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Introduction 

An idea which has increasingly gained attention is that computer 

architectures should reflect specific language structures to be supported. 

This is an old idea; one can see features in the machines of the 1960's 

intended to support COBOL, FORTRAN, ALGOL, and PL/I. More recently research 

has been conducted into architectures to support string or array processing as 

in SNOBOL or APL. 

An older and by now well-accepted idea is that of the stored-program 

computer. In such a computer the program and the data reside in the same 

memory; that is, the program is itself data which can be manipulated as any 

other data by the processor. It is this idea which allows the implementation 

of such powerful and incestuous software as program editors, compilers, 

interpreters, linking loaders, debugging systems, etc. 

One of the great failings of most high-level lenguages is that they 

‘have abandoned this idea. It is extremely difficult, for example, for a PL/I 

(PASCAL, FORTRAN, COBOL ...) program to manipulate PL/I (PASCAL, FORTRAN, 

~ COBOL ...). programs. 

On the other hand, many of these high-level languages have introduced 

other powerful ideas not present in standard machine languages. Among these 

are (1) recursively defined, nested data structures; and (2) the use of 

functional composition to allow programs to contain expressions as well as (or 

. instead of) statements. The LISP language in fact has both of these features. 

It is unusual among high-level languages in that it also explicitly supports 

the stored-program idea: LISP programs are represented in a standardized way 

as recursively defined, nested LISP data structures. By contrast with some 

APL implementations, for example, which allow programs to be represented as 

arrays of characters, LISP also reflects the structure of program expressions 

in the structure of the data which represents the program. (An array of APL 

characters must be parsed to determine the logical structure of the APL 

expressions represented by the array. Similar remarks apply to SNOBOL 

statements represented as SNOBOL strings.) 

It is for this reason that LISP is often referred to as a "high-level 

machine language". As with standard stored-program machine’ languages, 

programs and data are made of the same stuff. In a standard machine, however, 

the "stuff" is a homogeneous, linear (ordered) vector of fixed-size bit 

‘fields; a program is represented as an ordered sequence of bit fields 

(instructions) within the overall vector. In LISP, the "stuff" is a 

heterogeneous, unordered set of records linked to form lists, trees, and 

graphs; a program is represented as a tree (a "parse tree" or “expression 

tree") of linked records (a subset of the overall set of records). Standard 

machines usually exploit the linear nature of the "stuff" through = such 

mechanisms as indexing by additive offset and linearly advancing program 

counters. A computer based on LISP can similarly exploit tree structures. 

The counterpart of indexing is component selection; the counterpart of linear 

instruction execution is evaluation of expressions by recursive tree-walk.
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Just as the "linear vector" stored-program-computer model leads to a 

variety of specific architectures, so with the "linked record" model. For 

concreteness we present here one specific architecture based on the linked 

record model which has actually been constructed. 

List Structure and Programs 

One of the central ideas of the LISP language is that storage 

management should be completely invisible to the programmer, so that he need 

not concern himself with the issues involved. LISP is an object-oriented 

language, rather than a value-oriented language. The LISP programmer does not 

think of variables as the objects of interest, bins in which values can be 

held. Instead, each data item is itself an object, which can be examined and 

modified, and which has an identity independent of the variable(s) used to 

name it. 

In this section we discuss LISP data structures at the conceptual 

level; the precise form of LISP data objects is not of concern here. Later 

we will discuss specific representations within the machine. LISP data is 

collectively referred to as "S-expressions" ("S" for "symbolic"). For our 

purposes we will need only the special cases of S-expressions called atoms and 

lists. An atom is an "indivisible" data object, which we denote by writing a 

string of letters and digits; if only digits are used, then the atom is 

considered to be a number. Many special characters such as "-", "+", "@", and 

"x" are considered to be letters; we will see below that it is not necessary 

to specially reserve them for use as operator symbols. A list is a (possibly 

empty) sequence of LISP data objects, notated by (recursively) notating the 

objects in order, between a set of parentheses and separated by blank space. 

A list of the atoms "roo", "43", and "sar" would be written "(FOO 43 BAR)". 

Notice that the definition of a list is recursive. For example, 

(DEFINE SECOND (LAMBDA (X) (CAR (CDR X)))) 

is a list of three things: the atomic symbol DEFINE, ‘the atomic symbol SeEcono, 

and another list of three things LAMBDA, (xX), and (CAR (COR X)). 

A convenient way use lists to represent algebraic expressions is to 

use "Cambridge Polish" notation, essentially a parenthesized version of prefix 

Polish notation. Numeric constants are encoded as numeric atoms; variables 

are encoded as non-numeric atoms (which henceforth we will call symbols); and 

‘procedure invocations (function calls) are encoded as lists, where the first 

- element of the list represents the procedure and the rest represent the 

arguments. For example, the algebraic expression "axb+cxd" can be represented 

as "(+ (* ab) (* cd))". Notice that LISP does not need the usual precedence 

_ rules concerning whether multiplication or addition is performed first; the 

parentheses (or rather, the structure of the lists) explicitly define the 

order. Also, all procedure invocations have a uniform syntax, no matter how 

“many arguments are involved. Infix, superscript, and subscript notations are 

. Mot used; thus the expression "J y(x#1)" would be written "(J p (+ (t x 2) 1))".
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To encode a conditional expression "if p then x else y"” we write: 

(IF p x y) 

Expressions are made into procedures (functions) by the use of 

Church's lambda-notation. For example, 

(LAMBDA (X Y) (+ (* 3 Y) X)) 

evaluates to a function of two arguments x and y which computes 3*Y+X. The 

list of variables names after the Lamspa indicates how the variables names in 

the expression are to be matched positionally to supplied arguments when the 

function is applied. 

We can also encode recursive LISP programs as list data. For example, 

to compute N factorial (N!): 

(DEFINE FACTORIAL 
(LAMBDA (N) 

(IF (= NO) 1 
(* N (FACTORIAL (- N 1)))))) 

Suppose that we now want to write a LISP program which will take such 

a data structure and perform some useful operation on it, such as determining 

the value of an algebraic expression represented as a list structure. We need 

some procedures for categorizing, decomposing, and constructing LISP data. 

The predicate atom, when applied to a LISP datum, produces true when 

given an atom and false otherwise. The empty list ("()") is considered to be 

an atom. The predicate Nutt is true of only the empty list; its argument 

need not be a list, but may be any LISP datum. The predicate NumBerP is true 

of numbers and false of symbols and lists. The predicate £0, when applied to 

two symbols, is true if the two atomic symbols are identical. It is false 

when applied to two distinct symbols, or to a symbol and any other datum. 

The decomposition operators for lists are traditionally called car and 

cor for historical reasons. car extracts the first element of a list, while 

COR produces a list containing all elements but the first. Because 

compositions of caAR and coR are commonly used in LISP, an abbreviation is 

provided: all the C's and R's in the middle can be squeezed out. For 

example, "(cor (COR (CAR (COR X))))" can be written as "(CDDADR x)". 

The construction operator cons, given any datum and a list, produces a 

new list whose car is the datum and whose cdr is the given list; that is, 

cons adds a new element to the front of a list. The operator LIST can take any 

number of arguments (a special feature), and produces a list of its arguments. 

Notice that cons (and LIST) conceptually create new data structures. 

As far as the LISP programmer is concerned, new data objects are available in 

endiess supply. They can be conveniently called forth to serve some immediate 

purpose and discarded when they are no longer of use. While creation is
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explicit, discarding is not; a data object simply disappears into limbo when 

the program throws away all references (direct or indirect) to that object. 

The immense freedom this gives the programmer may be seen by an 

example taken from current experience. A sort of error message familar to 

most programmers is "too many nested DO loops" or "more than 200 declared 

-. arrays" or "symbol table overflow". Such messages typically arise within 

compilers or assemblers which were written in languages requiring data tables 

to be pre-allocated to some fixed length. The author of a compiler, for 

example, might well guess, "No one will ever use more than, say, ten nested DO 

loops; I'll double that for good measure, and make the nested-DO-loop-table 

20 long." Inevitably, someone eventually finds some reason to write 21 nested 

DO loops, and finds that the compiler overflows its fixed table and issues an 

error message (or, worse yet, doesn't issue an error message!). On the other 

hand, had the compiler writer made the table 100 long or 1000 long, most of 

the time most of the memory space devoted to that table would be wasted. 

A compiler written in LISP would be much more likely to keep a linked 

list of records describing each DO loop. Such a list could be grown at any 

time by creating a new record on demand and adding it to the list. In this 

way aS many or as few records as needed could be accommodated. 

Now one could certainly write a compiler in any language and provide 

such dynamic storage management with enough programming. The point is that 

LISP provides automatic storage management from the outset and encourages its 

use (in much the same way that FORTRAN provides floating-point numbers and 

encourages their use, even though the particular processor on which a FORTRAN 

program runs may or may not have floating-point hardware). 

Using CAR, CDR, and CONS, we can now write some interesting programs in 

LISP to deal with LISP data. For example, we can write a program append, which 

given two lists produces their concatenation as a new list: 

(DEFINE APPEND 

(LAMBDA (X Y) 

(IF (NULL X) Y 

(CONS (CAR X) (APPEND (COR X) Y))))) 

Because LISP programs are represented as LISP data structures, there 

is a difficulty with representing constants. For example, suppose we want to 

determine whether or not the value of the variable x is the symbol "Foo". We 

might try writing: 

(EQ X FOO) 

This doesn't work. The occurrence of "Foo" does not refer to the symbol Foo as 

a constant; it is treated as a variable, just as "x" is. 

The essential problem is that we want to be able to write any LISP 

datum as a constant in a program, but some data objects must be used to 

represent other things, such as variables and procedure invocations. To solve
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this problem we invent a new notation: (QUOTE 46) in a program represents the 

constant datum d. Thus we can write our test as "(EQ xX (QUOTE FOO))". 

Similarly, 

(APPEND X (LIST Y Z)) 

constructs a list from the values of y and Z, and appends the result to the 

value of x, while 

(APPEND X (QUOTE (LIST Y Z))) 

appends to the value of x the constant list "(LIst y z)". Because the QUOTE 

construction is used so frequently in LISP, we use an abbreviated notation: 

"FOO" ("Foo" with a preceding quote-mark) is equivalent to "(quote Foo)". This 

is only a notational convenience; the two notations denote the same list. 

A LISP Interpreter 

Here is one possible interpreter for the LISP dialect we have 

described, written in that dialect (this fact makes this interpreter 

meta-circular — it can interpret itself): 

(DEFINE EVAL 
(LAMBDA (EXP ENV) 

(IF (ATOM EXP) 
(IF (NUMBERP EXP) EXP (VALUE EXP ENV)) 
(IF (EQ (CAR EXP) 'QUOTE) 

(CADR EXP) 
(1F (EQ (CAR EXP) 'LAMBDA) 

(LIST '&PROCEDURE (CADR EXP) (CADDR EXP) ENV) 
(1F (EQ (CAR EXP) 'IF) 

(IF (EVAL (CADR EXP) ENV) 
(EVAL (CADDR EXP) ENV) 
(EVAL (CADDOR EXP) ENV)) 

(APPLY (EVAL (CAR EXP) ENV) 
(EVLIS (CDR EXP) ENV)))))))) 

(DEFINE APPLY 
(LAMBDA (FUN ARGS) 

(IF (PRIMOP FUN) (PRIMOP-APPLY FUN ARGS) 
(1F (EQ (CAR FUN) '&PROCEDURE ) 

(EVAL (CADDR FUN) 
(BIND (CADR FUN) ARGS (CADDOR FUN))) 

(ERROR))))) 

(DEFINE EVLIS 

(LAMBDA (ARGLIST ENV) . 
(1F (NULL ARGLIST) '() 

(CONS (EVAL (CAR ARGLIST) ENV) 

“(EVLIS (CDR ARGLIST) ENV)))))
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The evaluator is divided into two conceptual components: eEvAL and 

APPLY. EVAL classifies expressions and directs their evaluation. Simple 

expressions (such as constants and variables) can be evaluated directly. For 

the complex case of procedure invocations (technically called "combinations" ), 

EVAL looks up the procedure definition, recursively evaluates the arguments 

(using EvVLIS), and then calls appLy. apply classifies procedures and directs 

their application. Simple procedures (primitive operators) are applied 

directly. For the complex case of user-defined procedures, APPLY uSeS_ BIND 

(see below) to add to the lexical environment, a kind of symbol table, of the 

procedure, by associating the formal parameters from the procedure definition 

with the actual argument values provided by Eval. The body of the procedure 

definition is then passed to e€vat, along with the environment just 

constructed, which is used to determine the values of variables occurring in 

the body. 

In more detail, evAL is a case analysis on the structure of the 

S-expression exp. If it is an atom, there are two subcases. Numeric atoms 

evaluate to themselves. Atomic symbols, however, encode variables; the value 

associated with that symbol is extracted from the environment ENV using the 

function value (see below). 

If the expression to be evaluated is not atomic, then it may be a 

Quote form, a LAMBDA form, an IF form, or a combination. For a quote form, EVAL 

extracts the S-expression constant using CADR. LAMBDA forms evaluate to 

procedure objects (here represented as lists whose cars are the atom 

"SPROCEDURE") containing the lexical environment and the "text" of the 

procedure definition. For an IF form, the predicate part is recursively 

evaluated; depending on whether the result is true or false, the consequent 

or alternative is selected for evaluation. For combinations, the procedure is 

obtained, the arguments evaluated (using EvLIS), and apply called as described 

earlier. 

EVLIS is a simple recursive function which calls eval on successive 

arguments in ARGLIST and produces a list of the values in order. 

APPLY distinguishes two kinds of procedures: primitive and 

user-defined. For now we avoid describing the precise implementation of 

primitive procedures by assuming the existence of a predicate primop which is 

true only of primitive procedures, and a function PRimop-ApPLY which deals with 

the application of such primitive procedures. We consider’ primitive 

procedures to be a kind of atomic S-expression other than numbers and atomic 

symbols; we define no particular written notation for them here. However, 

primitive procedures are not to be confused with the atomic symbols used as 

their names. The actual procedure involved in the combination (car x) is not 

the atomic symbol car, but rather some bizarre object (the value of the atomic 

symbol car) which is meaningful only to PRIMOP-APPLY. 

The interpreter uses several utility procedures for maintaining 

environments. An environment is represented as a list of buckets; each 

bucket is a list whose car is a list of names and whose cdr is a list of 

corresponding values. (Note that this representation is not the same as the
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_“a-list" representation traditionally used in LISP interpreters.) If a 

variable name occurs in more than one bucket, the most recently added such 

bucket has priority; in this way new symbol definitions added to the front of 

the list can supersede old ones. The code for manipulating environments is 

below. 

(DEFINE BIND 

(LAMBDA (VARS ARGS ENV) 

(IF (= (LENGTH VARS) (LENGTH ARGS)) 

(CONS (CONS VARS ARGS) ENV) 

(ERROR)))) | 

(DEFINE VALUE 

(LAMBDA (NAME ENV) 

(VALUEL NAME (LOOKUP NAME ENV)))) 

(DEFINE VALUE1 
(LAMBDA (NAME SLOT) 

(3F (EQ SLOT '&UNBOUND) (ERROR) 
(CAR SLOT)))) 

(DEFINE LOOKUP 

(LAMBDA (NAME ENV) 

(IF (NULL ENV) '&UNBOUND 

(LOOKUP1 NAME (CAAR ENV) (CDAR ENV) ENV)))) 

(DEFINE LOOKUP1 
(LAMBDA (NAME VARS VALS ENV) 

(1F (NULL VARS) (LOOKUP NAME (CDR ENV)) 
(1F (EQ NAME (CAR VARS)) VALS 

(LOOKUP1 NAME (COR VARS) (CDR VALS) ENV))))) 

BIND takes a list of names, a list of values, and a symbol table, and 

produces a new symbol table which is the old one augmented by an extra bucket 

containing the new set of associations. (It also performs a useful error 

‘check — LENGTH returns the length of a list.) 

VALUE is essentially an interface to Lookup. The check for &UNBOUND 

catches incorrect references to undefined variables. 

LOOKUP takes a name and a symbol table, and returns that portion of a 

- bucket whose car is the associated value. 

State-Machine Implementation 
  

The LISP interpreter we have presented is recursive. It implicitly 

relies on a hidden control mechanism which retains the state information which 

must be saved for each recursive invocation. Here we make this control 

information explicit. Below we present an interpreter in the form of a state 

machine controller. The controller manipulates a small set of registers, and
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also issues commands to ae list memory: system. The recursion control 

information which is typically kept on a Stack will be maintained in the 

Llinked-list memory. 

This evaluator, written in LISP, has five global variables which are 

used to simulate the registers of a machine. EXP is used to hold the 

expression or parts of the expression under evaluation. ENV is used to hold 

the pointer to the environment structure which is the context of evaluation of 

the current expression. vat is used to hold the value developed in evaluation 

of expressions. It is set whenever a primitive operator is invoked, or 

whenever a variable is evaluated, a quoted expression iS evaluated, or a 

lambda expression is evaluated. arés is used to hold the list of evaluated 

arguments (the "actual parameters") being accumulated for a combination. 

Finally, cCLINK is the pointer to the top of the list structure which is the 

control stack. (It is called "ctink" for historical reasons stemming from 

CONNIVER [McDermott 1974] and "spaghetti stacks" [Bobrow 1973].) 

. The style of coding here depends on "tail-recursion" (although the 

current implementations of MacLISP are not really tail-recursive); that is, 

iterative loops are implemented as patterns of function calls. 

EVAL-DISPATCH is the procedure which dispatches on the type of an 

expression — implementing the action of EvAL. When EVAL-DISPATCH is called, ExP 

contains an expression to be evaluated, ENV contains the environment for the 

evaluation, and the top element of CLINK is a "return address", i.e. the name 

of a function to call when the value has been determined and placed in va. 

(QEFUN EVAL-DISPATCH ( ) 

(COND ((ATOM EXP) ;If an atomic expression: 

(COND ((NUMBERP EXP) ; Mumbers evaluate 

(SETQ VAL EXP) 

(POPJ-RETURN) ) 

; to themselves 

; (i.e. are "self-quoting"), 

(T ; but symbols must be looked 

(SETQ VAL (VALUE EXP ENV)) ; up in the environment. 

(POPJ-RETURN)))) 

((EQ (CAR EXP) 'QUOTE) © ;If a QUOTE expression 

—(SETQ VAL (CADR EXP)) ; extract the quoted constant 

(POPJ-RETURN) ) ; and return it. 

((EQ (CAR EXP) 'LAMBDA) ;I]f a LAMBDA expression 

(SETQ VAL (CADR EXP)) ; get the formal parameters, 

(SETQ EXP (CADDR EXP)) ; get the body, 

(SETQ VAL (LIST '&PROCEDURE VAL EXP ENV)) ; and construct a closure 

(POPJ-RETURN)) ; which includes ENV. 

((EQ (CAR EXP) ‘IF) ;If a conditional, 

(SETQ CLINK (CONS ENV CLINK)) ; save the environment 

(SETQ CLINK (CONS EXP CLINK)) ; save the expression, 

(SETQ CLINK (CONS 'EVIF-DECIDE CLINK)) ; set up a return address, 

(SETQ EXP (CADR EXP)) ; then extract the predicate 

(EVAL-DISPATCH) ) ; and evaluate it.
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((NULL (CDR EXP)) ;If a call with no arguments, 

(SETQ CLINK (CONS 'APPLY-NO-ARGS CLINK)) ; set up a return address, 

(SETQ EXP (CAR EXP)) ; get the function position 

(EVAL-DISPATCH) ) ; and evaluate it. 

(T ;Otherwise, 

(SETQ CLINK (CONS ENV CLINK)) ; save ENV, 

(SETQ CLINK (CONS EXP CLINK)) > save EXP, 
(SETQ CLINK (CONS 'EVARGS CLINK)) ; set up return address, 

(SETQ EXP (CAR EXP)) 

(EVAL-DISPATCH)))) 

; get the function position 

; and evaluate it. 

When the process evolved by the evaluator has finished the evaluation of a 

subexpression, it must continue executing the rest of the expression. The 

place in the evaluator to continue executing was pushed onto cLINK when the 

evaluation of the subexpression was begun. This return address is now at the 

top of the cLINK, where it can be popped off and called: 

(DEFUN POPJ-RETURN () ;Return to caller: 

(SETQ EXP (CAR CLINK)) ; Save return address in EXP, 

(SETQ CLINK (COR CLINK)) ; and pop it off CLINK. 

(FUNCALL EXP)) ; Transfer control. 

After the predicate part of a conditional is evaluated, the process comes back 

to here to look at vat to see whether the consequent or the alternative branch 

is "to be taken. One of these is selected and made the exp to be further 

evaluated. 

(DEFUN EVIF-DECIDE () 

(SETQ EXP (CAR CLINK)) ;Restore expression 

(SETQ CLINK (COR CLINK)) ; and pop it off. 

(SETQ ENV (CAR CLINK)) ;Restore ENV 

(SETQ CLINK (CDR CLINK)) ; and pop it off. 

(COND (VAL ;I1f predicate was true, 

(SETQ EXP (CADDR EXP))) ; extract consequent. 

(T ;Otherwise 

(SETQ EXP (CADDDR EXP)))) ; extract alternative. 

(EVAL -DISPATCH) ) ;In either case, evaluate it. 

The following procedures are the states the evaluator must go through to 

evaluate the arguments to procedures before applying them. There is a 

special-case check in EVAL-DISPATCH for functions with no arguments. In this 

. case, it is not necessary to save the state of the evaluator when evaluating 

the function position because there are no further arguments to evaluate. One 

may just apply the procedure which comes back in val. This is a case of 

"evlis tail-recursion" (see [Wand 1977]). We will see this idea again in 

EVARGS] where we have a special-case check for evaluation of the last argument. 

(DEFUN APPLY-NO-ARGS () 

(SETQ ARGS NIL) co ;Set up null argument list 

(SAPPLY)) ; and apply function in VAL.
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General argument evaluations come to evarcs. This segment of the evaluator 

incorporates some cleverness in that it checks for the special case of the 

last argument in a combination. However, for the sake of clarity and 

uniformity we did not try to remove all unnecessary pushing and popping. 

There are many cleverer ways to write this code, as we will see later. The 

following procedure is the initialization of the argument evaluation loop. 

(DEFUN EVARGS () 

(SETQ EXP (CAR CLINK)) ;Restore EXP 

(SETQ CLINK (COR CLINK)) ; and pop it off. 

(SETQ ENV (CAR CLINK)) ;Restore ENV, 

(SETQ CLINK (COR CLINK)) ; and pop it. 

{SETQ CLINK (CONS VAL CLINK)) ;Save function. 

(SETQ EXP (CDR EXP)) ;Get rid of function part. 

(SETQ ARGS NIL) ;Initialize argument list. 

(EVARGS1)) ;Evaluate arguments. 

This is the top of the argument evaluation loop. 

(DEFUN EVARGS1 () 

(COND ((NULL (CDR EXP)) ;Is this the last argument? 

(SETQO CLINK (CONS ARGS CLINK)) ;If so, save argument list, 

(SETQ CLINK (CONS 'LAST-ARG CLINK)) ; set up return address, 

(SETQ EXP (CAR EXP)) ; set up last argument, 

(EVAL-DISPATCH) ) ; and evaluate it. 

(T ;Otherwise, 

(SETQ CLINK (CONS ENV CLINK)) ; save ENV, 

(SETQ CLINK (CONS EXP CLINK)) > save EXP, 

(SETQ CLINK (CONS ARGS CLINK)) ; Save argument list, 

(SETQ CLINK (CONS ‘EVARGS2 CLINK)) ; set up return address, 

(SETQ EXP (CAR EXP)) ; set up next argument, 

(EVAL-DISPATCH)))) * and evaluate it. 

This is the place where we end up after each argument is evaluated. The 

evaluated argument is accumulated into ArGs. 

(DEFUN EVARGS2 () 

(SETQ ARGS (CAR CLINK)) ;Restore argument list, 

(SETQ CLINK (CDR CLINK)) ; and pop it off. 

(SETQ EXP (CAR CLINK)) ;Restore EXP, 

(SETQ CLINK (CDR CLINK)) ; and pop it off. 

(SETQ ENV (CAR CLINK)) ;Restore ENV, 

(SETQ CLINK (CDR CLINK)) ; and pop it off. 

(SETQ ARGS (CONS VAL ARGS)) :Add value to argument list. 

(SETQ EXP (COR EXP)) ;Flush form just evaluated. 

(EVARGS1)) ;Go evaluate next argument. 

When the last argument has been evaluated we come back here. The value is 

accumulated onto the arcs and the function is restored from the stack. The 

whole mess is then shipped to sape_ty for application.
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(DEFUN LAST-ARG () 

(SETQ ARGS (CAR CLINK)) ;Restore argument list, 

(SETQ CLINK (COR CLINK)) ; and pop it off. 

(SETQ ARGS (CONS VAL ARGS)) ;Add last value to it. 

(SETQ VAL (CAR CLINK)) ;Retrieve function, 

(SETQ CLINK (CDR CLINK)) ; and pop it off. 

(SAPPLY)) sApply function to arguments. 

SAPPLY is the state machine analog of apply. This procedure checks out what 

kind of procedure is to be applied. If it is primitive, the appropriate magic 

occurs. If it is a procedural closure, we evaluate the body of the closed 

_ procedure in an environment constructed by binding the formal parameters of 

the closed procedure to the actual parameters (in arGs) in the environment 

carried in the closure. 

(DEFUN SAPPLY () ;Apply function in VAL to ARGS. 

(COND ((PRIMOP? VAL) ;If a primitive procedure, 

(SETQ VAL (PRIMOP-APPLY VAL ARGS)) ; do it! 

(POPJ-RETURN)) ; then return value to caller. 

((EQ (CAR VAL) '&PROCEDURE ) ;1f a defined procedure, 

(SETO ENV ; set up its environment 

(BIND (CADR VAL) ; by binding the formals 

ARGS ; to the actuals 

(CADDDR VAL))) ; in the closure environment 

~(SETQ EXP (CADOR VAL) ) ; then get the procedure body 

(EVAL -DISPATCH))_ ; and evaluate it. 

(T (ERROR)))) ;Otherwise, error. 

In this state-machine code we have avoided functional composition. 

Each statement is an assignment or a conditional. (We have used the usual 

LISP cond conditional form, rather than If, for reasons of convenience. This 

interpreter is not meta-circular. Instead, it is working MacLISP code which 

implements a non-MacLISP version of LISP.) An assignment can contain at most 

one call to a storage management procedure such as cons or car (we allow calls 

to e.g. CaADDR, realizing that (SETQ x (CADDR Y)) can be considered an abbreviation 

for the sequence (SETQ X (CDR Y)), (SETQ X (CDR X)), (SETQ X (CAR X))). ALSO, VALUE 

and BIND can be considered here to be complex storage operations (defined 

essentially as before). 

Representing List Data 

Lists are normally represented by records each of which contains two 

pointers to other records. One pointer is the car, and the other is the cdr. 

In this way a list (A (BC) 0) can be visualized by the following diagram:
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The exact representation of a pointer is not of interest here. All we 

really care about is that if we give the pointer to the memory system, it can 

return the contents of the record pointed to. (In particular, there is 

nothing at this level requiring the parts of a record to be "contiguous". 

Later we will discuss ways to represent LISP data within standard linear 

memories. ) 

In our particular architecture, we find it convenient to associate 

with each pointer a type field describing the nature of the record pointed to. 

This type field can be exploited for other purposes as well; in particular, 

we shall use it to encode "opcodes" and "return addresses". We will say that 

the type field is a part of the pointer, and that the other part of the 

pointer (that which identifies another record) is the address part. The list 

shown above, with type fields added, looks like this: 

One efficiency problem with the version of the LISP interpreter given 

above is that the repeated consecutive tests for atoms, LAMBDA, IF, etc. take 

| time. Conceptually what these tests are doing is a dispatch on the syntactic 

category of the expression. Each expression is distinguished by a special 

symbol in the car position — except for atoms and procedure calls. The 

evaluator could be made faster and simpler if it could dispatch in a more 

uniform way. 

Another efficiency problem is that Lookup must search for the values of 

variables. Because our dialect of LISP is lexically scoped like ALGOL, we can 

arrange for variable references to specify "n levels back, and then j over" in



Steele and Sussman 13 Design of LISP-Based Processors 

much the same way used by the ALGOL "display" technique, eliminating the 

search. 

To allow these efficiencies we systematically alter the representation 

of programs. They will still be represented as trees of list records, but we 

encode the syntactic categories in the type fields of pointers to the 

expressions. EVAL can then simply dispatch on this type code. For a pointer 

whose type is “variable reference", we use the address part as "immediate 

data" indicating the values of n and j for the environment lookup. We draw a 

piece of program in this way: 

(IF A '(X Y¥) (IF C 'D (CONS E 69))) 
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Because variable references and other constructs have separate types, lists 

and symbols can be "self-evaluating" in the same way as numbers. Also, we 

assume that cons is a "built-in" primitive operator, and encode that operator 

in the type field at the end of the list representing the call to cons. The 

encoding of if forms has been changed to reduce space requirements; the car 

of a conditional is the predicate, and the cdr is a cons cell whose car is the 

consequent and whose cdr is the alternative. 

We ought perhaps to define a printed representation for all these new 

data types. We do not do this here, however. We assume that in practice one 

will write LISP code in the usual style, and a simple "compiler" program will 

transform it into the typed-pointer representation. 

To describe the evaluator for this new representation, we introduce a 

construct TYPE-DISPATCH which is not part of the LISP language, but which we use 

to indicate the underlying mechanism. We also use a primitive operator 

TYPED-CONS, Which creates a new list-like cell with a specified type. The new 

evaluator is very much like the old one: eEvcoms is sort of like EvLIS combined 

with the entry point to apPLy. ,
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(DEFINE EVAL 

(LAMBDA (EXP ENV) 

(TYPE-DISPATCH EXP 

("NUMBER" EXP) 

( "SYMBOL" EXP) 

("LIST" EXP) 

("VARIABLE" (DISPLAY-LOOKUP EXP ENV)) 

("PROCEDURE” (TYPED-CONS "CLOSURE" (CDR EXP) ENV)) 

("IE" (IF (EVAL (CAR EXP) ENV) 

(EVAL (CADR EXP) ENV) 

(EVAL (CODR EXP) ENV))) 

("COMBINATION" (EVCOMB (COR EXP) 

ENV 

(CONS (EVAL (CAR EXP) ENV) 

"()))) 
(OTHERWISE (ERROR))))) 

(DEFINE EVCOMB 
(LAMBDA (EXP ENV ARGS) 

(TYPE-DISPATCH EXP 
("MORE-ARGS" (EVCOMB (CDR EXP) 

ENV 
(CONS (EVAL (CAR EXP) ENV) 

ARGS ))) 
(OTHERWISE (APPLY EXP ARGS))))) 

(DEFINE APPLY 

(LAMBDA (FUN ARGS) 

( TYPE-DISPATCH FUN 

("FUNCALL" (EVAL (CDAAR ARGS) 

(DISPLAY-BIND (CDR ARGS) 

(CDAR ARGS)))) 

("CONS" (CONS (CADR ARGS) (CAR ARGS))) 

("CAR" (CAAR ARGS)) 

("CDR" (CDAR ARGS)) 

("ATOM" (ATOM (CAR ARGS))) 

(OTHERWISE (ERROR))))) 

When a non-"MORE-ARGS" type code is seen in EVCOMB, it indicates that a 

primitive operation is to be performed on the argument values. eEvcoms then 

calls apply to perform this operation. (As shown here, appty needlessly 

duplicates the dispatching operation in EvcomB; we have done this to exhibit 

the similarity of this interpreter to the previous one. Later we will remove 

this duplication.) One of these primitive operations, "FUNCALL", is used to 

invoke user-defined procedures (closures). (The type codes used to indicate 

primitive operations may overlap those used to distinguish syntactic 

categories, because they are used in different contexts. Compare this to the 

way in which the same bits in an instruction can be used for different 

purposes depending on the opcode; for example, in the PDP-1]1 the same bits of 

an instruction word can be a register number, part of a branch offset, or
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” 

condition code bits.) 

Combining these Ideas 
  

The state machine implementation of a LISP interpreter can be combined 

with the typed pointer dispatch idea to form a very efficient interpreter for 

LISP which can be easily implemented directly in hardware. We now present 

such an interpreter, written in a statement-oriented language to emphasize 

that we are describing a hardware interpreter. As before, the controller 

manipulates a small set of registers, and also issues commands to a list 

memory system. The recursion-control information is, as before, stored in a 

push-down control list maintained in linked-list memory. Type fields in the 

cdr pointers of the control list will be used to retain "return addresses" 

Within the state machine; in this way return addresses do not require any 

extra conses in the cLINK. (Compare this with the previous state-machine 

interpreter, which used separate tokens in the cLINK as return addresses.) 

This is possible because the set of return addresses is small. 

BEGIN "EVALUATOR" 

DECLARE REGISTERS 

EXP IGENERALLY HOLDS EXPRESSION BEING EVALUATED 

ENV !HOLDS CURRENT ENVIRONMENT 

VAL -  'tRESULT OF EVALUATION; ALSO. SCRATCH 

ARGS !ACCUMULATES EVALUATED ARGUMENTS OF A COMBINATION 

CLINK !"CONTROL LINK": RECURSION CONTROL STACK 

EVAL: | TYPE-DISPATCH ON EXP INTO 

"NUMBER": GOTO SELF 

"SYMBOL": GOTO SELF 

"LIST": GOTO SELF 

"VARIABLE": GOTO LOOKUP 

"PROCEDURE": GOTO PROC 

"IE": GOTO IF1 

"COMBINATION": GOTO EVCOMB 

HCTAPSID-EPYT 

SELF :- VAL := EXP; GOTO RETURN 

PROC: VAL := TYPED-CONS( "CLOSURE", EXP, ENV); GOTO RETURN 
IFl: VAL := COR(EXP) 

CLINK := CONS(ENV, CLINK) 

CLINK := TYPED-CONS("IF2", VAL, CLINK) 

EXP := CAR(EXP); GOTO EVAL 

IRECURSIVE EVALUATION OF PREDICATE RETURNS HERE 

1F2: EXP := CAR(CLINK) 

CLINK := COR(CLINK) 

ENV := CAR(CLINK) 

CLINK := COR(CLINK) 

IF NULL(VAL) 

THEN EXP : 

ELSE EXP : 

FI 

CDR(EXP); GOTO EVAL 
CAR(EXP); GOTO EVAL 
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EVCOMB: ARGS := '() 

EVCOM1: TYPE-DISPATCH ON EXP INTO 

"COMBINATION": GOTO EVCOM2 

"FUNCALL": GOTO CALL 

"CONS": GOTO CONS 

"CAR": GOTO CAR 

"CDR": GOTO CDR 

HCTAPSID-EPYT 

EVCOM2: CLINK := CONS(ENV, CLINK) 

CLINK := CONS(ARGS, CLINK) 

VAL := COR(EXP) 

CLINK := TYPED-CONS("EVCOM3", VAL, CLINK) 

EXP := CAR(EXP); GOTO EVAL 

'RECURSIVE EVALUATION OF ARGUMENT RETURNS HERE 

EVCOM3: EXP := CAR(CLINK) 1UNWIND STACK 

CLINK := CDR(CLINK) . 

ARGS := CAR(CLINK) 

CLINK := CDR(CLINK) 

ENV := CAR(CLINK) 

CLINK := CDR(CLINK) 

ARGS := CONS(VAL, ARGS); GOTO EVCOM1 

nt 

. CALL: ARGS := CDR(ARGS) IN.B. VAL = CAR(ARGS) 
EXP := CAR(VAL) 
VAL := CDR(VAL) 
ENV := CONS(ARGS, VAL); GOTO EVAL. 

CONS: ARGS := CDR(ARGS) 11.E. ARGS := CADR(ARGS) 
ARGS := CAR(ARGS) {(ALREADY HAD VAL := CAR(ARGS), IN EFFECT) 
VAL := CONS(ARGS, VAL); GOTO RETURN 

CAR: VAL := CAR(VAL); GOTO RETURN 
COR: VAL _:= CDR(VAL); GOTO RETURN 

RETURN: TYPE-DISPATCH ON CLINK INTO 

"IF2": GOTO IF2 

"EVCOM3": GOTO EVCOM3 

HCTAPSID-EPYT ISESOL ARTSKJID 

END "EVALUATOR" 

In this state-machine code we have avoided functional composition 

rigorously. Each statement is an assignment or a dispatch operation 

~ (IF -THEN-ELSE being a kind of dispatch). As assignment can contain at most one 

call to a simple storage management procedure such as CONS or CAR. Each 

Statement goes to another statement (to the one textually following, if no 

GoTo clause is present). 

. We have omitted the details of the Lookup operation (it gets the value 

| from the environment and then goes to’ RETURN). We have, however, shown 

DISPLAY-BIND (beginning at catt). These are not done as subroutines (as they 

were in the previous state-machine interpreter); they are coded "in-line" as 

_State-machine code.
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Recursive evaluation of subexpressions is handled by using an explicit 

stack. When for an IF or a COMBINATION a recursive evaluation is needed, any 

required registers (e.g. ENV) are consed onto the control structure CLINK. The 

last cons onto cCLINK uses the type code to encode the “return address” (IF2 or 

EVCOM3) within the state machine. (These return address codes may be the same 

codes used as "opcodes" or “primitive operator codes" — this is a third, 

distinct context in which type bits are used for some funny purpose unrelated 

to the type of the data.) The expression to be recursively evaluated is put 

into exp, and then state eval is entered. When the evaluation finishes, the 

code at RETURN decodes the type field of cLINK and resumes execution of the 

caller, which retrieves the saved information from cLInNkK and carries on. Thus 

CLINK, though implemented as linked records, behaves as a stack. 

This is in fact how we have implemented a LISP evaluator in the form 

of a VLSI microprocessor. There are five registers on a common bus (the E 

bus). The state machine is in the form of a read-only memory plus a 

"“mitro-PC" which encodes the current state. At each transition the EVAL state 

machine can read one register onto the E bus, load one or more other registers 

from the E bus, request some storage operation to occur, and enter some new 

State (possibly computed by dispatching on bits obtained from the E bus). 

Only one operand can be passed at a time to the storage manager (via the bus), 

and so an operation such as car is actually managed as two operations: 

(1) pass operand to storage manager and request Car; 

(2) retrieve result of storage operation. 

Similarly, cons is managed as three operations: 

(1) pass the cdr part to storage manager; 

(2) pass the car part, and request CONS; 

(3) retrieve result. 

Often operations can be "bummed out"; for example, after requesting a CAR, 

the result need not be retrieved if it is to be used immediately as one 

operand of a cons. In this case (CONS (CAR X) C) takes only three transactions, 

not five. 

Storage Management 

A complete LISP system, as implied in the previous section, is 

conveniently divided into two parts: (1) a storage system, which provides an 

operator for the creation of new data objects and also other operators (such 

as pointer traversal) on those objects; and (2) a program interpreter (EVAL), 

which executes programs expressed as data structures within the storage 

system. (Note that this memory/processor division characterizes the usual von 

Neumann architecture also. The differences occur in the nature of the 

processor and the memory system. ) 

Most hardware memory systems which are currently available 

commercially are not organized as sets of linked lists, but rather as the 

usual linearly-indexed vectors. (More precisely, commercially available RAMs 

are organized as Boolean N-cubes indexed by bit vectors. The usual practice 

is to impose a total ordering on the memory cells by ordering their addresses 

lexicographically, and then to exploit this total ordering by using indexing
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hardware typically containing an addition unit (or, more rarely, a subtraction 

unit, as on the IBM 7094).) 

Commercially available memories are, moreover, available only in 

finite sizes (more's the pity). Now the free and wasteful throw-away use of 

data objects would cause no problem if infinite memory were available, but 

- within a finite memory it is an ecological disaster. In order to make such 

memories useable to our processor we must interpose between EVAL and the 

storage system a storage manager which makes a finite vector memory appear to 

the evaluation mechanism to be an infinite linked-record memory. This would 

seem impossible, and it is; the catch is that at no time may more records be 

active than will fit into the finite memory actually provided. The memory is 

"apparently infinite" in the sense that an indefinitely large number of new 

“records can be "created" using the cons operator. The storage manager 

recycles discarded records in order to create new ones in a manner completely 

invisible to the evaluator. 

The storage manager therefore consists of routines which implement the 

Operations CAR, CDR, CONS, etc. in terms of the vector memory, plus a garbage 

collector which deals with the finiteness of the memory by locating records 

which have been discarded and making them available to the cons routine for 

~recycling. . 

The method we use for implementing car, coR, and cOoNS is the usual one 

of using two consecutive words of memory to hold a list cell, the first being 

the cdr and the second the car, where each word of memory can hold a type 

field and an address field. The address part of a pointer is in turn the 

address within the linear memory of the record pointed to. (This may seem 

obvious, but remember that until now we have been noncommittal about the 

precise representation of pointers, as until this point all that was necessary 

was that the memory system associate records with pointers by any convenient 

means whatsoever. The evaluator is completely unconcerned with the format or 

meaning of addresses; it merely accepts them from the memory system and 

eventually gives them back later to retrieve record components. One may think 

of an address as a capability for accessing a record using certain defined 

operations.) 

Many techniques for garbage collection are well-documented in the 

literature [McCarthy 1962] [Minsky 1963] {Hart 1964] [Saunders 1964] 

[Schorr 1967] [Conrad 1974] [Baker 1978] [Morris 1978], and will not be 

discussed here. Suffice it to say here that, in the prototype processor we 

have designed, the storage manager is implemented as a second state machine. 

It also has a small set of registers on a second bus (the G bus). The storage 

manager runs continuously, performing services for the evaluator. When the 

storage manager has completed a request, it then advances the evaluator to its 

next state, and dispatches on the new request from the evaluator. The storage 

manager can connect the E bus and G bus together in order to retrieve an 

operand or return a result (which, if either, is to be done is determined by 

the request protocol). The storage manager can also read from or write into 

the off-chip memory.
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(In fact, in the prototype processor, the storage manager includes no 

garbage collector. The prototype was one project of a "project set" including 

some two dozen separate circuits, all of which had to be fit onto a single 

chip together. This imposed severe area limitations which restricted the 

address size to eight bits, and required the elimination of the microcode for 

the garbage collector. We anticipate no obstacles to including a garbage 

collector in a full-sized single-chip processor. The complexity of a simple 

garbage collector is comparable to that of the evaluator shown above.) 

Physical Layout of the Prototype Processor 

The evaluator and the storage manager are each implemented in the same 

way aS an individual processor. Each processor has a state-machine controller 

and a set of registers. On each clock cycle the state-machine outputs control 

Signals for the registers and also makes a transition to a new state. 

The contents of any register is a pointer, containing an address field 

(8 bits in the prototype) and a type field (3 bits in the prototype). The 

registers of a processor are connected by a common bus (E bus in the 

evaluator, G bus in the storage manager). Signals from the controller can 

read at most one register onto the bus, and load one or more other registers 

from the bus. One register in each controller has associated incrementation 

logic; the controller can cause the contents of that register, with 1 added 

to its address part, to be read onto the bus. The controller can also force 

certain constant values onto the bus rather than reading a register. 

The processors can communicate with each other by causing the E and G 

busses to be connected. The address and type parts of the busses can be 

connected separately. (Typically the E bus might have its address part driven 

from the G bus and its type part driven by a constant supplied by the 

evaluator controller.) The G bus can also be connected to the address/data 

lines for the off-chip memory system. The storage-manager controller produces 

additional Signals (ADR and WRITE) to control the external memory. In a 

--Similar manner, the evaluator controller produces signals which control the 

storage Manager. (Remember that from the point of view of the evaluator, the 

storage manager is the memory interface! ) 

| Each controller effectively has an extra "state register" which may be 

thought of as its "micro-PC". At each step the next state is computed by 

combining its current state with external signals in the following manner. 

Each “microinstruction” has a field explicitly specifying the next desired 

state, as well as bits specifying possible modifications of that state. If 

specified, external signals are logically OR'd into the desired state number. 

In the prototype evaluator these external signals are: (1) the type bits from 

the E bus; (2) a bit which is 1 iff the E bus type field is zero and a bit 

which is 1 iff the E bus address is zero. In the storage manager these 

Signals are: (1) the four control bits from the evaluator controller; (2) a 

bit which is 1 iff the G bus address is zero. This is the way in which 

dispatching is achieved.
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Once this new state is computed, it is passed through a three-way 

selector before entering the state register. The other two inputs to the 

selector are the current state and the data lines from the external memory 

system. In this way the selector control can "freeze" a controller in its 

current state by recirculating it, or jam an externally supplied state into 

the state register (both useful for debugging operations). The "freeze" 

mechanism is used by the storage manager to suspend the evaluator until it is 

ready to process the next request. In the same way, the external memory can 

suspend the storage manager by asserting the external FREEZE signal, thereby 

causing a "wait state". 

(The FREEZE signal is provided aS a separate control because the 

dynamic logic techniques usual in NMOS were used; if one stopped the 

processor simply by stopping the clock, the register contents would dissipate. 

The clocks must keep cycling in order to "refresh" the registers. The state 

recirculation control allows the machine to be logically stopped despite the 

fact that data is still circulating internally. We discovered that this 

technique imposed constraints on other parts of the design: the 

incrementation logic is the best example. It was originally intended to 

design an incrementing counter register, which would increment its contents in 

place during the recirculation of a clock cycle in which an "increment" signal 

was asserted. If this had been done, however, and the processor were frozen 

during an instruction which asserted this signal, the counter would continue 

to count while the processor was stopped! This could have been patched by 

having the FREEZE signal override the increment signal, but it was deemed 

Simpler to adopt a design strategy in which nothing at the microcode level 

called for any data to be read, modified, and stored back into the same place. 

Thus in the actual design one must read data through modification logic and 

then onto the bus, to be stored in a different register; then if this 

operation is repeated many times because of the FREEZE signal it makes no 

difference. ) 

Each state-machine controller consists of a read-only memory 

(implemented as a_- programmed-logic-array), two half-registers (clocked 

inverters, one at each input and one at each output), and some random logic 

(e.g. for computing the next state). The controllers are driven by externally 

supplied two-phase non-overlapping clock signals; on phase 1 the registers 

are clocked and the next state is computed, and on phase 2 the next-state 

Signals appear and are latched. 

All of the signals from the two controllers (62 = 34+28 in the 

prototype) are multiplexed onto twelve probe lines by six unary probe-control 

signals. (These signals are derived from three binary-encoded off-chip 

Signals.) When a probe-control signal is asserted, the memory output pads (11 

data pads plus the ADR signal in the prototype) are disconnected from the G 

bus and connected to the twelve probe lines. In this way the chip can be 

frozen and then all controller outputs verified (by cycling the probe-control 

Signals through all six states). Also recall that the controller states can 

be jammed into the state registers from the memory input pads. This should 

allow the controller microcode to be tested completely without depending on 

the registers and busses working.
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- The following diagram shows the physical layout of the prototype chip. 

The two controllers are side by side, with the evaluator on the left and the 

storage manager on the right. Above each controller is the next-state logic 

and probe multiplexor for that controller. Above those are the register 

arrays, with the busses running horizontally through’ them. The bus 

connections are in the center. The input pads are on the left edge, and the 

output pads on the right edge. The input pads are bussed through the 

evaluator's register array parallel to the E bus lines, so that they can 

connect to the G bus. (Unfortunately, there was no time to design tri-state 

pads for this project.) _ ,
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Discussion 

A perhaps mildly astonishing feature of this computer is that it 

contains no arithmetic-logic unit (ALU). More precisely, it does have 

arithmetic and logical capabilities, but the arithmetic units can only add l, 

and the logical units can only test for zero. (Logicians know that this 

suffices to build a "three-counter machine", which is known to be as universal 

(and as convenient!) as a Turing Machine. However, our LISP architecture is 

also universal, and considerably more convenient. ) 

LISP itself is so simple that the interpreter needs no arithmetic to 

run interesting programs (such as computing symbolic derivatives and 

integrals, or pattern matching). All the LISP interpreter has to do is 

‘shuffle pointers to and from memory, and occasionally dispatch on the type of 

a pointer. The incrementation logic is included on the chip for two reasons. 

In the evaluator it is used for counting down a list when looking up lexical 

variables in the environment; this is not really necessary, for there are 

alternative environment representation strategies. In the storage manager 

incrementation is necessary (and, in the prototype, sufficient) for imposing a 

total ordering on the external memory, so as to be able to enumerate all 

possible addresses. The only reason for adding 1 is to get to the next memory 

address. (One might note that the arithmetic properties of general 

two-argument addition are not exploited here. Any bijective mapping from the 

set of external memory addresses onto itself (i.e. a permutation function) 

would work just fine (but the permutation should contain only one cycle if 

memory is not to be wasted!). For example, subtracting 1 instead of adding, 

or. Gray-code incrementation, would do.) 

This is not to say that real LISP programs do not ever use arithmetic. 

It is just that the LISP interpreter itself docs not require binary arithmetic 

of the usual sort (but it does require cons, car, and cor, which in a formal 

sense indeed form a kind of "number system" [Levin 1974], where cons 

corresponds to "add 1" and both car and cor to "Subtract 1" — in this view, 

the purpose of the storage manager is to interface between two kinds. of 

arithmetic, namely "LISP arithmetic" and Peano arithmetic). This architecture 

is intended to use devices which are addressed as memory, in the same manner 

used by the PDP-11, for example. We envision having a set of devices on the 

external memory bus which do arithmetic. One would then write operands into 

specific "memory locations" and then read arithmetic results from others. 

Such devices could be very complex processors in themselves, such as 

specialized array or string processors. In this way the LISP computer could 

serve aS a convenient controller for other processors, for one thing LISP does 

well is to provide recursive control and environment handling without much 

prejudice (or expertise!) as to the data being operated upon. 

Expanding on this idea, one could arrange for additional signals to 

the external memory system from the storage manager, such as "this data item 

is needed (or not needed)", which would enable external processors to do their 

own storage management cooperatively with the LISP processor. One might 

imagine, for example, an APL machine which provided tremendous’ array 

processing power, controlled by a LISP interpreter specifying which operations 

to perform. The APL machine could manage its own array storage, using a
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relatively simple storage manager cued by "mark" signals from the LISP storage 

manager. , 

The possibility of additional processors aside, this architecture 

exhibits an interesting layered approach to machine design. One can draw 

boundaries at various places such that everything above the boundary is a 

processor which treats everything below the boundary as a memory system with 

certain operations. If the boundary is drawn between the evaluator and the 

storage manager, then everything below the boundary together constitutes a 

list-structure memory system. If it is drawn between the storage manager and 

the external memory, then everything below the boundary is the external 

memory. Supposing the external memory to be a cached virtual memory system, 

then we could draw boundaries between the cache and main memory, or between 

main memory and disks, and the same observation would hold. At the other end 

of the scale, a complex data base management system could be written in LISP, 

and then the entire LISP chip (plus some software, perhaps in an external ROM) 

would constitute a memory system for a data base query language interpreter. 

In this manner we have a layered series of processors, each of which provides 

a more sophisticated memory system to the processor above it in terms of the 

less sophisticated memory system below it. 

" Another way to say this is that we have a hierarchy of data 

abstractions, each implemented in terms of a more primitive one. Thus the 

storage manager makes a finite, linear memory look "infinite" and 

tree-structured. A cache system makes a large, slow memory plus a small, fast 

memory look like a large, fast memory. 

Yet another way to view this is aS a hierarchy of interpreters running 

in virtual machine. Each layer implements a virtual machine within which the 

next processor up operates. 

It is important to note that we may choose any boundary and then build 

everything below it in hardware and everything above it in software. Our LISP 

system is actually quite similar to those before it, except that we have 

pulled the hardware boundary much higher. One can also put different layers 

on different chips (as with the LISP chip and its memory). We choose to put 

the evaluator and the storage manager on the same chip only because (a) they 

‘fit, and (b) in the planned full-scale version, the storage manager would need 

_ too many pins as a separate chip. 

Each of the layers in this architecture has much the- same 

organization: it is divided into a controller ("state machine") and a data 

base ("registers"). There is a reason for this. Each layer implements a 

memory system, and so has state; this state is contained in the data base 

-(which may be simply a small set of references into the next memory system 

down). Each layer also accepts commands from the layer above it, and 

transforms them into commands for the layer below it; this is the task of the 

controller. 

_ We have already mentioned some of the analogies between a LISP-based 

processor and a traditional processor. Corresponding to indexing there is
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component selection; corresponding to a linearly advancing program counter 

there is recursive tree-walk of expressions. Another analogy we might draw is 

to view the instruction set as consisting of variable-length instructions 

(whose pieces are joined by pointers rather than being arranged in sequential 

memory locations). Each instruction (variable reference, call to cons, call 

to use function, etc.) takes a number of operands. We may loosely say that 

there are two addressing modes in this architecture, one being immediate data 

(as in a variable reference), and the other being a recursive evaluation. In 

the latter case, merely referring to an operand automatically calls for the 

execution of an entire routine to compute it! 

Project History 

In January 1978 one of us (Sussman) attended a course given at MIT by 

Charles Botchek about the problems of integrated circuit design. There he saw 

pictures of processors such as 8080's which showed that half of the chip area 

was devoted to arithmetic and logical operations and associated data paths. 

On the basis of our previous work on LISP and SCHEME [Sussman 1975] 

[Steele 1976a] [Steele 1976b] [Steele 1977] [Steele 1978a] [Steele 1978b] it 

occurred to him that LISP was sufficiently simple that almost all the 

operations performed in a LISP interpreter are dispatches and register 

shuffles, and require almost no arithmetic. He concluded that if you could 

get rid of the ALU in a microprocessor, there would be plenty of room for a 

garbage collector, and one could thus get an entire LISP system onto a chip. 

He also realized that typed pointers could be treated as instructions, with 

the types treated as "opcodes" to be dispatched on by a state machine. (The 

idea of typed pointers came from many previous implementations of LISP-like 

languages, such as MUDDLE [Galley 1975], ECL [Wegbreit 1974], and the LISP 

Machine [Greenblatt 1974]. However, none of these uses the types as opcodes 

in the evaluator. This idea stemmed from an aborted experiment in nonstandard 

LISP compiler design which we performed in 1976.) 

"THEY LAUGHED WHEN I SAT DOWN AT THE PIANO... 

but when I started to play!—" 

— John Caples [Caples 1925] 

Jon Allen thought building such a processor was a fine idea, but everyone else 

laughed. The other of us (Steele) laughed loudest, but promised to help work 

on it. In February 1978 we wrote down a state machine specification for a 

LISP evaluator and put it on the shelf. 

In the summer of 1978 Sussman wrote a LISP interpreter based on the 

state machine specification. It worked. 

. In the fall of 1978 Lynn Conway came to MIT from Xerox PARC as a 

visiting professor to teach a subject (i.e. course) on VLSI design which she 

developed with Carver Mead of Caltech. Sussman suggested that Steele take the 

course "because it would be good for him" (and also because he couldn't sit in 

himself because of his. own teaching duties). Steele decided that it might be 

interesting. So why not?
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The course dealt with the structured design of NMOS circuits. As part 

of the course each student was to prepare a small project, either individually 

- or. collaboratively. (This turned out to be a great success. Some two dozen 

projects were submitted, and nearly all were fit together onto a single 7 mm x 

10 mm project chip for fabrication by an outside semiconductor manufacturer 

and eventual testing by the students.) 

. Now Steele remembered that Sussman had claimed that a LISP processor 

on a chip would be simple. A scaled-down version seemed appropriate to design 

for a class project. Early estimates indicated that the project would occupy 

2.7 mm x 3.7 mm, which would be a little large but acceptable. (The average 

student project was a little under 2 mm x 2 mm.) The LISP processor prototype 

‘project would have a highly regular structure, based on programmed logic array 

cells provided in a library as part of the course, and on a Simple register 

cell which could be replicated. Hence the project looked feasible. Steele 

began the design on November 1, 1978. 

The various register cells and other regular components took about a 

week to design. Another week was spent writing some support software in LISP, 

including a microassembler for the microcode PLAs; software to produce 

iterated structures automatically, and rotate and scale them; and an attempt 

to write a logic simulator (which was "completed", but never debugged, and was 

abandoned after three days). 

The last three weeks were spent doing random interconnect of PLA's to 

registers and registers to pads. The main obstacle was that there was no 

design support software for the course other than some plotting routines. All 

projects had to be manually digitized and the numbers typed into computer 

files by keyboard (the digitization language was the Caltech Intermediate 

Format (CIF)). This was rather time-consuming for all the students involved. 

In all the design, layout, manual digitization, and computer data 

entry for this project took one person (Steele) five weeks of full-time work 

Spanning five and one-half weeks (with Thanksgiving off). This does not 

include the design of the precise instruction set to be used, which was done 

in the last week of October (and later changed!). (The typical student 

project also took five weeks, but presumably with somewhat less than full-time 

effort.) 

During this time some changes to the design were made to keep the area 

down, for as the work progressed the parts inexorably grew by 20 microns here 

and 10 microns there. The number of address bits was chopped from ten to 

eight. A piece of logic to compare two addresses for equality (to implement 

the LISP £Q operation) was scrapped (this logic was to provide an additional 

dispatch bit to the evaluator in the same group as the E-bus-type-zero bit and 

the E-bus-address-zero bit). The input pad cell provided in the library had 

to be redesigned to save 102 microns on width. The WRITE pad was connected to 

the bottom of the PLA because there was no room to route it to the top, which 

changed the clock phase on which the WRITE signal rose, which was compensated 

for by rewriting the microcode on the day the project was due (December 6, 

1978). Despite these changes, the area nevertheless increased. The final
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design occupied 3.378 mm x 3.960 mn. 

The prototype processor layout file was merged with the files for the 

other students' projects, and the project chip was sent out for fabrication. 

Samples were packaged in 40-pin DIPs and in the students' hands by mid-January 

1979. As of March 1979, several (more than three) of the nineteen projects on 

the chip had been tested and found to work. 

We intend to implement a full-scale version of a LISP processor in 

1979, using essentially the same design strategies. The primary changes will 

be the introduction of a full garbage collector and an increase in the address 

Space and number of types. We have tentatively chosen a 41-bit word, with 3l 

bits of address, 5 bits of type, 3 bits of "cdr code", and 2 bits for the 

garbage collector. 

Conclusions 

We have presented a general design for and a specific example of a new 

class of hardware processors. This model is "classical" in that it exhibits 

the stored-program, program-as-data idea, as well as the processor/memory 

dichotomy which leads to the so-called "von Neumann bottleneck" [Backus 1978]. 

It differs from the usual stored-program computer in organizing its memory 

differently, and in using an instruction set based on this memory 

Organization. Where the usual computer treats memory as a linear vector and 

executes a linear instruction stream, the architecture we present treats 

“memory as linked records, and executes a tree-shaped program by recursive 

expression evaluation. 

The processor described here is not to be confused with the "LISP 

Machine" designed and built at MIT by Greenblatt and Knight [Greenblatt 1974 

[Knight 1974] [LISP Machine 1977] [Weinreb 1978]. The current generation of 

LISP Machine is built of standard TTL logic, and its hardware is organized as 

‘a very general-purpose microprogrammed processor of the traditional kind. It 

has a powerful arithmetic-logic unit and a large writable control store. 

Almost none of the hardware is specifically designed to handle LISP code; it 

is the microcode which customizes it for LISP. Finally, the LISP Machine 

executes a compiled order code which is of the linearly-advancing-PC type; 

the instruction set deals with a powerful stack machine. Thus the LISP 

Machine may be thought of as a hybrid architecture that takes advantage of 

linear vector storage organization and stack organization as well as 

linked-list organization. In contrast, the class of processors we present 

here is organized purely around linked records, especially in that the 

instruction set is embedded in that organization. The LISP Machine is a 

well-engineered machine for general-purpose production use, and so uses a 

variety of storage-management techniques as appropriate. The processor 

described here is instead intended as an illustration of the abstracted 

essence of a single technique, with as little additional context or irrelevant 

detail as possible. 

We have designed and fabricated a prototype LISP-based processor. The
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actual hardware design and layout was done by Steele as a term project for a 

course on VLSI given at MIT by Lynn Conway in Fall 1978. The prototype 

processor has a small but complete expression evaluator, and an incomplete 

storage manager (everything but the garbage collector). We plan to design and 

fabricate by the end of 1979 a full-scale VLSI processor having a complete 

garbage collector, perhaps more built-in primitive operations, and a more 

complex Storage representation (involving "CDR-coding" [Hansen 1969] 

(Greenblatt 1974]) for increased bit-efficiency and speed. 

A final philosophical thought: it may be worth considering kinds of 

"stuff" other than vectors and linked records to use for representing data. 

For example, in LISP we generally organize the records only into trees rather 

than general graphs. Other storage organizations should also be explored. 

The crucial idea, however, is that the instruction set should then be fit into 

the new storage structure in some natural and interesting way, thereby 

representing programs in terms of the data structures. Continuing the one 

example, we might look for an evaluation mechanism on general graphs rather 

than on trees, or on whatever other storage structure we choose. Finally, the 

instruction set, besides being represented in terms of the data structures, 

must include means for manipulating those structures. Just as the usual 

computer has aodD and AND; just as the LISP architecture presented here must 

supply CAR, COR, and CONS; so a graph architecture must provide = graph 

manipulation primitives, etc. Following this paradigm we may discover yet 

other interesting architectures and interpretation mechanisms. 
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APPENDIX 

Prototype LISP Processor Technical Specifications 

The November 1978 prototype LISP processor bears the working name 

SIMPLE (Small Integrated Micro-Processor for Lisp Expressions). Here we 

present complete technical specifications, schematic circuit diagrams, and 

microcode. Bear in mind that this is only a prototype intended to test the 

ideas involved, and does not constitute a complete working processor. It is 

expected, however, that if it works at all, it should be able to execute some 

small but interesting complete LISP programs. 

External Pin Specifications 

SIMPLE is expected to be connected to a memory system providing 256 

words of 11 bits. Each word is divided into three type bits TO-T2 and eight 

address bits A0O-A7. SIMPLE communicates with the outside world via 

thirty-three pins: 

11) ITO-IT2, IAQ-IA7 (input) [Input Type, Input Address] 

Input data from the memory system. 

(11) OTO-OTZ2, OAO-0A7 (output) [Output Type, Output Address ] 

. QOutput data to the memory system. Addresses and write data are 

multiplexed on OAQ-OA7 according to the ADR and WRITE pins. (The 

output pads actually contain this information only if the probe 

controls are zero — see below.) 

(2) ADR, WRITE (output) | 

. When ADR is high, the outputs OA0-OA7 contain an address for the 

memory system; in this case OT0-OT2 are irrelevant. When WRITE is 

high, the outputs OT0-OT2, OAO-OA7 contain write data for the memory 

system. In either case, the outputs are maintained for a short time 

after the control signal goes from high to low to permit proper 

latching of the data. When both lines are low, the memory system is 

expected to be presenting to the input pins ITO-IJIT2, IAO-IA7 the 

memory data for the address last latched. SIMPLE never raises both 

ADR and WRITE simultaneously. There is no handshake procedure; the 

memory is assumed to be able to respond within the clock cycle time 

used, or to be able to use the FREEZE signal if necessary. 

(3) PCO-PC2 (input) [Probe Control ] 

These signals are for testing only, and are normally tied to ground. 

The output pins OTO0-OTZ, OAQ-OA7, and ADR normally contain addresses 

or write data and the ADR signal for the memory system. If the probe 

controls PCO-PC2 are non-zero, then various signals internal to the 

chip are gated onto these output pins instead.
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(1) STUFF (input) 

This signal is for testing only, and is normally tied to ground. If 

this signal is high, the state bits which serve as the "micro-PC's" 

for the internal controllers are forcibly loaded from the input pins 

ITO-IT2, IAQ-IAZ2. The same six bits are used to load both micro-PC's. 

In this way the controllers can be forced into any given state, and 

the resulting output signals probed. (This facility is also used to 

initialize the chip; for this purpose the input pins ITO-IT2, IAO-IAZ 

should all be zero.) 

(1) FREEZE (input) 

This signal is for testing only, and is normally tied to ground. If 

this signal is high, the controllers recirculate in the same state 

instead of advancing. This signal defers to STUFF. 

(2) PHI1, PHI2 (input) 

Two-phase non-overlapping clock signals. 

(2) VDD, GND (input) 

Power supply lines. 
n 

(33) pins total. 

Instruction Set 

The "instruction set" processed by SIMPLE is actually a modified 

version of SCHEME, a dialect of LISP. The tree-like expressions are 

essentially LISP S-expressions which constitute a slightly "compiled" version 

of the usual LISP code. The main effect of this compilation is to 

pre-calculate the positions of variables in the environment so that variable 

references do not require search. This in turn simplifies the structure of 

the environment and of procedures. 

When the chip is initialized, it takes a given expression (how it is 

given is described below), and uses a null environment to evaluate it. If 

that evaluation ever terminates, the result of the evaluation is stored in 

. memory and the chip halts, with the evaluator looping in a dead state. The 

chip also halts if it runs out of memory (i.e. after consing the last of the 

256 words), with the storage manager looping in a dead state. 

When the chip is asked to evaluate an expression, it examines the 

3-bit type field. This provides eight "op codes": 

0 = constant list 

l = constant symbol 

2 = variable reference 

3 = constant closure 

procedure 

conditional (if-then-else) 

procedure call 

quoted constant N
O
O
O
 

it 

_ The address part of the word has different purposes depending on the type. 

For type 2, it is the negative (two's complement) of the position in the



Steele and Sussman 32 Design of LISP-Based Processors 

environment of the variable to be referenced, with the first element of the 

environment being number 1 (hence referenced as -1). For types 0, 1, 3, 5, 

and 6, the address points to the first of two consecutive words; the first is 

the cdr, and the second the car. For types 4 and 7, the address points to a 

single word (a record containing a single pointer), referred to as the "cdr" 

for compatibility with the previous case. 

The evaluation of a type 0 (list), 1 (symbol), or 3 (closure) object 

simply results in that object; such objects are "self-evaluating". (Notice 

that symbols are not the same as variables here; this usage has’ been 

"compiled out". The only purpose for symbols here is that they are atomic, as 

opposed to lists, which are not.) 

. The evaluation of type 7 (quote) returns the cdr of the object. In 

this way any object whatsoever, not just a list, symbol, or closure, can be 

included as a constant datum in a program. 

The evaluation of type 2 (variable reference) chains (CDRs) down the 

environment one less than the negative of the number in the address part of 

the expression pointer. It then takes the car, and returns the value so 

found. 

The evaluation of type 4 (procedure) results in a pointer to a 

newly-allocated word pair. This pointer has type 3 (closure). The car of the 

pair contains the cdr of the procedure; this is the code body of the 

procedure. The cdr of the pair contains the current environment (the 

environment within which the procedure object is being evaluated). In this 

way the code and the environment are bound up together (as a closuree, or 

"FUNARG") for later application. 

A conditional (type 5) points to a two-word cell, the cdr of which 

points to another two-word cell. The car of the conditional object is a 

predicate expression (IF), the cadr is a consequent expression (THEN), and the 

cddr is an alternative expression (ELSE). The predicate expression is 

evaluated first; depending on whether the result is non-NIL or NIL, then the 

consequent or alternative is evaluated, throwing away the other one, to 

produce the value of the conditional. 

A procedure call (type 6) is the most complicated of the lot. It is a 

list of indefinite length, chained together by cdr pointers. Each cdr pointer 

except the last NUST have type 0 (list). The last cdr pointer should have a 

zero address and a NON-zero type. This last type specifies the operation to 

be performed. In CDRing down the list, SIMPLE evaluates each of the 

expressions in the car, saving the resulting values. These values are 

available as arguments to the operation to be performed. The operations 

available are: 

0 = <more arguments> 4 = ATOM 

1 = CAR 5 = PROGN 

2 = CDR 6 = LIST 

3 = CONS 7 = FUNCALL
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For operations CAR, CDR, and ATOM there should be one argument; for CONS, 

“two. No checking is performed for this. For PROGN, LIST, and FUNCALL there 

may be any non-zero number of arguments. 

CAR, CDR, CONS, ATOM, and LIST are the standard LISP primitive 

operations. LIST is actually a REVERSE-LIST, because it produces a list of 

the arguments in reverse order; this matters only if the calculations of the 

arguments have side effects which could interfere with each other. PROGN is a 

‘standard LISP primitive which evaluates any number of arguments and returns 

only the last one. This is useful only when side effects are used. It was 

included in the prototype primarily to replace EQ when it was removed from the 

design, because PROGN was fortunately so trivial that it required no extra 

microcode (it shares a word with the POPJ code). 

-FUNCALL is the operation which calls a user procedure (actually a 

closure). The last argument (not the first!) must be a closure (this is not 

checked for!), which is applied to the preceding arguments. (No checking is 

performed to see whether the correct number of arguments has been supplied! ) 

The body (car) of the closure is evaluated in an environment produced by 

tacking (NCONCing) all the arguments onto the front of the environment (cdr) 

of the closure. In this way “lexical scoping" is achieved as in SCHEME or 

ALGOL. (Because successive sets of variables are tacked together using NCONC 

rather than being consed onto a display, the environment in the prototype 

processor takes the form of a simple list of values rather than a list of 

buckets of values. This is done so that a variable reference can be simply 

"n back" rather than "n back and j over".) Notice that the closure itself is 

added to the environment along with the other arguments. In this way the 

procedure can refer to itself recursively. 

As an example, an expression calling for the evaluation of the 

expression 

(APPEND '(A BC) ‘(D0 E F)) 

including the definition of APPEND itself, is shown in an accompanying 

diagram.
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Initialization 

The chip is initialized by holding the input pins ITO-1IT2, IAQ-IA2 low 

while raising STUFF, and stepping the clock for a few cycles. Then STUFF 

should be lowered. Whenever FREEZE is also low during a clock cycle, the chip 

will run. 

The initial contents of memory should be as follows: 

Location Contents Remarks 

0 0|000 Cdr part of NIL (points to NIL) 

1 01000 Car part of NIL (points to NIL) 

2 X| XXX Cdr part of T 

3 Xx | XXX Car part of T 

4 0|nnn Beginning of free storage 

5 exp Expression to be evaluated 

6 x | XXX Reserved for result of evaluation 

The notation "tla" means a pointer with type "t" and address "aaa". 

NIL must be at location 0, and T at location 2. These are used as 

returned values by the built-in predicate ATOM. Notice that NIL is considered 

to be alist. Location 5 should contain the expression to be evaluated. 

Additional cells in the expression may occupy other memory words above 

location 6 as appropriate. Location 4 should point at the last word used in 

the initial expression. Words after the one pointed to by location 4 are 

assumed to be free for allocation by the “garbage collector". (Actually, 

SIMPLE has no garbage collector. When Storage has been once allocated, it 

drops dead.) The actual free storage pointer is not maintained in location 4; 

location 4 is in general not changed. It is only used to initialize the free 

_Storage pointer internal to the chip. Location 6 is reserved for the result 

_ Of the evaluation; if evaluation of the expression in location 5 ever 

terminates, the resulting pointer is written into location 6, and the 

processor halts. 

Register/Logic Level Description 

‘Internally SIMPLE is organized into two parts. One part, EVAL, is 

concerned with the evaluation algorithm. The other part is concerned with 

storage management, and is called GC. One way to think about this division is 

that GC supplies a set of "subroutines" which are used by EVAL to deal with 

the memory system. In this way EVAL can deal with the details of the 

evaluation of the code in terms of a linked-list memory system. GC implements 

this memory system in terms of the usual "linear-array" memory system. 

Each of the two parts, EVAL and GC, is itself divided into two parts: 

registers and controller. The registers provide storage for type/pointer 

words, and are connected by a common bus in each part. Each controller is a 

finite-state machine implemented as a PLA, plus some random logic. Each PLA 

iS organized as a micro-code ROM, addressed by a "micro-PC" and yielding a set
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of control signals, including register controls and a new micro-PC indicating 

the next state. 

EVAL has five registers, called V (Value), X (Expression), N 

(Environment), L (List of arguments), and C (Control stack). Each can hold an 

eleven-bit word of three type bits T0-T2 and eight address bits AO-A7. (These 

bits are therefore referred to as VTO, VTI, XAO, NAG, etc.) They are 

connected together by a common bus called the E bus. Any of these registers 

can be loaded from the bus (according to the signals LDV, LDX, LDN, LDL, LDC) 

or read from the bus (according to the signals RDV, RDX, RDN, RDL, RDC). In 

addition, register X has incrementation logic associated with it. The signal 

RDX+ causes the contents of X, plus 1, to be read onto the E bus. (This 

incrementer constitutes the "arithmetic" portion of EVAL's "ALU".) The type 

bits do not participate in the incrementation, only the address bits. (If the 

address bits of X are all ones, then incrementing X reads an all-zero address 

part, but does not read an incremented type.) 

GC has three-and-a-half registers, called P, Q, R, and S. They are 

connected by a common bus called the G bus. They can be loaded from the G bus 

(according to the signals LDP, LDQ, LDR, LDS) and read back onto the G bus 

(according to the signals RDP, RDQ, RDR). Register S cannot be read back onto 

the G bus. The output pads O are ordinarily driven from the contents of 

register 8S; thus register S serves as the latch for the output pads. Register 

P, like register X, has associated incrementation logic; the contents of P, 

plus 1, can be read onto the G bus according to the signal RDP+. Register P 

is also special (and unlike X) in that its type bits are always zero. Reading 

register P always forces zeroes onto GT0-GTZ, and loading P always discards 

the type bits. 

Here is a complete list of the signals produced by the two controllers 

of EVAL and GC. (Unfortunately, the hyphen character "-" is used both as a 

break character within a signal name and to indicate a series of signal names 

ending in consecutive digits. The two cases can be distinguished by whether 

or not a digit appears before the hyphen.) 

  EVAL Signal name Remarks 

6 ENSTATEO-ENSTATE5 Next state 

6 EOSTATEO-EOSTATES5S Old (current) state 

2 ET-DISP, EAZ-ETZ-DISP Dispatch selectors 

5 LDV, LDX, LDN, LDL, LDC Register load controls 

6 RDV, RDX, RDX+, RDN, RDL, RDC Register read controls 

4 GCOPO-GCOP3 GC OPeration request 

3 LITO-LIT2 Three-bit literal value 

2 EA-LIT, ET-LIT Literal read controls 

34 signals total
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Gc ' Signal name | Remarks 
6 GNSTATEO-GNSTATES5 Next state 

6 GOSTATEO-GOSTATES Old (current) state 

2 GCOP-DISP, GA-ZERO-DISP Dispatch selectors 

4 LDP, LDQ, LDR, LDS Register load controls 

4 RDP, RDP+, RDQ, RDR Register read controls 

3 CONN-I, CONN-EA, CONN-ET _ Internal bus connections 

1 STEP-EVAL .— Advance EVAL controller 
2 ADR, WRITE Memory controls 

28 signals total 

Actually, some signals are required only in their inverted (active low) state; 

rather than have additional random inverters, the PLA programming is inverted 

so that the signal emerges from the PLA in the active low sense. Thus these 

actual signals emerge from the PLA's: -ENSTATE3, -ENSTATE4, -ENSTATES, 

-GNSTATEZ, -GNSTATE3, -GNSTATE4, -GNSTATE5, and -STEP-EVAL. (This is a third 

use of the hyphen in signal names: a leading hyphen means an "active low" or 

"inverted" signal.) 

The two controllers are clocked in parallel. At each step a new state 

is latched for each controller. This new state can come from one of three 

sources: the old state (OSTATE), the next state (NSTATE), or the input pads 

(I). It comes from I if STUFF is high. It comes from OSTATE if STUFF is low 

and FREEZE is high. Otherwise, it comes from NSTATE. 

° The preceding contains two inaccuracies. One is that the EVAL 

controller uses not FREEZE, but rather FREEZE-EVAL, which is a signal computed 

as the OR of FREEZE and -STEP-EVAL. Thus the EVAL controller actually uses 

OSTATE if either FREEZE is high OR if STEP-EVAL is not asserted by the GC 

controller (i.e. if -STEP-EVAL is asserted); in this way GC can control the 

advance of EVAL. 

The other inaccuracy is that each controller has two dispatch control 

lines which can cause NSTATE to be modified before entering the FREEZE/STUFF 

selector. If either one is asserted (it should never occur that both are 

asserted), then certain control signals are OR'd with the low bits of NSTATE 

to produce the new state (if so selected by STUFF and FREEZE). This facility 

provides for conditional dispatching in the "microcode" for the controllers: 

if the microword provides zero-bits in the low bits of NSTATE, then the next 

microinstruction is selected according to the control signals specified. Some 

of the control signals may be effectively masked by specifying one-bits in 

NSTATE corresponding to those signals. The control signals which may be 

dispatched on, and their corresponding dispatch selectors, are: 

    

Controller Selector Signals selected to OR with NSTATE 

EVAL ET-DISP ETO-ET2 (8-way dispatch) 

EVAL EAZ-ETZ-DISP EA-ZERO, ET-ZERO (4-way dispatch) 

GC GCOP-DISP GCOPO0-GCOP3 (16-way dispatch) 

GC GA-ZERO-DISP GA-ZERO (2-way dispatch) 

EA-ZERO is asserted if the address bits on the E bus (EA0Q-EA7) are all
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zero. ET-ZERO similarly is asserted if the type bits on the E bus (ETO-ET2) 

are all zero. (There was originally to be a third signal in this group called 

EQV, asserted if the address on the E bus was equal to the address in the V 

register. This was eliminated late in the design to conserve area. However, 

it left an after-effect: the 4-way dispatch on EA-ZERO and ET-ZERO affects 

bits 3 and 4 of NSTATE, not bits 4 and 5, breaking the intended general design 

rule that dispatching affects the low n bits of NSTATE.) GA-ZERO is asserted 

if all the address bits on the G bus are zero. 

The EVAL controller can read certain constants onto the E bus, rather 

than reading the contents of a register. This is done by asserting EA-LIT or 

ET-LIT. These respectively read the address (0,0,0,0,LIT0,LIT1,L1T2,0) onto 

-- EAQ-EA7, and LITO-LIT2 onto ETO-ETZ. In this way any constant type can be 

specified, and a small range of even addresses (0, 2, 4, 6, 10, 12, 14, 16 

octal — as it turned out only the first four are used). 

The GC controller can connect the busses in certain ways. The signal 

CONN-I connects the input pads I to the G bus; the input pads thus serve as a 

"read-only register" to the G bus in much the same way that the S register (to 

‘which the output pads are normally tied) serves as a "write-only register". 

The signal CONN-EA connects the address bits of the E and G@ busses together; 

Similarly CONN-ET independently connects the type bits of the E and G@ busses. 

“When they are so tied, only one of EVAL and GC should be attempting to read 

something onto its bus; the other may then load one or more registers from 

' this source. Thus this bus connection facility provides for bidirectional 

communication between the two sets of registers; only one direction may be 

used per EVAL step, however. The reason for being able to specify the address 

and type connections separately is that frequently GC will supply an address 

to the E bus from the G bus, while simultaneously EVAL will supply type bits 

to the E bus using ET-LIT. 

All the signals emerging from the PLA's pass through a structure 

called the probe multiplexor. Under the control of the external signals 

PCO-PC2 these signals can be gated to the output pads OT0-OT2Z, OAO-OA7, and 

ADR for external testing purposes. 

The signals PCO-PC2 are decoded from binary to l-of-7, producing the 

mutually exclusive signals PCA, PCB, PCC, PCD, PCE, PCF, and -PROBE. -PROBE 

is normally asserted (PCO-PC2 = 000), which allows the output pads to function 

normally. The other signals gate internal signals to the pads as follows:
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Pad PCA=001 PCB=010 PCC=011 PCD=101 PCE=110 PCF=111 Probe bus 

ADR GOSTATES -GNSTATE5 LDR RDQ ~-- --- GP6 

OTO GOSTATE4 -GNSTATE4 LDQ LDP “ee --- GP5 

OT1 GOSTATE3 -GNSTATE3 RDP RDP+ --- ~-- GP4 

OTZ GOSTATE2 -GNSTATE2 CONN-ET CONN-EA --- --- GP3 

OAO GOSTATE1 GNSTATE1 CONN-I -STEP-EVAL ADR WRITE GP2 

OA1 GOSTATEO GNSTATEO GA-ZERO-DISP GCOP-DISP LDS RDR GP1 

OA2 EOSTATE5 -ENSTATE5 LDC RDL “=> --- EP6 

OA3 EOSTATE4 -ENSTATE4 LDL RDN GCOP3 GCOP2 EP5 

OA4 EOSTATE3 -ENSTATE3 LDN RDV GCOP] GCOPO EP4 

OA5 EOSTATEZ2 ENSTATE2 LDV RDX+ LIT2 LIT1 EP3 

OA6 EOSTATE] ENSTATE1 RDX LDX LITO ET-LIT EP2 

OA7 EOSTATEO ENSTATEO EAZ-ETZ-DISP ET-DISP EA-LIT RDC EP 1 

When PCO-PC2 = 100, then the output pads are not driven from any source. 

Also, entries "---" in the table indicate an output which is not driven. (It 

was originally intended that the numbering of the probed OSTATE and NSTATE 

bits should follow the ordering of the OT and OA bits. In the last-minute 

haste of the design effort, the probe lines were accidentally hooked up 

backwards. This is "only" a matter of elegance — the probe multiplexor will 

still do its job.) 

Signals which must control more than a few gates (e.g. register 

controls) are actually used to drive superbuffers. The signal is first NANDed 

with PHI1 and then used to control an inverting superbuffer. The superbuffer 

allows the long control lines passing through the register array to be driven 

faster; while this may not be necessary in the prototype, it will probably be 

a good idea in a larger version with 40-bit registers. The gating by PHI1 was 

intended to permit the pre-charging of the bus lines during PHI2 if desired; 

but later it was decided to omit pre-charging from the prototype. 

SIMPLE Microcode 
  

Here we present the microcode for the two controllers. Remember, in 

reading it, that the two machines are clocked in parallel, but EVAL advances 

~ only when stepped by the STEP-EVAL signal from GC (rather, when not inhibited 

by -STEP-EVAL). 

The basic protocol is that GC is in a loop, constantly performing 

GCOP-DISP according to the operation GCOP requested by the current EVAL 

microcode word. When GC has performed the requested operation, it steps EVAL 

and then returns to its loop. 

There are basically five kinds of operation EVAL can request: 

CONS/XCONS, RPLACD, and load/store Q. 

NOP, 
CAR/CDR, 

| NOP means "do nothing"; it is used when EVAL just wants to shuffle 

' things on the E bus. GC takes two cycles to perform a NOP: one to dispatch 

on the GCOP, and one to do STEP-EVAL. (The synchrony of the two controllers 

prevents these two operations from being Simultaneous. There are ways to
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avoid this problem, which should be used in a full-scale version. In the 

prototype we wanted to avoid complicated timing problems.) Thus EVAL proceeds 

at at most half the speed of GC. 

CAR/CDR operations request GC to perform a CAR or CDR operation on 

memory. Many variants of this are provided to optimize data shuffling between 

the E and G busses. A general convention is that after a CAR/CDR operation 

the result of the operation is left in Q, and the original operand is left in 

R. The basic CAR and CDR operations take their operand from the E bus; the 

result is left in Q. The CDRQ, CARQ, CARR variants take their operands from 

the indicated register (Q or R), and return the result to the E bus (and also 

put it in Q). The CDRRX, CARRX, CDRQX variants take their operands from the 

indicated register, put the result in Q, and make no attempt to use the E bus. 

In this way EVAL can request GC to do something useful while simultaneously 

doing something else with the E bus. 

The CONS operation accepts a car pointer from the E bus, takes the 

contents of Q to be the cdr pointer, and then allocates a new two-word cell 

containing that car and cdr. A pointer to the result, with type 0 (list), is 

left in Q. 

The RPLACDR operation alters the cdr of the cell pointed to by R to be 

the pointer passed from the E bus. 

The load/store Q operations allow EVAL to access the Q register. RDQ 

requests GC to pass the contents of Q back to the E bus. RDQA asks for just 

‘the address bits; EVAL typically supplies the type bits from a literal using 

ET-LIT. LDQ stuffs the E bus contents into Q. (Note that the names RDQ and 

LDQ are meant to be suggestive of the standard register control signals; but 

in this context they are not such signals, but rather particular values for 

the GCOP field which request GC to apply its register control signals of the 

same name. ) 

RDQCDRRX is a combination of RDQ and CDRRX useful in odd 

circumstances; that is, a CDRRX is performed, and then the old contents of Q 

are passed back to the E bus. This operation breaks the Q-and-R convention: 

Q is indeed set. to the result of the CDRRX, but R is used to contain the old 

value of Q, and not the operand of the CDRRX. 

The reason there are such complex variants on the CAR/CDR operations 

has to do, strangely enough, with geometrical layout constraints. The 

original design for the prototype had only three GCOP control lines, and thus 

eight possible requests (NOP, CAR, CDR, CONS, XCONS, RDQ, RDQA, and one unused 

Spare). With this design EVAL required about 80 words of microcode and GC 

only about 30 words. This imbalance would have made the EVAL PLA much too 

large, and the project would have had an awkward shape. Thus it was decided 

to look for common operation sequences in EVAL and make them into single GC 

operations, thus shrinking EVAL and expanding GC by adding’ extra 

"subroutines". Making EVAL just a little larger than GC allowed a better 

balance and an overall rectangular shape.
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The initialization protocol is a bit peculiar. EVAL begins at state 

INIT, and GC at state GC; these states are both state zero. The first thing 

EVAL does is put a pointer in register C with type 2 (which in this context is 

a "return address" code). This 2 is also gated into the address bits, thus 

providing a 4 there. The 4 is irrelevant to the value placed in C, but is 

" needed by GC, which will connect the E and G busses on that cycle. This 4 is 

used to fetch the initial free storage pointer, and is also placed in Q so 

that EVAL can later request CARQ to get the expression to be evaluated from 

location 5. EVAL also initializes register N to contain NIL (a zero type/zero 

address pointer). This is all rather kludgy, but the multiple uses of certain 

magic numbers allows the initialization to occupy only two microwords in each 

PLA. 

Multiple magic numbers are also used in the implementation of aAToM. 

The symbol T must be at location 2 in the memory because the same literal 1 is 

used to generate both the type (1 = SYMBOL) and the address (twice 1 = 2) when 

generating a result of 1. Similarly, a 0 type and 0 address is used for Nit. 

This unfortunately results in (ATOM (ATOM <any list>)) = NIL, despite the fact that 

in LISP nit is defined to be an atom. This is a defect in the design of the 

prototype. In preceding diagrams we have shown NIL as a Symbol rather than as 

a list. Ideally it should be treated as a Special object which is both a list 

and an atom, depending on context. 

Register C always contains a control stack for the recursive 

evaluation. Quantities which need to be saved are consed onto this stack. 

The cdr pointers which chain the stack cells together are usually of type 0 

(list), but sometimes have other type codes which encode "return addresses" 

within the EVAL microcode. At the state labelled POPJ, the EVAL controller 

dispatches on the type code of what is in C. This specifies what to do next on 

a return from a "recursive call" to EVAL. The type 2 ("“TOPLEVEL") pointer 

which is initially placed in C specifies that EVAL should "drop dead", as the 

expression evaluation has been completed, after storing the result of the 

evaluation into memory location 6. 

The microcode is written in a "LISPy" form, as a list of four things. 

The first thing is the symbol «ucode, which indicates that this is microcode. 

The* second thing is the name of the controller (tvAL or 6c) for which this is 

the microcode. 

The third thing is a list beginning with the symbol Fietos. This is a 

declaration of the names and sizes of all fields of the microword. If a 

declaration is a symbol (e.g. tov), then it is the name of a single bit. If 

it is a list, then the car of the list is the name of the field. The cadr of 

the list may be a number, which is the width of the field in bits; this is 

optionally followed by NSTATE or OSTATE (which indicate special treatment for 

those fields by the microassembler). If the cadr is not a number, then some 

number of items will follow the field name. The number of such items must be 

a power of two, and these items are names (or lists of names) for the possible 

binary values of the field. For example, in the EVAL microcode, the 

declaration of Lit indicates that it has 8 values (hence is logs 3 = 8 bits 

wide). The names LIST, Ev2, and NIL each indicate the value 0 in the context
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of the tit field; closure and RESULT each indicate the value 3 in that context; 

IF indicates the value 5; and so on. 

The fourth thing is a list beginning with the symbol cove; following 

this symbol is the microcode proper, which is a series of items. A symbol is 

a tag denoting the address of the following microinstruction (example: INIT 

or poPJl). A list is a set of signals forming a single microcode word. In 

general, a signal like LDC is asserted iff its name Loc is present in the 

microinstruction. Multi-bit fields are specified by a list of the field name 

and the value (example: (LIT 1F2) specifies: the value 1 for the LIT field, 

meaning LITO=0, LIT1=0, LIT2=1). 

Fields tagged in the Figtos declaration as NSTATE and OSTATE fields are 

handled specially by the microassembler. OSTATE is just the address of the 

current state. NSTATE may be explicitly specified by (GOTO <tag>), or 

implicitly specified by the rule that omitting a (GOTO <tag>) means that the 

next state is the textually following microinstruction. (This does not imply 

that the microinstructions have consecutive "addresses", but only that one has 

the address of another in its NSTATE field.) The microassembler fills in 

NSTATE and OSTATE fields automatically after it has assigned addresses to all 

the instructions. 

The address of a microinstruction may be constrained by an "=" 

specifier (this idea is borrowed from the microassembler used by DEC for KLI0 

microcode, largely because the dispatching technique was borrowed from that 

used by the KLIO, which Steele has had some experience microprogramming). 

This address-alignment facility is used primarily for aligning dispatch 

tables. A specification such as "(= %1»**)" means that the addresses of the 

next four (2 to the power <number of *'s>) microinstructions are constrained 

to end in 100, 101, 110, 111 in that order. Thus an explicit 1 (or 0, but 

. this is never used in practice) forces an address bit to be 1 (0), while a * 

indicates that either may be used, and all combinations are used in 

lexicographic order for textually successive instructions. After the 

-2-to-the-power-<number-of-*'s> instructions, one writes "(= 7)" to mark the 

end of the table; this is used for error-checking by the microassembler. The 

_ character "%" may be any single character; it is used to make sure the two 

"=""specifications match, and is also used in the microcode assembly listing 

to show where the dispatch table was placed. As an example, the specification 

(= + 1% 1) at ATOM) Causes the next instruction to have an address ending in 

binary 101, and the one textually following that at an address ending in 111. 

If a number follows the "=" rather than a one-character symbol (for 

example, "(= 0)"), then the address of the next microinstruction is forced to 

be that number. In this case no matching "=" construct follows’ the 

instruction whose location was forced. In the listings that follow, this is 

used to force the first instruction of each controller to be at location 0.
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(*xUCODE EVAL 

(FIELDS (ENSTATE 6 NSTATE) 

(EOSTATE 6 OSTATE) 

(LIT (LIST EV2 NIL) 

(SYMBOL IF2 T) 

(VARIABLE TOPLEVEL) 

(CLOSURE. RESULT) 

( PROCEDURE ) 

(IF) 
(COMBINATION) 

(QUOTE )) 

(GCOP NOP CDR CAR CDRQ CARQ CARR CUORRX CARRX CDROQX 

CONS XCONS RPLACOR LOQ RDQ ROQA RDQCORRX) 

LDV LOX LON LDL LDC RDV RDX RDX+ RDN RDL RDC 

ET-DISP EAZ-ETZ-EQV-DISP EA-LIT ET-LIT) 

(CODE INIT 

(= 0) 

(ET-LIT EA-LIT (LIT TOPLEVEL) LDC) ;TOPLEVEL = 2!3! 

(EA-LIT ET-LIT (LIT NIL) LON (GOTO INIT1)) 

EVAL 

(= @ # * *) 

(RDX LDV (GOTO POPJ)) sLIST 

(RDX LDV (GOTO POPJ)) ; SYMBOL 

((GCOP LDQ) RON (GOTO VAR1)) ;VARIABLE 

(RDX LDV (GOTO POPJ)) ; CLOSURE 

((GCOP COR) RDX (GOTO PROC1)) ; PROCEDURE 

((GCOP CDR) RDX (GOTO IF1)) ;1F 

(EA-LIT ET-LIT (LIT NIL) LDL (GOTO EVARGS)) ;COMBINATION 

((GCOP COR) RDX (GOTO STOREV)) ;QUOTE 

(= @) 

" VARI 

(ROX+ LDV EAZ-ETZ-EQV-DISP) 

(= #* 11) ;EA ZERO DISP 

((GCOP CDRQX) RDV LOX (GOTO VAR1)) ;NONZERO 

((GCOP CARQ) LDV (GOTO POPJ)) ; ZERO 

(= #) 

POPJ1 

(= $1] * *) ;ONLY ET1-ET2 RELEVANT 

((GCOP CONS) RDV (GOTO EV3)) sEV2 

((GCOP RDQCDRRX) LON (GOTO IF3)) ;1F2 

((GCOP CDR) EA-LIT ET-LIT 

(LIT RESULT) (GOTO STORE6))  ;TOP LEVEL (RESULT = LOCATION 6) 

DEAD ((GOTO DEAD)) ;?2?? SHOULDN'T HAPPEN 

(= $) 

IFl 

({GCOP XCONS) RDC) 

((GCOP CONS) RDN) 

((GCOP RDQA) ET-LIT (LIT IF2) LOC (GOTO IF1A)) 

1F3 

((GCOP CDRQ) LOC) 

((GCOP CARRX) RDV EAZ-ETZ-EQV-DISP (GOTO IF4))
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1F4 

(= %* 11) 

INIT 

( (GCOP 

( (GCOP 

(= %) 
EVARGS 

(= & * * &) 

((GCoOP 

((GCOP 
((GCOP 

((GCOP 
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CARQ) LOX ET-DISP (GOTO EVAL)) 

CDRQ) LDX ET-DISP (GOTO EVAL) ) 

CDR) RDX (GOTO EV1)) 

CAR) RDV (GOTO STOREV)) 

CDR) RDV (GOTO STOREV)) 

CDR) ROL (GOTO CONS1)) 

(RDV EAZ-ETZ-EQV-DISP (GOTO ATOM1)) 

POPJ ((GCOP CAR) RDC ET-DISP (GOTO POPJ1)) 

(RDL LDV (GOTO POPJ)) 

((GCOP 

(= &) 
CONS1 

((GCOP 

((GCOP 

STOREV 

((GCOP 

ATOM) 

° (= + 1 * 1) 

CDR) RDV (GOTO FUN1)) 

CARQ)) 
XCONS) RDV) 

RDO) LDV (GOTO POPJ)) 

(EA-LIT ET-LIT (LIT T) LDV (GOTO POPJ)) 

(EA-LIT ET-LIT (LIT NIL) LDV (GOTO POPJ)) 

(= 4) 
FUNI 

((GCOP RDQ) LDN) 

((GCOP CDR) ROL EAZ-ETZ-EQV-DISP) 

FUN2 

(= \* 11) 

((GCOP CDRQ) EAZ-ETZ-EQV-DISP (GOTO FUN2)) 

((GCOP RPLACOR) RDN (GOTO FUN3)) 

(= \) 

FUN3 

(RDL LDN) 

((GCOP CAR) RDV (GOTO FUN4)) 

EVI 

((GCOP XCONS) RDC) 

((GCOP CONS) RDN) 

(({GCOP CONS) RDL) 

((GCOP RDQA) ET-LIT (LIT EV2) LDC) 
IFIA 

((GCOP CAR) RDX) 

FUNG 

((GCOP RDQ) LOX ET-DISP (GOTO EVAL)) 

Design of LISP-~Based Processors 

;EA ZERO DISP 

;NONZERO 

;ZERO 

>MORE 

sCAR 

;CDR 

;CONS 

; ATOM 

;PROGN 

;LIST 

>FUNCALL 

;PUT Q INTO V, POPJ 

,ET ZERO DISP 

> ATOM 

;LIST 

;EA ZERO DISP 

sNONZERO 

> ZERO



Steele and Sussman 45 Design of LISP-Based Processors 

EV3 

PROC] 

((GCOP RDQ) LOL) 

((GCOP CDR) RDC) 

(({GCOP CARQ) LON) 

((GCOP CORRX)) 

((GCOP CORQ) LOC) 

((GCOP CARR) LDX ET-DISP (GOTO EVARGS)) 

((GCOP XCONS) RDN) 

((GCOP RDQA) ET-LIT (LIT CLOSURE) LDV (GOTO POPJ)) 

STORE6 

(({GCOP RPLACOR) RDV (GOTO DEAD)) 

)) END OF *UCODE EVAL 

(*UCODE GC 
(FIELDS (GNSTATE 6 NSTATE) 

(GOSTATE 6 OSTATE) 

STEP-EVAL CONN-EA CONN-ET CONN-I 

LDP LDQ LDR LOS RDP RDP+ RDQ RDR 

ADR WRITE GCOP-DISP GA-ZERO-DISP) 

(CODE GC 

(= 0) 
(CONN-EA LDS LDQ ADR) sEVAL SUPPLIES 4 

(CONN-I LDP STEP-EVAL (GOTO LOOP)) ;READ INITIAL FREE PTR 

LOOP 

(GCOP-DISP) 

“(= @ kk & &) 

(STEP-EVAL (GOTO LOOP)) ;NOP 

(CONN-EA CONN-ET LDS LOR ADR (GOTO COR1)) ;COR 

(RDP LDQ (GOTO CAR1)) sCAR 

(RDQ LOS ADR (GOTO CDRO])) CORO 
CARQO (RDP LDR (GOTO CARQ1)) ;CARQ 

(RDR LDQ (GOTO CARQO)) sCARR 

(ROR LOS ADR (GOTO CDR1)) :CDRRX 

(RDP LDQ (GOTO CARRX1)) ;CARRX 

(RDQ LDS LOR ADR (GOTO CDR1)) ;CDRQX 

(RDP+ LDS LDR ADR GA-ZERO-DISP (GOTO CONS1)) ;CONS 

(ROP+ LDS LDR ADR GA-ZERO-DISP. (GOTO XCONS1)) :XCONS 

(RDR LOS ADR (GOTO RPLACDR1)) ;RPLACOR 

(CONN-EA CONN-ET LOQ STEP-EVAL (GOTO LOOP)) ;LDQ 

(CONN-EA CONN-ET RDQ STEP-EVAL (GOTO LOOP)) ;RDO 

(CONN-EA RDQ STEP-EVAL (GOTO LOOP)) - ;RDQA 

(ROR LDS ADR (GOTO RDQCORRX1)) ;ROQCORRX 

(= @)
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CARI 
(CONN-EA CONN-ET LDP LDR) 

CAR? 
(RDP+ LDS) 
(RDQ LDP) 

CDR1 
CAR3 

(CONN-I LDQ STEP-EVAL (GOTO LOOP)) 
CARQ] 

(RDQ LDP) 
(RDP+ LDS) 
(RDR LDP) 

coRQ] 
(RDQ LDR) 
(CONN-I CONN-EA CONN-ET LDQ STEP-EVAL (GOTO LOOP)) 

CARRX1 
(RDR LOP (GOTO CAR2)) 

. RPLACDRI 
(CONN-EA CONN-ET LDS LDQ) LEAVE GAP BETWEEN ADR AND WRITE 
(WRITE STEP-EVAL (GOTO LOOP)) 

XCONS} 
(= $ *) 

(RDR LDP (GOTO XCONS2)) 
GCDEAD ((GOTO GCDEAD)) :FREE PTR WRAPPED AROUND 
(= $) 

XCONS2 
(RDQ LDR) 
(CONN-EA CONN-ET LDS (GOTO CONS3)) 

CONS] 
(27) 

(ROR LOP (GOTO CONS2)) 

((GOTO GCDEAD)) 

= 7) 

CONS2 

(CONN-EA CONN-ET LDR) 

(RDQ LDS) 

CONS3 

(RDP LDQ WRITE) 

(RDP+ LDS ADR GA-ZERO-DISP) 

= & *) 

(ROR LDS (GOTO CONS4)) ;LEAVE GAP BETWEEN WRITE AND ADR 

((GOTO GCDEAD)) 

(= &) 
CONS4 

(WRITE ROP+ LDR) 

(RDR LOP STEP-EVAL (GOTO LOOP)) 

RDQOCORRX1 
(RDQ LOR) 

(CONN-1 LDQ) 

(RDR CONN-EA CONN-ET STEP-EVAL (GOTO LOOP)) 

)) ;END OF *UCODE GC 
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A remnant of the planned logic for the £Q operation survives in that 

in the actual EVAL microcode the name “EAZ-ETZ-EQV-DISP" was still used instead 

of the more correct "EAZ-ETZ-DISP". 

It may be noticed that this code has been tightly bummed to share 

instructions among several different paths of code (for example at IF1A and 

FUNG). This is no accident. The microassembler looks for assembled 

microwords which have the same value (except for OSTATE fields) and flags them 

in the assembly listing precisely so that such instructions may be merged if 

desired. 

° The assembly listing actually used to produce the PLA programming for 

the prototype is reproduced here. The listing is designed to be readable both 

by. people (and so it is arranged in columns) and by LISP (and so it is 

parenthesized). All numbers in the listing are octal. The listing for each 

program is a single list, beginning with the symbol ucopE and the name of the 

program (EvAL or Gc). Then is the maximum number of words of microcode memory 

needed to contain the program; this is actually two to the power <size of the 

NSTATE field>. After this is a comment specifying the width of the microword. 

Next comes the definitions of all fields, as assigned by the 

microassembler. (These definitions have nothing to do with the order of the 

Signals emerging from the PLA. They simply indicate where in each assembled 

microword the microassembler has placed the value for each field. The 

software which produces the PLA programming from the assembly listing permutes 

the bits in an arbitrarily specified fashion to suit the layout. It also 

automatically inverts the programming for such bits as -STEP-EVAL. In this 

way the written microcode can mention these bits in the positive sense rather 

than the negative (active low) sense.) 

Each field definition has the word FIELD, a numeric value with a l bit 

in every bit position of the field and 0 bits elsewhere, and a 4-list. The 

4-list contains the name of the field; the type of the field (81T, NSTATE, 

OSTATE, Or the list of symbolic values from the declaration); the width of the 

field; and the position of the field in the assembled microword, measured 

from the right. 

If a field is more than one bit wide, then the assembler automatically 

defines name for each of the bits of the field, by methodically appending 

decimal numbers to the field name, and numbering the bits of the field from 

left to right. 

Following the field definitions are the assembled instructions, in 

address order (which in general will not be the same as the textual order of 

the instructions in the input program). For each instruction is listed the 

address; the assembled microword value; a single character if the 

instruction is part of a dispatch table, or a "!" if the instructions 

location was forced by "(= <number>)", or a blank otherwise; if the instruction 

had a tag or tags, then that tag or a list of the tags, followed by a colon; 

the symbolic instruction; and an arrow "=>" followed by the address in the 

NSTATE field.
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Following the assembled instructions is a remark indicating the actual 

number of assembled microwords. This need not be greater than the last 

address used (though it is in the actual cases shown here), because the 

microassembler may leave gaps in the address space to accommodate dispatch 

tables. 

The comments before and after the listings are timestamp information 

generated by the microassembler. 

;THIS IS THE ASSEMBLED MICROCODE FOR ((DSK SCHIP) USIMPL /22) 

;It is 6 days, 15 hours, and 3 minutes past the new moon. 

;The sun 1s 41*56'59" east of south, 13*5'50" above the horizon. 

;That means it is now 8:36 AM on Wednesday, December 6, 1978. 

(UCODE EVAL 

(100 WORDS) 

(REMARK MICROWORDS ARE 42 (OCTAL) BITS WIDE) 

(FIELD 100000000000 (ET-LIT BIT 1 41)) 

(FIELD 040000000000 (EA-LIT BIT 1 40)) 

(FIELD 020000000000 (EAZ-ETZ-EQV-DISP BIT 1 37)) 

(FIELD 010000000000 (ET-DISP BIT 1 36)) 

(FIELD 004000000000 (ROC BIT 1 35)) 

(FIELD 002000000000 (RDL BIT 1 34)) 

(FIELD 001000000000 (RDN BIT 1 33)) 

(FIELD 000400000000 (RDX+ BIT 1 32)) 

(FIELD 000200000000 (RDX BIT 1 31)) 

(FIELD 000100000000 (RDV BIT 1 30) 

(FIELD 000040000000 (LOC BIT 1 27) 

(FIELD 000020000000 (LDL BIT 1 26) 

(FIELD 000010000000 (LON BIT 1 25) 

(FIELD 000004000000 (LDX BIT 1 24) 

(FIELD 000002000000 (LDV BIT 1 

(FIELD 000001700000 (GCOP (NOP CDR CAR CDRQ CARQ CARR CDRRX CARRX CDRQX CONS XCONS RPLACDR 

LDQ RDO RDQA RDOCDRRX) 4 17)) 

(FIELD 000001000000 (GCoPO BIT 1 22)) 

(FIELD 000000400000 (GCOP1 BIT 1 21)) 

(FIELD 000000200000 (GCOP2 BIT 1 20)) 

(FIELD 000000100000 (GCOP3 BIT 1 17)) 

(FIELD 000000070000 (LIT ((LIST EV2 NIL) (SYMBOL IF2 T) (VARIABLE TOPLEVEL) (CLOSURE RESULT) 

(PROCEDURE) (IF) (COMBINATION) (QUOTE)) 3 14)) 

(FIELD 000000040000 (LITO BIT 1 16)) 

(FIELD 000000020000 (LIT1 BIT 1 15)) 

(FIELD 000000010000 (LIT2 BIT 1 14)) 

(FIELD 000000007700 (EOSTATE OSTATE 6 6)) 

(FIELD 000000004000 (EOSTATEO BIT 1 13)) 

(FIELD 000000002000 (EOSTATE1 BIT 1 12)) 

(FIELD 000000001000 (EOSTATE2 BIT 1 11)) 

(FIELD 000000000400 (EOSTATE3 BIT 1 10)) 

(FIELD 000000000200 (EOSTATE4 BIT 1 7)) 

(FIELD 000000000100 (EOSTATES BIT 1 6))
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(FIELD 000000000077 (ENSTATE NSTATE 6 0)) 

(FIELD 000000000040 (ENSTATEO BIT 1 5)) 

(FIELD 000000000020 (ENSTATE1 BIT 1 4)) 

(FIELD 000000000010 (ENSTATE2 BIT 1 3)) 

(FIELD 000000000004 (ENSTATE3 BIT 1 2)) 

(FIELD 000000000002 (ENSTATE4 BIT 1 1)) 

(FIELD 000000000001 (ENSTATES BIT 1 0)) 

(00 140040020001 ! INIT : (ET-LIT EA-LIT (LIT TOPLEVEL) LOC) => 01) 

(01 140010000133 (EA-LIT ET-LIT (LIT NIL) LDN (GOTO INIT1)) => 33) 

(02 020402000223 VARI : (RDX+ LDV EAZ-ETZ-EQV-DISP) => 23) 

(03 004001200320 IFl: ((GCOP XCONS) RDC) => 20) 

(04 000101100464 $ POPJ] : ((GCOP CONS) RDV (GOTO EV3)) => 64) 

(05 000011700522 $ ((GCOP RDQCDRRX) LDN (GOTO IF3)) => 22) 

(06 140000130671 $ ((GCOP CDR) EA-LIT ET-LIT (LIT RESULT) (GOTO STORE6)) => 71) 

(07 000000000707 $ DEAD : ((GOTO DEAD)) => 07) 

(10 000202001045 @ EVAL : (RDX LDV (GOTO POPJ)) => 45) 

(11 000202001145 @ (RDX LOV (GOTO POPJ)) => 45) 

(12 001001401202 @ ((GCOP LDQ) RDN (GOTO VAR1)) => 02) 

(13 000202001345 @ (RDX LDV (GOTO POPJ)) => 45) 

(14 000200101453 @ ((GCOP CDR) RDX (GOTO PROC1)) => 53) 

(15 000200101503 @ ((GCOP CDR) RDX (GOTO IF1)) => 03) 

(16 140020001640 @ (EA-LIT ET-LIT (LIT NIL) LDL (GOTO EVARGS)) => 40) 

(17 000200101730 @ ((GCOP CDR) RDX (GOTO STOREV)) => 30) 

(20 001001102021 ((GCOP CONS) RON) => 21) 

(21 100041612161] ((GCOP RDQA) ET-LIT (LIT IF2) LDC (GOTO IF1A)) => 61) 

(22 000040302224 1F3: ((GCOP CDRQ) LDC) => 24) 

(23 000105002302 # ((GCOP CDRQX) RDV LOX (GOTO VAR1)) => 02) 

(24 020100702433 ((GCOP CARRX) RDV EAZ-ETZ-EQV-DISP (GOTO IF4)) => 33) 

(25 000000402526 CONS] : ((GCOP CARQ)) => 26) 

"(26 000101202630 ({GCOP XCONS) RDV) => 30) 

(27 000002402745 # ((GCOP CARQ) LDV (GOTO POPJ)) => 45) 

(30° 000003503045 STOREV : ((GCOP RDQ) LDV (GOTO POPJ)) => 45) 

(31 000011503132 FUNI : ((GCOP RDQ) LON) => 32) 

(32 022000103263 ((GCOP CDR) RDL EAZ-ETZ-EQV-DISP) => 63) 

(33 010004403310 % (INIT1 IF4): ((GCOP CARQ) LOX ET-DISP (GOTO EVAL)) => 10) 

(34 002010003435 FUN3 : (RDL LDN) => 35) 

(35 000100203562 ((GCOP CAR) RDV (GOTO FUN4)) => 62) 

(36 004001203654 EV1 : ((GCOP XCONS) RDC) => 54) 

(37 010004303710 % ((GCOP CORQ) LDX ET-DISP (GOTO EVAL)) => 10) 

(40 000200104036 & EVARGS : | ((GCOP CDR) RDX (GOTO EV1)) => 36) 

(41 000100204130 &  ((GCOP CAR) RDV (GOTO STOREV)) => 30) 

(42 000100104230 & ((GCOP CDR) RDV (GOTO STOREV)) => 30) 

(43 002000104325 & ((GCOP CDR) RDL (GOTO CONS1)) => 25) 

(44 020100004455 & (RDV EAZ-ETZ-EQV-DISP (GOTO ATOM1)) => 55) 

(45 014000204504 & POPU : ((GCOP CAR) RDC ET-DISP (GOTO POPJ1)) => 04) 

(46 002002004645 8 (RDL LDV (GOTO POPJ)) => 45) 

(47 000100104731 & ((GCOP CDR) RDV (GOTO FUN1)) => 31) 

(50 000000605051 ({GCOP CORRX)) => 51) 

(51 000040305152 ({GCOP CORQ) LOC) => 52) 

(52 010004505240 ((GCOP CARR) LDX ET-DISP (GOTO EVARGS)) => 40) 

(53 001001205370 PROC] : ((GCOP XCONS) RDN) => 70)
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(54 
(55 
(56 
(57 
(60 
(61 
(62 
(63 
(64 
(65 
(66 
(67 
(70 
(71 

and Sussma 

001001105456 

140002015545 

002001105660 

140002005745 

100041606061 

000200206162 

010005506210 

020000306363 

000021506465 

004000106566 

000010406650 

001001306734 

100003637045 

000101307107 

n 

+ ATOM] 

IFIA : 

FUN4 

\ FUN2 

EV3 : 

STORE6 : 

(REMARK NUMBER OF INSTRUCTIONS 

;END OF UCODE EVAL ) 

(UCODE GC 

(100 WORDS) 

(REMARK MICROWORDS ARE 34 (OCTAL) BITS WIDE) 

(GA-ZERO-DISP BIT 1 33)) (FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 
(FIELD 

“(FIELD 
(FIELD 
(FIELD 

1000000000 

0400000000 

0200000000 

0100000000 

0040000000 

0020000000 

0010000000 

0004000000 

0002000000 

0001000000 

0000400000 

0000200000 

0000100000 

0000040000 

0000020000 

0000010000 

0000007700 

0000004000 

0000002000 

0000001000 

0000000400 

0000000200 

0000000100 

0000000077 

0000000040 

0000000020 

0000000010 

0000000004 

0000000002 

0000000001 

(GCOP-DISP BIT 1 32)) 

(GCOP 

(GCOP 
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CONS) RDN) => 56) 

CONS) RDL) => 60) 

( 
(EA-LIT ET-LIT (LIT T) LDV (GOTO POPJ)) => 45) 

( 
( EA-LIT ET-LIT (LIT NIL) LDV (GOTO POPJ)) => 45) 

((GCOP 

((GCOP 

((GCOP 

( (GCOP 

((GCOP 

RDQA) ET-LIT (LIT EV2) LDC) => 61) 

CAR) RDX) => 62) 

ROQ) LDX ET-DISP (GOTO EVAL)) => 10) 

CDRQ) EAZ-ETZ-EQV-DISP (GOTO FUNZ2)) => 63) 

RDQ) LDL) => 65) 

CDR) RDC) => 66) 

CARQ) LDN) => 50) 

RPLACDR) RDN (GOTO FUN3)) => 34) 

RDQA) ET-LIT (LIT CLOSURE) LDV (GOTO POPJ)) => 45) 

RPLACDR) RDV (GOTO DEAD)) => 07) 

72 (OCTAL)) 

(WRITE BIT 1 31)) 

(ADR BIT 1 30)) 

(RDR BIT 1 27)) 

(RDQ BIT 1 26)) 

(RDP+ BIT 1 25)) 

24)) 
23)) 

22)) 

21)). 

20)) 
(CONN-1 BIT 1 17)) 

(RDP BIT 

(LOS BIT 

(LOR BIT 

(LOQ BIT 

(LOP BIT 

(CONN-ET BIT 1 16)) 

(CONN-EA BIT 1 15)) 

(STEP-EVAL BIT 1 14)) 

(GOSTATE OSTATE 6 6)) 

(GOSTATEO BIT 1 13)) 

(GOSTATE] BIT 1 12)) 

(GOSTATE2 BIT 1 11)) 

(GOSTATE3 BIT 1 10)) 

(GOSTATE4 BIT 1 7)) 

(GOSTATES BIT 1 6)) 

(GNSTATE NSTATE 6 0)) 

(GNSTATEO BIT 1 5)) 

(GNSTATEL BIT 1 4)) 

(GNSTATE2 BIT 1 3)) 

(GNSTATE3 BIT 1 2)) 

(GNSTATE4 BIT 1 1)) 

(GNSTATES BIT 1 0)) 

(00 0102420001 ! GC 

1 

] 

1 

1 

1 

(CONN-EA LDS LDQ ADR) => 01)
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(01 

(02 

(03 

(04 

(05 

(06 

(07. 

(10 

(11 

(12 

(13 

(14 

(15 

(16 

(17 

(20 

(21 

(22 

(23 

(24 

(25 

(26 

0000310102 
0400000220 
0001260304 
0012000405 
0020200506 
0000510602 
0020200710 
0012001011 
0040201112 
0021001213 
0000571302 
0040201404 
0002461516 
0200011602 
0021001742 
0000012002 
0103062106 
0004402203 
0122002312 
0005002407 
0040402524 
0142002606 

(27 0004402714 

(30 

(31 

(32 

(33 

(34 

(35 

(36 

(37 

(40 

(41 

(42 

(43 

(44 

(45 

(46 

(47 

(50 

(51 

(52 

(53 

(54 

(55 

(56 

(57 

(REMARK NUMBER OF INSTRUCTIONS 

) 

0123003006 

1113003144 

1113003240 

0142003315 

0000473402 

0020073502 

0020033602 

0142003755 

0040204017 

000000414] 

0002064247 

0001064346 

0040204443 

0000004541 

0022004647 

0204404750 

1112005052 

0211005154 

0042005251 

000000534] 

0040215402 

0021005556 

0000505657 

0040075702 

and. Sussman 

LOOP 

CARL 

CAR2°: 

(CAR3 CDR1): 

CARQ] 

CDRQI 

CARRX] 

RPLACDRI 

XCONS2 

CARQO 

XCONS1 

GCDEAD 

CONS2 

CONS] 

CONS3 

CONS4 

RDQCORRX1 

;END OF UCODE GC 
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(CONN-I LDP STEP-EVAL (GOTO LOOP)) => 02) 

(GCOP-DISP) => 20) 

(CONN-EA CONN-ET LOP LOR) => 04) 

(RDP+ LOS) => 05) . 

(ROQ LOP) => 06) 

(CONN-I LDQ STEP-EVAL (GOTO LOOP)) => 02) 

(RDQ LDP) => 10) 

(RDP+ LOS) => 11) 
(RDR LDP) => 12) 
(RDQ LDR) => 13) 
(CONN-I CONN-EA CONN-ET LDQ STEP-EVAL (GOTO LOOP)) => 02) 
(RDR LDP (GOTO CAR2)) => 04) 
(CONN-EA CONN-ET LDS LDQ) => 16) 
(WRITE STEP-EVAL (GOTO LOOP)) => 02) 
(RDQ LDR) => 42) 
(STEP-EVAL (GOTO LOOP)) => 02) 
(CONN-EA CONN-ET LDS LDR ADR (GOTO CDR1)) => 06) 
(RDP LDQ (GOTO CAR1)) => 03) 
(RDQ LDS ADR (GOTO CORQL)) => 12) 
(RDP LDR (GOTO CARQ1)) => 07) 
(RDR LDQ (GOTO CARQO)) => 24) 
(RDR LDS ADR (GOTO CDR1)) => 06) 
(RDP LDQ (GOTO CARRX1)) => 14) 
(RDQ LDS LDR ADR (GOTO CDR1)) => 06) 
(RDP+ LDS LOR ADR GA-ZERO-DISP (GOTO CONS1)) => 44) 
(RDP+ LOS LOR ADR GA-ZERO-DISP (GOTO XCONS1)) => 40) 
(RDR LDS ADR (GOTO RPLACDR1)) => 15) 
(CONN-EA CONN-ET LDQ STEP-EVAL (GOTO LOOP)) => 02) 
(CONN-EA CONN-ET RDQ STEP-EVAL (GOTO LOOP)) => 02) 
(CONN-EA RDQ STEP-EVAL (GOTO LOOP)) => 02) 
(RDR LDS ADR (GOTO RDQCORRX1)): => 55) 
(RDR LDP (GOTO XCONS2)) => 17) 
((GOTO GCDEAD)) => 41) 
(CONN-EA CONN-ET LDS (GOTO CONS3)) => 47) 
(CONN-EA CONN-ET LDR) => 46) 
(ROR LDP (GOTO CONS2)) => 43) 
((GOTO GCDEAD)) => 41) 
(RDQ LDS) => 47) 
(RDP LDQ WRITE) => 50) 
(RDP+ LOS ADR GA-ZERO-DISP) => 52) 
(WRITE RDP+ LOR) => 54) 
(RDR LDS (GOTO CONS4)) => 51) 
((GOTO GCDEAD)) => 41) 
(ROR LDP STEP-EVAL (GOTO LOOP)) => 02) 
(RDQ LOR) => 56) 
(CONN-I LDQ) => 57) 
(ROR CONN-EA CONN-ET STEP-EVAL (GOTO LOOP)) => 02) 

= 60 (OCTAL))
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;It is 6 days, 15 hours, 4 minutes, and 2 seconds past the new moon. 

;The sun is 41*44'49" east of south, 13*13'18" above the horizon. 

;That means it is now 8:37 AM on Wednesday, December 6, 1978. 

Logic-Level Circuit Diagrams 
  

We conclude by giving a complete set of logic-level circuit diagrams 

for the SIMPLE prototype _ processor. The geometry of these diagrams 

approximately reflects the physical layout. It should be noted particularly 

that, while the WRITE signal emerges from the PLA at the top, clocked by PHI2, 

so that it can enter the probe multiplexor with the other signals, it also 

emerges from the bottom of the PLA before being clocked by PHI2, and goes 

directly to the WRITE output pad. Hence this signal appears on the output pad 

half a clock cycle earlier than might otherwise be expected. The timing 

-diagram should make the external memory signals clear. 

The circuits were designed to occupy minimum area with almost no 

thought given to speed. The register cell is a modification of that used in 

the OM2 data chip [Mead 1978] [Johannsen 1978]. Many of the other structures 

are based on ideas discussed in [Mead 1978] and [Hon 1978]. In particular, 

_ the output pads and PLA structures were taken from a library described in 

{Hon 1978]. 

For those readers not familiar with the symbology employed, here is a 

brief (and approximate!) explanation. The symbol 

GATE 

_L 
x—I ty 

represents a pass (enhancement-mode) transistor. When the gate voltage is 

high (VDD), then the two arms X and Y are effectively connected; when it is 

low (GND), X and Y are effectively disconnected. 

A transistor symbol with a filled-in body represents a transistor 

treated with an ion implant process so that it is always on (depletion mode). 

In SIMPLE this is always used in a certain configuration to get the effect of 

a resistor: 

cs , Ge / 

The first two symbols above are used interchangeably; the intent of either is 

to represent a resistor attached to VDD, as shown by the third symbol.
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Such depletion-mode transistors are used to build logic gates. For 

example, this circuit is an inverter. If the input X is high (near VDD), the 

output will be low (close to GND), and vice versa. . (The enhancement-mode 

transistor, when on, hasS a much lower resistance than the depletion-mode 

transistor. Hence when X is high the two transistors form a voltage divider 

which brings the output close enough to (but not actually at) GND.) This 

circuit is represented by the triangular logic symbol shown (which elides the 

essential but uninteresting details of the connections to VDD and GND). 

Vop 

x x —\>o— -x 

xX ——+ 

SM. 

An extension of this idea allows one to construct a NAND gate easily, 

a circuit whose output is high iff not both inputs are high. This circuit is 

represented by either of two logic symbols depending on context (to emphasize 

one or the other of the two notations which are equivalent by DeMorgan's Law). 

Vop 

x— —_—_ 
| XY 

  Y— 
X MAND Y 

x— 
Y— oT) 

GNP 

‘Space constraints do not permit us to exhibit complete geometrical 

layout diagrams. However, following the logic-level diagrams is’ the 

geometrical layout of a single register cell.
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EVAL REGISTERS 

  

  

xX V N L Cc 
reo “~ ron a, —_ 

IA7 
IAT 

R REG 
VAT LA7 cA? EA? 

LAGE ZAG 

REG REG 
VAG CAG EAG 

TAS LAS 

REG RES 
Vv cA EAS 

LAY BAY 

RES 
My EAY 

TAS LA3 

EAS 

LAZ TA2 

EAz2 

zAl ZA} 

EAI 

LAG LAW 

EAD 

TT2 TT2 

ETZ 

LT / {Tl 

ET | 

ETD 

manm . , 

yaszg SNS CES TS SS BE 
wwe FS Bz Se FE FS » ” x < Vv Yr >» 

4 = honinver ting superbuiter



55 
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GC REGISTERS 
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EVAL DRIVERS 
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