Explaining and Extending the Bit-parallel Approximate
String Matching Algorithm of Myers

Heikki Hyyrd

Department of Computer and Information Sciences, University wipEae, Finland
Heikki.Hyyro@uta.fi

Abstract. The O(mni/ w), wherem is pattern lengthn is text length andv is
the computer word size, bit-parallel algorithm of Myers [7bie of the best
current algorithms in the case of approximate string matching algpwi
insertions, deletions and substitutions. We begin this paper by rderavi
practically equivalent version of the algorithm of Myers. Tikidone in a way,
which we believe makes the logic behind the algorithm easiemderstand
than the original presentation. Then we show how to extend thethigaid
allow also a fourth kind of error: transposition of two adjacentadtars. This
is a very common type of error for example in typed text [5],hast typically
been omitted from approximate string matching algorithms. Finallpresent
experimental results to show what kind of effect adding transposit®nrhthe
performance of the algorithm.

1. Introduction

Approximate string matching can be generally defiae searching for substrings of a
text that are within a predefined edit distanceshold from a given pattern. L&ext

= Tex{l...n] denote a text of length, Pat= Paf1...m|] denote a pattern of length

ed a,p) denote the edit distance between striagand 5, andk be the maximum
allowed distance. Typicallgd a,p) is defined as the Levenshtein edit distance [6],
which is the minimum number of insertions, deleticaand substitutions of a single
character needed in order to mafteand S equal. The task of approximate string
matching can be more formally defined as findirgnfrthe text all indicegfor which
edPat, Texfh...j]) < k with someh <j.

Permitting also a fourth edit operation of trangpgswo adjacent characters was
proposed already in a pioneering work by DamerduTBis operation is recognized
as being important at least when searching typeid[$¢. Transposition is permitted
to occur between such two adjacent charactersatleapermanently adjacent to each
other. This means, for example, that we need 3atipers to edit “acb” into “ba”,
even though it would seem possible to accomplighwhith only two operations by
first transposing “ba” into “ab” and then addingca in between them (or vice versa,
deleting first the “c” and then transposing). ledt{a,) denote the edit distance
between stringzr and £ when also transposition is allowed. Approximatengt
matching with the edit distanaatis defined in a similar fashion to what was done
above in the case efl

A natural (and therefore also the classic) solutmmpproximate string matching is
the use of dynamic programming, which results inG§fmn) algorithm (e.g. [10]).
Even though this basic approach is slow, it i$ $t# most flexible as it is suitable not
only for bothed andedt, but also for many other types of distance metfitikonen
[12] has presented a so-called cut-off heuristic filee dynamic programming
algorithm, which results in a@(kn) expected time algorithm.

Recent literature about approximate string matchiag concentrated mostly on
the distanceed This is perhaps because the distaedés simpler to implement but
almost as powerful as the distanedt One exception to this rule is the nrgrep
algorithm of Navarro [9], in which the ®(/win) distanceed approximate string
matching algorithm of Wu and Manber [13] is extethdier the distancedt Navarro
has also made an extensive survey [8] of approxinséiing matching algorithms
under the distanced One of the most notable recent algorithms in #resa is the
O('mnl/ w) bit-vector algorithm of Myers [7]. In what follaswve will first discuss the
classic dynamic programming algorithm and the abowentioned algorithm of
Myers, and then show how to modify the latter fog tistancedt

2. Dynamic programming

To make the notation simpler, let,g(i,j) denoteedafl...i],41...j]) and define
a[1...0] = & wheree denotes the empty string. In addition, le denote the length
of the stringa. The idea of the dynamic programming algorithntoisstart from the
trivially known values of typed a[l...i],&) andedg,41...j]), and arrive at the value
eda,p) = ed,A|al.|8) by recursively computingd, 4i.j) from previously computed
valuesed, i-1]-1), ed, fi-1,j) anded,4i,j-1). This can be done by filling a dynamic
programming matribD using the following well-known recurrence.

Recurrence 1.
Di,0]=i, D[0, j]=j.
ofi. i]= {D[i -1 -1t ofi] = i
1+ mingD[i -1, -1, D -1.i], Ofi, j -1}, if ofi] # 4[i]
In this matrixD[i,j] = ed,g(i,j), and seed a,8) = D[|al,|4].

Du and Chang [3] have given the following Recuree@dor the edit distancedt In
this case we denote the dynamic programming magioT, and the superscrif®
denotes the reverse of a string (that igy i “abc”, thena® = “cba”).

Recurrence 2:

DT[i~1] = DT[-1 j]=max{|a || A1}

DT[i.0] =i, DT[0, j] = j.
DT[i-1 -1} if ofi] = 4[i]

DT[i, j] = 1+min{DT[i -2 j- 2, DT[i-1 j], DT[i, j -1}, if ofi -1..i] = pR[j-1...i]
1+min{DT[i -1, j -4, DT[i -1 j], DT[i, j -1}, otherwise.

Instead of computing edit distance between strirgsand S, the dynamic
programming algorithm can be changed to find apipnate occurrences af from
by having an initial conditio®[0,j] = 0 instead 0D[0,j] =j (or DT[0,j] = 0 instead of
DT[O0,j] =j). Thus, whernx = Patandf = Text the situation corresponds to the earlier
definition of approximate string matching. In thiscase DJ[ij] =
min{edPaf0...i], Tex{h...j]), h<j} (or DT][i,j] = min{ed{Paf0...i], Texfh...j]), h<
i}. From now on we always refer to the versiondodndDT that have been filled in
this manner.

Ukkonen ([11, 12]) has studied the properties efdgnamic programming matrix.
Among these there were the following two, which lggdp both the edit distance and
the approximate string matching version$of

-The diagonal property: D[i,j] — D[i-1,-1] = 0 or 1.
-The adjacency property: D[i,j] - D[i,j-1] =-1, 0 or 1, and
D[i,j]—-D[i-1j1=-1,0 or 1.

It is fairly straightforward to verify that the sanproperties hold also for the matrix
DT.

The values of the dynamic programming matrix angallg computed by filling it
in a column-wise manner, thus effectively scanning string 8 (or the text) one
character at a time from left to right. At each reltder the corresponding column is
completely filled. This allows us to save spacestnying only one or two columns at
a time, since the values in tlih column depend only on oned{ or two (df
previous columns.

2.1 The cut-off heuristic for improving the dynamic programming algorithm

Ukkonen proposed a so-called cut-off heuristic [X2] improve the dynamic
programming algorithm. A simple consequence of diegonal property is that if
DIi,j] > k (the maximum allowed error), then alBgi+r, j+r] > k for r > 0. Suppose
we are conducting approximate string matching aolamn-wise manner amglis the
lowest cell of thejf1)th column oD, which has a valug k. Then only the cell®[1,
il D[2,], ..., D[g+1,]] of thejth column need to be computed. We know Dfaf] >

k fori > g+1, and so these cells cannot contribute into figdin occurrence. When
filling the valueD[g+1,], the possibly unknown value &f[g+1,-1] can be ignored.
It has been proven by Chang and Lampe [1] thagusiis method results in @xkn)
expected time algorithm.

3. A dlightly modified bit-vector algorithm of Myers

Now we derive a slightly modified version of thd-téctor algorithm of Myers. In
the following we assume th&dtf = m < w = size of the computer word. In this case
the algorithm runs in time @J. In pseudo-code we will use C-like notation fdtr b
operations, i.e.&’ denotes bit-wiseAND, ‘| bit-wise OR, ‘' bit-wise XOR, ‘<<’
shifting a bit-vector to the left, ané>’ shifting a bit-vector to the right. Both types
of shifts are assumed to use zero filling. Thepoisitions are assumed to grow from
right to left, and we denote bit-repetition witlsaperscript. Thus for example the bit-
vector 01001 has a one in its first and fourth fass, and 30*1 = 111001.

The first step is to use delta encoding in stotimg dynamic programming matrix:
Instead of all the actual cell values, the diffees between the values of adjacent
cells are recorded. Because of the diagonal aracedgy properties, the following
vectors can be used in representing the dynamigranaming matrix:

-Thevertical positive delta vector VP;: VP[i] = 1 iff D[i,j] —D[i-1,] = 1.

-Thevertical negative delta vector VN;: VN[i] = 1 iff D[i,j] = D[i-1] = -1.

-The horizontal positive delta vector HP;: HPj[i] = 1 iff D[i,j] — D[i,j-1] = 1.

-The horizontal negative delta vector HN;: HNj[i] = 1 iff D[i,j] — D[i,j-1] = -1.

-The diagonal zero delta vector DO;: DQ[i] = 1 iff D[i,j] = D[i-1,-1].

Figure 1 shows an example of these vectors.

O njc e u p o' n
olofofofofo]o]o]ofoO VP; VNg HP; HN; DOg
of1jof1f1]1[1]1]1]o0]1 (1] [o] |o] [o] [o0]
nj2|1fof1[2]2]2]2]|1]0 (1] [o] |o| [o] [O]
e[3[2[1]1]1]2[38]|3[2]1 (1] [o] [1] [o] [O]

Fig. 1. On the left is the dynamic programming matrix for searching ttterpa‘one” from the
text “once upon”. On the right are the vectviRs, VNs, HPs, HNg andDO0s. The zero row and
column are in bold, and the sixth column, which the shown vectors corretgpasidhaded.

Clearly, if we know either botl'P, andVN, bothHP; andHN;, or DO, forj = 1...n, it
is possible to recover the value of any &l j] by starting from a cell value known
from the initial conditions of the matrix.

In addition to the above vectors, the algorithmoalses the following pattern
match vectoPM, for each charactet:

-The pattern match vector PM,: PM,[i] = 1 iff Pafi] = A.

In the following we use the notatid?M; = PMre,g;. The algorithm imitates column-
wise filling of the dynamic programming matrix, awedlculates explicitly only the

valuesD[mjj], for j = 1...n. All other cell values are represented implicily the
earlier defined delta vectors. FilgP, andVN, are initialized according to the initial
conditions for the cell®[i,0]. This means thatPy[i] = 1 andVNy[i] = 0, fori =
1...m. In addition,D[m,0] is initialized to the valuen. Then moving from the column
j-1 to the columij involves the following four steps:

1. The diagonal vectdDdQ, is computed fronPM;, VP,.; andVN.;.

2. The horizontal vectorslP; andHN; are computed fror®0;, VP.; andVN.;.

3. The valueD[mj] is calculated fronD[m,j-1] and the horizontal delta values
HP;,[m] andHN;[m].

4. The vertical vector¥P, andVN are computed fror®0;, HP; andHN,;.

An approximate occurrence of the pattern endseateht positiorj wheneveD[m,j]
< k during the scan of the text.

Step 1: Computing DO;. Assume that the valuegP.[i], VN.[i] and PMj[i] are
known. From Recurrence 1 for fillinD we can see that there is the following three
different ways foiDQ|[i] to have a value 1.

1. D[i,j-1] = D[i-1j-1] — 1, i.e.VN_4[i] = 1. This enables the zero-difference to
propagate from the left using the recurrence ogiifirj] = D[i,j-1] + 1.

2. PM[i] = 1. The zero-difference arises from the equafiayffi] = Tex{j], which
setsD[i,j] = D[i-1j-1].

3. D[i-1,] = DJi-1j-1] — 1. This enables the zero-difference to prepagrom
above using the recurrence optdfi,j] = D[i-1,] + 1.

The first and second cases are easy to handleveAileed to do is to sBXO[i] = 1 if
VN.[i] = 1 or/fandPM[i] = 1. This means that the cases 1 and 2 can atetréor the
whole vectoDG; by OR-ing it with bothVN.;andPM,.

The third case, however, is the trickiest part loé &algorithm. But Myers has
presented a nice solution for it. It can be sean@fi-1] = D[i-1,-1] iff D[i,j] = D[i-
1,-1] andDJi-1,] = DJ[i-2,j-1] = DJi,j] - 1. This translates into saying tHafi-1,] =
D[i-1,-1] iff DQj[i] = 1, DO[i-1] = 1 andVR[i-1] = 1. On the other hand wh&fiN[i-

1] = 0,DQj[i-1] = 1 iff either case 1 or case 2 applies forrbw i-1. This means that
D[i-1j] = D[i-1-1] — 1 iff VR[i-1] = 1 and als®®M[i-1] = 1 orD[i-2,] = D[i-2-1] —

1. By recursively applying the preceding reasonfiogthe second termD[i-2,j] =
D[i-2,j-1] — 1, of the or, we get th&l[i-1,] = D[i-1j-1] — 1 iff VP[i-1] = 1 and also
PM[i-1] = 1 orVPR][i-2] = 1 and als®®Mj[i-2] = 1 orD[i-3] = D[i-3-1] — 1. When
we continue in this manner, always expanding teete&am of formD[i-q,j] = D[i-q,j-

1] - 1, we arrive at somie < i-1, for whichPM[h] = 1 and the recursion can stop.
This is because the initial conditions on the dyicapnogramming matrix guarantee
thatD[0,j] # D[0,j-1] — 1. Thus we have the following rule for theses:

DI[i-1j] = D[i-1-1] — 1 iff Ch: PM[h] = 1 andVP,[q] = 1, forq = h...i-1.

The above rule states thafi-1,] = D[i-1,j-1] — 1 if and only if thei¢1)th bit of the
vector VP, belongs to a such run of consecutive one bits, ttfee is also a match
between the charact&€ex{j] and some charact@afh] of the pattern, which overlaps
the run of consecutive bits above thd)th bit (Figure 2).

j-1 i PM,
h-1[x-i+h [=x-i+h
h [x-i+h+1| X-i+h
h|+l X -i +th +2[x-i +h +1 [O |
il—2 x-1 X -2 | 0]
i-1 X x-1 [0]
i L X

Fig. 2. On the left are rowbk-1, h,...,i of the {-1)th andjth columns of the matri®. If D[i-1]
=x—1=D[i-1j-1] — 1, then there must be a match betwEex{j] and some charact&ath]
somewhere above thth row. The vertical delta is positive at least from th&)th row up to
the hth row. The corresponding segments of the veditis andPM; are shown on the right.
An asterisk indicates that the corresponding cell/bit may Hdfexent values depending on the
situation.

Myers noted that the way, in which the run of cangiee bits propagates down a
diagonal zero-difference, resembles the carry-etéinteger addition. WheRM[h]
=1 andVP.[q] = 1 forq = h...i-1, we know from the previous discussion tB&[q]
=1 forq = h...i. Now if we addPM,[h] and VP_4[h...i-1] together, the carry effect
causes the bith...i-1 of VP.; to change from 1 to 0, and the bito change either
from 1 to O or from O to 1 depending on its oridimalue. Suppose WEOR the bits
h...i of the result of the additioRM[h] + VP.4[h...i-1] with the original bith...i of
VP,... Then the bits...i will all have the value 1, which is exactly thestted result.
From PM; we can extract only those bitsfor which alsoVP,.[i] = 1, by AND-ing
PM; with VP.;. When we then add this vectBM, & VP, together withVP,.; and
XOR the result PM; & VP.;) + VP, with VP,.;, we get almost the desired result for
the whole vector. There are only two differencese@ the situation, in which there
are several bits oPM; that have value 1 inside the same continuous fumes in
VP,.;. This causes th€OR-operation to turn off some of these bits, becahsg will
have a value 1 before and after the addition. Téeorsd is that the bit, which
corresponds to the first match along a consecutineof ones iVP,.;, will also be set
even though the horizontal delta above it is nat Bat neither of these two is a
problem in terms of the correctness of the vebBt@ because the corresponding bits
will be set anyway when handling the case 2. Figushows an example.

Putting together all the pieces for the cases dn@ 3, we arrive at the following
formula for computind0;:

DO = (PM; & VP.y) + VP.1) * VP.) [PM; | VN1

—
'
AN

J
A B
..[oTo] PM VP, VP, VP4
A . [0]1 [0] [0] [0] [0] [0] [O9] [0] [0] [O]
B ..[1]0 [T] [T] [T} (1] [I] [9] o] [I] [
A L [2]1 (0] [Z] [09] (o] [Z] [09] o] [I] [1]
A . [3]2 [0]&[T]=[0] [0] +|Z]=[0] (0] ~[T]=[1]
B ..[4]3 [T] [T] [T} [T] [T] [T] 7] [TI] [9]
A .. [5]4 (0] [T] [0] (0] [T] [09] o] [T] [Z]
A .. |6]5 (0] [T] [0] [0] [T] [9] 0] [TI] [I]
I 6 6 0 (0! [0 0| [0 [T I, [0, L.

Fig. 3. An example of handling the third case in compufdtl whenTex{j-1...j] = “AB” and
Paf1...7] = “ABAABAA”. As can be seen from the filled colump a match propagates
diagonal zero deltas downwards as long as the vertical delta prebeding columi+1 has a
value +1. First the matching bits BV, that overlap a segment of onesviR_,, are extracted
by AND-ing PM; andVP,.;. Then the resulting vector is added together Wigh, to change the
bit value in those positions, which get a diagonal zero delta from abmadly these changed
bits are set to 1 byXOR-ing the result of the addition with the origindP.,. The darker
shading marks the locations, where a match causes a diagooalletta, and the lighter
shading the positions, where a diagonal zero delta propagates from above.

Step 2: Computing HP; and HN;. At this point we can assume that, in addition ® th
vectorsVP,.;, VN_;andPM,, also the vectoD0, is known.

It can be seen from the adjacency and diagonaleptiep thatHPi[i] = 1 iff D[i,j-
1] =D[i-1j-1] - 1, orDJi,j] = D[i-1,i-1] + 1 andD[i,j-1] = D[i-1,-1] (Figures 4a and
4b). In terms of the delta vectors this means ifi] = 1 iff VN_4[i] = 1 orDQ|[i] =
0 andVP,4[i] = 0 andVN.; = 0. Because the left side of the preceding ordmg the
conditionVN_q[i] = 1, the requiremen{N_[i] = 0 on the right side can be removed as
it is implicitly expressed by the former. This réisuin the following formula for
computing the vectadPj[i]:

HP; =VN.1| ~(DQ | VP.1).
In similar fashion as foHP;, we can see thaiNj[i] = 1 iff D[i,j] = D[i-1,-1] and
D[i,j-1] = D[i-1j-1] + 1 (Figure 4c). This results in the roi\[i] = 1 iff DOJi] = 1

andVP,_[i] = 1, and so we have the following formula for qurting the vectoHN;:

HN, =DO0, & VP,

-1 -1 -1
a) i-1]x-1| * b) i-1] x * c) i-1] x *
i I x-1] x i I x-1] x i Ix+1] x

Fig. 4. The figures a) and b) show the only possible combinations foettseDgi-1,j-1], D[i j-
1] andD[i,j], in which D[i,j] = x = D[i,j-1] + 1. Similarly, figure c) shows the only case, in
which D[i,j] = x=D[i,j-1] — 1.

Step 3: Computing the value D[m,j]. After computing the vectorslP; andHN;, the
valueD[mj] is easy to calculate from[m,j-1]. If HP;[m] = 1, thenD[m,] = D[m,j-1]
+ 1, and itHN,[m] = 1, thenD[m,j] = D[m,j-1] - 1. OtherwiseD[m,j] = D[m,j-1].

Step 4: Computing VP; and VN;. This step is diagonally symmetric with step 2 of
computingHP; andHN,;.

By imitating the case dfiP; we have thaVPj[i] = 1 iff HNj[i-1] = 1 orDOQ|[i] = 1
andHPj[i-1] = 0. Now we need to align theX)th row bitsHN;[i-1] andHP;[i-1] with
theith row bit VB[i]. This means shifting the former two one step dditrat is, to
the left). After shifting these two vectors lefheir first bits represent the values
VP[0] and VN[0], which are not explicitly represented in thgaithm. These two
values correspond to the differendg0,j] — D[0,j-1]. Since we assume zero filling,
shifting HN, andHP; one step to the left introduces a zero in thest fpositions. This
is the same as using the valud®[0] = 0 and HNJ[O] = O, which correctly
corresponds to the initial conditioB[0,j] = 0 (i.e. D[0,j]] — D[0,j-1] = 0) of
approximate string matching. If we were to usedlgorithm of Myers for computing
edit distance, the newly introduced zero bit of treztor HP; would have to be
changed into a one to use the valig[0] = 1, which corresponds to the initial
condition D[0,j] = j (i.e. D[0,j] — D[0,j-1] = 1) of computing edit distance. The
resulting formula for computing the vectdp, is then:

VP, = (HN; << 1) | <D0 | (HP; << 1)).

By imitating this time the case ¢iN;, we have tha¥/N[i] = 1 iff DOJi] = 1 and
HP[i-1] = 1. Again thei¢1)th row bitHP|[i-1] has to be shifted one step down to
align it with theith row bitVP,. The same comment as above, about setting the/newl
introduced bit ofVP, into a one in the case of computing edit distaapplies also
here. We get the following formula for computing thectorVvVN;:

VN =DO, & (HP,<< 1).

The algorithms corresponding to steps 1 - 4 is wiie Figure 5. In an actual
implementatiorHP; should be shifted and stored between lines 141&nsb that the
result can be used both in lines 15 and 16 andsbifieis saved. In addition some of
the vectors can share the same variable, and balgdrrently needed values of the
difference vectors are kept in memory in a similashion to what was discussed
about saving space in the case of the dynamic anogiing matrix.

The only difference between this version and thgimal algorithm of Myers is
that he uses two vectoly; and XH; instead of a single diagonal vec®,. In fact
DQ; = XV, OR XH;, andXV, corresponds to the cases 2 and 3 dHdto the cases 1
and 2 of the computation &f0;. This difference has no significance as long gsiles
sequential approximate string matching with theagiseedis concerned. But having
a single diagonal vector has proved useful for edarwhen the algorithm of Myers
is modified for use in the ABNDM algorithm [4].

D-Myers(Pat[1...n], Text[1...n], k)

1 Preprocessing

2 For A O all characters Do

3. PM, -0

4. For i 01..mDo o

5 PMbati] < PMbagpip |0 ™ 10"

6 VP, <17 WNo <0, Dmj] « m

7 Searching

8 For j O1l..nDo

9. DO; —(((PMexij; & VPu)+ VP)" VPLa)| PMexijy | VNa
10 HPJ — VN -1 I"(DOj | VPJ .1)

11. HN « DO; & VP

12. If HP, &10 ™ #0Then D[mj] - Dmj]+1

13. If HN &10 ™ #0Then Dimj] -« Dimj]-1

14. If Dimj] < k Then report a match ending at Text[j]
15. VP, (HN <<1)|~(DO | (HP <<1))

16. VN ~ DOj & (HPj <<1)

Fig. 5. OurDO-based version of the algorithm of Myers (for the aasew).

4. Adding transposition into the algorithm

Now we consider modifying the bit-vector algorittehMyers to use the edit distance
edt The trick we use is to consider how a transpmsitielates to a zero-difference
along the diagonal. Consider the strings “abc” andf = “acb”. Without allowing
transposition we would hav@[“ab”,“ac”] = 1, where this one operation correspien
to substituting the first character of the trangtbs pair. When filling in the value
D[“abc”,“acb"], the effect of having done a singl@nsposition can be achieved by
allowing a free substitution between the latterrahger-pair of the transposable pair.
This is the same as declaring a match between timetinis way the cost for doing the
transposition has already been paid by the subietitof the preceding step. It turns
out that this kind of method works correctly in edlses. In general we claim that the
following Recurrence 3 foedtis in effect equivalent with Recurrence 2 in Satt2.

Recurrence 3:

DT[i,0]=i, DT[0, j] = j.
DT[i -1 j -1} if ofi] = p[j]

DT[i, j]=<DT[i-1 j -1} if ofi -1..i] = p¥[j-1...j] andDT[i -1, j-1]=DT[i-2 j-2]+1
1+min{DT[i -1 j -1, DT[i -1, j], DT[i, j —1J}, otherwise.

Now we prove by induction that Recurrence 2 anduReace 3 give the same values
for DTIi,j] wheni =0 andj = 0.

Clearly both formulas give the same valueBdfi,j] wheni =0 or 1 ofj = 0 or 1.
Consider now a ceDTJi,j] for somej > 1 and > 1, and assume that all previous cells
with nonnegative indices have been filled identjclly both recursive formulas. Let

x be the value given tD®TJ[i,j] by Recurrence 2 and be the value given to it by
Recurrence 3. The only situation in which the twarfulas could possibly behave
differently is whenafi] # Aj] and afi-1...i] = £j-1...j]. In the followint cases we
assume these two conditions to be true.

If DT[i-2j-2] + 1 =DT[i-1-1], then y = DT[i,j] = DT[i-1-1], and since the
diagonal property requires that DT[i-1j-1], we havex = DT[i,j] = DT[i-2j-2] + 1
=DT[i-1j-1] =v.

Now consider the cadeT[i-2j-2] = DT[i-1,-1]. Theny = DT[i,j] = 1 + min{DT[i-
1j-1], DTI[i-1,], DT[i,j-1]} and x = DT[i,j] = 1 + min{DT[i-2,-2], DTI[i-1,], DT[i,j-
11}, and sinceDTJi-2j-2] = DT[i-1-1], we havex = 1 + min{DT[i-1,-1], DT[i-1,]],
DT[ij-1]} = .

In both cases, Recurrence 2 and Recurrence 3 assija same value for the cell
DT[i,j]. Therefore we can state by induction that theumemces are in effect
equivalent.

We use here the same notation for the delta veatgardless of whether the
underlying matrix isDT or D. So for example when dealing with transpositidns i
assumed thddQj[i] = 1 iff DT[i,j] = DT[i-1,-1].

Following Recurrence 3, it is fairly simple to attdnsposition into the algorithm
of Myers. In addition to the cases when the editagiceed is used, we also have
DO[i] = 1 if Pafi-1...i] = Tex{(j-1...j] and DT[i-1j-1] = DT[i-2j-2] + 1. The
conditionPafi-1...i] = Texf[j-1...j] is true iff PM;4[i] = 1 andPMji-1] = 1, which
can happen only if > 1 andi > 1. In this case the second conditm[i-1,-1] =
DT[i-2j-2] + 1 is true iff DO4[i-1] = 0. Let TR be a transposition vector that
corresponds to these conditions. Thaffig[i] = 1 iff PM;4[i] = 1, PM]i-1] = 1 and
DQ;.4[i-1] = 0. The following formula computes the veci® correctly:

TR = ((~D0..)) & PM) << 1)& PM,.;.

It follows, that the algorithm shown in Figure 5ncde modified to handle
transposition by adding the above formula betwéenlines 8 and 9, ardR-ing DO,
with TR before the line 10. This version of the algorittsnshown in Figure 6.

TR-DO-Myers(Pat[1...n], Text[1...n], k)

1 Preprocessing as in Figure 5 except: PMextg <0, DI[mj] « m
2 Searching

3 For j O1l..nDo

4. TR =((~ DO0j1) & PMex(j)) <<1) & PMrext [11

5. DO; —(((PMexij) & VRa)+ VPa)™ VPa)| PMex(ji| WNi
6 DO, — DO; | TR

7 HP — WN. [~(DO | VP.)

8 HN « DO & VP,

9. If HP, &10 ™ #0Then DIT[mj] - DI[mj]+1

10. If HN &10 ™ #0Then DT[mj] « DI[mj]-1

11. If DI[mj] < k Then report a match ending at Text[j]
12. VP, «(HN <<1)|~(Doj|(HP <<1))

13. WN < DOj &(HP <<1)

Fig. 6. DO,-based algorithm of Myers with transposition (for the aasew).

5. Handling long patterns

When the pattern does not fit into a single computerd, the algorithm of Myers
must use multiple words in representing the ddietaveen thej{1)th andjth columns
of the dynamic programming matrix. This can be dbpeimulating a longer vector.
We discuss here one such method, which O%88] vector blocks so that theh
block of vectors represents the rowsljw+1...rw. In the basic case this results in an
O('mni/ w) algorithm. In the following discussion we denbteVP, ; therth vertical
positive delta vector of thgh column. TherVP,[i] = 1 iff D[(r-1)w+i, j] — D[(r-
Dw+i-1, j] = 1. We use similar notation also with all thehat vectors in the
algorithm, so that for exampkM,;[i] = 1 iff Paf(r-1)w+i] = Tex{j].

5.1 Basic use of the vector blocks

The only real differences between using multiplecks of vectors instead of a single
one are ensuring that the blocks interact correetthh each other, and naturally that
now r blocks of vectors need to be computed for eachnanl The vector blocks are
computed in order of growing (i.e. first the vector block consisting Bf0;j, HP;,
HN,;, VP1; and HP,;, then the second vector block consistingd@;, HP,j, HNy;,
VP,; and HP,;, and so on, see Figure 7a). Looking at the foapsstiisted in the
beginning of Section 4 we can identify two locatidn the algorithm, where some
information from the computation of the-{)th vector block is needed when
computing theth vector block and > 1.

a) | Text | b) | Text |
E E

a 1 al 1

t t

t t

e2 e2

r r

0 3 Nl 3

Fig. 7. A situation in whichm/w] = 3, and therefore three vector blocks are needed to represent
a column of the dynamic programming matrix. The figure a) on thedkgficts filling the
matrix completely, and the shaded area corresponds to tisefitell by the regular dynamic
programming algorithm. The figure b) on the right depicts using theftuieuristic. The
shaded area corresponds to the cells filled by the dynamic progrgratgorithm with the cut-

off heuristic, and only the minimum set of vector blocks needed\er these is shown.

The first place is the computation of the diagareto delta vector. If a continuous
run of ones ends in the lowest bit of the ve&tBr.,;, the addition, which propagates
diagonal zero-deltas down along these one bits)dvaopagate diagonal zero-deltas
also to theg+1 first (uppermost) rows in the vectDO,;, whereq is the number of

consecutive one bits in the beginning of the vewt@r. This happens exactly when

HN:.1;[w] = 1. The correct propagation of the zero-deltas be ensured by setting,
before the valu®M,is used,PM;[1] = 1 if HN..;;[w] = 1. This procedure leads both
to setting the first bit oDO,,4;, and continuing the zero-delta propagation further
down along the possible continuous one bits irbtginning of the vectovP,.4;.

The second place is the computation of the vertie#tla vectors, which involves
shifting the horizontal vectotdP, jandHN, to the left. For this to work correctly, the
horizontal difference®[(r-1)w,j] — D[(r-1)w,j], represented byiP..;;[w] and HN,.
1jlwl, and D[(r-1)w+1j] — D[(r-1)w+1j-1], represented byP,;[1] and HN;;[1],
should remain next to each other in the column.sTie value$iP,;[1] = HP,_1;[w]
andHN;;[1] = HN..1;[w] should be set after the shifts.

5.2 Long patternsand transposition

Computing the vector blocks involves two additiondifficulties when also
transpositions are allowed. They both arise frora taft shift that is done in
computing therth block transposition vectofR ;= ((-D0,j.1) & PM;)) << 1) &
PM; ... As withHP,;andHN; jin Section 5.1, we must ensure that the shift thetdit
DO0;j.4[1] to have the valu®O0;.,;.4[w], and the bitPM,;[1] to have the valu®M,.
1jlw]. Figure 8 shows the algorithm for computing tttle block in columnj when
transposition is allowed.

ComputeBlock(r,j)

1. X « PM text(j]

2. TR (= DO0,j1)& X)<<1)& PM textfj-y

3. TR, « TR (= DOrgj1)& PMa vextrj])>>(W1)& PM rext(j
4, If HNp j &10% £0Then X « X |1

5. DO, «(((X& VP 1) VP j1)" VP 1) X| VN ja
6. DO,,j « DO ;| TR

7. HPrj « WN o [~(DOy | VP i)

8. HNj « DO, & VP,

9. If HP, ; &10 ™ #0Then DT[rw,j] — DI[rw,j]l+1

10. If HN ; &10 ™ +0Then DT[rw,j] « DT[rw,j]-1

11. X < HPj<<1

12. |If HP 41 ; &10™ #0Then X « X|1

13, WP < (HN <<D)[~(DO ;| X)

14. If HN4; &10% 20Then VP « VP, |1
15. VN, < DO, ; & X

Fig. 8. The algorithm for computing theh vector block in columni when transposition is
allowed. This version is shown as it is for clarity, andreéhis room for optimization. For
example we could merge lines 2 and 3.

5.3 Using the cut-off heuristic in computing the blocks

In this discussion we concentrate on the case iofube edit distanced but the
method can be used in exactly the same way also Wieedistance functioadt is
used.

In what follows we propose a method for using dfiti@uristic in computing the
vector blocks. This differs only slightly from thme proposed by Myers and results
in a O(kn/'w) expected time algorithm. The goal is to compbee tector blocks only
as far down in the column that is needed in ordecaver the area of the dynamic
programming matrix that the Ukkonen cut-off heucistould fill (Figure 7b). In the
jth column therth block is called active iD[i,j-1] < k for somei = (r-1)w + 1.
According to the cut-off heuristic, only the actitocks need to be computed. To
help in doing this, in a way explained later, thalue D[(r-1)w,j] is explicitly
maintained for all blocks.

To make the algorithm uniform (and possibly morécet), Myers did not
separately calculate the value of the dJm,j] even if the pattern is not equally
divided byw. He rather addedf m/w1 - m so-called wild card characters, which match
with every character, to the end of the patterns Tirakes the value of the c8l[mjj]
propagate diagonally with the matches into the BEH m/w1,j+w m/wl-m]. Thus an
approximate occurrence of the pattern ends at éke dharacteimex{j-wim/wi+m]
wheneveD[wm/w1,j] < k. If all rm/w1 blocks are active after the last text character of
the text has been processed, the possible endmdinturrences in the ardaxfn-
wm/wl-m+1...n] can be checked by starting from the cewmwin] and then
computing the value®[wmwl-1,n], D[wWmwl-2,n],..., D[mn] using the vectors
VNmwin @nd VNpywin. An occurrence ends at the charactexin-i+m| whenever
DI[i,n] <k andi = m*. Also we use this scheme.

From the initial conditions of the dynamic prograimg matrix it is known that
DIi,0] >k fori > k. Thus in the first column the fir8t/w1 vector blocks are active and
need to be computed. Ltdenote the number of active the vector blockshajth
column. Note that then thgth block is the lowest active block abg =Tkiwl. The
value forb; is determined as follows.

In the jth column the If.,+1)th block becomes active only i[b.,w,j-1] = k =
D[b;.;w+1]. This follows from the adjacency and diagonal gedies and the fact
that, by the definition ob.,, the cellsD[b.,w+1j-1], D[bj.;w+2j-1],..., D[bj.qw,j-1]
have a value k. But instead of checking for the whole conditias, described by
Myers, we choose to only test whettigi_;w,j-1] = k. This is because this simpler
rule works with both distance=d andedt and in a brief test we found it to perform
virtually as well as the full check. Also the asyote runtime is still the same
O(kn/w) expected time.

In processing thgth column, initially the firstb.; blocks are computed. Then if
D[b.1w,j] = k, we setb; = b+ 1. After this, the just-activateljth vector block is
initialized by settingvPy,; = 1 andVN,; = 0 withb = by. This corresponds to having
D[(b_yw+1,] = k, D[(b_)w+2j] = k+1,..., D[bw,j] = k+w-1 and does not affect the
correct behavior of the algorithm. These cellslarewn to have a value kand their
accurate values are therefore obsolete in terrfiadihg approximate matches.

It is difficult to determine in an exact and eféot manner whether thgth block
becomes inactive when moving into thel)th column. This lead Myers to use the
seemingly crude rule, based on the adjacency progbat the block$-g, b-g+1,...,
bj become inactive, and thbs; = b-0-1, if D[(b;-p)w,j] > k +w for p = 0...q. But the
method works well in practice. We for example tdstestricter rule, that the blocks

! This is based on an actual implementation by Myers, and isemtioned in his article [7].

b-q, b-g+1,..., b, become inactive iD[(b-p)w,j] + D[(b-p-L)w,j] > 2k + w for p =
0...q, but the overhead of having to add the two cdlles overwhelmed the benefit
of filling slightly less vector blocks.
By following the method used by Hyyré and Navarmothe forward verification
phase of their Myers-based version of the ABNDM ristic [4], it is in principle
possible to keep track of the exact location ofltveest cell with a value k in the
current column without worsening the asymptotiaaplexity of the algorithm. But
the approach seemed to be quite slow in practienwye briefly tested this.

Figure 9 shows using our slightly modified versafrthe cut-off heuristic with the
vector blocks and the matrXT. As the original version of Myers, the algorithams
in O(kn/w) expected time.

CutOffVectorBlocks(Pat[1..n], Text[l...n], k)

1. Preprocessing

2 For r O1..[m wiDo

3 For A 0O all characters Do

4. PM,, <0

5. For i O1..min{ w, m(r-1) w} Do o

6 PM patf(r-1) wi] < PM, pargrty wig |0 ™ 10"

7 For A O all characters Do

8 PMutu, g« PMug, 5 | 1 mQmwmved

9. b « Tk/wl

10. For r 0O1..b Do

11. VP, «1™ VN, <0, DI[rw0] rw

12. Searching

13. For j O1l..ndo

14. For r O1..b Do

15. ComputeBlock(r,j)

16. If DT[bw, j-1]= k Then

17. VPoi1j « 1% VNpyj <0, DT[(b+1)w,j] < k+w, b « b+l
18. Else

19. While DT[bw, j]> k+wDo

20. b ~ b-1

21. Ifb= m wl and DT[bw,j] < k Then

22, report a match ending at Text [-wm wi+ni

23. If b= [m wlThen

24. For i O1...ow mDo

25. If VPy n &10™" #0Then DT[bwi,n] ~ DT[bwi-1, n]-1
26. If VN, n &10 %" 20 Then DT[bwi,n] « DT[bwi-1, n]+1
27. If DT[bwi, n] < k Then a match ends at Text [n- bw+i +m

Fig. 9. An algorithm for using the cut-off heuristic with vector blocks.

6. Test results

In this section we present some test results comggrthe effect that adding
transposition has on the algorithm of Myers. Thmpaoter used in the tests was a 32-
bit dual-processor Pentium3 550 Mhz with 256 MB RAdvd Linux OS, and the
code was compiled with GCC and full optimizatiomch test consisted of searching
100 random patterns from a 10 MB random text. Weduhe original code from

Myers as the basis for all implementations so thay would be of comparable
quality. When the pattern did not fit into the cartgr word, the cut-off heuristic was
used. Figure 10 shows the resultsrfor 10, 20, ... 150 ankl=m/5. As can be seen,
adding transposition brings very little extra castlong as the pattern fits into a single
computer word. With longer patterns the differeigeoughly 20%. This bigger gap
with the longer patterns arises from the extra wogleded withedtin handling the
block boundaries.

25

20 - PR
2 15
% 10 -

.|)

0

@%Q <°Q ,\Q O)Q \9,\’}9,{90

m

Fig. 10. The test results for searching 100 patterns in 10 MB of tektkvwe m/5.

7. Conclusions

The O(fmn / w) bit-parallel algorithm of Myers [7] is one of tHeading current
approximate string matching algorithm when the ulyitey edit distance permits
insertions, deletions and substitutions. In thisgrave presented, in what we think is
a more intuitive way than the original, a slightlifferent but practically equivalent
version of the algorithm of Myers. Then we extendlee algorithm to also permit
transposition of two adjacent characters. The tiegulalgorithm was found to be
almost as fast as the original when the pattemifiito a single computer word, and
roughly 20% slower with longer patterns.

Acknowledgments

We would like to thank Gonzalo Navarro for somefuseomments on a very early
draft of the ideas in the paper.

References

8.

9.

. W. Chang and J. Lampe. Theoretical and empirical comparisoapproximate string
matching algorithms. IProceedings of CPM'9Q2NCS 644: 172-181, 1992.

. F. J. Damerau. A technique for computer detection and correcti@pedling errors.
Communications of the AGM(3): 171-176, 1964.

. M W. Du and S. C. Chang. A model and a fast algorithm for phailéérrors spelling
correction.Acta Informatica 29: 281-302, 1992.

. H. Hyyr6é and G. Navarro. Faster bit-parallel approximatmgstmatching. To apper in
Proceedings of CPM'2002

. K. Kukich. Automatically correcting words in texX@CM Computing Survey24(4): 377-
439, 1992.

. V. I. Levenshtein. Binary codes capable of correcting deletiogertions and reversals.
Sov. Phys. Dokll0: 707-710, 1966.

. G. Myers. A fast bit-vector algorithm for approximatergjrimatching based on dynamic

progammingJournal of the ACM46(3): 395-415, 1999.

G. Navarro. A Guided Tour to Approximate String MatchiAdM Computing Surveys

33(1): 31-88, 2001.

G. Navarro. NR-grep: a Fast and Flexible Pattern Matchirgy. Boftware Practice and

Experience31: 1265-1312, 2001.

10.P. H. Sellers. On the theory of computation of evolutionamardies.SIAM Journal of

1

1

Applied Mathematic26: 787-793, 1974.

1.E. Ukkonen. Algorithms for approximate string matchilmjormation and Contrgl 64:
100-118, 1985.

2.E. Ukkonen. Finding approximate patterns in stridgswnal of Algorithms6: 132-137,
1985.

13. S. Wu and U. Manber. Fast text searching allowing er@ssmmunications of the ACM

35(10): 83-91, 1992.

