 ⇒ E1 B ⊕ E1 ⊢ spec2 ⇒ E2 Dom(E1) ∩Dom(E2) = ∅
B ⊢ spec1 ⟨;⟩ spec2 ⇒ E1 + E2

(77)

B ⊢ spec ⇒ E E(longtycon i) = (ti, VEi), i = 1..n
t ∈ {t1, . . . , tn} t admits equality, if some ti does
{t1, . . . , tn} ∩ T of B = ∅ φ = {t1 7→ t, . . . , tn 7→ t}

B ⊢ spec sharing type longtycon1 = ··· = longtyconn ⇒ φ(E)
(78)

Comments:

(68) VE is determined by B and valdesc.

(69)–(71) The type names in TE are new.

(73) VE is determined by B and exdesc and contains monotypes only.

(77) Note that no sequential specification is allowed to specify the same
identifier twice.

Value Descriptions C ⊢ valdesc ⇒ VE

C ⊢ ty ⇒ τ ⟨C ⊢ valdesc ⇒ VE⟩
C ⊢ vid : ty ⟨and valdesc⟩ ⇒ {vid 7→ (τ, v)} ⟨+ VE⟩

(79)
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Type Descriptions C ⊢ typdesc ⇒ TE

tyvarseq = α(k) t /∈ T of C arity t = k
⟨C ⊢ typdesc ⇒ TE t /∈ tynamesTE⟩

C ⊢ tyvarseq tycon ⟨and typdesc⟩ ⇒ {tycon 7→ (t, {})} ⟨+ TE⟩
(80)

Comment: Note that the value environment in the resulting type structure
must be empty. For example, datatype s=C type t sharing type t=s is
a legal specification, but the type structure bound to t does not bind any
value constructors.

Datatype Descriptions C ⊢ datdesc ⇒ VE, TE

tyvarseq = α(k) C, α(k)t ⊢ condesc ⇒ VE arity t = k
⟨C ⊢ datdesc′ ⇒ VE ′, TE ′ ∀(t′, VE ′′) ∈ RanTE ′, t ̸= t′⟩

C ⊢ tyvarseq tycon = condesc ⟨and datdesc ′⟩ ⇒
ClosVE⟨+ VE ′⟩, {tycon 7→ (t,ClosVE)} ⟨+ TE ′⟩

(81)

Constructor Descriptions C, τ ⊢ condesc ⇒ VE

⟨C ⊢ ty ⇒ τ ′⟩ ⟨⟨C, τ ⊢ condesc ⇒ VE⟩⟩
C, τ ⊢ vid ⟨of ty⟩ ⟨⟨ | condesc⟩⟩ ⇒

{vid 7→ (τ, c)} ⟨+ {vid 7→ (τ ′ → τ, c)} ⟩ ⟨⟨+ VE⟩⟩

(82)

Exception Descriptions C ⊢ exdesc ⇒ VE

⟨C ⊢ ty ⇒ τ tyvars(τ) = ∅⟩ ⟨⟨C ⊢ exdesc ⇒ VE⟩⟩
C ⊢ vid ⟨of ty⟩ ⟨⟨and exdesc⟩⟩ ⇒

{vid 7→ (exn, e)} ⟨+ {vid 7→ (τ → exn, e)}⟩ ⟨⟨+ VE⟩⟩

(83)

Structure Descriptions B ⊢ strdesc ⇒ SE

B ⊢ sigexp ⇒ E ⟨B + tynamesE ⊢ strdesc ⇒ SE⟩
B ⊢ strid : sigexp ⟨and strdesc⟩ ⇒ {strid 7→ E} ⟨+ SE⟩

(84)
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Functor Declarations B ⊢ fundec ⇒ F

B ⊢ funbind ⇒ F

B ⊢ functor funbind ⇒ F
(85)

Functor Bindings B ⊢ funbind ⇒ F

B ⊢ sigexp ⇒ (T )E B ⊕ {strid 7→ E} ⊢ strexp ⇒ E ′

T ∩ (T of B) = ∅ T ′ = tynamesE ′ \ ((T of B) ∪ T )
⟨B ⊢ funbind ⇒ F ⟩

B ⊢ funid ( strid : sigexp ) = strexp ⟨and funbind⟩ ⇒
{funid 7→ (T )(E, (T ′)E ′)} ⟨+ F ⟩

(86)

Comment: Since ⊕ is used, any type name t in E acts like a constant in the
functor body; in particular, it ensures that further names generated during
elaboration of the body are distinct from t. The set T ′ is chosen such that
every name free in (T )E or (T )(E, (T ′)E ′) is free in B.

Top-level Declarations B ⊢ topdec ⇒ B′

B ⊢ strdec ⇒ E ⟨B ⊕ E ⊢ topdec ⇒ B′⟩
B′′ = (tynamesE,E)in Basis ⟨+B′⟩ tyvarsB′′ = ∅

B ⊢ strdec ⟨topdec⟩ ⇒ B′′ (87)

B ⊢ sigdec ⇒ G ⟨B ⊕G ⊢ topdec ⇒ B′⟩
B′′ = (tynamesG,G) in Basis ⟨+B′⟩

B ⊢ sigdec ⟨topdec⟩ ⇒ B′′ (88)

B ⊢ fundec ⇒ F ⟨B ⊕ F ⊢ topdec ⇒ B′⟩
B′′ = (tynamesF, F ) in Basis ⟨+B′⟩ tyvarsB′′ = ∅

B ⊢ fundec ⟨topdec⟩ ⇒ B′′ (89)

Comments:

(87)–(89) No free type variables enter the basis: if B ⊢ topdec ⇒ B′ then
tyvars(B′) = ∅.



6 Dynamic Semantics for the Core

6.1 Reduced Syntax

Since types are mostly dealt with in the static semantics, the Core syntax
is reduced by the following transformations, for the purpose of the dynamic
semantics:

� All explicit type ascriptions “: ty ” are omitted, and qualifications
“of ty ” are omitted from constructor and exception bindings.

� The Core phrase classes Ty and TyRow are omitted.

6.2 Simple Objects

All objects in the dynamic semantics are built from identifier classes together
with the simple object classes shown (with the variables which range over
them) in Figure 12.

a ∈ Addr addresses
en ∈ ExName exception names
b ∈ BasVal basic values
sv ∈ SVal special values

{FAIL} failure

Figure 12: Simple Semantic Objects

Addr and ExName are infinite sets. BasVal is described below. SVal is
the class of values denoted by the special constants SCon. Each integer, word
or real constant denotes a value according to normal mathematical conven-
tions; each string or character constant denotes a sequence of characters as
explained in Section 2.2. The value denoted by scon is written val(scon).
FAIL is the result of a failing attempt to match a value and a pattern. Thus
FAIL is neither a value nor an exception, but simply a semantic object used
in the rules to express operationally how matching proceeds.

Exception constructors evaluate to exception names. This is to accom-
modate the generative nature of exception bindings; each evaluation of a
declaration of a exception constructor binds it to a new unique name.
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v ∈ Val = {:=} ∪ SVal ∪ BasVal ∪ VId
∪(VId× Val) ∪ ExVal
∪Record ∪ Addr ∪ FcnClosure

r ∈ Record = Lab
fin→ Val

e ∈ ExVal = ExName ∪ (ExName× Val)
[e] or p ∈ Pack = ExVal

(match, E, VE) ∈ FcnClosure = Match× Env × ValEnv

mem ∈ Mem = Addr
fin→ Val

ens ∈ ExNameSet = Fin(ExName)
(mem, ens) or s ∈ State = Mem× ExNameSet

(SE, TE, VE) or E ∈ Env = StrEnv × TyEnv × ValEnv

SE ∈ StrEnv = StrId
fin→ Env

TE ∈ TyEnv = TyCon
fin→ ValEnv

VE ∈ ValEnv = VId
fin→ Val× IdStatus

Figure 13: Compound Semantic Objects

6.3 Compound Objects

The compound objects for the dynamic semantics are shown in Figure 13.
Many conventions and notations are adopted as in the static semantics; in
particular projection, injection and modification all retain their meaning. We
generally omit the injection functions taking VId, VId×Val etc into Val. For
records r ∈ Record however, we write this injection explicitly as “in Val”; this
accords with the fact that there is a separate phrase class ExpRow, whose
members evaluate to records.

We take ∪ to mean disjoint union over semantic object classes. We also
understand all the defined object classes to be disjoint. A particular case
deserves mention; ExVal and Pack (exception values and packets) are iso-
morphic classes, but the latter class corresponds to exceptions which have
been raised, and therefore has different semantic significance from the former,
which is just a subclass of values.

Although the same names, e.g. E for an environment, are used as in
the static semantics, the objects denoted are different. This need cause no
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confusion since the static and dynamic semantics are presented separately.

6.4 Basic Values

The basic values in BasVal are values bound to predefined value variables.
In this document, we take BasVal to be the singleton set {=}; however,
libraries may define a larger set of basic values. The meaning of basic values
is represented by a function

APPLY : BasVal× Val → Val ∪ Pack

which satisfies that APPLY(=, {1 7→ v1, 2 7→ v2}) is true or false according
as the values v1 and v2 are, or are not, identical values.

6.5 Basic Exceptions

A subset BasExName ⊂ ExName of the exception names are bound to pre-
defined exception constructors in the initial dynamic basis (see Appendix D).
These names are denoted by the identifiers to which they are bound in the
initial basis, and are as follows:

Match Bind

The exceptions Match and Bind are raised upon failure of pattern-matching
in evaluating a function fn match or a valbind , as detailed in the rules to
follow. Recall from Section 4.11 that in the context fn match, the match
must be irredundant and exhaustive and that the compiler should flag the
match if it violates these restrictions. The exception Match can only be raised
for a match which is not exhaustive, and has therefore been flagged by the
compiler.

6.6 Function Closures

The informal understanding of a function closure (match, E, VE) is as follows:
when the function closure is applied to a value v, match will be evaluated
against v, in the environment E modified in a special sense by VE. The
domain DomVE of this third component contains those identifiers to be
treated recursively in the evaluation. To achieve this effect, the evaluation
of match will take place not in E + VE but in E +RecVE, where

Rec : ValEnv → ValEnv
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is defined as follows:

� Dom(RecVE) = DomVE

� If VE(vid) /∈ FcnClosure× {v}, then (RecVE)(vid) = VE(vid)

� If VE(vid) = ((match ′, E ′, VE ′), v) then (RecVE)(vid) = ((match ′, E ′, VE), v)

The effect is that, before application of (match, E, VE) to v, the function
closures in RanVE are “unrolled” once, to prepare for their possible recursive
application during the evaluation of match upon v.

This device is adopted to ensure that all semantic objects are finite (by
controlling the unrolling of recursion). The operator Rec is invoked in just
two places in the semantic rules: in the rule for recursive value bindings of the
form “rec valbind”, and in the rule for evaluating an application expression
“exp atexp” in the case that exp evaluates to a function closure.

6.7 Inference Rules

The semantic rules allow sentences of the form

s, A ⊢ phrase ⇒ A′, s′

to be inferred, where A is usually an environment, A′ is some semantic object
and s,s′ are the states before and after the evaluation represented by the
sentence. Some hypotheses in rules are not of this form; they are called side-
conditions. The convention for options is the same as for the Core static
semantics.

In most rules the states s and s′ are omitted from sentences; they are
only included for those rules which are directly concerned with the state –
either referring to its contents or changing it. When omitted, the convention
for restoring them is as follows. If the rule is presented in the form

A1 ⊢ phrase1 ⇒ A′
1 A2 ⊢ phrase2 ⇒ A′

2 ···
··· An ⊢ phrasen ⇒ A′

n

A ⊢ phrase ⇒ A′

then the full form is intended to be

s0, A1 ⊢ phrase1 ⇒ A′
1, s1 s1, A2 ⊢ phrase2 ⇒ A′

2, s2 ···
··· sn−1, An ⊢ phrasen ⇒ A′

n, sn

s0, A ⊢ phrase ⇒ A′, sn
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(Any side-conditions are left unaltered). Thus the left-to-right order of the
hypotheses indicates the order of evaluation. Note that in the case n = 0,
when there are no hypotheses (except possibly side-conditions), we have sn =
s0; this implies that the rule causes no side effect. The convention is called
the state convention, and must be applied to each version of a rule obtained
by inclusion or omission of its options.

A second convention, the exception convention, is adopted to deal with
the propagation of exception packets p. For each rule whose full form (ignor-
ing side-conditions) is

s1, A1 ⊢ phrase1 ⇒ A′
1, s

′
1 ··· sn, An ⊢ phrasen ⇒ A′

n, s
′
n

s, A ⊢ phrase ⇒ A′, s′

and for each k, 1 ≤ k ≤ n, for which the result A′
k is not a packet p, an extra

rule is added of the form

s1, A1 ⊢ phrase1 ⇒ A′
1, s

′
1 ··· sk, Ak ⊢ phrasek ⇒ p′, s′

s, A ⊢ phrase ⇒ p′, s′

where p′ does not occur in the original rule.1 This indicates that evaluation
of phrases in the hypothesis terminates with the first whose result is a packet
(other than one already treated in the rule), and this packet is the result of
the phrase in the conclusion.

A third convention is that we allow compound variables (variables built
from the variables in Figure 13 and the symbol “/”) to range over unions
of semantic objects. For instance the compound variable v/p ranges over
Val∪Pack. We also allow x/FAIL to range over X ∪{FAIL} where x ranges
over X; furthermore, we extend environment modification to allow for failure
as follows:

VE + FAIL = FAIL.

Atomic Expressions E ⊢ atexp ⇒ v/p

E ⊢ scon ⇒ val(scon)
(90)

E(longvid) = (v, is)

E ⊢ longvid ⇒ v
(91)

1There is one exception to the exception convention; no extra rule is added for rule 104
which deals with handlers, since a handler is the only means by which propagation of an
exception can be arrested.
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⟨E ⊢ exprow ⇒ r⟩
E ⊢ { ⟨exprow⟩ } ⇒ {}⟨+ r⟩ in Val

(92)

E ⊢ dec ⇒ E ′ E + E ′ ⊢ exp ⇒ v

E ⊢ let dec in exp end ⇒ v
(93)

E ⊢ exp ⇒ v

E ⊢ ( exp ) ⇒ v
(94)

Comments:

(91) As in the static semantics, value identifiers are looked up in the envi-
ronment and the identifier status is not used.

Expression Rows E ⊢ exprow ⇒ r/p

E ⊢ exp ⇒ v ⟨E ⊢ exprow ⇒ r⟩
E ⊢ lab = exp ⟨ , exprow⟩ ⇒ {lab 7→ v}⟨+ r⟩

(95)

Comment: We may think of components as being evaluated from left to right,
because of the state and exception conventions.

Expressions E ⊢ exp ⇒ v/p

E ⊢ atexp ⇒ v

E ⊢ atexp ⇒ v
(96)

E ⊢ exp ⇒ vid vid ̸= ref E ⊢ atexp ⇒ v

E ⊢ exp atexp ⇒ (vid , v)
(97)

E ⊢ exp ⇒ en E ⊢ atexp ⇒ v

E ⊢ exp atexp ⇒ (en, v)
(98)

s, E ⊢ exp ⇒ ref , s′ s′, E ⊢ atexp ⇒ v, s′′ a /∈ Dom(mem of s′′)

s, E ⊢ exp atexp ⇒ a, s′′ + {a 7→ v}
(99)

s, E ⊢ exp ⇒ := , s′ s′, E ⊢ atexp ⇒ {1 7→ a, 2 7→ v}, s′′

s, E ⊢ exp atexp ⇒ {} in Val, s′′ + {a 7→ v}
(100)
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E ⊢ exp ⇒ b E ⊢ atexp ⇒ v APPLY(b, v) = v′/p

E ⊢ exp atexp ⇒ v′/p
(101)

E ⊢ exp ⇒ (match, E ′, VE) E ⊢ atexp ⇒ v
E ′ +RecVE, v ⊢ match ⇒ v′

E ⊢ exp atexp ⇒ v′
(102)

E ⊢ exp ⇒ (match, E ′, VE) E ⊢ atexp ⇒ v
E ′ +RecVE, v ⊢ match ⇒ FAIL

E ⊢ exp atexp ⇒ [Match]
(103)

E ⊢ exp ⇒ v

E ⊢ exp handle match ⇒ v
(104)

E ⊢ exp ⇒ [e] E, e ⊢ match ⇒ v

E ⊢ exp handle match ⇒ v
(105)

E ⊢ exp ⇒ [e] E, e ⊢ match ⇒ FAIL

E ⊢ exp handle match ⇒ [e]
(106)

E ⊢ exp ⇒ e

E ⊢ raise exp ⇒ [e]
(107)

E ⊢ fn match ⇒ (match, E, {})
(108)

Comments:

(99) The side condition ensures that a new address is chosen. There are no
rules concerning disposal of inaccessible addresses.

(97)–(103) Note that none of the rules for function application has a premise
in which the operator evaluates to a constructed value, a record or an
address. This is because we are interested in the evaluation of well-
typed programs only, and in such programs exp will always have a
functional type.
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(104) This is the only rule to which the exception convention does not apply.
If the operator evaluates to a packet then rule 105 or rule 106 must be
used.

(106) Packets that are not handled by the match propagate.

(108) The third component of the function closure is empty because the
match does not introduce new recursively defined values.

Matches E, v ⊢ match ⇒ v′/p/FAIL

E, v ⊢ mrule ⇒ v′

E, v ⊢ mrule ⟨ | match⟩ ⇒ v′
(109)

E, v ⊢ mrule ⇒ FAIL

E, v ⊢ mrule ⇒ FAIL
(110)

E, v ⊢ mrule ⇒ FAIL E, v ⊢ match ⇒ v′/FAIL

E, v ⊢ mrule | match ⇒ v′/FAIL
(111)

Comment: A value v occurs on the left of the turnstile, in evaluating a match.
We may think of a match as being evaluated against a value; similarly, we
may think of a pattern as being evaluated against a value. Alternative match
rules are tried from left to right.

Match Rules E, v ⊢ mrule ⇒ v′/p/FAIL

E, v ⊢ pat ⇒ VE E + VE ⊢ exp ⇒ v′

E, v ⊢ pat => exp ⇒ v′
(112)

E, v ⊢ pat ⇒ FAIL

E, v ⊢ pat => exp ⇒ FAIL
(113)

Declarations E ⊢ dec ⇒ E ′/p

E ⊢ valbind ⇒ VE

E ⊢ val tyvarseq valbind ⇒ VE in Env
(114)

⊢ typbind ⇒ TE

E ⊢ type typbind ⇒ TE in Env
(115)
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⊢ datbind ⇒ VE, TE

E ⊢ datatype datbind ⇒ (VE, TE) in Env
(116)

E(longtycon) = VE

E ⊢ datatype tycon -=- datatype longtycon ⇒ (VE, {tycon 7→ VE}) in Env
(117)

⊢ datbind ⇒ VE, TE E + VE ⊢ dec ⇒ E ′

E ⊢ abstype datbind with dec end ⇒ E ′ (118)

E ⊢ exbind ⇒ VE

E ⊢ exception exbind ⇒ VE in Env
(119)

E ⊢ dec1 ⇒ E1 E + E1 ⊢ dec2 ⇒ E2

E ⊢ local dec1 in dec2 end ⇒ E2

(120)

E(longstrid1) = E1 ··· E(longstridn) = En

E ⊢ open longstrid1 ··· longstridn ⇒ E1 + ···+ En

(121)

E ⊢ ⇒ {} in Env
(122)

E ⊢ dec1 ⇒ E1 E + E1 ⊢ dec2 ⇒ E2

E ⊢ dec1 ⟨;⟩ dec2 ⇒ E1 + E2

(123)

Value Bindings E ⊢ valbind ⇒ VE/p

E ⊢ exp ⇒ v E, v ⊢ pat ⇒ VE ⟨E ⊢ valbind ⇒ VE ′⟩
E ⊢ pat = exp ⟨and valbind⟩ ⇒ VE ⟨+ VE ′⟩

(124)

E ⊢ exp ⇒ v E, v ⊢ pat ⇒ FAIL

E ⊢ pat = exp ⟨and valbind⟩ ⇒ [Bind]
(125)

E ⊢ valbind ⇒ VE

E ⊢ rec valbind ⇒ RecVE
(126)

Type Bindings ⊢ typbind ⇒ TE

⟨⊢ typbind ⇒ TE⟩
⊢ tyvarseq tycon = ty ⟨and typbind⟩ ⇒ {tycon 7→ {}}⟨+TE⟩

(127)
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Datatype Bindings ⊢ datbind ⇒ VE, TE

⊢ conbind ⇒ VE ⟨⊢ datbind ′ ⇒ VE ′, TE ′⟩
⊢ tyvarseq tycon=conbind ⟨and datbind ′⟩ ⇒ VE⟨+VE ′⟩, {tycon 7→ VE}⟨+TE ′⟩

(128)

Constructor Bindings ⊢ conbind ⇒ VE

⟨⊢ conbind ⇒ VE⟩
⊢ vid⟨| conbind⟩ ⇒ {vid 7→ (vid , c)} ⟨+VE⟩

(129)

Exception Bindings E ⊢ exbind ⇒ VE

en /∈ ens of s s′ = s+ {en} ⟨s′, E ⊢ exbind ⇒ VE, s′′⟩
s, E ⊢ vid ⟨and exbind⟩ ⇒ {vid 7→ (en, e)}⟨+ VE⟩, s′⟨′⟩

(130)

E(longvid) = (en, e) ⟨E ⊢ exbind ⇒ VE⟩
E ⊢ vid = longvid ⟨and exbind⟩ ⇒ {vid 7→ (en, e)}⟨+ VE⟩

(131)

Comments:

(130) The two side conditions ensure that a new exception name is generated
and recorded as “used” in subsequent states.

Atomic Patterns E, v ⊢ atpat ⇒ VE/FAIL

E, v ⊢ ⇒ {}
(132)

v = val(scon)

E, v ⊢ scon ⇒ {}
(133)

v ̸= val(scon)

E, v ⊢ scon ⇒ FAIL
(134)

vid /∈ Dom(E) or is of E(vid) = v

E, v ⊢ vid ⇒ {vid 7→ (v, v)}
(135)

E(longvid) = (v, is) is ̸= v

E, v ⊢ longvid ⇒ {}
(136)
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E(longvid) = (v′, is) is ̸= v v ̸= v′

E, v ⊢ longvid ⇒ FAIL
(137)

v = {}⟨+r⟩ in Val ⟨E, r ⊢ patrow ⇒ VE/FAIL⟩
E, v ⊢ { ⟨patrow⟩ } ⇒ {}⟨+VE/FAIL⟩

(138)

E, v ⊢ pat ⇒ VE/FAIL

E, v ⊢ ( pat ) ⇒ VE/FAIL
(139)

Comments:

(134), (137) Any evaluation resulting in FAIL must do so because rule 134,
rule 137, rule 145, or rule 147 has been applied.

Pattern Rows E, r ⊢ patrow ⇒ VE/FAIL

E, r ⊢ ... ⇒ {}
(140)

E, r(lab) ⊢ pat ⇒ FAIL

E, r ⊢ lab = pat ⟨ , patrow⟩ ⇒ FAIL
(141)

E, r(lab) ⊢ pat ⇒ VE ⟨E, r ⊢ patrow ⇒ VE ′/FAIL⟩
E, r ⊢ lab = pat ⟨ , patrow⟩ ⇒ VE⟨+ VE ′/FAIL⟩

(142)

Comments:

(141),(142) For well-typed programs lab will be in the domain of r.

Patterns E, v ⊢ pat ⇒ VE/FAIL

E, v ⊢ atpat ⇒ VE/FAIL

E, v ⊢ atpat ⇒ VE/FAIL
(143)

E(longvid) = (vid , c) vid ̸= ref v = (vid , v′)
E, v′ ⊢ atpat ⇒ VE/FAIL

E, v ⊢ longvid atpat ⇒ VE/FAIL
(144)

E(longvid) = (vid , c) vid ̸= ref v /∈ {vid} × Val

E, v ⊢ longvid atpat ⇒ FAIL
(145)
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E(longvid) = (en, e) v = (en, v′)
E, v′ ⊢ atpat ⇒ VE/FAIL

E, v ⊢ longvid atpat ⇒ VE/FAIL
(146)

E(longvid) = (en, e) v /∈ {en} × Val

E, v ⊢ longvid atpat ⇒ FAIL
(147)

s(a) = v s, E, v ⊢ atpat ⇒ VE/FAIL, s

s, E, a ⊢ ref atpat ⇒ VE/FAIL, s
(148)

E, v ⊢ pat ⇒ VE/FAIL

E, v ⊢ vid as pat ⇒ {vid 7→ (v, v)}+ VE/FAIL
(149)

Comments:

(145),(147) Any evaluation resulting in FAIL must do so because rule 134,
rule 137, rule 145, or rule 147 has been applied.



7 Dynamic Semantics for Modules

7.1 Reduced Syntax

Since signature expressions are mostly dealt with in the static semantics,
the dynamic semantics need only take limited account of them. However,
they cannot be ignored completely; the reason is that an explicit signature
ascription plays the rôle of restricting the “view” of a structure – that is, re-
stricting the domains of its component environments and imposing identifier
status on value identifiers. The syntax is therefore reduced by the following
transformations (in addition to those for the Core), for the purpose of the
dynamic semantics of Modules:

� Qualifications “of ty ” are omitted from constructor and exception de-
scriptions.

� Any qualification sharing type ··· on a specification or where type ···
on a signature expression is omitted.

7.2 Compound Objects

The compound objects for the Modules dynamic semantics, extra to those
for the Core dynamic semantics, are shown in Figure 14. An interface

(strid : I, strexp, B) ∈ FunctorClosure
= (StrId× Int)× StrExp× Basis

I or (SI, TI, VI) ∈ Int = StrInt× TyInt× ValInt

SI ∈ StrInt = StrId
fin→ Int

TI ∈ TyInt = TyCon
fin→ ValInt

VI ∈ ValInt = VId
fin→ IdStatus

G ∈ SigEnv = SigId
fin→ Int

F ∈ FunEnv = FunId
fin→ FunctorClosure

(F,G,E) or B ∈ Basis = FunEnv × SigEnv × Env
(G, I) or IB ∈ IntBasis = SigEnv × Int

Figure 14: Compound Semantic Objects
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I ∈ Int represents a “view” of a structure. Specifications and signature
expressions will evaluate to interfaces; moreover, during the evaluation of
a specification or signature expression, structures (to which a specification
or signature expression may refer via datatype replicating specifications) are
represented only by their interfaces. To extract a value interface from a
dynamic value environment we define the operation Inter : ValEnv → ValInt
as follows:

Inter(VE) = {vid 7→ is ; VE(vid) = (v, is)}

In other words, Inter(VE) is the value interface obtained from VE by remov-
ing all values from VE. We then extend Inter to a function Inter : Env → Int
as follows:

Inter(SE, TE, VE) = (SI, TI, VI)

where VI = Inter(VE) and

SI = {strid 7→ InterE ; SE(strid) = E}
TI = {tycon 7→ InterVE ′ ; TE(tycon) = VE ′}

An interface basis IB = (G, I) is a value-free part of a basis, sufficient to eval-
uate signature expressions and specifications. The function Inter is extended
to create an interface basis from a basis B as follows:

Inter(F,G,E) = (G, InterE)

A further operation

↓ : Env × Int → Env

is required, to cut down an environment E to a given interface I, representing
the effect of an explicit signature ascription. We first define ↓: ValEnv ×
ValInt → ValEnv by

VE ↓ VI = {vid 7→ (v, is) ; VE(vid) = (v, is′) and VI(vid) = is}

(Note that VE and VI need not have the same domain and that the identifier
status is taken from VI.) We then define ↓: StrEnv × StrInt → StrEnv,
↓: TyEnv × TyInt → TyEnv and ↓: Env × Int → Env simultaneously as
follows:
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SE ↓ SI = {strid 7→ E ↓ I ; SE(strid) = E and SI(strid) = I}

TE ↓ TI = {tycon 7→ VE ′ ↓ VI ′ ; TE(tycon) = VE ′ and TI(tycon) = VI ′}

(SE, TE, VE) ↓ (SI, TE, VI) = (SE ↓ SI, TE ↓ TI, VE ↓ VI)

It is important to note that an interface can also be obtained from the static
value Σ of a signature expression; it is obtained by first replacing every type
structure (θ, VE) in the range of every type environment TE by VE and then
replacing each pair (σ, is) in the range of every value environment VE by is.
Thus in an implementation interfaces would naturally be obtained from the
static elaboration; we choose to give separate rules here for obtaining them
in the dynamic semantics since we wish to maintain our separation of the
static and dynamic semantics, for reasons of presentation.

7.3 Inference Rules

The semantic rules allow sentences of the form

s, A ⊢ phrase ⇒ A′, s′

to be inferred, where A is either a basis, a signature environment or empty, A′

is some semantic object and s,s′ are the states before and after the evaluation
represented by the sentence. Some hypotheses in rules are not of this form;
they are called side-conditions. The convention for options is the same as for
the Core static semantics.

The state and exception conventions are adopted as in the Core dynamic
semantics. However, it may be shown that the only Modules phrases whose
evaluation may cause a side-effect or generate an exception packet are of the
form strexp, strdec, strbind or topdec.

Structure Expressions B ⊢ strexp ⇒ E/p

B ⊢ strdec ⇒ E

B ⊢ struct strdec end ⇒ E
(150)

B(longstrid) = E

B ⊢ longstrid ⇒ E
(151)

B ⊢ strexp ⇒ E InterB ⊢ sigexp ⇒ I

B ⊢ strexp:sigexp ⇒ E ↓ I
(152)
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B ⊢ strexp ⇒ E InterB ⊢ sigexp ⇒ I

B ⊢ strexp:>sigexp ⇒ E ↓ I
(153)

B(funid) = (strid : I, strexp ′, B′)
B ⊢ strexp ⇒ E B′ + {strid 7→ E ↓ I} ⊢ strexp ′ ⇒ E ′

B ⊢ funid ( strexp ) ⇒ E ′ (154)

B ⊢ strdec ⇒ E B + E ⊢ strexp ⇒ E ′

B ⊢ let strdec in strexp end ⇒ E ′ (155)

Comments:

(154) Before the evaluation of the functor body strexp ′, the actual argument
E is cut down by the formal parameter interface I, so that any opening
of strid resulting from the evaluation of strexp ′ will produce no more
components than anticipated during the static elaboration.

Structure-level Declarations B ⊢ strdec ⇒ E/p

E of B ⊢ dec ⇒ E ′

B ⊢ dec ⇒ E ′ (156)

B ⊢ strbind ⇒ SE

B ⊢ structure strbind ⇒ SE in Env
(157)

B ⊢ strdec1 ⇒ E1 B + E1 ⊢ strdec2 ⇒ E2

B ⊢ local strdec1 in strdec2 end ⇒ E2

(158)

B ⊢ ⇒ {} in Env
(159)

B ⊢ strdec1 ⇒ E1 B + E1 ⊢ strdec2 ⇒ E2

B ⊢ strdec1 ⟨;⟩ strdec2 ⇒ E1 + E2

(160)

Structure Bindings B ⊢ strbind ⇒ SE/p

B ⊢ strexp ⇒ E ⟨B ⊢ strbind ⇒ SE⟩
B ⊢ strid = strexp ⟨and strbind⟩ ⇒ {strid 7→ E} ⟨+ SE⟩

(161)
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Signature Expressions IB ⊢ sigexp ⇒ I

IB ⊢ spec ⇒ I

IB ⊢ sig spec end ⇒ I
(162)

IB(sigid) = I

IB ⊢ sigid ⇒ I
(163)

Signature Declarations IB ⊢ sigdec ⇒ G

IB ⊢ sigbind ⇒ G

IB ⊢ signature sigbind ⇒ G
(164)

Signature Bindings IB ⊢ sigbind ⇒ G

IB ⊢ sigexp ⇒ I ⟨IB ⊢ sigbind ⇒ G⟩
IB ⊢ sigid = sigexp ⟨and sigbind⟩ ⇒ {sigid 7→ I} ⟨+ G⟩

(165)

Specifications IB ⊢ spec ⇒ I

⊢ valdesc ⇒ VI

IB ⊢ val valdesc ⇒ VI in Int
(166)

⊢ typdesc ⇒ TI

IB ⊢ type typdesc ⇒ TI in Int
(167)

⊢ typdesc ⇒ TI

IB ⊢ eqtype typdesc ⇒ TI in Int
(168)

⊢ datdesc ⇒ VI, TI

IB ⊢ datatype datdesc ⇒ (VI, TI) in Int
(169)

IB(longtycon) = VI TI = {tycon 7→ VI}
IB ⊢ datatype tycon -=- datatype longtycon ⇒ (VI, TI) in Int

(170)

⊢ exdesc ⇒ VI

IB ⊢ exception exdesc ⇒ VI in Int
(171)

IB ⊢ strdesc ⇒ SI

IB ⊢ structure strdesc ⇒ SI in Int
(172)
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IB ⊢ sigexp ⇒ I

IB ⊢ include sigexp ⇒ I
(173)

IB ⊢ ⇒ {} in Int
(174)

IB ⊢ spec1 ⇒ I1 IB + I1 ⊢ spec2 ⇒ I2
IB ⊢ spec1 ⟨;⟩ spec2 ⇒ I1 + I2

(175)

Value Descriptions ⊢ valdesc ⇒ VI

⟨⊢ valdesc ⇒ VI⟩
⊢ vid ⟨and valdesc⟩ ⇒ {vid 7→ v} ⟨+VI⟩

(176)

Type Descriptions ⊢ typdesc ⇒ TI

⟨⊢ typdesc ⇒ TI⟩
⊢ tyvarseq tycon ⟨and typdesc⟩ ⇒ {tycon 7→ {}}⟨+TI⟩

(177)

Datatype Descriptions ⊢ datdesc ⇒ VI, TI

⊢ condesc ⇒ VI ⟨⊢ datdesc ′ ⇒ VI ′, TI ′⟩
⊢ tyvarseq tycon = condesc ⟨and datdesc′⟩ ⇒ VI ⟨+VI ′⟩, {tycon 7→ VI}⟨+TI ′⟩

(178)

Constructor Descriptions ⊢ condesc ⇒ VI

⟨⊢ condesc ⇒ VI⟩
⊢ vid ⟨ | condesc⟩ ⇒ {vid 7→ c} ⟨+VI⟩

(179)

Exception Descriptions ⊢ exdesc ⇒ VI

⟨⊢ exdesc ⇒ VI⟩
⊢ vid ⟨and exdesc⟩ ⇒ {vid 7→ e} ⟨+VI⟩

(180)

Structure Descriptions IB ⊢ strdesc ⇒ SI

IB ⊢ sigexp ⇒ I ⟨IB ⊢ strdesc ⇒ SI⟩
IB ⊢ strid : sigexp ⟨and strdesc⟩ ⇒ {strid 7→ I} ⟨+ SI⟩

(181)
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Functor Bindings B ⊢ funbind ⇒ F

InterB ⊢ sigexp ⇒ I ⟨IB ⊢ funbind ⇒ F ⟩
IB ⊢ funid ( strid : sigexp ) = strexp ⟨and funbind⟩ ⇒

{funid 7→ (strid : I, strexp, B)} ⟨+ F ⟩

(182)

Functor Declarations B ⊢ fundec ⇒ F

B ⊢ funbind ⇒ F

B ⊢ functor funbind ⇒ F
(183)

Top-level Declarations B ⊢ topdec ⇒ B′/p

B ⊢ strdec ⇒ E B′ = E in Basis ⟨B +B′ ⊢ topdec ⇒ B′′⟩
B ⊢ strdec ⟨topdec⟩ ⇒ B′⟨′⟩

(184)

InterB ⊢ sigdec ⇒ G B′ = G in Basis ⟨B +B′ ⊢ topdec ⇒ B′′⟩
B ⊢ sigdec ⟨topdec⟩ ⇒ B′⟨′⟩

(185)

B ⊢ fundec ⇒ F B′ = F in Basis ⟨B +B′ ⊢ topdec ⇒ B′′⟩
B ⊢ fundec ⟨topdec⟩ ⇒ B′⟨′⟩

(186)



8 Programs

The phrase class Program of programs is defined as follows

program ::= topdec ; ⟨program⟩

Hitherto, the semantic rules have not exposed the interactive nature of
the language. During an ML session the user can type in a phrase, more
precisely a phrase of the form topdec as defined in Figure 8, page 15. Upon
the following semicolon, the machine will then attempt to parse, elaborate
and evaluate the phrase returning either a result or, if any of the phases fail,
an error message. The outcome is significant for what the user subsequently
types, so we need to answer questions such as: if the elaboration of a top-
level declaration succeeds, but its evaluation fails, then does the result of the
elaboration get recorded in the static basis?

In practice, ML implementations may provide a directive as a form of
top-level declaration for including programs from files rather than directly
from the terminal. In case a file consists of a sequence of top-level declara-
tions (separated by semicolons) and the machine detects an error in one of
these, it is probably sensible to abort the execution of the directive. Rather
than introducing a distinction between, say, batch programs and interactive
programs, we shall tacitly regard all programs as interactive, and leave to
implementers to clarify how the inclusion of files, if provided, affects the
updating of the static and dynamic basis. Moreover, we shall focus on elabo-
ration and evaluation and leave the handling of parse errors to implementers
(since it naturally depends on the kind of parser being employed). Hence, in
this section the execution of a program means the combined elaboration and
evaluation of the program.

So far, for simplicity, we have used the same notationB to stand for both a
static and a dynamic basis, and this has been possible because we have never
needed to discuss static and dynamic semantics at the same time. In giving
the semantics of programs, however, let us rename as StaticBasis the class
Basis defined in the static semantics of modules, Section 5.1, and let us use
BSTAT to range over StaticBasis. Similarly, let us rename as DynamicBasis
the class Basis defined in the dynamic semantics of modules, Section 7.2, and
let us use BDYN to range over DynamicBasis. We now define

B or (BSTAT, BDYN) ∈ Basis = StaticBasis×DynamicBasis.
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Further, we shall use ⊢STAT for elaboration as defined in Section 5, and
⊢DYN for evaluation as defined in Section 7. Then ⊢ will be reserved for the
execution of programs, which thus is expressed by a sentence of the form

s, B ⊢ program ⇒ B′, s′

This may be read as follows: starting in basis B with state s the execution
of program results in a basis B′ and a state s′.

It must be understood that executing a program never results in an excep-
tion. If the evaluation of a topdec yields an exception (for instance because
of a raise expression) then the result of executing the program “topdec ;”
is the original basis together with the state which is in force when the ex-
ception is generated. In particular, the exception convention of Section 6.7
is not applicable to the ensuing rules.

We represent the non-elaboration of a top-level declaration by . . . ⊢STAT

topdec ̸⇒.

Programs s, B ⊢ program ⇒ B′, s′

BSTAT of B ⊢STAT topdec ̸⇒ ⟨s, B ⊢ program ⇒ B′, s′⟩
s, B ⊢ topdec ; ⟨program⟩ ⇒ B⟨′⟩, s⟨′⟩

(187)

BSTAT of B ⊢STAT topdec ⇒ B
(1)
STAT

s, BDYN of B ⊢DYN topdec ⇒ p, s′ ⟨s′, B ⊢ program ⇒ B′, s′′⟩
s, B ⊢ topdec ; ⟨program⟩ ⇒ B⟨′⟩, s′⟨′⟩

(188)

BSTAT of B ⊢STAT topdec ⇒ B
(1)
STAT

s, BDYN of B ⊢DYN topdec ⇒ B
(1)
DYN, s

′ B′ = B ⊕ (B
(1)
STAT, B

(1)
DYN)

⟨s′, B′ ⊢ program ⇒ B′′, s′′⟩
s, B ⊢ topdec ; ⟨program⟩ ⇒ B′⟨′⟩, s′⟨′⟩

(189)
Comments:

(187) A failing elaboration has no effect whatever.

(188) An evaluation which yields an exception nullifies the change in the
static basis, but does not nullify side-effects on the state which may
have occurred before the exception was raised.
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Core language Programs

A program is called a core language program if it can be parsed in the reduced
grammar defined as follows:

1. Replace the definition of top-level declarations by

topdec ::= strdec

2. Replace the definition of structure-level declarations by

strdec ::= dec



A Appendix: Derived Forms

Several derived grammatical forms are provided in the Core; they are pre-
sented in Figures 15, 16 and 17. Each derived form is given with its equivalent
form. Thus, each row of the tables should be considered as a rewriting rule

Derived form =⇒ Equivalent form

and these rules may be applied repeatedly to a phrase until it is transformed
into a phrase of the bare language. See Appendix B for the full Core gram-
mar, including all the derived forms.

In the derived forms for tuples, in terms of records, we use n to mean the
ML numeral which stands for the natural number n.

Note that a new phrase class FvalBind of function-value bindings is
introduced, accompanied by a new declaration form fun tyvarseq fvalbind .
The mixed forms val tyvarseq rec fvalbind , val tyvarseq fvalbind and
fun tyvarseq valbind are not allowed – though the first form arises during
translation into the bare language.

The following notes refer to Figure 17:

� There is a version of the derived form for function-value binding which
allows the function identifier to be infixed; see Figure 21 in Appendix B.

� In the two forms involving withtype , the identifiers bound by dat-
bind and by typbind must be distinct. Then the transformed binding
datbind ′ in the equivalent form is obtained from datbind by expanding
out all the definitions made by typbind. More precisely, if typbind is

tyvarseq1 tycon1 =ty1 and ··· and tyvarseqn tyconn =tyn

then datbind ′ is the result of simultaneous replacement (in datbind) of
every type expression tyseq i tycon i (1 ≤ i ≤ n) by the corresponding
defining expression

ty i{tyseq i/tyvarseq i}

Figure 18 shows derived forms for functors. They allow functors to take,
say, a single type or value as a parameter, in cases where it would seem
clumsy to “wrap up” the argument as a structure expression.

Finally, Figure 19 shows the derived forms for specifications and sig-
nature expressions. The last derived form for specifications allows sharing



A APPENDIX: DERIVED FORMS 64

between structure identifiers as a shorthand for type sharing specifications.
The phrase

spec sharing longstrid1 = ··· = longstridk

is a derived form whose equivalent form is
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spec
sharing type longtycon1 = longtycon ′

1

···
sharing type longtyconm = longtycon ′

m

determined as follows. First, note that spec specifies a set of (possibly long)
type constructors and structure identifiers, either directly or via signature
identifiers and include specifications. Then the equivalent form contains all
type-sharing constraints of the form

sharing type longstrid i.longtycon = longstrid j.longtycon

(1 ≤ i < j ≤ k), such that both sides of the equation are long type construc-
tors specified by spec.

The meaning of the derived form does not depend on the order of the
type-sharing constraints in the equivalent form.
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Derived Form Equivalent Form

Expressions exp
() { }

(exp1 , ··· , expn) {1=exp1, ···, n=expn} (n ≥ 2)
# lab fn {lab=vid,...} => vid (vid new)
case exp of match (fn match)(exp)
if exp1 then exp2 else exp3 case exp1 of true => exp2

| false => exp3
exp1 orelse exp2 if exp1 then true else exp2
exp1 andalso exp2 if exp1 then exp2 else false

(exp1 ; ··· ; expn ; exp) case exp1 of ( ) => (n ≥ 1)
···

case expn of ( ) => exp
let dec in let dec in (n ≥ 2)

exp1 ; ··· ; expn end (exp1 ; ··· ; expn) end

while exp1 do exp2 let val rec vid = fn () => (vid new)
if exp1 then (exp2;vid()) else ()

in vid() end

[exp1 , ··· , expn] exp1 :: ··· :: expn :: nil (n ≥ 0)

Figure 15: Derived forms of Expressions

Derived Form Equivalent Form

Patterns pat
() { }

(pat1 , ··· , patn) {1=pat1, ··· , n=patn} (n ≥ 2)
[pat1 , ··· , patn] pat1 :: ··· :: patn :: nil (n ≥ 0)

Pattern Rows patrow
vid⟨:ty⟩ ⟨as pat⟩ ⟨, patrow⟩ vid = vid⟨:ty⟩ ⟨as pat⟩ ⟨, patrow⟩

Type Expressions ty
ty1 * ··· * tyn {1:ty1, ··· , n:tyn} (n ≥ 2)

Figure 16: Derived forms of Patterns and Type Expressions
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Derived Form Equivalent Form

Function-value Bindings fvalbind
⟨op⟩vid = fn vid1=> ··· fn vidn=>
case (vid1, ··· , vidn) of

⟨op⟩vid atpat11···atpat1n⟨:ty⟩ = exp1 (atpat11,···,atpat1n )=>exp1⟨:ty⟩
|⟨op⟩vid atpat21···atpat2n⟨:ty⟩ = exp2 |(atpat21,···,atpat2n )=>exp2⟨:ty⟩
| ··· ··· | ··· ···
|⟨op⟩vid atpatm1···atpatmn⟨:ty⟩ = expm |(atpatm1,···,atpatmn )=>expm⟨:ty⟩

⟨and fvalbind⟩ ⟨and fvalbind⟩
(m,n ≥ 1; vid1, ···, vidn distinct and new)

Declarations dec
fun tyvarseq fvalbind val tyvarseq rec fvalbind
datatype datbind withtype typbind datatype datbind ′ ; type typbind
abstype datbind withtype typbind abstype datbind ′

with dec end with type typbind ; dec end

(see note in text concerning datbind ′)

Figure 17: Derived forms of Function-value Bindings and Declarations
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Derived Form Equivalent Form

Structure Bindings strbind
strid:sigexp=strexp ⟨and strbind⟩ strid=strexp:sigexp ⟨and strbind⟩
strid:>sigexp=strexp ⟨and strbind⟩ strid=strexp:>sigexp ⟨and strbind⟩

Structure Expressions strexp
funid ( strdec ) funid ( struct strdec end )

Functor Bindings funbind
funid (strid:sigexp): sigexp ′ = funid (strid : sigexp) =

strexp ⟨and funbind⟩ strexp:sigexp ′ ⟨and funbind⟩
funid (strid:sigexp):>sigexp ′ = funid (strid : sigexp) =

strexp ⟨and funbind⟩ strexp:>sigexp ′ ⟨and funbind⟩
funid ( spec ) ⟨: sigexp⟩ = funid ( stridν : sig spec end ) =

strexp ⟨and funbind⟩ let open stridν in strexp⟨: sigexp⟩
end ⟨and funbind⟩

funid ( spec ) ⟨:> sigexp⟩ = funid ( stridν : sig spec end ) =

strexp ⟨and funbind⟩ let open stridν in strexp⟨:>sigexp⟩
end ⟨and funbind⟩

(stridν new)

Programs program
exp;⟨program⟩ val it = exp;⟨program⟩

Figure 18: Derived forms of Functors, Structure Bindings and Programs
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Derived Form Equivalent Form

Specifications spec
type tyvarseq tycon = ty include

sig type tyvarseq tycon
end where type tyvarseq tycon = ty

type tyvarseq1 tycon1 = ty1 type tyvarseq1 tycon1 = ty1

and ··· type ···
··· ···
and tyvarseqn tyconn = tyn type tyvarseqn tyconn = tyn

include sigid1 ··· sigidn include sigid1; ··· ; include sigidn
spec sharing longstrid1 = ··· spec

= longstridk sharing type longtycon1 =

longtycon ′
1

···
sharing type longtyconm =

longtycon ′
m

(see note in text concerning longtycon1, . . . , longtycon
′
m)

Signature Expressions sigexp
sigexp sigexp
where type tyvarseq1 longtycon1 = ty1 where type tyvarseq1 longtycon1 = ty1

and type ··· where type ···
··· ···
and type tyvarseqn longtyconn = tyn where type tyvarseqn longtyconn = tyn

Figure 19: Derived forms of Specifications and Signature Expressions





B Appendix: Full Grammar

The full grammar of programs is exactly as given at the start of Section 8.
The full grammar of Modules consists of the grammar of Figures 5–8

in Section 3, together with the derived forms of Figures 18 and 19 in Ap-
pendix A.

The remainder of this Appendix is devoted to the full grammar of the
Core. Roughly, it consists of the grammar of Section 2 augmented by the de-
rived forms of Appendix A. But there is a further difference: two additional
subclasses of the phrase class Exp are introduced, namely AppExp (appli-
cation expressions) and InfExp (infix expressions). The inclusion relation
among the four classes is as follows:

AtExp ⊂ AppExp ⊂ InfExp ⊂ Exp

The effect is that certain phrases, such as “2 + while ··· do ··· ”, are now
disallowed.

The grammatical rules are displayed in Figures 20, 21, 22 and 23. The
grammatical conventions are exactly as in Section 2, namely:

� The brackets ⟨ ⟩ enclose optional phrases.

� For any syntax class X (over which x ranges) we define the syntax class
Xseq (over which xseq ranges) as follows:

xseq ::= x (singleton sequence)
(empty sequence)

(x1,···,xn) (sequence, n ≥ 1)

(Note that the “···” used here, a meta-symbol indicating syntactic rep-
etition, must not be confused with “...” which is a reserved word of
the language.)

� Alternative forms for each phrase class are in order of decreasing prece-
dence. This precedence resolves ambiguity in parsing in the following
way. Suppose that a phrase class — we take exp as an example — has
two alternative forms F1 and F2, such that F1 ends with an exp and F2

starts with an exp. A specific case is

F1: if exp1 then exp2 else exp3

F2: exp handle match
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It will be enough to see how ambiguity is resolved in this specific case.

Suppose that the lexical sequence

··· ··· if ··· then ··· else exp handle ··· ···

is to be parsed, where exp stands for a lexical sequence which is already
determined as a subphrase (if necessary by applying the precedence
rule). Then the higher precedence of F2 (in this case) dictates that exp
associates to the right, i.e. that the correct parse takes the form

··· ··· if ··· then ··· else (exp handle ···) ···

not the form

··· (··· if ··· then ··· else exp) handle ··· ···

Note particularly that the use of precedence does not decrease the class
of admissible phrases; it merely rejects alternative ways of parsing cer-
tain phrases. In particular, the purpose is not to prevent a phrase,
which is an instance of a form with higher precedence, having a con-
stituent which is an instance of a form with lower precedence. Thus for
example

if ··· then while ··· do ··· else while ··· do ···

is quite admissible, and will be parsed as

if ··· then (while ··· do ···) else (while ··· do ···)

� L (resp. R) means left (resp. right) association.

� The syntax of types binds more tightly than that of expressions.

� Each iterated construct (e.g. match, ··· ) extends as far right as pos-
sible; thus, parentheses may be needed around an expression which
terminates with a match, e.g. “fn match”, if this occurs within a
larger match.
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atexp ::= scon special constant
⟨op⟩longvid value identifier
{ ⟨exprow⟩ } record
# lab record selector
() 0-tuple
(exp1 , ··· , expn) n-tuple, n ≥ 2
[exp1 , ··· , expn] list, n ≥ 0
(exp1 ; ··· ; expn) sequence, n ≥ 2
let dec in exp1 ; ··· ; expn end local declaration, n ≥ 1
( exp )

exprow ::= lab = exp ⟨ , exprow⟩ expression row

appexp ::= atexp
appexp atexp application expression

infexp ::= appexp
infexp1 vid infexp2 infix expression

exp ::= infexp
exp : ty typed (L)
exp1 andalso exp2 conjunction
exp1 orelse exp2 disjunction
exp handle match handle exception
raise exp raise exception
if exp1 then exp2 else exp3 conditional
while exp1 do exp2 iteration
case exp of match case analysis
fn match function

match ::= mrule ⟨ | match⟩

mrule ::= pat => exp

Figure 20: Grammar: Expressions and Matches
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dec ::= val tyvarseq valbind value declaration
fun tyvarseq fvalbind function declaration
type typbind type declaration
datatype datbind ⟨withtype typbind⟩ datatype declaration
datatype tycon -=- datatype longtycon datatype replication
abstype datbind ⟨withtype typbind⟩ abstype declaration

with dec end

exception exbind exception declaration
local dec1 in dec2 end local declaration
open longstrid1 ··· longstridn open declaration, n ≥ 1

empty declaration
dec1 ⟨;⟩ dec2 sequential declaration
infix ⟨d⟩ vid1 ··· vidn infix (L) directive, n ≥ 1
infixr ⟨d⟩ vid1 ··· vidn infix (R) directive, n ≥ 1
nonfix vid1 ··· vidn nonfix directive, n ≥ 1

valbind ::= pat = exp ⟨and valbind⟩
rec valbind

fvalbind ::= ⟨op⟩vid atpat11···atpat1n⟨:ty⟩=exp1 m,n ≥ 1
|⟨op⟩vid atpat21···atpat2n⟨:ty⟩=exp2 See also note below
| ··· ···
|⟨op⟩vid atpatm1···atpatmn⟨:ty⟩=expm

⟨and fvalbind⟩

typbind ::= tyvarseq tycon = ty ⟨and typbind⟩

datbind ::= tyvarseq tycon = conbind ⟨and datbind⟩

conbind ::= ⟨op⟩vid ⟨of ty⟩ ⟨ | conbind⟩

exbind ::= ⟨op⟩vid ⟨of ty⟩ ⟨and exbind⟩
⟨op⟩vid = ⟨op⟩longvid ⟨and exbind⟩

Note: In the fvalbind form, if vid has infix status then either op must be
present, or vid must be infixed. Thus, at the start of any clause, “ op vid
(atpat,atpat′) ···” may be written “(atpat vid atpat′) ···”; the parentheses
may also be dropped if “:ty” or “=” follows immediately.

Figure 21: Grammar: Declarations and Bindings
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atpat ::= wildcard
scon special constant
⟨op⟩longvid value identifier
{ ⟨patrow⟩ } record
() 0-tuple
(pat1 , ··· , patn) n-tuple, n ≥ 2
[pat1 , ··· , patn] list, n ≥ 0
( pat )

patrow ::= ... wildcard
lab = pat ⟨ , patrow⟩ pattern row
vid⟨:ty⟩ ⟨as pat⟩ ⟨, patrow⟩ label as variable

pat ::= atpat atomic
⟨op⟩longvid atpat constructed value
pat1 vid pat2 constructed value (infix)
pat : ty typed
⟨op⟩vid⟨: ty⟩ as pat layered

Figure 22: Grammar: Patterns

ty ::= tyvar type variable
{ ⟨tyrow⟩ } record type expression
tyseq longtycon type construction
ty1 * ··· * tyn tuple type, n ≥ 2
ty -> ty ′ function type expression (R)
( ty )

tyrow ::= lab : ty ⟨ , tyrow⟩ type-expression row

Figure 23: Grammar: Type expressions





C Appendix: The Initial Static Basis

In this appendix (and the next) we define a minimal initial basis for ex-
ecution. Richer bases may be provided by libraries. We shall indicate
components of the initial basis by the subscript 0. The initial static basis is
B0 = T0, F0, G0, E0, where F0 = {}, G0 = {} and

T0 = {bool, int, real, string, char, word, list, ref, exn}

The members of T0 are type names, not type constructors; for convenience we
have used type-constructor identifiers to stand also for the type names which
are bound to them in the initial static type environment TE0. Of these type
names, list and ref have arity 1, the rest have arity 0; all except exn
and real admit equality. Finally, E0 = (SE0, TE0, VE0), where SE0 = {},
while TE0 and VE0 are shown in Figures 24 and 25, respectively.

tycon 7→ ( θ, {vid1 7→ (σ1, is1), . . . , vidn 7→ (σn, isn)} ) (n ≥ 0)
unit 7→ ( Λ().{}, {} )
bool 7→ ( bool, {true 7→ (bool, c), false 7→ (bool, c)} )
int 7→ ( int, {} )

word 7→ ( word, {} )
real 7→ ( real, {} )

string 7→ ( string, {} )
char 7→ ( char, {} )
list 7→ ( list, {nil 7→ (∀’a . ’a list, c),

::7→ (∀’a . ’a ∗ ’a list → ’a list, c)} )
ref 7→ ( ref, {ref 7→ (∀ ’a . ’a → ’a ref, c)} )
exn 7→ ( exn, {} )

Figure 24: Static TE0
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NONFIX INFIX
vid 7→ (σ, is) vid 7→ (σ, is)
ref 7→ (∀ ’a . ’a → ’a ref, c) Precedence 5, right associative :
nil 7→ (∀’a. ’a list, c) :: 7→ (∀’a.’a ∗ ’a list → ’a list, c)

true 7→ (bool, c) Precedence 4, left associative :
false 7→ (bool, c) = 7→ (∀’’a. ’’a ∗ ’’a → bool, v)
Match 7→ (exn, e) Precedence 3, left associative :
Bind 7→ (exn, e) := 7→ (∀’a. ’a ref ∗ ’a → {}, v)

Note: In type schemes we have taken the liberty of writing ty1 ∗ ty2 in place
of {1 7→ ty1, 2 7→ ty2}.

Figure 25: Static VE0





D Appendix: The Initial Dynamic Basis

We shall indicate components of the initial basis by the subscript 0. The
initial dynamic basis is B0 = F0, G0, E0, where F0 = {}, G0 = {} and
E0 = (SE0, TE0, VE0), where SE0 = {}, TE0 is shown in Figure 26 and

VE0 = {= 7→ (=, v), := 7→ (:=, v), Match 7→ (Match, e), Bind 7→ (Bind, e),
true 7→ (true, c), false 7→ (false, c),
nil 7→ (nil, c), :: 7→ (::, c), ref 7→ (ref, c)}.

tycon 7→ {vid1 7→ (v1, is1), . . . , vidn 7→ (vn, isn)} (n ≥ 0)
unit 7→ {}
bool 7→ {true 7→ (true, c), false 7→ (false, c)}
int 7→ {}

word 7→ {}
real 7→ {}

string 7→ {}
char 7→ {}
list 7→ {nil 7→ (nil, c), :: 7→ (::, c)}
ref 7→ {ref 7→ (ref, c)}
exn 7→ {}

Figure 26: Dynamic TE0





E Overloading

Two forms of overloading are available:

� Certain special constants are overloaded. For example, 0w5 may have
type word or some other type, depending on the surrounding program
text;

� Certain operators are overloaded. For example, + may have type int ∗
int → int or real ∗ real → real, depending on the surrounding
program text;

Programmers cannot define their own overloaded constants or operators.
Although a formal treatment of overloading is outside the scope of this

document, we do give a complete list of the overloaded operators and of
types with overloaded special constants. This list is consistent with the
Basis Library[18].

Every overloaded constant and value identifier has among its types a
default type, which is assigned to it, when the surrounding text does not
resolve the overloading. For this purpose, the surrounding text is no larger
than the smallest enclosing structure-level declaration; an implementation
may require that a smaller context determines the type.

E.1 Overloaded special constants

Libraries may extend the set T0 of Appendix C with additional type names.
Thereafter, certain subsets of T0 have a special significance; they are called
overloading classes and they are:

Int ⊇ {int}
Real ⊇ {real}
Word ⊇ {word}
String ⊇ {string}
Char ⊇ {char}
WordInt = Word ∪ Int
RealInt = Real ∪ Int
Num = Word ∪ Real ∪ Int
NumTxt = Word ∪ Real ∪ Int ∪ String ∪ Char

Among these, the five first (Int, Real, Word, String and Char) are said to
be basic; the remaining are said to be composite. The reason that the basic
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NONFIX INFIX
var 7→ set of monotypes var 7→ set of monotypes
abs 7→ realint → realint Precedence 7, left associative :

~ 7→ realint → realint div 7→ wordint ∗ wordint → wordint

mod 7→ wordint ∗ wordint → wordint

* 7→ num ∗ num → num

/ 7→ Real ∗ Real → Real

Precedence 6, left associative :
+ 7→ num ∗ num → num

- 7→ num ∗ num → num

Precedence 4, left associative :
< 7→ numtxt ∗ numtxt → numtxt

> 7→ numtxt ∗ numtxt → numtxt

<= 7→ numtxt ∗ numtxt → numtxt

>= 7→ numtxt ∗ numtxt → numtxt

Figure 27: Overloaded identifiers

classes are specified using ⊇ rather than = is that libraries may extend each
of the basic overloading classes with further type names. Special constants
are overloaded within each of the basic overloading classes. However, the
basic overloading classes must be arranged so that every special constant
can be assigned types from at most one of the basic overloading classes.
For example, to 0w5 may be assigned type word, or some other member of
Word, depending on the surrounding text. If the surrounding text does not
determine the type of the constant, a default type is used. The default types
for the five sets are int, real, word, string and char respectively.

Once overloading resolution has determined the type of a special constant,
it is a compile-time error if the constant does not make sense or does not
denote a value within the machine representation chosen for the type. For
example, an escape sequence of the form \uxxxx in a string constant of 8-bit
characters only makes sense if xxxx denotes a number in the range [0, 255].

E.2 Overloaded value identifiers

Overloaded identifiers all have identifier status v. An overloaded identifier
may be re-bound with any status (v, c and e) but then it is not overloaded
within the scope of the binding.
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The overloaded identifiers are given in Figure 27. For example, the entry

abs 7→ realint → realint

states that abs may assume one of the types {t → t | t ∈ RealInt}. In
general, the same type name must be chosen throughout the entire type of
the overloaded operator; thus abs does not have type real → int.

The operator / is overloaded on all members of Real, with default type
real ∗ real → real. The default type of any other identifier is that one
of its types which contains the type name int. For example, the program
fun double(x) = x + x; declares a function of type int ∗ int → int,
while fun double(x:real) = x + x; declares a function of type real ∗
real → real.

The dynamic semantics of the overloaded operators is defined in [18].



F Appendix: The Development of ML

This Appendix records the main stages in the development of ML, and the
people principally involved. The main emphasis is upon the design of the
language; there is also a section devoted to implementation. On the other
hand, no attempt is made to record work on applications of the language.

Origins

ML and its semantic description have evolved over a period of about twenty
years. It is a fusion of many ideas from many people; in this appendix we
try to record and to acknowledge the important precursors of its ideas, the
important influences upon it, and the important contributions to its design,
implementation and semantic description.

ML, which stands for meta language, was conceived as a medium for find-
ing and performing proofs in a formal logical system. This application was
the focus of the initial design effort, by Robin Milner in collaboration first
with Malcolm Newey and Lockwood Morris, then with Michael Gordon and
Christopher Wadsworth [20]. The intended application to proof affected the
design considerably. Higher order functions in full generality seemed neces-
sary for programming proof tactics and strategies, and also a robust type
system (see below). At the same time, imperative features were important
for practical reasons; no-one had experience of large useful programs written
in a pure functional style. In particular, an exception-raising mechanism was
highly desirable for the natural presentation of tactics.

The full definition of this first version of ML was included in a book [19]
which describes LCF, the proof system which ML was designed to support.
The details of how the proof application exerted an influence on design is
reported by Milner [39]. Other early influences were the applicative languages
already in use in Artificial Intelligence, principally LISP [36], ISWIM [28] and
POP2 [10].

Polymorphic types

The polymorphic type discipline and the associated type-assignment algo-
rithm were
prompted by the need for security; it is vital to know that when a program
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produces an object which it claims to be a theorem, then it is indeed a the-
orem. A type discipline provides the security, but a polymorphic discipline
also permits considerable flexibility.

The key ideas of the type discipline were evolved in combinatory logic
by Haskell Curry and Roger Hindley, who arrived at different but equivalent
algorithms for computing principal type schemes. Curry’s [14] algorithm
was by equation-solving; Hindley [26] used the unification algorithm of Alan
Robinson [48] and also presented the precursor of our type inference sys-
tem. James Morris [43] independently gave an equation-solving algorithm
very similar to Curry’s. The idea of an algorithm for finding principal type
schemes is very natural and may well have been known earlier. Roger Hindley
has pointed out that Carew Meredith’s inference rule for propositional logic
called Condensed Detachment, defined in the early 1950s, clearly suggests
that he knew such an algorithm [37].

Milner [38], during the design of ML, rediscovered principal types and
their calculation by unification, for a language (slightly richer than combina-
tory logic) containing local declarations. He and Damas [15] presented the
ML type inference systems following Hindley’s style. Damas [16], using ideas
from Michael Gordon, also devised the first mathematical treatment of poly-
morphism in the presence of references and assignment. Tofte [54] produced
a different scheme employing so-called imperative types, which was adopted
in the original version of the language. This approach has been superseded in
the present language by a simpler scheme, suggested by Tofte [54], Andrew
Wright [57], and Xavier Leroy [29], according to which polymorphic bindings
are restricted to non-expansive expressions.

Refinement of the Core Language

Two movements led to the re-design of ML. One was the work of Rod Burstall
and his group on specifications, crystallised in the specification language
CLEAR [11] and in the functional programming language HOPE [12]; the
latter was for expressing executable specifications. The outcome of this work
which is relevant here was twofold. First, there were elegant programming
features in HOPE, particularly pattern matching and clausal function defi-
nitions; second, there were ideas on modular construction of specifications,
using signatures in the interfaces. A smaller but significant movement was
by Luca Cardelli, who extended the data-type repertoire in ML by adding
named records and variant types.
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In 1983, Milner (prompted by Bernard Sufrin) wrote the first draft of a
standard form of ML attempting to unite these ideas; over the next three
years it evolved into the Standard ML core language. Notable here was the
harmony found among polymorphism, HOPE patterns and Cardelli records,
and the nice generalisations of ML exceptions due to ideas from Alan Mycroft,
Brian Monahan and Don Sannella. A simple stream-based I/O mechanism
was developed from ideas of Cardelli by Milner and Harper. The Standard
ML core language is described in detail in a composite report [23] which
also contains a description of the I/O mechanism and MacQueen’s proposal
for program modules (see later for discussion of this). Since then only few
changes to the core language have occurred. Milner proposed equality types,
and these were added, together with a few minor adjustments [40]. The last
development before the 1990 Definition was in the exception mechanism,
by MacQueen using an idea from Burstall [3]; it harmonized the ideas of
exception and data type construction.

Modules

Besides contributory ideas to the core language, HOPE [12] contained a sim-
ple notion of program module. The most important and original feature of
ML modules, however, stems from the work on parameterised specifications
in CLEAR [11]. MacQueen, who was a member of Burstall’s group at the
time, designed [34] a new parametric module feature for HOPE inspired by
the CLEAR work. He later extended the parameterisation ideas by a novel
method of specifying sharing of components among the structure parame-
ters of a functor, and produced a draft design which accommodated features
already present in ML – in particular the polymorphic type system. This de-
sign was discussed in detail at Edinburgh, leading to MacQueen’s first report
on modules [23].

Thereafter, the design came under close scrutiny through a draft op-
erational static semantics and prototype implementation of it by Harper,
through Kevin Mitchell’s implementation of the evaluation, through a deno-
tational semantics written by Don Sannella, and then through further work
on operational semantics by Harper, Milner, and Tofte. (More is said about
this in the later section on Semantics.) In all of this work the central ideas
withstood scrutiny, while it also became clear that there were gaps in the
design and ambiguities in interpretation. (An example of a gap was the
inability to specify sharing between a functor argument structure and its
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result structure; an example of an ambiguity was the question of whether
sharing exists in a structure over and above what is specified in the signature
expression which accompanies its declaration.)

Much discussion ensued; it was possible for a wider group to comment
on modules through using Harper’s prototype implementation, while Harper,
Milner and Tofte gained understanding during development of this seman-
tics. In parallel, Sannella and Tarlecki explored the implications of modules
for the methodology of program development [49]. Tofte, in his thesis [53],
proved several technical properties of modules in a skeletal language, which
generated considerable confidence in this design. A key point in this devel-
opment was the proof of the existence of principal signatures, and, in the
careful distinction between the notion of enrichment of structures, which al-
lows more polymorphism and more components, and realisation which allows
more sharing.

At a meeting in Edinburgh in 1987 a choice of two designs was presented,
hinging upon whether or not a functor application should coerce its actual
argument to its argument signature. The meeting chose coercion, and there-
after the production of Section 5 of this report – the static semantics of
modules – was a matter of detailed care. That section is undoubtedly the
most original and demanding part of this semantics, just as the ideas of
MacQueen upon which it is based are the most far-reaching extension to the
original design of ML.

Considerable experience was gained in implementing, programming with,
and teaching the language during the nearly ten years since the definition was
first published. Based on this experience a number of design decisions were
revisited at a meeting of the authors in Cambridge at the end of 1995. At
this meeting it was decided to make several modest, but significant, changes
to the language in order to simplify the semantics and to correct some short-
comings that had come to light. The most important of these changes was the
replacement of the imperative type discipline by the so-called value restric-
tion (discussed above), the elimination of structure sharing as a separate
concept from type sharing, and the introduction of the closely connected
mechanisms of opaque signature matching and type abbreviations in signa-
tures. An important impetus for these changes to the modules language was
the work of Leroy [30], and Harper and Lillibridge [21] on the type-theoretic
interpretation of modules (described below).
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Implementation

The first implementation of ML was by Malcolm Newey, Lockwood Mor-
ris and Robin Milner in 1974, for the DEC10. Later Mike Gordon and
Chris Wadsworth joined; their work was mainly in specialising ML towards
machine-assisted reasoning. Around 1980 Luca Cardelli implemented a ver-
sion on VAX; his work was later extended by Alan Mycroft, Kevin Mitchell
and John Scott. This version contained one or two new data-type features,
and was based upon the Functional Abstract Machine (FAM), a virtual ma-
chine which has been a considerable stimulus to later implementation. By
providing a reasonably efficient implementation, this work enabled the lan-
guage to be taught to students; this, in turn, prompted the idea that it could
become a useful general purpose language.

In Gothenburg, an implementation was developed by Lennart Augustsson
and Thomas Johnsson in 1982, using lazy evaluation rather than call-by-
value; the result was called Lazy ML and is described in [6]. This work is part
of continuing research in many places on implementation of lazy evaluation
in pure functional languages. But for ML, which includes exceptions and
assignment, the emphasis has been mainly upon strict evaluation (call-by-
value).

In Cambridge, in the early 1980s, Larry Paulson made considerable im-
provements to the Edinburgh ML compiler, as part of his wider programme of
improving Edinburgh LCF to become Cambridge LCF [45]. This system has
supported larger proofs than the Edinburgh system, and with greater conve-
nience; in particular, the compiled ML code ran four to five times faster.

Around the same time Gérard Huet at INRIA (Versailles) adapted ML
to Maclisp on Multics, again for use in machine-assisted proof. There was
close collaboration between INRIA and Cambridge in this period. ML has
undergone a separate development in the group at INRIA on the CAML
language [13]. Work on CAML included the development of several exten-
sions to the core language, notably updatable fields in record types, values
with dynamic types, support for lazy evaluation, and handling of embedded
languages with user-defined syntax. It did not, however, include modules.

The first implementation of the Standard ML core language was by Mitchell,
Mycroft and Scott at Edinburgh, around 1984. The prototype implementa-
tion of modules, before that part of the language settled down, was done in
1985-6; Mitchell dealt with evaluation, while Harper tackled the elaboration
(or ‘signature checking’) which raised problems of a kind not previously en-
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countered. Harper’s implementation employed a form of unification that was
later adopted in the static semantics of modules.

At around the same time the Poly/ML implementation began with a
suggestion from Mike Gordon that an interesting application of Matthews’
Poly language would be to implement Standard ML. Important experience
was gained through Matthews’ early implementation of the core language,
followed by several versions of the modules language as they were devised.
Poly/ML features arbitrary precision arithmetic, a process package, and a
windowing system. Considerable experience has been gained with the com-
piler, notably by Larry Paulson at Cambridge and by Abstract Hardware
Limited (AHL).

The Standard ML of New Jersey (SML/NJ) system has been in active
development since 1986 [5, 2]. Initially started by David MacQueen at Bell
Laboratories and Andrew Appel at Princeton University, the project has also
benefited from significant contributions by Matthias Blume, Emden Gansner,
Lal George, John Reppy and Zhong Shao. SML/NJ is a robust and com-
plete environment for Standard ML that supports the implementation of
large software systems and generates efficient code for a number of different
hardware and software platforms. SML/NJ also serves as a laboratory for
compiler research: in implementations of module systems for ML; code opti-
mization based on continuation-passing style; efficient pattern matching; and
very fast heap allocation and garbage collection. Dozens of researchers have
contributed to the development of the compiler, in such areas as efficient
closure representations, first-class continuations, type-directed compilation,
concurrent programming, portable code generators, separate compilation,
and register allocation. SML/NJ has also been widely used to explore ex-
tending SML with concurrency features.

In 1989, Mads Tofte, Nick Rothwell and David N. Turner started work on
the ML Kit Compiler in Edinburgh. The ML Kit is a direct translation of the
1990 Definition into a collection of Standard ML modules, emphasis being on
clarity rather than efficiency. During 1992 and 1993, Version 1 of the ML Kit
was completed, mostly through the work of Nick Rothwell at Edinburgh and
Lars Birkedal at DIKU[9]. In 1994, region inference was added to the ML
Kit, by Mads Tofte. Lars Birkedal wrote a region-based C-code generator
and a runtime system in C. In 1995, Martin Elsman and Niels Hallenberg
extended this work to generate native code for the HP PA-RISC architecture.

Harlequin Ltd. began the implementation of a commercial compiler in
1990. The MLWorks system is a fully-featured graphical programming en-
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vironment, including an interactive debugger, inspector, browser, extensive
profiling facilities, separate compilation and delivery, a foreign-language in-
terface, and libraries for threads and windowing systems.

Caml Light, a lightweight reimplementation of CAML released in 1991,
added a simple module system in the style of Modula-2, targeted towards sep-
arate compilation of modules: structures and signatures are identified with
files, functors and multiple views of a structure are not supported. These
were added in the Caml Special Light implementation in 1995, while preserv-
ing the support for separate compilation. Caml Special Light and the present
version of Standard ML share several important simplifications, such as the
value restriction on polymorphism, type definitions in signatures, and the
lack of support for structure sharing. The static semantics for Caml Special
Light is based on the type-theoretic properties of dependent function types
(functor signatures) and manifest types (type definitions in signatures) [30].

Moscow ML is an implementation of core Standard ML, created in 1994
by Sergei Romanenko in Moscow and Peter Sestoft in Copenhagen. The
Caml Light system was used to implement the dynamic semantics, and the
ML Kit guided the implementation of the static semantics. The result is a
compact and robust implementation, suitable for teaching.

The TIL (Typed Intermediate Languages) compiler developed at Carnegie
Mellon University by Greg Morrisett, David Tarditi, Perry Cheng, Chris
Stone, Robert Harper, and Peter Lee demonstrates the use of types in com-
pilation. All but the last few stages of TIL are expressed as type-directed
and type-preserving transforms. Types are used at run time to support un-
boxed, untagged data representations and natural calling conventions in the
presence of variable types and garbage collection. TIL employs a wide va-
riety of conventional functional language optimizations found in other SML
compilers, as well as a set of loop-oriented optimizations. A description of
the compiler and an analysis of its performance appears in [52].

Other currently active implementations are by Michael Hedlund at the
Rutherford-Appleton Laboratory, by Robert Duncan, Simon Nichols and
Aaron Sloman at the University of Sussex (POPLOG) and by Malcolm Newey
and his group at the Australian National University.

Semantics

The description of the first version of ML [19] was informal, and in an op-
erational style; around the same time a denotational semantics was written,
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but never published, by Mike Gordon and Robin Milner. Meanwhile struc-
tured operational semantics, presented as an inference system, was gaining
credence as a tractable medium. This originates with the reduction rules
of λ-calculus, but was developed more widely through the work of Plotkin
[47], and also by Milner. This was at first only used for dynamic semantics,
but later the benefit of using inference systems for both static and dynamic
semantics became apparent. This advantage was realised when Gilles Kahn
and his group at INRIA were able to execute early versions of both forms
of semantics for the ML core language using their Typol system [17]. The
static and dynamic semantics of the core language reached a final form mostly
through work by Tofte and Milner.

The modules of ML presented little difficulty as far as dynamic semantics
is concerned, but the static semantics of modules was a concerted effort by
several people. MacQueen’s original informal description [23] was the start-
ing point; Sannella wrote a denotational semantics for several versions, which
showed that several issues had not been settled by the informal description.
Robert Harper, while writing the first implementation of modules, made the
first draft of the static semantics. Harper’s version made clear the impor-
tance of structure names; work by Milner and Tofte introduced further ideas
including realisation; thereafter a concerted effort by all three led to several
suggestions for modification of the language, and a small range of alterna-
tive interpretations; these were assessed in discussion with MacQueen, and
more widely with the principal users of the language, and an agreed form
was reached.

Concurrently with the formulation of the Definition of Standard ML,
Harper and Mitchell took up the challenge adumbrated by MacQueen [33] to
find a type-theoretic interpretation of Standard ML [25]. This work led to the
formulation of the XML language, an explicitly-typed λ-calculus that cap-
tured many aspects of Standard ML. Although incomplete, their approach
formed the basis for a number of subsequent studies, including the work of
Harper and Lillibridge [21] and Leroy [30] on the type-theoretic interpreta-
tion of modules. This work influenced the decision to revise the language,
and culminated in a type-theoretic interpretation of the present language by
Harper and Stone [51]. The TIL/ML compiler (described above) is based
directly on this interpretation.

There is no doubt that the interaction between design and semantic de-
scription of modules has been one of the most striking phases in the entire
language development, leading (in the opinion of those involved) to a high
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degree of confidence both in the language and in the semantics.

Program Libraries

During 1989-1991, Dave Berry produced the first program library for Stan-
dard ML[7, 8]. The SML/NJ system is distributed with a rich library or-
ganised by Emden Gansner and John Reppy; this library was the starting
point for the SML Basis Library . The SML Basis Library [18] has been
developed over the past three years in a partnership between the SML/NJ
effort, MLWorks, and Moscow ML. The resulting library is a much improved
and extended replacement of the initial basis defined in the 1990 Definition
of Standard ML.





G Appendix: What is New?

This appendix gives an overview of how the present Definition differs from
the 1990 Definition of Standard ML[42]. For the purpose of this appendix,
we write SML ’90 for the language defined by the 1990 Definition and SML
’97 for the present language. For each major change, we give its rationale
and an overview of its practical implications. Also, the index may be used
for locating changes.

G.1 Type Abbreviations in Signatures

There are cases of type sharing which cannot be expressed in SML ’90 sig-
natures although they arise in structures. For example, there is no SML ’90
signature which precisely describes the relationship between s and t in

structure a =

struct

datatype s = C

type t = s * s

end

In SML ’97, one can write type abbreviations in signatures, e.g.,

signature A =

sig

type s

type t = s * s

end

The need for type abbreviations in signatures was clear when SML ’90 was
defined. However, type abbreviations were not included since, in the pres-
ence of both structure sharing and type abbreviations, principal signatures
do not exist[41] – and the SML ’90 Definition depended strongly upon the
notion of principal signature. Subsequently, Harper’s and Lillibridge’s work
on translucent sums[22] and Leroy’s work on modules[30] showed that, in
the absence of structure sharing and certain other features of the SML ’90
signatures, type abbreviations in signatures are possible. Type abbreviations
in signatures were implemented by David MacQueen in SML/NJ 0.93 and
by Xavier Leroy in Caml Special Light [31].
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In SML ’97, structure sharing has been removed (see Section G.3 below).
Type abbreviations are not included directly, but they arise as a derived
form, as follows. First, a new form of signature expression is allowed:

sigexp where type tyvarseq longtycon = ty

Here longtycon has to be specified by sigexp. The type expression ty may
refer to type constructors which are present in the basis in which the whole
signature expression is elaborated, but not to type constructors specified in
sigexp.

The effect of the where type is, roughly speaking, to instantiate longtycon
to ty . For example, the following sequence of declarations is legal:

signature SIG1 = sig type t; val x: t end;

signature SIG2 = SIG1 where type t = int*int;

structure S1: SIG1 = struct type t = real; val x = 1.0 end;

structure S2: SIG2 = struct type t = int*int; val x = (5, 7) end;

Next, a type abbreviation is a derived form. For example, type u = t*t

is equivalent to include sig type u end where type u = t*t . In SML
’97 it is allowed to include an arbitrary signature expression, not just a
signature identifier.

G.2 Opaque Signature Matching

In imposing a signature on a structure, one often wants the types of the
resulting structure to be “abstract” in order to hide their implementation.
(Signature matching in SML ’90 hides components, but does not hide type
sharing.) MacQueen originally suggested and implemented an abstraction

declaration for this purpose[32]. In the Commentary[41] it was pointed out
that the issue is the semantics of matching. SML ’97 provides two kinds of
matching, as new forms of structure expression:

strexp : sigexp

strexp :> sigexp

The first (:) is the SML ’90 signature matching; the second (:>) is opaque
matching. Opaque matching can be applied to the result structure of a
functor; thus it is more general than MacQueen’s abstraction declaration.
In CAML Special Light, all signature matching is opaque.
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With opaque matching, types in the resulting structure will be abstract,
to precisely the degree expressed in sigexp. Thus

signature Sig =

sig

type t = int

val x: t

type u

val y: u

end;

structure S1:> Sig =

struct type t = int

val x = 3

type u = real

val y = 3.0

end

val r = S1.x + 1

is legal, but a subsequent declaration val s = S1.y + 1.5 will fail to elab-
orate. Similarly, consider the functor declaration:

functor Dict(type t; val leq: t*t->int):>

sig type u = t*t

type ’a dict

end =

struct

type u = t*t

type ’a dict = (t * ’a) list

end

When applied, Dict will propagate the identity of the type t from argument
to result, but it will produce a fresh dict type upon each application.

Types which are specified as “abstract” in a opaque functor result signa-
ture give rise to generation of fresh type names upon each application of the
functor, even if the functor body is a constant structure. For example, after
the elaboration of

structure A = struct type t = int end

functor f():> sig type t end = A

structure B = f()

and C = f();
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the two types B.t and C.t are different.

G.3 Sharing

Structure sharing is a key idea in MacQueen’s original Modules design[32].
The theoretical aspects of structure sharing have been the subject of con-
siderable research attention[24, 53, 1, 55, 35]. However, judging from expe-
rience, structure sharing is not often used in its full generality, namely to
ensure identity of values. Furthermore, experience from teaching suggests
that the structure sharing concept is somewhat hard to grasp. Finally, the
semantic accounts of structure sharing that have been proposed are rather
complicated.

The static semantics of SML ’97 has no notion of structure sharing. How-
ever, SML ’97 does provide a weaker form of structure sharing constraints,
in which structure sharing is regarded as a derived form, equivalent to a
collection of type sharing constraints.

G.3.1 Type Sharing

In SML ’90, a type sharing constraint sharing type longtycon1 = ··· = longtyconn

was an admissible form of specification. In SML ’97 such a constraint does
not stand by itself as a specification, but may be used to qualify a specifica-
tion. Thus there is a new form of specification, which we shall call a qualified
specification:

spec sharing type longtycon1 = ··· = longtyconn

Here the long type constructors have to be specified by spec. The type
constructors may have been specified by type, eqtype or datatype specifi-
cations, or indirectly through signature identifiers and include. In order for
the specification to be legal, all the type constructors must denote flexible
type names. More precisely, let B be the basis in which the qualified specifi-
cation is elaborated. Let us say that a type name t is rigid (in B) if t ∈ T ofB
and that t is flexible (in B) otherwise. For example int is rigid in the initial
basis and every datatype declaration introduces additional rigid type names
into the basis. For the qualified specification to elaborate in basis B, it is
required that each longtycon i denotes a type name which is flexible in B. In
particular, no longtycon i may denote a type function which is not also a type
name (e.g., a longtycon must not denote Λ().s ∗ s).
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For example, the two signature expressions

sig sig

type s type s

type t datatype t = C

sharing type s = t sharing type s = t

end end

are both legal. By contrast, the signature expressions

sig sig

type s type s = int

type t = s*s datatype t = C

sharing type s = t sharing type s = t

end end

are both illegal.

G.3.2 The equality attribute of specified types

If spec sharing type longtycon1 = ··· = longtyconn elaborates successfully,
then all n type constructors will thereafter denote the same type name. This
type name will admit equality, if spec associates an equality type name with
one of the type constructors. Thus

eqtype t

type u

sharing type t = u

is legal and both t and u are equality types after the sharing qualification.
The mechanism for inferring equality attributes for datatype specifications is
the same as for inferring equality attributes for datatype declarations. Thus
the specification

datatype answer = YES | NO

datatype ’a option = Some of ’a | None

specifies two equality types. Every specification of the form datatype datdesc
introduces one type name for each type constructor described by datdesc.
The equality attribute of such a type name is determined at the point where
the specification occurs. Thus, in
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type s

datatype t = C of s

the type name associated with t will not admit equality, even if s later
is instantiated to an equality type. Type names associated with datatype
specifications can be instantiated to other type names by subsequent type
sharing or where type qualifications. In this case, no effort is made to ban
type environments that do not respect equality. For example,

sig

eqtype s

datatype t = C of int -> int

sharing type s = t

end

is legal in SML ’97, even though it cannot be matched by any real structure.

G.3.3 Structure Sharing

For convenience, structure sharing constraints are provided, but only as a
shorthand for type sharing constraints. There is a derived form of specifica-
tion

spec sharing longstrid1 = ··· = longstridk (k ≥ 2)

Here spec must specify longstrid1, . . . , longstridk. The equivalent form con-
sists of spec qualified by all the type sharing constraints

sharing type longstrid i.longtycon = longstrid j.longtycon

(1 ≤ i < j ≤ k) such that both longstrid i.longtycon and longstrid j.longtycon
are specified by spec.

In SML ’90, structure sharing constraints are transitive, but in SML ’97
they are not. For example,

structure A: sig type t end

structure B: sig end

structure C: sig type t end

sharing A=B=C

induces type sharing on t, whereas
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structure A: sig type t end

structure B: sig end

structure C: sig type t end

sharing A=B sharing B=C

induces no type sharing. Thus a structure sharing constraint in some cases
induces less sharing in SML ’97 than in SML ’90.

Next, SML ’97 does not allow structure sharing equations which refer to
“external” structures. For example, the program

structure A= struct end;

signature SIG = sig structure B : sig end

sharing A = B

end;

is not legal in SML ’97, because the sharing constraint now only qualifies the
specification structure B: sig end, which does not specify A. Thus not all
legal SML ’90 signatures are legal in SML ’97.

The removal of structure sharing has a dramatic simplifying effect on
the semantics. Most importantly, the elaboration rules can be made mono-
genic (i.e., “deterministic”), up to renaming of new type names. The need
for the notion of principal signature (and even equality-principal signature)
disappears. The notions of structure name, structure consistency and well-
formed signature are no longer required. The notion of cover can be deleted.
Only one kind of realisation, namely type realisation, remains. The notion
of type-explication has been removed, since it can be proved that signatures
automatically are type-explicit in the revised language.

G.4 Value Polymorphism

The imperative types of SML ’90 were somewhat subtle, and they propagated
into signatures in an unpleasant way. Experiments on existing code suggest
that the power of imperative types is rarely used fully and that value poly-
morphism, which can in fact be seen as a restriction of the imperative type
discipline, usually suffices[57]. With value polymorphism, there is only one
kind of type variable. The definition of non-expansive expressions (see G.13
below) is relaxed to admit more expressions. In a declaration

val x = exp



G APPENDIX: WHAT IS NEW? 102

the variable x will only be given a non-trivial polymorphic type scheme (i.e.,
a type scheme which is not also a type) if exp is non-expansive. This applies
even if there is no application of ref in the entire program.

Example: in the declaration val x = [] @ [], x can be assigned type
’a list, but not the type scheme ∀’a.’a list (since [] @ [] is an expansive
expression). Consequently, (1::x, true::x) will not elaborate in the scope
of the declaration. Also, if the declaration appears at top level, the compiler
may refuse elaboration due to a top-level free type variable (see G.8). Thus
the top-level phrase [] @ [] may fail, since it abbreviates val it = [] @

[]. But of course it will not fail if a monotype is explicitly ascribed, e.g. []
@ []:int list.

On the other hand, in fun f() = [] @ [] (or val f = fn () => [] @

[]), f can be assigned type scheme ∀’a.unit → ’a list so that, for example,
(1::f(),true::f()) elaborates. This transformation (η-conversion) often
gives the desired polymorphism. But beware that η-conversion can change
the meaning of the program, if exp does not terminate or has side-effects.

G.5 Identifier Status

The 1990 Definition treated identifier status informally (in Section 2.4); a
fuller definition was given in the Commentary[41, Appendix B]. However,
some problems with the handling of exception constructors remained[27,
Sect. 10.3].

In the present document, we have collapsed the three identifier classes Var,
ExCon and Con into a single class, VId, of value identifiers. The semantic
objects VE previously called variable environments are replaced by value
environments. A value environment maps value identifiers to pairs of the
form (o, is), where o is some semantic object and is is an identifier status
(is ∈ {v, c, e}) indicating whether the identifier should be regarded as a
value variable (v), a value constructor (c) or an exception constructor (e).
These changes have been carried out both in the static and in the dynamic
semantics, for both Core and Modules. Thus the assignment of identifier
status is incorporated formally in the present Definition.

The definition of enrichment has been modified to allow an identifier that
has been specified as a value to be matched by a value constructor or an
exception constructor. However, a specification of a value or exception con-
structor must be matched by a value or exception constructor, respectively.

Thus, the status descriptor says more than just what the lexical status
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of the identifier is — it is a statement about the value in the corresponding
dynamic environment: if the status of id in the static environment is c, then
the value in a matching dynamic environment must be a value constructor.
Similarly, if the status of id in the static environment is e, then the value in a
matching dynamic environment must be an exception name. If the status of
id is just v, however, the corresponding value in the dynamic environment can
be any kind of value (of the appropriate type), including a value constructor
and an exception name.

The exception environment (EE) has been deleted from the semantics,
since it is no longer required for the definition of enrichment. Also, the
constructor environment CE in the static semantics has been replaced by a
value environment in which every identifier has status c.

The new handling of identifier status admits some val rec declarations
that were illegal in SML ’90 (see the comment to Rule 26).

G.6 Replication of Datatypes

SML ’97 allows datatype replication, i.e. declarations and specifications of
the form

datatype tycon -=- datatype longtycon

When elaborated, this binds type constructor tycon to the entire type struc-
ture (value constructors included) to which longtycon is bound in the context.
Datatype replication does not generate a new datatype: the original and the
replicated datatype share.

Here is an example of a use of the new construct:

signature MYBOOL =

sig

type bool

val xor: bool * bool -> bool

end;

structure MyBool: MYBOOL =

struct

datatype bool = datatype bool (* from the initial basis *)

fun xor(true, false) = true

| xor(false, true) = true

| xor _ = false

end;
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val x = MyBool.xor(true, false);

Here MyBool.xor(true, false) evaluates to true. Note the use of trans-
parent signature matching; had opaque matching been used instead, the
declaration of x would not have elaborated.

A datatype replication implicitly introduces the value constructors of
longtycon into the current scope. This is significant for signature match-
ing. For example, the following program is legal:

datatype t0 = C;

structure A : sig type t val C: t end =

struct

datatype t = datatype t0

end;

Note that C is specified as a value in the signature; the datatype replication
copies the value environment of t0 into the structure and that is why the
structure contains the required C value.

To make it possible for datatype replication to copy value environments
associated with type constructors, the dynamic semantics has been modified
so that environments now contain a TE component (see Figure 13, page 42).
Further, in the dynamic semantics of modules, the ↓ operation, which is
used for cutting down structures when they are matched against signatures,
has been extended to cover the TE component (see page 54). In the above
example, the value environment assigned to A.t will be empty, signifying
that the type has no value constructors. Had the signature instead been

sig datatype t val C: t end

then the signature matching would have assigned A.t a value environment
with domain {C}, indicating that A.t has value constructor C.

When the datatype replication is used as a specification, longtycon can
refer to a datatype which has been introduced either by declaration or by
specification. Here is an example of the former:

datatype t = C | D;

signature SIG =

sig

datatype t = datatype t (* replication is not recursive! *)

val f: t -> t

end
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G.7 Local Datatypes

This change is concerned with expressions of the form let dec in exp end

in which dec contains a datatype declaration. Let us refer to such a datatype
declaration as a local datatype declaration. There are two reasons why
changes to the handling of local datatype declarations are necessary.

The first is that the rule given for elaboration of let-expressions in the
1990 Definition is unsound[27]; the problem has to do with the ability to
export type names of locally declared datatypes out of scope.

The second is that the static semantics relies on the following invariant
about all contexts, C, which arise in elaboration from the initial basis:

tynamesC ⊆ T of C

This invariant is used, for example, in the rule for elaborating datatype
declarations, where type names are picked “fresh” with respect to T ofC. As
pointed out by Kahrs, the second premise of rule 16 in the 1990 Definition
violates the above invariant.

To solve the first problem, the rule for elaborating let-expressions (rule
4 in the present document) has been provided with a side-condition which
prevents the type of exp from containing type names generated by dec. For
example,

let datatype t = C in C end

was legal SML ’90 but is not legal SML ’97.
To solve the second problem, a side-condition has been added in the

rule for matches and the rule for val rec (rules 14 and 26 of the present
document). As a consequence, again fewer programs elaborate. For example,
the expression

fn x => let datatype t = C

val _ = if true then x else C

in 5

end

is not legal SML ’97, although it was legal SML ’90.
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G.8 Principal Environments

In SML ’90, the elaboration rule which allows any dec to appear as a strdec
is

C of B ⊢ dec ⇒ E E principal for dec in (C of B)

B ⊢ dec ⇒ E
The side-condition forces the type scheme in E to be as general as possible.
However, this side-condition would be undesirably restrictive in SML ’97,
since the new definition of the Clos operation admits less polymorphism
than the one used in SML ’90. For example, neither

val f = (fn x => x)(fn x => x)

structure A = struct end

val y = f 7

(where the presence of the structure declaration forces each val declaration
to be parsed as a strdec), nor

structure A: sig val f: int -> int end =

struct

val f = (fn x => x)(fn x => x)

end

would be legal in SML ’97, if the side-condition were enforced. (A type-
checker may at first infer the type ’a → ’a from the declaration of f, but
since (fn x => x)(fn x => x) is expansive, the generalisation to ∀’a.’a →
’a is not allowed.) By dropping the side-condition, it becomes possible to
have the textual context of a structure-level declaration constrain free type
variables to monotypes. Thus both the above examples can be elaborated.

Rather than lifting the notion of principal environments to the modules
level, we have chosen to drop the requirement of principality. Since the
notion of principal environments is no longer used in the rules, even the
definition of principal environments has been removed. In practice, however,
type checkers still have to infer types that are as general as possible, since
implementations should not reject programs for which successful elaboration
is possible.

In order to avoid reporting free type variables to users, rules 87 and 89
require that the environment to which a topdec elaborates must not contain
free type variables. It is possible to satisfy this side-condition by replac-
ing such type variables by arbitrary monotypes; however, implementers may
instead choose to refuse elaboration in such situations.
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G.9 Consistency and Admissibility

The primary purpose of consistency in SML ’90 was to allow a very simple
elaboration rule for structure sharing. A secondary purpose was to ban any
signature which, because it specifies a datatype in inconsistent ways (e.g.
with different constructors), can never be matched. With the removal of
structure sharing, the primary purpose of consistency has gone away. In our
experience, the secondary purpose has turned out not to be very significant
in practice. Textual copying of datatype specifications in different signatures
is best avoided, since changes in the datatype will have to be done several
places. In practice, it is better to specify a datatype in one signature and then
access it elsewhere using structure specifications or include. In SML ’90 one
could specify sharing between a datatype specification and an external (i.e.,
declared) datatype, and a consistency check was useful in this case. But
in SML ’97 this form of sharing is not allowed, so there remains no strong
reason for preserving consistency; therefore it has been dropped.

In SML ’90, admissibility was imposed partly to ensure the existence of
principal signatures (which are no longer needed) and partly to ban certain
unmatchable signatures. In SML ’90, admissibility was the conjunction of
well-formedness, cycle-freedom and consistency. Cycle-freedom is no longer
relevant, since there is no structure sharing. We have already discussed
consistency. Well-formedness of signatures is no longer relevant, but the
notion of well-formed type structures is still relevant. It turns out that well-
formedness only needs to be checked in one place (in rule 64). Otherwise,
well-formedness is preserved by the rules (in a sense which can be made pre-
cise). Thus one can avoid a global well-formedness requirement and dispense
with admissibility. This we have done.

G.10 Special Constants

The class of special constants has been extended with word and char con-
stants and with hexadecimal notation. Also, there are additional escape
sequences in strings and support for UNICODE characters. See Section 2.2.

G.11 Comments

A clarification concerning unmatched comment brackets was presented in
the Commentary; subsequently, Stefan Kahrs discovered a problem with de-
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manding that an unmatched *) be reported by the compiler. In SML ’97,
we therefore simply demand that an unmatched (* must be reported by the
compiler.

G.12 Infixed Operators

The rules for associativity of infix operators at the same level of precedence
have been modified, to avoid confusion between right- and left-associative
operators with the same binding precedence (see Section 2.6).

G.13 Non-expansive Expressions

The class of non-expansive expressions (Section 4.7) has been extended, to
compensate for the loss of polymorphism which value polymorphism entails.

G.14 Rebinding of built-in identifiers

In SML ’97, no datbind , valbind or exbind may bind true, false, nil, ::
or ref and no datbind or exbind may bind it (Section 2.9). Similarly, no
datdesc, valdesc or exdesc may describe true, false, nil, :: or ref and no
datdesc or exdesc may describe it (Section 3.5). These changes are made
in order to fix the meaning of derived forms and to avoid ambiguity in the
handling of ref in the dynamic semantics of the Core.

G.15 Grammar for Modules

There are several new derived forms for modules, see Appendix A (Figures
18 and 19). The grammar for topdec has been modified, so that there is
no longer any need to put semicolons at the end of signature and functor
declarations. Empty and sequential signature and functor declarations have
been removed, as they no longer serve any purpose. SML ’97 has neither
functor signature expressions nor functor specifications, since they could not
occur in programs and did not gain wide acceptance.

G.16 Closure Restrictions

Section 3.6 of the 1990 Definition has been deleted.
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G.17 Specifications

open and local specifications have been criticised on the grounds of pro-
gramming methodology[4]. Also, they are no longer needed for defining the
derived forms for functors and they conflict with a desire to have all signa-
tures be type-explicit.

SML ’97 therefore admits neither open nor local in specifications. More-
over, sequential specifications must not specify the same identifier twice. As
a consequence, the definition of type-explication has been removed: type-
explication is automatically preserved by elaboration (if one starts in the
initial basis) so there is no need to impose type-explicitness explicitly.

G.18 Scope of Explicit Type Variables

A binding construct for explicit type variables has been introduced at val

and fun (see Figure 21). For example, one can declare the polymorphic
identity function by

fun ’a id(x:’a) = x

There is no requirement that all explicit type variables be bound by this
binding construct. For those that are not, the scope rules of the 1990 Defi-
nition apply. The explicit binding construct has no impact on the dynamic
semantics. In particular, there are no explicit type abstractions or applica-
tions in the dynamic semantics.

G.19 The Initial Basis

To achieve a clean interface to the new Standard ML Basis Library[18], the
initial basis (Appendices C and D) has been cut down to a bare minimum.
The present Definition only provides what is necessary in order to define
the derived forms and special constants of type int, real, word, char and
string. The following identifiers are no longer defined in the initial ba-
sis: <>, ^, !, @, Abs, arctan, chr, Chr, close in, close out, cos, Diff,
Div, end of stream, exp, Exp, explode, floor, Floor, implode, input,
instream, Interrupt, Io, ln, Ln, lookahead, map, Mod, Neg, not, real

(the coercion function), rev, sin, size, sqrt, Sqrt, std in, std out, Sum,
output, outstream, Prod, Quot. The corresponding basic values have also
been deleted.
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G.20 Overloading

The Standard ML Basis Library[18] rests on an overloading scheme for special
constants and pre-defined identifiers. We have adopted this scheme (see
Appendix E).

G.21 Reals

real is no longer an equality type and real constants are no longer allowed
in patterns. The Basis Library provides IEEE equality operations on reals.





References

[1] Maria Virginia Aponte. Extending record typing to type paramet-
ric modules with sharing. In Proc. of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 465–478. ACM Press, January 1993.

[2] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In
Programming Language Implementation and Logic Programming, vol-
ume 528 of Lecture Notes in Computer Science, pages 1–26, New York,
N.Y., August 1991. Springer-Verlag.

[3] Andrew Appel, David MacQueen, Robin Milner, and Mads Tofte. Uni-
fying exceptions with constructors in Standard ML. LFCS Report Series
ECS-LFCS-88-55, Laboratory for Foundations of Computer Science, Ed-
inburgh University, Mayfield Rd., EH9 3JZ Edinburgh, U.K., June 1988.

[4] Andrew W. Appel. A critique of Standard ML. Journal of Functional
Programming, 3(4):391–429, October 1993.

[5] Andrew W. Appel and David B. MacQueen. A Standard ML compiler.
In Gilles Kahn, editor, Functional Programming Languages and Com-
puter Architecture. ACM, Springer-Verlag, Sept 1987.

[6] Lennart Augustsson and Thomas Johnsson. Lazy ML user’s manual.
Technical report, Department of Computer Science, Chalmers Univer-
sity of Technology, 1987.

[7] Dave Berry. The Edinburgh SML Library. Technical Report ECS-LFCS-
91-148, Laboratory for Foundations of Computer Science, Department
of Computer Science, Edinburgh University, April 1991.

[8] Dave Berry. Lessons from the design of a Standard ML library. Journal
of Functional Programming, 3(4):527–552, October 1993.

[9] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The
ML Kit (Version 1). Technical Report DIKU-report 93/14, Department
of Computer Science, University of Copenhagen, Universitetsparken 1,
DK-2100 Copenhagen, 1993.



REFERENCES 113

[10] R. M. Burstall and R. Popplestone. POP-2 reference manual. In Dale
and Michie, editors, Machine Intelligence 2. Oliver and Boyd, 1968.

[11] Rod Burstall and Joseph A. Goguen. Putting theories together to make
specifications. In Proc. Fifth Int’l Joint Conf. on Artificial Intelligence,
pages 1045–1058, 1977.

[12] Rod Burstall, David MacQueen, and Donald Sannella. HOPE: An ex-
perimental applicative language. In Proc. 1980 LISP Conference, pages
136–143, Stanford, California, 1980. Stanford University.

[13] Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categori-
cal abstract machine. Science of Computer Programming, 8, May 1987.

[14] H. B. Curry. Modified basic functionality in combinatory logic. Dialec-
tica, 23:83–92, 1969.

[15] Luis Damas and Robin Milner. Principal type schemes for functional
programs. In Proc. Ninth ACM Symposium on Principles of Program-
ming Languages, pages 207–212, 1982.

[16] Luis Manuel Martins Damas. Type Assignment in Programming Lan-
guages. PhD thesis, Edinburgh University, 1985.

[17] Thierry Despeyroux. Executable specifications of static semantics. In
Gilles Kahn, David MacQueen, and Gordon Plotkin, editors, Seman-
tics of Data Types, volume 173 of Lecture Notes in Computer Science.
Springer Verlag, June 1984.

[18] E.R. Gansner and J.H. Reppy (eds.). The Standard ML Basis Library
reference manual. (In preparation).

[19] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF: A Mechanized Logic of Computation, volume 78 of Lecture Notes
in Computer Science. Springer Verlag, 1979.

[20] M.J.C. Gordon, R. Milner, L. Morris, M.C. Newey, and C.P. Wadsworth.
A metalanguage for interactive proof in LCF. In Proc. Fifth ACM Sym-
posium on Principles of Programming Languages, Tucson, AZ, 1978.



REFERENCES 114

[21] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In Proc. Twenty-First ACM Sym-
posium on Principles of Programming Languages, pages 123–137, Port-
land, OR, January 1994.

[22] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In Conference Record of POPL ’94:
21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 123–137. ACM Press, January 1994.

[23] Robert Harper, David MacQueen, and Robin Milner. Standard ML.
Technical Report ECS–LFCS–86–2, Laboratory for Foundations of
Computer Science, Edinburgh University, March 1986.

[24] Robert Harper, Robin Milner, and Mads Tofte. A type discipline for
program modules. In Proc. Int’l Joint Conf. on Theory and Practice
of Software Development (TAPSOFT), pages 308–319. Springer-Verlag,
Mar. 1987. Lecture Notes in Computer Science, Vol. 250.

[25] Robert Harper and John C. Mitchell. On the type structure of Standard
ML. ACM Trans. on Prog. Lang. and Sys., 15(2):211–252, April 1993.

[26] J. Roger Hindley. The principal type scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146:29–40,
1969.

[27] Stefan Kahrs. Mistakes and ambiguities in the Definition of Standard
ML. Technical Report ECS-LFCS-93-257, Dept. of Computer Science,
University of Edinburgh, 1993.

[28] Peter J. Landin. The next 700 programming languages. Comm. ACM,
9(3):57–164, 1966.

[29] Xavier Leroy. Polymorphism by name. In Proc. Twentieth ACM Sym-
posium on Principles of Programming Languages, January 1993.

[30] Xavier Leroy. Manifest types, modules and separate compilation. In
Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 109–122. ACM
Press, January 1994.



REFERENCES 115

[31] Xavier Leroy. The Caml Special Light system. Software and documen-
tation available on the Web, http://pauillac.inria.fr/csl/, 1995.

[32] D. MacQueen. Modules for Standard ML. In Conf. Rec. of the 1984
ACM Symp. on LISP and Functional Programming, pages 198–207, Aug.
1984.

[33] David MacQueen. Using dependent types to express modular struc-
ture. In Proc. Thirteenth ACM Symposium on Principles of Program-
ming Languages, 1986.

[34] David. B. MacQueen. Structures and parameterisation in a typed func-
tional language. In Proc. Symposium on Functional Programming and
Computer Architecture, Aspinas, Sweden, 1981.

[35] David B. MacQueen and Mads Tofte. A semantics for higher-order
functors. In Donald Sannella, editor, Proceedings of the 5th European
Symposium on Programming (ESOP), volume 788 of Lecture Notes in
Computer Science, pages 409–423. Springer-Verlag, 1994.

[36] John McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1956.

[37] D. Meredith. In memoriam Carew Arthur Meredith. Notre Dame Jour-
nal of Formal Logic, 18:513–516, 1977.

[38] Robin Milner. A theory of type polymorphism in programming lan-
guages. J. Computer and Systems Sciences, 17:348–375, 1978.

[39] Robin Milner. How ML evolved. Polymorphism: The ML/LCF/Hope
Newsletter, 1(1), 1983.

[40] Robin Milner. Changes to the Standard ML core language. Techni-
cal Report ECS-LFCS-87-33, Laboratory for Foundations of Computer
Science, Edinburgh University, 1987.

[41] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT
Press, 1991.

[42] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990.



REFERENCES 116

[43] James H. Morris. Lambda Calculus Models of Programming Languages.
PhD thesis, MIT, 1968.

[44] Colin Myers, Chris Clack, and Ellen Poon. Programming with Standard
ML. Prentice Hall, 1993.

[45] Lawrence C. Paulson. Logic and Computation: Interactive Proof with
LCF. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1987.

[46] Lawrence C. Paulson. ML for the Working Programmer (2nd edition).
Cambridge University Press, 1996.

[47] Gordon Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI–FN–19, Computer Science Department, Aarhus
University, 1981.

[48] John A. Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965.

[49] Donald Sannella and Andrzej Tarlecki. Program specification and de-
velopment in Standard ML. In Proc. Twelfth ACM Symposium on Prin-
ciples of Programming Languages, New Orleans, 1985.

[50] Ryan Stansifer. ML Primer. Prentice Hall, 1992.

[51] Chris Stone and Robert Harper. A type-theoretic account of Standard
ML 1996. Technical Report CMU-CS-96-136, School of Computer Sci-
ence, Carnegie Mellon University, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213-3891, May 1996.

[52] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert
Harper, and Peter Lee. TIL: A type-directed optimizing compiler for
ML. In Proc. ACM SIGPLAN Symposium on Programming Language
Design and Implementation, Philadelphia, PA, May 1996.

[53] Mads Tofte. Operational Semantics and Polymorphic Type Inference.
PhD thesis, Edinburgh University, Department of Computer Science,
Edinburgh University, Mayfield Rd., EH9 3JZ Edinburgh, May 1988.
Available as Technical Report CST-52-88.



REFERENCES 117

[54] Mads Tofte. Type inference for polymorphic references. Information
and Computation, 89(1), November 1990.

[55] Mads Tofte. Principal signatures for higher-order program modules.
Journal of Functional Programming, 4(3):285–335, July 1994.

[56] Jeffrey D. Ullman. Elements of ML Programming. Prentice Hall, 1994.

[57] Andrew Wright. Simple imperative polymorphism. Journal of Lisp and
Symbolic Computation, 8(4):343–355, December 1995.




	Introduction
	Syntax of the Core
	Reserved Words
	Special constants
	Comments
	Identifiers
	Lexical analysis
	Infixed operators
	Derived Forms
	Grammar
	Syntactic Restrictions

	Syntax of Modules
	Reserved Words
	Identifiers
	Infixed operators
	Grammar for Modules
	Syntactic Restrictions

	Static Semantics for the Core
	Simple Objects
	Compound Objects
	Projection, Injection and Modification
	Types and Type functions
	Type Schemes
	Scope of Explicit Type Variables
	Non-expansive Expressions
	Closure
	Type Structures and Type Environments
	Inference Rules
	Further Restrictions

	Static Semantics for Modules
	Semantic Objects
	Type Realisation
	Signature Instantiation
	Functor Signature Instantiation
	Enrichment
	Signature Matching
	Inference Rules

	Dynamic Semantics for the Core
	Reduced Syntax
	Simple Objects
	Compound Objects
	Basic Values
	Basic Exceptions
	Function Closures
	Inference Rules

	Dynamic Semantics for Modules
	Reduced Syntax
	Compound Objects
	Inference Rules

	Programs
	Appendix: Derived Forms
	Appendix: Full Grammar
	Appendix: The Initial Static Basis
	Appendix: The Initial Dynamic Basis
	Overloading
	Overloaded special constants
	Overloaded value identifiers

	Appendix: The Development of ML
	Appendix: What is New?
	Type Abbreviations in Signatures
	Opaque Signature Matching
	Sharing
	Type Sharing
	The equality attribute of specified types
	Structure Sharing

	Value Polymorphism
	Identifier Status
	Replication of Datatypes
	Local Datatypes
	Principal Environments
	Consistency and Admissibility
	Special Constants
	Comments
	Infixed Operators
	Non-expansive Expressions
	Rebinding of built-in identifiers
	Grammar for Modules
	Closure Restrictions
	Specifications
	Scope of Explicit Type Variables
	The Initial Basis
	Overloading
	Reals

	width0pt height2cm depth0pt References

