
Explaining and Extending the Bit-parallel Approximate
String Matching Algorithm of Myers

Heikki Hyyrö

Department of Computer and Information Sciences, University of Tampere, Finland
Heikki.Hyyro@uta.fi

Abstract. The O(mn / w), where m is pattern length, n is text length and w is
the computer word size, bit-parallel algorithm of Myers [7] is one of the best
current algorithms in the case of approximate string matching allowing
insertions, deletions and substitutions. We begin this paper by deriving a
practically equivalent version of the algorithm of Myers. This is done in a way,
which we believe makes the logic behind the algorithm easier to understand
than the original presentation. Then we show how to extend the algorithm to
allow also a fourth kind of error: transposition of two adjacent characters. This
is a very common type of error for example in typed text [5], but has typically
been omitted from approximate string matching algorithms. Finally we present
experimental results to show what kind of effect adding transposition has on the
performance of the algorithm.

1. Introduction

Approximate string matching can be generally defined as searching for substrings of a
text that are within a predefined edit distance threshold from a given pattern. Let Text
= Text[1…n] denote a text of length n, Pat = Pat[1…m] denote a pattern of length n,
ed(α,β) denote the edit distance between strings α and β, and k be the maximum
allowed distance. Typically ed(α,β) is defined as the Levenshtein edit distance [6],
which is the minimum number of insertions, deletions and substitutions of a single
character needed in order to make α and β equal. The task of approximate string
matching can be more formally defined as finding from the text all indices j for which
ed(Pat, Text[h…j]) ≤ k with some h ≤ j.

Permitting also a fourth edit operation of transposing two adjacent characters was
proposed already in a pioneering work by Damerau [2]. This operation is recognized
as being important at least when searching typed text [5]. Transposition is permitted
to occur between such two adjacent characters, that are permanently adjacent to each
other. This means, for example, that we need 3 operations to edit “acb” into “ba”,
even though it would seem possible to accomplish this with only two operations by
first transposing “ba” into “ab” and then adding a “c” in between them (or vice versa,
deleting first the “c” and then transposing). Let edt(α,β) denote the edit distance
between strings α and β when also transposition is allowed. Approximate string
matching with the edit distance edt is defined in a similar fashion to what was done
above in the case of ed.

A natural (and therefore also the classic) solution to approximate string matching is
the use of dynamic programming, which results in an O(mn) algorithm (e.g. [10]).
Even though this basic approach is slow, it is still the most flexible as it is suitable not
only for both ed and edt, but also for many other types of distance metrics. Ukkonen
[12] has presented a so-called cut-off heuristic for the dynamic programming
algorithm, which results in an O(kn) expected time algorithm.

Recent literature about approximate string matching has concentrated mostly on
the distance ed. This is perhaps because the distance ed is simpler to implement but
almost as powerful as the distance edt. One exception to this rule is the nrgrep
algorithm of Navarro [9], in which the O(km/wn) distance ed approximate string
matching algorithm of Wu and Manber [13] is extended for the distance edt. Navarro
has also made an extensive survey [8] of approximate string matching algorithms
under the distance ed. One of the most notable recent algorithms in this area is the
O(mn / w) bit-vector algorithm of Myers [7]. In what follows we will first discuss the
classic dynamic programming algorithm and the above mentioned algorithm of
Myers, and then show how to modify the latter for the distance edt.

2. Dynamic programming

To make the notation simpler, let edα,β(i,j) denote ed(α[1…i],β[1…j]) and define
α[1…0] = ε, where ε denotes the empty string. In addition, let |α| denote the length
of the string α. The idea of the dynamic programming algorithm is to start from the
trivially known values of type ed(α[1…i],ε) and ed(ε,β[1…j]), and arrive at the value
ed(α,β) = edα,β(|α|,|β|) by recursively computing edα,β(i,j) from previously computed
values edα,β(i-1,j-1), edα,β(i-1,j) and edα,β(i,j-1). This can be done by filling a dynamic
programming matrix D using the following well-known recurrence.

Recurrence 1:

[] []

[] [] [] []
[] [] [] [] []




≠−−−−+
=−−

=

==

. if },1, ,,1 ,1,1min{1

. if ,1,1
,

.,0 ,0,

j β iαjiDjiDjiD

j β iαjiD
jiD

jjDiiD

In this matrix D[i,j] = edα,β(i,j), and so ed(α,β) = D[|α|,|β|].

Du and Chang [3] have given the following Recurrence 2 for the edit distance edt. In
this case we denote the dynamic programming matrix by DT, and the superscript R
denotes the reverse of a string (that is, if α = “abc”, then αR = “cba”).

Recurrence 2:

[] []
[] []

[]
[] [] []

[] [] [] [] []
[] [] []








−−−−+
=−−−−−+

=−−

=

==
=−=−

otherwise. },1, ,,1 ,1,1min{1

....1...1 if },1, ,,1 ,2,2min{1

. if ,1,1

,

.,0 ,0,

|}.||,max{|,11,

jiDTjiDTjiDT

jj- βiiαjiDTjiDTjiDT

j β iαjiDT

jiDT

jjDTiiDT

jDTiDT

R

βα

Instead of computing edit distance between strings α and β, the dynamic
programming algorithm can be changed to find approximate occurrences of α from β
by having an initial condition D[0,j] = 0 instead of D[0,j] = j (or DT[0,j] = 0 instead of
DT[0,j] = j). Thus, when α = Pat and β = Text, the situation corresponds to the earlier
definition of approximate string matching. In this case D[i,j] =
min{ed(Pat[0…i],Text[h…j]), h ≤ j} (or DT[i,j] = min{edt(Pat[0…i], Text[h…j]), h ≤
j}. From now on we always refer to the versions of D and DT that have been filled in
this manner.

Ukkonen ([11, 12]) has studied the properties of the dynamic programming matrix.
Among these there were the following two, which apply to both the edit distance and
the approximate string matching versions of D:

-The diagonal property: D[i,j] – D[i-1,j-1] = 0 or 1.
-The adjacency property: D[i,j] – D[i,j-1] = -1, 0 or 1, and

 D[i,j] – D[i-1,j] = -1, 0 or 1.

It is fairly straightforward to verify that the same properties hold also for the matrix
DT.

The values of the dynamic programming matrix are usually computed by filling it
in a column-wise manner, thus effectively scanning the string β (or the text) one
character at a time from left to right. At each character the corresponding column is
completely filled. This allows us to save space by storing only one or two columns at
a time, since the values in the jth column depend only on one (ed) or two (edt)
previous columns.

2.1 The cut-off heuristic for improving the dynamic programming algorithm

Ukkonen proposed a so-called cut-off heuristic [12] to improve the dynamic
programming algorithm. A simple consequence of the diagonal property is that if
D[i,j] > k (the maximum allowed error), then also D[i+r, j+r] > k for r > 0. Suppose
we are conducting approximate string matching in a column-wise manner and q is the
lowest cell of the (j-1)th column of D, which has a value ≤ k. Then only the cells D[1,
j], D[2,j], …, D[q+1, j] of the jth column need to be computed. We know that D[i,j] >
k for i > q+1, and so these cells cannot contribute into finding an occurrence. When
filling the value D[q+1,j], the possibly unknown value of D[q+1,j-1] can be ignored.
It has been proven by Chang and Lampe [1] that using this method results in an O(kn)
expected time algorithm.

3. A slightly modified bit-vector algorithm of Myers

Now we derive a slightly modified version of the bit-vector algorithm of Myers. In
the following we assume that |Pat| = m ≤ w = size of the computer word. In this case
the algorithm runs in time O(n). In pseudo-code we will use C-like notation for bit
operations, i.e. ‘&’ denotes bit-wise AND, ‘|’ bit-wise OR, ‘^’ bit-wise XOR, ‘<<’
shifting a bit-vector to the left, and ‘>>’ shifting a bit-vector to the right. Both types
of shifts are assumed to use zero filling. The bit-positions are assumed to grow from
right to left, and we denote bit-repetition with a superscript. Thus for example the bit-
vector 01001 has a one in its first and fourth positions, and 13021 = 111001.

The first step is to use delta encoding in storing the dynamic programming matrix:
Instead of all the actual cell values, the differences between the values of adjacent
cells are recorded. Because of the diagonal and adjacency properties, the following
vectors can be used in representing the dynamic programming matrix:

-The vertical positive delta vector VPj: VPj[i] = 1 iff D[i,j] – D[i-1,j] = 1.

-The vertical negative delta vector VNj: VNj[i] = 1 iff D[i,j] – D[i-1,j] = -1.

-The horizontal positive delta vector HPj: HPj[i] = 1 iff D[i,j] – D[i,j-1] = 1.

-The horizontal negative delta vector HNj: HNj[i] = 1 iff D[i,j] – D[i,j-1] = -1.

-The diagonal zero delta vector D0j: D0j[i] = 1 iff D[i,j] = D[i-1,j-1].

Figure 1 shows an example of these vectors.

Fig. 1. On the left is the dynamic programming matrix for searching the pattern “one” from the
text “once upon”. On the right are the vectors VP6, VN6, HP6, HN6 and D06. The zero row and
column are in bold, and the sixth column, which the shown vectors correspond to, is shaded.

Clearly, if we know either both VPj and VNj, both HPj and HNj, or D0j, for j = 1…n, it
is possible to recover the value of any cell D[i,j] by starting from a cell value known
from the initial conditions of the matrix.

In addition to the above vectors, the algorithm also uses the following pattern
match vector PMλ for each character λ:

-The pattern match vector PMλλλλ: PMλ[i] = 1 iff Pat[i] = λ.

In the following we use the notation PMj = PMText[j]. The algorithm imitates column-
wise filling of the dynamic programming matrix, and calculates explicitly only the

HP6 HN6 VP6 VN6 D06
o n c e u p o n

0 0 0 0 0 0 0 0 0 0
o 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0
n 2 1 0 1 2 2 2 2 1 0 1 0 0 0 0
e 3 2 1 1 1 2 3 3 2 1 1 0 1 0 0

values D[m,j], for j = 1…n. All other cell values are represented implicitly by the
earlier defined delta vectors. First VP0 and VN0 are initialized according to the initial
conditions for the cells D[i,0]. This means that VP0[i] = 1 and VN0[i] = 0, for i =
1…m. In addition, D[m,0] is initialized to the value m. Then moving from the column
j-1 to the column j involves the following four steps:

1. The diagonal vector D0j is computed from PMj, VPj-1 and VNj-1.
2. The horizontal vectors HPj and HNj are computed from D0j, VPj-1 and VNj-1.
3. The value D[m,j] is calculated from D[m,j-1] and the horizontal delta values

HPj[m] and HNj[m].
4. The vertical vectors VPj and VNj are computed from D0j, HPj and HNj.

An approximate occurrence of the pattern ends at the text position j whenever D[m,j]
≤ k during the scan of the text.

Step 1: Computing D0j. Assume that the values VPj-1[i], VNj-1[i] and PMj[i] are
known. From Recurrence 1 for filling D we can see that there is the following three
different ways for D0j[i] to have a value 1.

1. D[i,j-1] = D[i-1,j-1] – 1, i.e. VNj-1[i] = 1. This enables the zero-difference to
propagate from the left using the recurrence option D[i,j] = D[i,j-1] + 1.

2. PMj[i] = 1. The zero-difference arises from the equality Pat[i] = Text[j], which
sets D[i,j] = D[i-1,j-1].

3. D[i-1,j] = D[i-1,j-1] – 1. This enables the zero-difference to propagate from
above using the recurrence option D[i,j] = D[i-1,j] + 1.

The first and second cases are easy to handle. All we need to do is to set D0j[i] = 1 if
VNj-1[i] = 1 or/and PMj[i] = 1. This means that the cases 1 and 2 can be treated for the
whole vector D0j by OR-ing it with both VNj-1 and PMj.

The third case, however, is the trickiest part of the algorithm. But Myers has
presented a nice solution for it. It can be seen that D[i-1,j] = D[i-1,j-1] iff D[i,j] = D[i-
1,j-1] and D[i-1,j] = D[i-2,j-1] = D[i,j] - 1. This translates into saying that D[i-1,j] =
D[i-1,j-1] iff D0j[i] = 1, D0j[i-1] = 1 and VPj[i-1] = 1. On the other hand when VNj[i-
1] = 0, D0j[i-1] = 1 iff either case 1 or case 2 applies for the row i-1. This means that
D[i-1,j] = D[i-1,j-1] – 1 iff VPj[i-1] = 1 and also PMj[i-1] = 1 or D[i-2,j] = D[i-2,j-1] –
1. By recursively applying the preceding reasoning for the second term, D[i-2,j] =
D[i-2,j-1] – 1, of the or, we get that D[i-1,j] = D[i-1,j-1] – 1 iff VPj[i-1] = 1 and also
PMj[i-1] = 1 or VPj[i-2] = 1 and also PMj[i-2] = 1 or D[i-3,j] = D[i-3,j-1] – 1. When
we continue in this manner, always expanding the last term of form D[i-q,j] = D[i-q,j-
1] – 1, we arrive at some h < i-1, for which PMj[h] = 1 and the recursion can stop.
This is because the initial conditions on the dynamic programming matrix guarantee
that D[0,j] ≠ D[0,j-1] – 1. Thus we have the following rule for the case 3:

D[i-1,j] = D[i-1,j-1] – 1 iff ∃h: PMj[h] = 1 and VPj-1[q] = 1, for q = h…i-1.

The above rule states that D[i-1,j] = D[i-1,j-1] – 1 if and only if the (i-1)th bit of the
vector VPj-1 belongs to a such run of consecutive one bits, that there is also a match
between the character Text[j] and some character Pat[h] of the pattern, which overlaps
the run of consecutive bits above the (i-1)th bit (Figure 2).

Fig. 2. On the left are rows h-1, h,…,i of the (j-1)th and jth columns of the matrix D. If D[i-1,j]
= x – 1 = D[i-1,j-1] – 1, then there must be a match between Text[j] and some character Pat[h]
somewhere above the ith row. The vertical delta is positive at least from the (i-1)th row up to
the hth row. The corresponding segments of the vectors VPj-1 and PMj are shown on the right.
An asterisk indicates that the corresponding cell/bit may have different values depending on the
situation.

Myers noted that the way, in which the run of consecutive bits propagates down a
diagonal zero-difference, resembles the carry-effect of integer addition. When PMj[h]
= 1 and VPj-1[q] = 1 for q = h…i-1, we know from the previous discussion that D0j[q]
= 1 for q = h…i. Now if we add PMj[h] and VPj-1[h…i-1] together, the carry effect
causes the bits h…i-1 of VPj-1 to change from 1 to 0, and the bit i to change either
from 1 to 0 or from 0 to 1 depending on its original value. Suppose we XOR the bits
h…i of the result of the addition PMj[h] + VPj-1[h…i-1] with the original bits h…i of
VPj-1. Then the bits h…i will all have the value 1, which is exactly the desired result.
From PMj we can extract only those bits i, for which also VPj-1[i] = 1, by AND-ing
PMj with VPj-1. When we then add this vector PMj & VPj-1 together with VPj-1 and
XOR the result (PMj & VPj-1) + VPj-1 with VPj-1, we get almost the desired result for
the whole vector. There are only two differences. One is the situation, in which there
are several bits of PMj that have value 1 inside the same continuous run of ones in
VPj-1. This causes the XOR-operation to turn off some of these bits, because they will
have a value 1 before and after the addition. The second is that the bit, which
corresponds to the first match along a consecutive run of ones in VPj-1, will also be set
even though the horizontal delta above it is not –1. But neither of these two is a
problem in terms of the correctness of the vector D0j, because the corresponding bits
will be set anyway when handling the case 2. Figure 3 shows an example.

Putting together all the pieces for the cases 1, 2 and 3, we arrive at the following
formula for computing D0j:

D0j = (((PMj & VPj-1) + VPj-1) ^ VPj-1) | PMj | VNj-1.

VPj-1: PMj

∗ ∗

∗ ∗
j -1 j

x -i +h ≥ x -i +h
x -i +h +1 x -i +h 1 1
x -i +h +2 x -i +h +1 1 0

x -1 x -2 1 0
x x -1 1 0

x 0

h -1
h

i

h +1

i -2
i -1

Fig. 3. An example of handling the third case in computing D0j, when Text[j-1…j] = “AB” and
Pat[1…7] = “ABAABAA”. As can be seen from the filled column j, a match propagates
diagonal zero deltas downwards as long as the vertical delta in the preceding column j-1 has a
value +1. First the matching bits in PMj, that overlap a segment of ones in VPj-1, are extracted
by AND-ing PMj and VPj-1. Then the resulting vector is added together with VPj-1 to change the
bit value in those positions, which get a diagonal zero delta from above. Finally these changed
bits are set to 1 by XOR-ing the result of the addition with the original VPj-1. The darker
shading marks the locations, where a match causes a diagonal zero delta, and the lighter
shading the positions, where a diagonal zero delta propagates from above.

Step 2: Computing HPj and HNj. At this point we can assume that, in addition to the
vectors VPj-1, VNj-1 and PMj, also the vector D0j is known.

It can be seen from the adjacency and diagonal properties that HPj[i] = 1 iff D[i,j-
1] = D[i-1,j-1] – 1, or D[i,j] = D[i-1,i-1] + 1 and D[i,j-1] = D[i-1,j-1] (Figures 4a and
4b). In terms of the delta vectors this means that HPj[i] = 1 iff VNj-1[i] = 1 or D0j[i] =
0 and VPj-1[i] = 0 and VNj-1 = 0. Because the left side of the preceding or has only the
condition VNj-1[i] = 1, the requirement VNj-1[i] = 0 on the right side can be removed as
it is implicitly expressed by the former. This results in the following formula for
computing the vector HPj[i]:

HPj = VNj-1 | ~(D0j | VPj-1).

In similar fashion as for HPj, we can see that HNj[i] = 1 iff D[i,j] = D[i-1,j-1] and
D[i,j-1] = D[i-1,j-1] + 1 (Figure 4c). This results in the rule VNj[i] = 1 iff D0j[i] = 1
and VPj-1[i] = 1, and so we have the following formula for computing the vector HNj:

HNj = D0j & VPj-1.

Fig. 4. The figures a) and b) show the only possible combinations for the cells D[i-1,j-1], D[i,j-
1] and D[i,j], in which D[i,j] = x = D[i,j-1] + 1. Similarly, figure c) shows the only case, in
which D[i,j] = x = D[i,j-1] – 1.

PMj VPj-1 VPj-1 VPj-1

j -1 j
A B

… 0 0
… 0 1 0 0 0 0 0 0 0 0 0
… 1 0 1 1 1 1 1 0 0 1 1
… 2 1 0 1 0 0 1 0 0 1 1
… 3 2 0 & 1 = 0 0 + 1 = 0 0 ^ 1 = 1
… 4 3 1 1 1 1 1 1 1 1 0
… 5 4 0 1 0 0 1 0 0 1 1
… 6 5 0 1 0 0 1 0 0 1 1

6 6 0 0 0 0 0 1 1 0 1

B
A
A

A
B
A
A

j -1 j j -1 j j -1 j
a) i -1 x -1 * b) i -1 x * c) i -1 x *

i x -1 x i x -1 x i x +1 x

Step 3: Computing the value D[m,j]. After computing the vectors HPj and HNj, the
value D[m,j] is easy to calculate from D[m,j-1]. If HPj[m] = 1, then D[m,j] = D[m,j-1]
+ 1, and if HNj[m] = 1, then D[m,j] = D[m,j-1] - 1. Otherwise D[m,j] = D[m,j-1].

Step 4: Computing VPj and VNj. This step is diagonally symmetric with step 2 of
computing HPj and HNj.

By imitating the case of HPj we have that VPj[i] = 1 iff HNj[i-1] = 1 or D0j[i] = 1
and HPj[i-1] = 0. Now we need to align the (i-1)th row bits HNj[i-1] and HPj[i-1] with
the ith row bit VPj[i]. This means shifting the former two one step down (that is, to
the left). After shifting these two vectors left, their first bits represent the values
VPj[0] and VNj[0], which are not explicitly represented in the algorithm. These two
values correspond to the difference D[0,j] – D[0,j-1]. Since we assume zero filling,
shifting HNj and HPj one step to the left introduces a zero in their first positions. This
is the same as using the values HPj[0] = 0 and HNj[0] = 0, which correctly
corresponds to the initial condition D[0,j] = 0 (i.e. D[0,j] – D[0,j-1] = 0) of
approximate string matching. If we were to use the algorithm of Myers for computing
edit distance, the newly introduced zero bit of the vector HPj would have to be
changed into a one to use the value HPj[0] = 1, which corresponds to the initial
condition D[0,j] = j (i.e. D[0,j] – D[0,j-1] = 1) of computing edit distance. The
resulting formula for computing the vector VPj is then:

VPj = (HNj << 1) | ~(D0j | (HPj << 1)).

By imitating this time the case of HNj, we have that VNj[i] = 1 iff D0j[i] = 1 and
HPj[i-1] = 1. Again the (i-1)th row bit HPj[i-1] has to be shifted one step down to
align it with the ith row bit VPj. The same comment as above, about setting the newly
introduced bit of VPj into a one in the case of computing edit distance, applies also
here. We get the following formula for computing the vector VNj:

VNj = D0j & (HPj << 1).

The algorithms corresponding to steps 1 - 4 is given in Figure 5. In an actual
implementation HPj should be shifted and stored between lines 14 and 15 so that the
result can be used both in lines 15 and 16 and one shift is saved. In addition some of
the vectors can share the same variable, and only the currently needed values of the
difference vectors are kept in memory in a similar fashion to what was discussed
about saving space in the case of the dynamic programming matrix.

The only difference between this version and the original algorithm of Myers is
that he uses two vectors XVj and XHj instead of a single diagonal vector D0j. In fact
D0j = XVj OR XHj, and XVj corresponds to the cases 2 and 3 and XHj to the cases 1
and 2 of the computation of D0j. This difference has no significance as long as regular
sequential approximate string matching with the distance ed is concerned. But having
a single diagonal vector has proved useful for example when the algorithm of Myers
is modified for use in the ABNDM algorithm [4].

D-Myers(Pat[1…m], Text[1…n], k)
1. Preprocessing
2. For λ ∈ all characters Do
3. PMλ ← 0
4. For i ∈ 1…m Do
5. PMPat[i] ← PMPat[i] | 0 m-i 10i-1

6. VP0 ← 1 m, VN0 ← 0, D[m, j] ← m
7. Searching
8. For j ∈ 1…n Do
9. D0j ← (((PMText[j] & VPj-1) + VPj-1) ^ VPj-1) | PMText[j] | VNj-1

10. HPj ← VNj-1 | ~(D0j | VPj-1)
11. HNj ← D0j & VPj-1

12. If HPj & 10 m-1
≠ 0 Then D[m, j] ← D[m, j] + 1

13. If HNj & 10 m-1
≠ 0 Then D[m, j] ← D[m, j] – 1

14. If D[m, j] ≤ k Then report a match ending at Text[j]
15. VPj ← (HNj << 1) | ~(D0j | (HPj << 1))
16. VNj ← D0j & (HPj << 1)

Fig. 5. Our D0j-based version of the algorithm of Myers (for the case m ≤ w).

4. Adding transposition into the algorithm

Now we consider modifying the bit-vector algorithm of Myers to use the edit distance
edt. The trick we use is to consider how a transposition relates to a zero-difference
along the diagonal. Consider the strings α = “abc” and β = “acb”. Without allowing
transposition we would have D[“ab”,“ac”] = 1, where this one operation corresponds
to substituting the first character of the transposable pair. When filling in the value
D[“abc”,“acb”], the effect of having done a single transposition can be achieved by
allowing a free substitution between the latter character-pair of the transposable pair.
This is the same as declaring a match between them. In this way the cost for doing the
transposition has already been paid by the substitution of the preceding step. It turns
out that this kind of method works correctly in all cases. In general we claim that the
following Recurrence 3 for edt is in effect equivalent with Recurrence 2 in Section 2.

Recurrence 3:

[] []

[]
[] [] []
[] [] [] [] []

[] [] []







−−−−+
+−−=−−=−−−

=−−
=

==

otherwise. },1, ,,1 ,1,1min{1

.12,21,1 and ...1...1 if,1,1

 . if ,1,1

,

.,0 ,0,

jiDTjiDTjiDT

jiDTjiDTjj- βiiαjiDT

j β iαjiDT

jiDT

jjDTiiDT

R

Now we prove by induction that Recurrence 2 and Recurrence 3 give the same values
for DT[i,j] when i ≥ 0 and j ≥ 0.

Clearly both formulas give the same value for DT[i,j] when i = 0 or 1 or j = 0 or 1.
Consider now a cell DT[i,j] for some j > 1 and i > 1, and assume that all previous cells
with nonnegative indices have been filled identically by both recursive formulas. Let

x be the value given to DT[i,j] by Recurrence 2 and y be the value given to it by
Recurrence 3. The only situation in which the two formulas could possibly behave
differently is when α[i] ≠ β[j] and α[i-1…i] = βR[j-1…j]. In the followint cases we
assume these two conditions to be true.

If DT[i-2,j-2] + 1 = DT[i-1,j-1], then y = DT[i,j] = DT[i-1,j-1], and since the
diagonal property requires that x ≥ DT[i-1,j-1], we have x = DT[i,j] = DT[i-2,j-2] + 1
= DT[i-1,j-1] = y.

Now consider the case DT[i-2,j-2] = DT[i-1,j-1]. Then y = DT[i,j] = 1 + min{DT[i-
1,j-1], DT[i-1,j], DT[i,j-1]} and x = DT[i,j] = 1 + min{DT[i-2,j-2], DT[i-1,j], DT[i,j-
1]}, and since DT[i-2,j-2] = DT[i-1,j-1], we have x = 1 + min{DT[i-1,j-1], DT[i-1,j],
DT[i,j-1]} = y.

In both cases, Recurrence 2 and Recurrence 3 assigned the same value for the cell
DT[i,j]. Therefore we can state by induction that the recurrences are in effect
equivalent.

We use here the same notation for the delta vectors regardless of whether the
underlying matrix is DT or D. So for example when dealing with transposition, it is
assumed that D0j[i] = 1 iff DT[i,j] = DT[i-1,j-1].

Following Recurrence 3, it is fairly simple to add transposition into the algorithm
of Myers. In addition to the cases when the edit distance ed is used, we also have
D0j[i] = 1 if Pat[i-1…i] = TextR[j-1…j] and DT[i-1,j-1] = DT[i-2,j-2] + 1. The
condition Pat[i-1…i] = TextR[j-1…j] is true iff PMj-1[i] = 1 and PMj[i-1] = 1, which
can happen only if j > 1 and i > 1. In this case the second condition DT[i-1,j-1] =
DT[i-2,j-2] + 1 is true iff D0j-1[i-1] = 0. Let TRj be a transposition vector that
corresponds to these conditions. That is, TRj[i] = 1 iff PMj-1[i] = 1, PMj[i-1] = 1 and
D0j-1[i-1] = 0. The following formula computes the vector TRj correctly:

TRj = ((~D0j-1) & PMj) << 1) & PMj-1.

It follows, that the algorithm shown in Figure 5 can be modified to handle
transposition by adding the above formula between the lines 8 and 9, and OR-ing D0j
with TRj before the line 10. This version of the algorithm is shown in Figure 6.

TR-D0-Myers(Pat[1…m], Text[1…n], k)
1. Preprocessing as in Figure 5 except: PMText[0] ← 0, DT[m, j] ← m
2. Searching
3. For j ∈ 1…n Do
4. TRj = ((~ D0j-1) & PMText[j]) << 1) & PMText[j-1]

5. D0j ← (((PMText[j] & VPj-1) + VPj-1) ^ VPj-1) | PMText[j] | VNj-1

6. D0j ← D0j | TRj
7. HPj ← VNj-1 | ~(D0j | VPj-1)
8. HNj ← D0j & VPj-1

9. If HPj & 10 m-1
≠ 0 Then DT[m, j] ← DT[m, j] + 1

10. If HNj & 10 m-1
≠ 0 Then DT[m, j] ← DT[m, j] – 1

11. If DT[m, j] ≤ k Then report a match ending at Text[j]
12. VPj ← (HNj << 1) | ~(D0j | (HPj << 1))
13. VNj ← D0j & (HPj << 1)

Fig. 6. D0j-based algorithm of Myers with transposition (for the case m ≤ w).

5. Handling long patterns

When the pattern does not fit into a single computer word, the algorithm of Myers
must use multiple words in representing the deltas between the (j-1)th and jth columns
of the dynamic programming matrix. This can be done by simulating a longer vector.
We discuss here one such method, which uses m/w vector blocks so that the rth
block of vectors represents the rows (r-1)w+1…rw. In the basic case this results in an
O(mn / w) algorithm. In the following discussion we denote by VPr,j the rth vertical
positive delta vector of the jth column. Then VPr,j[i] = 1 iff D[(r-1)w+i, j] – D[(r-
1)w+i-1, j] = 1. We use similar notation also with all the other vectors in the
algorithm, so that for example PMr,j[i] = 1 iff Pat[(r-1)w+i] = Text[j].

5.1 Basic use of the vector blocks

The only real differences between using multiple blocks of vectors instead of a single
one are ensuring that the blocks interact correctly with each other, and naturally that
now r blocks of vectors need to be computed for each column. The vector blocks are
computed in order of growing r (i.e. first the vector block consisting of D01,j, HP1,j,
HN1,j, VP1,j and HP1,j, then the second vector block consisting of D02,j, HP2,j, HN2,j,
VP2,j and HP2,j, and so on, see Figure 7a). Looking at the four steps listed in the
beginning of Section 4 we can identify two locations in the algorithm, where some
information from the computation of the (r-1)th vector block is needed when
computing the rth vector block and r > 1.

Fig. 7. A situation in which m/w = 3, and therefore three vector blocks are needed to represent
a column of the dynamic programming matrix. The figure a) on the left depicts filling the
matrix completely, and the shaded area corresponds to the cells filled by the regular dynamic
programming algorithm. The figure b) on the right depicts using the cut-off heuristic. The
shaded area corresponds to the cells filled by the dynamic programming algorithm with the cut-
off heuristic, and only the minimum set of vector blocks needed to cover these is shown.

The first place is the computation of the diagonal zero delta vector. If a continuous
run of ones ends in the lowest bit of the vector VPr-1,j, the addition, which propagates
diagonal zero-deltas down along these one bits, would propagate diagonal zero-deltas
also to the q+1 first (uppermost) rows in the vector D0r,j, where q is the number of
consecutive one bits in the beginning of the vector VPr,j. This happens exactly when

a) b)

P
a
t

x

1

t
e
r
n

T e ex t T t

P
a
t

2

3

1

2

3

t
e
r
n

HNr-1,j[w] = 1. The correct propagation of the zero-deltas can be ensured by setting,
before the value PMr,j is used, PMr,j[1] = 1 if HNr-1,j[w] = 1. This procedure leads both
to setting the first bit of D0r+1,j, and continuing the zero-delta propagation further
down along the possible continuous one bits in the beginning of the vector VPr+1,j.

The second place is the computation of the vertical delta vectors, which involves
shifting the horizontal vectors HPr,j and HNr,j to the left. For this to work correctly, the
horizontal differences D[(r-1)w,j] – D[(r-1)w,j], represented by HPr-1,j[w] and HNr-

1,j[w], and D[(r-1)w+1,j] – D[(r-1)w+1,j-1], represented by HPr,j[1] and HNr,j[1],
should remain next to each other in the column. Thus the values HPr,j[1] = HPr-1,j[w]
and HNr,j[1] = HNr-1,j[w] should be set after the shifts.

5.2 Long patterns and transposition

Computing the vector blocks involves two additional difficulties when also
transpositions are allowed. They both arise from the left shift that is done in
computing the rth block transposition vector TRr,j = ((~D0r,j-1) & PMr,j) << 1) &
PMr,j-1. As with HPr,j and HNr,j in Section 5.1, we must ensure that the shift sets the bit
D0r,j-1[1] to have the value D0r-1,j-1[w], and the bit PMr,j[1] to have the value PMr-

1,j[w]. Figure 8 shows the algorithm for computing the rth block in column j when
transposition is allowed.

ComputeBlock(r, j)
1. X ← PMr, Text[j]

2. TRr, j ← ((~ D0r, j-1) & X) << 1) & PMr, Text[j-1]

3. TRr, j ← TRr, j | ((~ D0r-1, j-1) & PMr-1, Text[j]) >> (w-1)) & PMr, Text[j-1]

4. If HNr-1, j & 10 w-1
≠ 0 Then X ← X | 1

5. D0r, j ← (((X & VPr, j-1) + VPr, j-1) ^ VPr, j-1) | X | VNr, j-1

6. D0r, j ← D0r, j | TRr, j

7. HPr, j ← VNr, j-1 | ~(D0r, j | VPr, j-1)
8. HNr, j ← D0r, j & VPr, j-1

9. If HPr, j & 10 m-1
≠ 0 Then DT[rw, j] ← DT[rw, j] + 1

10. If HNr, j & 10 m-1
≠ 0 Then DT[rw, j] ← DT[rw, j] – 1

11. X ← HPr, j << 1
12. If HPr-1, j & 10 w-1

≠ 0 Then X ← X | 1
13. VPr, j ← (HNr, j << 1) | ~(D0r, j | X))
14. If HNr-1, j & 10 w-1

≠ 0 Then VPr, j ← VPr, j | 1
15. VNr, j ← D0r, j & X

Fig. 8. The algorithm for computing the rth vector block in column j when transposition is
allowed. This version is shown as it is for clarity, and there is room for optimization. For
example we could merge lines 2 and 3.

5.3 Using the cut-off heuristic in computing the blocks

In this discussion we concentrate on the case of using the edit distance ed, but the
method can be used in exactly the same way also when the distance function edt is
used.

In what follows we propose a method for using cut-off heuristic in computing the
vector blocks. This differs only slightly from the one proposed by Myers and results
in a O(kn/w) expected time algorithm. The goal is to compute the vector blocks only
as far down in the column that is needed in order to cover the area of the dynamic
programming matrix that the Ukkonen cut-off heuristic would fill (Figure 7b). In the
jth column the rth block is called active if D[i,j-1] ≤ k for some i ≥ (r-1)w + 1.
According to the cut-off heuristic, only the active blocks need to be computed. To
help in doing this, in a way explained later, the value D[(r-1)w,j] is explicitly
maintained for all blocks.

To make the algorithm uniform (and possibly more efficient), Myers did not
separately calculate the value of the cell D[m,j] even if the pattern is not equally
divided by w. He rather added wm/w - m so-called wild card characters, which match
with every character, to the end of the pattern. This makes the value of the cell D[m,j]
propagate diagonally with the matches into the cell D[wm/w,j+wm/w-m]. Thus an
approximate occurrence of the pattern ends at the text character Text[j-wm/w+m]
whenever D[wm/w,j] ≤ k. If all m/w blocks are active after the last text character of
the text has been processed, the possible endpoints of occurrences in the area Text[n-
wm/w-m+1…n] can be checked by starting from the cell D[wm/w,n] and then
computing the values D[wm/w-1,n], D[wm/w-2,n],…, D[m,n] using the vectors
VNm/w,n and VNm/w,n. An occurrence ends at the character Text[n-i+m] whenever
D[i,n] ≤ k and i ≥ m1. Also we use this scheme.

From the initial conditions of the dynamic programming matrix it is known that
D[i,0] > k for i > k. Thus in the first column the first k/w vector blocks are active and
need to be computed. Let bj denote the number of active the vector blocks in the jth
column. Note that then the bjth block is the lowest active block and b1 = k/w. The
value for bj is determined as follows.

In the jth column the (bj-1+1)th block becomes active only iff D[bj-1w,j-1] = k =
D[bj-1w+1,j]. This follows from the adjacency and diagonal properties and the fact
that, by the definition of bj-1, the cells D[bj-1w+1,j-1], D[bj-1w+2,j-1],…, D[bj-1w,j-1]
have a value > k. But instead of checking for the whole condition, as described by
Myers, we choose to only test whether D[bj-1w,j-1] = k. This is because this simpler
rule works with both distances ed and edt, and in a brief test we found it to perform
virtually as well as the full check. Also the asymptotic runtime is still the same
O(kn/w) expected time.

In processing the jth column, initially the first bj-1 blocks are computed. Then if
D[bj-1w,j] = k, we set bj = bj-1+ 1. After this, the just-activated bjth vector block is
initialized by setting VPb,j = 1w and VNb,j = 0 with b = bj. This corresponds to having
D[(bj–1)w+1,j] = k, D[(bj–1)w+2,j] = k+1,…, D[bjw,j] = k+w-1 and does not affect the
correct behavior of the algorithm. These cells are known to have a value > k and their
accurate values are therefore obsolete in terms of finding approximate matches.

It is difficult to determine in an exact and efficient manner whether the bjth block
becomes inactive when moving into the (j+1)th column. This lead Myers to use the
seemingly crude rule, based on the adjacency property, that the blocks bj-q, bj-q+1,…,
bj become inactive, and thus bj+1 = bj-q-1, if D[(bj-p)w,j] > k + w for p = 0…q. But the
method works well in practice. We for example tested a stricter rule, that the blocks

1 This is based on an actual implementation by Myers, and is not mentioned in his article [7].

bj-q, bj-q+1,…, bj become inactive if D[(bj-p)w,j] + D[(bj-p-1)w,j] > 2k + w for p =
0…q, but the overhead of having to add the two cell values overwhelmed the benefit
of filling slightly less vector blocks.
By following the method used by Hyyrö and Navarro in the forward verification
phase of their Myers-based version of the ABNDM heuristic [4], it is in principle
possible to keep track of the exact location of the lowest cell with a value ≤ k in the
current column without worsening the asymptotical complexity of the algorithm. But
the approach seemed to be quite slow in practice when we briefly tested this.

Figure 9 shows using our slightly modified version of the cut-off heuristic with the
vector blocks and the matrix DT. As the original version of Myers, the algorithm runs
in O(kn/w) expected time.

CutOffVectorBlocks(Pat[1…m], Text[1…n], k)
1. Preprocessing
2. For r ∈ 1…m/ w Do
3. For λ ∈ all characters Do
4. PMr, λ ← 0
5. For i ∈ 1…min{ w, m-(r-1) w} Do
6. PMr, Pat[(r-1) w+i] ← PMr, Pat[(r-1) w+i] | 0 w-i 10i-1

7. For λ ∈ all characters Do
8. PM m/ w, λ ← PM m/ w, λ | 1

w
 m/ w- m0m- w(m/ w-1)

9. b ← k/ w
10. For r ∈ 1…b Do
11. VPr,0 ← 1 m, VNr,0 ← 0, DT[rw,0] ← rw
12. Searching
13. For j ∈ 1…n do
14. For r ∈ 1…b Do
15. ComputeBlock(r, j)
16. If DT[bw, j-1] = k Then
17. VPb+1, j ← 1 w, VNb+1, j ← 0, DT[(b+1) w, j] ← k+w, b ← b+1
18. Else
19. While DT[bw, j] > k+w Do
20. b ← b-1
21. If b = m/ w and DT[bw, j] ≤ k Then
22. report a match ending at Text[j- wm/ w+m]
23. If b = m/ w Then
24. For i ∈ 1…bw- m Do
25. If VPb, n & 10 w- i

≠ 0 Then DT[bw- i, n] ← DT[bw- i-1, n]-1
26. If VNb, n & 10 w- i

≠ 0 Then DT[bw- i, n] ← DT[bw- i-1, n]+1
27. If DT[bw- i, n] ≤ k Then a match ends at Text[n- bw+i+m]

Fig. 9. An algorithm for using the cut-off heuristic with vector blocks.

6. Test results

In this section we present some test results concerning the effect that adding
transposition has on the algorithm of Myers. The computer used in the tests was a 32-
bit dual-processor Pentium3 550 Mhz with 256 MB RAM and Linux OS, and the
code was compiled with GCC and full optimization. Each test consisted of searching
100 random patterns from a 10 MB random text. We used the original code from

Myers as the basis for all implementations so that they would be of comparable
quality. When the pattern did not fit into the computer word, the cut-off heuristic was
used. Figure 10 shows the results for m = 10, 20, … 150 and k = m/5. As can be seen,
adding transposition brings very little extra cost as long as the pattern fits into a single
computer word. With longer patterns the difference is roughly 20%. This bigger gap
with the longer patterns arises from the extra work needed with edt in handling the
block boundaries.

Fig. 10. The test results for searching 100 patterns in 10 MB of text with k = m/5.

7. Conclusions

The O(mn / w) bit-parallel algorithm of Myers [7] is one of the leading current
approximate string matching algorithm when the underlying edit distance permits
insertions, deletions and substitutions. In this paper we presented, in what we think is
a more intuitive way than the original, a slightly different but practically equivalent
version of the algorithm of Myers. Then we extended the algorithm to also permit
transposition of two adjacent characters. The resulting algorithm was found to be
almost as fast as the original when the pattern fits into a single computer word, and
roughly 20% slower with longer patterns.

Acknowledgments

We would like to thank Gonzalo Navarro for some useful comments on a very early
draft of the ideas in the paper.

0

5

10

15

20

25

10 30 50 70 90 11
0

13
0

15
0

m

tim
e

/ s ed

edt

References

1. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate string
matching algorithms. In Proceedings of CPM'92, LNCS 644: 172-181, 1992.

2. F. J. Damerau. A technique for computer detection and correction of spelling errors.
Communications of the ACM, 7(3): 171-176, 1964.

3. M .W. Du and S. C. Chang. A model and a fast algorithm for multiple errors spelling
correction. Acta Informatica, 29: 281-302, 1992.

4. H. Hyyrö and G. Navarro. Faster bit-parallel approximate string matching. To apper in
Proceedings of CPM'2002.

5. K. Kukich. Automatically correcting words in text. ACM Computing Surveys, 24(4): 377-
439, 1992.

6. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Sov. Phys. Dokl. 10: 707-710, 1966.

7. G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
progamming. Journal of the ACM, 46(3): 395-415, 1999.

8. G. Navarro. A Guided Tour to Approximate String Matching. ACM Computing Surveys
33(1): 31-88, 2001.

9. G. Navarro. NR-grep: a Fast and Flexible Pattern Matching Tool. Software Practice and
Experience 31: 1265-1312, 2001.

10. P. H. Sellers. On the theory of computation of evolutionary distances. SIAM Journal of
Applied Mathematics, 26: 787-793, 1974.

11. E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64:
100-118, 1985.

12. E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6: 132-137,
1985.

13. S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM,
35(10): 83-91, 1992.

