
Essentials of Compilation

Essentials of Compilation
An Incremental Approach in Python

Jeremy G. Siek

The MIT Press
Cambridge, Massachusetts
London, England

© 2023 Jeremy G. Siek

This work is subject to a Creative Commons CC-BY-ND-NC license.

Subject to such license, all rights are reserved.

The MIT Press would like to thank the anonymous peer reviewers who provided comments on
drafts of this book. The generous work of academic experts is essential for establishing the
authority and quality of our publications. We acknowledge with gratitude the contributions of
these otherwise uncredited readers.

This book was set in Times LT Std Roman by the author. Printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Names: Siek, Jeremy, author.
Title: Essentials of compilation : an incremental approach in Python / Jeremy G. Siek.
Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical
references and index.
Identifiers: LCCN 2022043053 (print) | LCCN 2022043054 (ebook) | ISBN 9780262048248 |
ISBN 9780262375542 (epub) | ISBN 9780262375559 (pdf)
Subjects: LCSH: Compilers (Computer programs) | Python (Computer program language) |
Programming languages (Electronic computers) | Computer programming.
Classification: LCC QA76.76.C65 S54 2023 (print) | LCC QA76.76.C65 (ebook) | DDC
005.4/53–dc23/eng/20221117
LC record available at https://lccn.loc.gov/2022043053
LC ebook record available at https://lccn.loc.gov/2022043054

10 9 8 7 6 5 4 3 2 1

This book is dedicated to Katie, my partner in everything, my children, who grew
up during the writing of this book, and the programming language students at
Indiana University, whose thoughtful questions made this a better book.

Contents

Preface xi

1 Preliminaries 1
1.1 Abstract Syntax Trees 1
1.2 Grammars 3
1.3 Pattern Matching 5
1.4 Recursive Functions 6
1.5 Interpreters 7
1.6 Example Compiler: A Partial Evaluator 10

2 Integers and Variables 13
2.1 The LVar Language 13
2.2 The x86Int Assembly Language 16
2.3 Planning the Trip to x86 21
2.4 Remove Complex Operands 23
2.5 Select Instructions 25
2.6 Assign Homes 26
2.7 Patch Instructions 27
2.8 Generate Prelude and Conclusion 27
2.9 Challenge: Partial Evaluator for LVar 28

3 Parsing 29
3.1 Lexical Analysis and Regular Expressions 29
3.2 Grammars and Parse Trees 31
3.3 Ambiguous Grammars 33
3.4 From Parse Trees to Abstract Syntax Trees 34
3.5 Earley’s Algorithm 36
3.6 The LALR(1) Algorithm 40
3.7 Further Reading 43

4 Register Allocation 45
4.1 Registers and Calling Conventions 46
4.2 Liveness Analysis 49
4.3 Build the Interference Graph 51

viii Contents

4.4 Graph Coloring via Sudoku 52
4.5 Patch Instructions 58
4.6 Generate Prelude and Conclusion 58
4.7 Challenge: Move Biasing 60
4.8 Further Reading 62

5 Booleans and Conditionals 65
5.1 The LIf Language 66
5.2 Type Checking LIf Programs 66
5.3 The CIf Intermediate Language 72
5.4 The x86If Language 72
5.5 Shrink the LIf Language 75
5.6 Remove Complex Operands 75
5.7 Explicate Control 76
5.8 Select Instructions 82
5.9 Register Allocation 83
5.10 Patch Instructions 84
5.11 Generate Prelude and Conclusion 84
5.12 Challenge: Optimize Blocks and Remove Jumps 85
5.13 Further Reading 88

6 Loops and Dataflow Analysis 91
6.1 The LWhile Language 91
6.2 Cyclic Control Flow and Dataflow Analysis 91
6.3 Remove Complex Operands 96
6.4 Explicate Control 96
6.5 Register Allocation 96

7 Tuples and Garbage Collection 99
7.1 The LTup Language 99
7.2 Garbage Collection 102
7.3 Expose Allocation 109
7.4 Remove Complex Operands 110
7.5 Explicate Control and the CTup Language 110
7.6 Select Instructions and the x86Global Language 111
7.7 Register Allocation 116
7.8 Generate Prelude and Conclusion 116
7.9 Challenge: Arrays 118
7.10 Further Reading 123

8 Functions 125
8.1 The LFun Language 125
8.2 Functions in x86 130
8.3 Shrink LFun 133
8.4 Reveal Functions and the LFunRef Language 133

Contents ix

8.5 Limit Functions 133
8.6 Remove Complex Operands 134
8.7 Explicate Control and the CFun Language 135
8.8 Select Instructions and the x86Def

callq∗ Language 136
8.9 Register Allocation 138
8.10 Patch Instructions 139
8.11 Generate Prelude and Conclusion 139
8.12 An Example Translation 140

9 Lexically Scoped Functions 143
9.1 The Lλ Language 145
9.2 Assignment and Lexically Scoped Functions 150
9.3 Uniquify Variables 151
9.4 Assignment Conversion 151
9.5 Closure Conversion 153
9.6 Expose Allocation 156
9.7 Explicate Control and CClos 156
9.8 Select Instructions 156
9.9 Challenge: Optimize Closures 158
9.10 Further Reading 160

10 Dynamic Typing 161
10.1 The LDyn Language 161
10.2 Representation of Tagged Values 165
10.3 The LAny Language 166
10.4 Cast Insertion: Compiling LDyn to LAny 170
10.5 Reveal Casts 170
10.6 Assignment Conversion 171
10.7 Closure Conversion 171
10.8 Remove Complex Operands 172
10.9 Explicate Control and CAny 172
10.10 Select Instructions 172
10.11 Register Allocation for LAny 174

11 Gradual Typing 177
11.1 Type Checking L? 177
11.2 Interpreting LCast 183
11.3 Overload Resolution 184
11.4 Cast Insertion 185
11.5 Lower Casts 187
11.6 Differentiate Proxies 188
11.7 Reveal Casts 190
11.8 Closure Conversion 191
11.9 Select Instructions 191
11.10 Further Reading 193

x Contents

12 Generics 195
12.1 Compiling Generics 201
12.2 Resolve Instantiation 202
12.3 Erase Generic Types 203

A Appendix 207
A.1 x86 Instruction Set Quick Reference 207

References 209
Index 217

Preface

There is a magical moment when a programmer presses the run button and the
software begins to execute. Somehow a program written in a high-level language is
running on a computer that is capable only of shuffling bits. Here we reveal the wiz-
ardry that makes that moment possible. Beginning with the groundbreaking work
of Backus and colleagues in the 1950s, computer scientists developed techniques
for constructing programs called compilers that automatically translate high-level
programs into machine code.

We take you on a journey through constructing your own compiler for a small
but powerful language. Along the way we explain the essential concepts, algorithms,
and data structures that underlie compilers. We develop your understanding of how
programs are mapped onto computer hardware, which is helpful in reasoning about
properties at the junction of hardware and software, such as execution time, soft-
ware errors, and security vulnerabilities. For those interested in pursuing compiler
construction as a career, our goal is to provide a stepping-stone to advanced topics
such as just-in-time compilation, program analysis, and program optimization. For
those interested in designing and implementing programming languages, we connect
language design choices to their impact on the compiler and the generated code.

A compiler is typically organized as a sequence of stages that progressively trans-
late a program to the code that runs on hardware. We take this approach to the
extreme by partitioning our compiler into a large number of nanopasses, each of
which performs a single task. This enables the testing of each pass in isolation and
focuses our attention, making the compiler far easier to understand.

The most familiar approach to describing compilers is to dedicate each chapter
to one pass. The problem with that approach is that it obfuscates how language
features motivate design choices in a compiler. We instead take an incremental
approach in which we build a complete compiler in each chapter, starting with
a small input language that includes only arithmetic and variables. We add new
language features in subsequent chapters, extending the compiler as necessary.

Our choice of language features is designed to elicit fundamental concepts and
algorithms used in compilers.

• We begin with integer arithmetic and local variables in chapters 1 and 2, where
we introduce the fundamental tools of compiler construction: abstract syntax trees
and recursive functions.

xii Preface

• In chapter 3 we learn how to use the Lark parser framework to create a parser
for the language of integer arithmetic and local variables. We learn about the
parsing algorithms inside Lark, including Earley and LALR(1).

• In chapter 4 we apply graph coloring to assign variables to machine registers.
• Chapter 5 adds conditional expressions, which motivates an elegant recursive

algorithm for translating them into conditional goto statements.
• Chapter 6 adds loops. This elicits the need for dataflow analysis in the register

allocator.
• Chapter 7 adds heap-allocated tuples, motivating garbage collection.
• Chapter 8 adds functions as first-class values without lexical scoping, similar to

functions in the C programming language (Kernighan and Ritchie 1988). The
reader learns about the procedure call stack and calling conventions and how
they interact with register allocation and garbage collection. The chapter also
describes how to generate efficient tail calls.

• Chapter 9 adds anonymous functions with lexical scoping, that is, lambda
expressions. The reader learns about closure conversion, in which lambdas are
translated into a combination of functions and tuples.

• Chapter 10 adds dynamic typing. Prior to this point the input languages are
statically typed. The reader extends the statically typed language with an Any
type that serves as a target for compiling the dynamically typed language.

• Chapter 11 uses the Any type introduced in chapter 10 to implement a gradually
typed language in which different regions of a program may be static or dynami-
cally typed. The reader implements runtime support for proxies that allow values
to safely move between regions.

• Chapter 12 adds generics with autoboxing, leveraging the Any type and type
casts developed in chapters 10 and 11.

There are many language features that we do not include. Our choices balance the
incidental complexity of a feature versus the fundamental concepts that it exposes.
For example, we include tuples and not records because although they both elicit the
study of heap allocation and garbage collection, records come with more incidental
complexity.

Since 2009, drafts of this book have served as the textbook for sixteen-week
compiler courses for upper-level undergraduates and first-year graduate students at
the University of Colorado and Indiana University. Students come into the course
having learned the basics of programming, data structures and algorithms, and
discrete mathematics. At the beginning of the course, students form groups of two
to four people. The groups complete approximately one chapter every two weeks,
starting with chapter 2 and including chapters according to the students interests
while respecting the dependencies between chapters shown in figure 0.1. Chapter 8
(functions) depends on chapter 7 (tuples) only in the implementation of efficient
tail calls. The last two weeks of the course involve a final project in which students
design and implement a compiler extension of their choosing. The last few chapters
can be used in support of these projects. Many chapters include a challenge problem
that we assign to the graduate students.

Preface xiii

Ch. 1 Preliminaries Ch. 2 Variables Ch. 3 Parsing

Ch. 4 Registers Ch. 5 Conditionals Ch. 6 Loops

Ch. 8 Functions Ch. 7 Tuples Ch. 10 Dynamic

Ch. 9 Lambda Ch. 11 Gradual Typing Ch. 12 Generics

Figure 0.1
Diagram of chapter dependencies.

For compiler courses at universities on the quarter system (about ten weeks in
length), we recommend completing the course through chapter 7 or chapter 8 and
providing some scaffolding code to the students for each compiler pass. The course
can be adapted to emphasize functional languages by skipping chapter 6 (loops)
and including chapter 9 (lambda). The course can be adapted to dynamically typed
languages by including chapter 10.

This book has been used in compiler courses at California Polytechnic State Uni-
versity, Portland State University, Rose–Hulman Institute of Technology, University
of Freiburg, University of Massachusetts Lowell, and the University of Vermont.

This edition of the book uses Python both for the implementation of the compiler
and for the input language, so the reader should be proficient with Python. There
are many excellent resources for learning Python (Lutz 2013; Barry 2016; Sweigart
2019; Matthes 2019).The support code for this book is in the GitHub repository at
the following location:

https://github.com/IUCompilerCourse/

The compiler targets x86 assembly language (Intel 2015), so it is helpful but
not necessary for the reader to have taken a computer systems course (Bryant
and O’Hallaron 2010). We introduce the parts of x86-64 assembly language that
are needed in the compiler. We follow the System V calling conventions (Bryant
and O’Hallaron 2005; Matz et al. 2013), so the assembly code that we gener-
ate works with the runtime system (written in C) when it is compiled using the
GNU C compiler (gcc) on Linux and MacOS operating systems on Intel hardware.
On the Windows operating system, gcc uses the Microsoft x64 calling conven-
tion (Microsoft 2018, 2020). So the assembly code that we generate does not work
with the runtime system on Windows. One workaround is to use a virtual machine
with Linux as the guest operating system.

https://www.python.org/

xiv Preface

Acknowledgments

The tradition of compiler construction at Indiana University goes back to research
and courses on programming languages by Daniel Friedman in the 1970s and 1980s.
One of his students, Kent Dybvig, implemented Chez Scheme (Dybvig 2006), an
efficient, production-quality compiler for Scheme. Throughout the 1990s and 2000s,
Dybvig taught the compiler course and continued the development of Chez Scheme.
The compiler course evolved to incorporate novel pedagogical ideas while also
including elements of real-world compilers. One of Friedman’s ideas was to split
the compiler into many small passes. Another idea, called “the game,” was to test
the code generated by each pass using interpreters.

Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep, devel-
oped infrastructure to support this approach and evolved the course to use even
smaller nanopasses (Sarkar, Waddell, and Dybvig 2004; Keep 2012). Many of the
compiler design decisions in this book are inspired by the assignment descriptions
of Dybvig and Keep (2010). In the mid 2000s, a student of Dybvig named Abdu-
laziz Ghuloum observed that the front-to-back organization of the course made it
difficult for students to understand the rationale for the compiler design. Ghuloum
proposed the incremental approach (Ghuloum 2006) on which this book is based.

I thank the many students who served as teaching assistants for the compiler
course at IU including Carl Factora, Ryan Scott, Cameron Swords, and Chris
Wailes. I thank Andre Kuhlenschmidt for work on the garbage collector and x86
interpreter, Michael Vollmer for work on efficient tail calls, and Michael Vitousek
for help with the first offering of the incremental compiler course at IU.

I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph Near,
Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and Michael
Wollowski for teaching courses based on drafts of this book and for their feedback.
I thank the National Science Foundation for the grants that helped to support this
work: Grant Numbers 1518844, 1763922, and 1814460.

I thank Ronald Garcia for helping me survive Dybvig’s compiler course in the
early 2000s and especially for finding the bug that sent our garbage collector on a
wild goose chase!

Jeremy G. Siek
Bloomington, Indiana

1 Preliminaries

In this chapter we introduce the basic tools needed to implement a compiler. Pro-
grams are typically input by a programmer as text, that is, a sequence of characters.
The program-as-text representation is called concrete syntax. We use concrete syn-
tax to concisely write down and talk about programs. Inside the compiler, we use
abstract syntax trees (ASTs) to represent programs in a way that efficiently sup-
ports the operations that the compiler needs to perform. The process of translating
concrete syntax to abstract syntax is called parsing and is studied in chapter 3. For
now we use the parse function in Python’s ast module to translate from concrete
to abstract syntax.

ASTs can be represented inside the compiler in many different ways, depending
on the programming language used to write the compiler. We use Python classes
and objects to represent ASTs, especially the classes defined in the standard ast
module for the Python source language. We use grammars to define the abstract
syntax of programming languages (section 1.2) and pattern matching to inspect
individual nodes in an AST (section 1.3). We use recursive functions to construct
and deconstruct ASTs (section 1.4). This chapter provides a brief introduction to
these components.

1.1 Abstract Syntax Trees

Compilers use abstract syntax trees to represent programs because they often need
to ask questions such as, for a given part of a program, what kind of language feature
is it? What are its subparts? Consider the program on the left and the diagram
of its AST on the right (1.1). This program is an addition operation that has two
subparts, a input operation and a negation. The negation has another subpart, the
integer constant 8. By using a tree to represent the program, we can easily follow
the links to go from one part of a program to its subparts.

input_int() + -8

+

input_int() -

8 (1.1)

2 Chapter 1

We use the standard terminology for trees to describe ASTs: each rectangle above
is called a node. The arrows connect a node to its children, which are also nodes.
The top-most node is the root. Every node except for the root has a parent (the
node of which it is the child). If a node has no children, it is a leaf node; otherwise
it is an internal node.

We use a Python class for each kind of node. The following is the class definition
for constants (aka literals) from the Python ast module.

class Constant:
def __init__(self, value):

self.value = value

An integer constant node includes just one thing: the integer value. To create an
AST node for the integer 8, we write Constant(8).

eight = Constant(8)

We say that the value created by Constant(8) is an instance of the Constant class.
The following is the class definition for unary operators.

class UnaryOp:
def __init__(self, op, operand):

self.op = op
self.operand = operand

The specific operation is specified by the op parameter. For example, the class USub
is for unary subtraction. (More unary operators are introduced in later chapters.)
To create an AST that negates the number 8, we write the following.

neg_eight = UnaryOp(USub(), eight)

The call to the input_int function is represented by the Call and Name classes.

class Call:
def __init__(self, func, args):

self.func = func
self.args = args

class Name:
def __init__(self, id):

self.id = id

To create an AST node that calls input_int, we write

read = Call(Name('input_int'), [])

Finally, to represent the addition in (1.1), we use the BinOp class for binary
operators.

class BinOp:
def __init__(self, left, op, right):

self.op = op
self.left = left
self.right = right

Preliminaries 3

Similar to UnaryOp, the specific operation is specified by the op parameter, which
for now is just an instance of the Add class. So to create the AST node that adds
negative eight to some user input, we write the following.

ast1_1 = BinOp(read, Add(), neg_eight)

To compile a program such as (1.1), we need to know that the operation associ-
ated with the root node is addition and we need to be able to access its two children.
Python provides pattern matching to support these kinds of queries, as we see in
section 1.3.

We often write down the concrete syntax of a program even when we actually
have in mind the AST, because the concrete syntax is more concise. We recommend
that you always think of programs as abstract syntax trees.

1.2 Grammars

A programming language can be thought of as a set of programs. The set is infinite
(that is, one can always create larger programs), so one cannot simply describe
a language by listing all the programs in the language. Instead we write down a
set of rules, a context-free grammar, for building programs. Grammars are often
used to define the concrete syntax of a language, but they can also be used to
describe the abstract syntax. We write our rules in a variant of Backus-Naur form
(BNF) (Backus et al. 1960; Knuth 1964). As an example, we describe a small
language, named LInt, that consists of integers and arithmetic operations.

The first grammar rule for the abstract syntax of LInt says that an instance of
the Constant class is an expression:

exp ::= Constant(int) (1.2)

Each rule has a left-hand side and a right-hand side. If you have an AST node that
matches the right-hand side, then you can categorize it according to the left-hand
side. Symbols in typewriter font, such as Constant, are terminal symbols and must
literally appear in the program for the rule to be applicable. Our grammars do
not mention white space, that is, delimiter characters like spaces, tabs, and new
lines. White space may be inserted between symbols for disambiguation and to
improve readability. A name such as exp that is defined by the grammar rules is
a nonterminal. The name int is also a nonterminal, but instead of defining it with
a grammar rule, we define it with the following explanation. An int is a sequence
of decimals (0 to 9), possibly starting with – (for negative integers), such that
the sequence of decimals represents an integer in the range –263 to 263 – 1. This
enables the representation of integers using 64 bits, which simplifies several aspects
of compilation. In contrast, integers in Python have unlimited precision, but the
techniques needed to handle unlimited precision fall outside the scope of this book.

The second grammar rule is the input_int operation, which receives an input
integer from the user of the program.

exp ::= Call(Name('input_int'),[]) (1.3)

4 Chapter 1

The third rule categorizes the negation of an exp node as an exp.

exp ::= UnaryOp(USub(),exp) (1.4)

We can apply these rules to categorize the ASTs that are in the LInt language. For
example, by rule (1.2), Constant(8) is an exp, and then by rule (1.4) the following
AST is an exp.

UnaryOp(USub(), Constant(8))

–

8 (1.5)

The next two grammar rules are for addition and subtraction expressions:

exp ::= BinOp(exp,Add(),exp) (1.6)

exp ::= BinOp(exp,Sub(),exp) (1.7)

We can now justify that the AST (1.1) is an exp in LInt. We know that
Call(Name('input_int'),[]) is an exp by rule (1.3), and we have already cat-
egorized UnaryOp(USub(), Constant(8)) as an exp, so we apply rule (1.6) to show
that

BinOp(Call(Name('input_int'),[]),Add(),UnaryOp(USub(),Constant(8)))

is an exp in the LInt language.
If you have an AST for which these rules do not apply, then the AST is not in

LInt. For example, the program input_int() * 8 is not in LInt because there is
no rule for the * operator. Whenever we define a language with a grammar, the
language includes only those programs that are justified by the grammar rules.

The language LInt includes a second nonterminal stmt for statements. There is a
statement for printing the value of an expression

stmt ::= Expr(Call(Name('print'),[exp]))

and a statement that evaluates an expression but ignores the result.

stmt ::= Expr(exp)

The last grammar rule for LInt states that there is a Module node to mark the
top of the whole program:

LInt ::= Module(stmt∗)

The asterisk ∗ indicates a list of the preceding grammar item, in this case a list of
statements. The Module class is defined as follows:

class Module:
def __init__(self, body):

self.body = body

where body is a list of statements.

Preliminaries 5

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
LInt ::= stmt∗

Figure 1.1
The concrete syntax of LInt.

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
LInt ::= Module(stmt∗)

Figure 1.2
The abstract syntax of LInt.

It is common to have many grammar rules with the same left-hand side but
different right-hand sides, such as the rules for exp in the grammar of LInt. As
shorthand, a vertical bar can be used to combine several right-hand sides into a
single rule.

The concrete syntax for LInt is shown in figure 1.1 and the abstract syntax for
LInt is shown in figure 1.2. We recommend using the parse function in Python’s
ast module to convert the concrete syntax into an abstract syntax tree.

1.3 Pattern Matching

As mentioned in section 1.1, compilers often need to access the parts of an AST
node. As of version 3.10, Python provides the match feature to access the parts of
a value. Consider the following example:

match ast1_1:
case BinOp(child1, op, child2):

print(op)

In the example above, the match form checks whether the AST (1.1) is a binary
operator and binds its parts to the three pattern variables (child1, op, and child2).
In general, each case consists of a pattern and a body. Patterns are recursively
defined to be one of the following: a pattern variable, a class name followed by
a pattern for each of its constructor’s arguments, or other literals such as strings
or lists. The body of each case may contain arbitrary Python code. The pattern
variables can be used in the body, such as op in print(op).

6 Chapter 1

A match form may contain several clauses, as in the following function leaf that
recognizes when an LInt node is a leaf in the AST. The match proceeds through the
clauses in order, checking whether the pattern can match the input AST. The body
of the first clause that matches is executed. The output of leaf for several ASTs
is shown on the right side of the following:

def leaf(arith):
match arith:

case Constant(n):
return True

case Call(Name('input_int'), []):
return True

case UnaryOp(USub(), e1):
return False

case BinOp(e1, Add(), e2):
return False

case BinOp(e1, Sub(), e2):
return False

print(leaf(Call(Name('input_int'), [])))
print(leaf(UnaryOp(USub(), eight)))
print(leaf(Constant(8)))

True
False
True

When constructing a match expression, we refer to the grammar definition to
identify which nonterminal we are expecting to match against, and then we make
sure that (1) we have one case for each alternative of that nonterminal and (2)
the pattern in each case corresponds to the corresponding right-hand side of a
grammar rule. For the match in the leaf function, we refer to the grammar for LInt

shown in figure 1.2. The exp nonterminal has five alternatives, so the match has five
cases. The pattern in each case corresponds to the right-hand side of a grammar
rule. For example, the pattern BinOp(e1,Add(),e2) corresponds to the right-hand
side BinOp(exp,Add(),exp). When translating from grammars to patterns, replace
nonterminals such as exp with pattern variables of your choice (such as e1 and e2).

1.4 Recursive Functions

Programs are inherently recursive. For example, an expression is often made of
smaller expressions. Thus, the natural way to process an entire program is to use
a recursive function. As a first example of such a recursive function, we define the
function is_exp as shown in figure 1.3, to take an arbitrary value and determine
whether or not it is an expression in LInt. We say that a function is defined by
structural recursion if it is defined using a sequence of match cases that correspond
to a grammar and the body of each case makes a recursive call on each child node.1
We define a second function, named is_stmt, that recognizes whether a value is

1. This principle of structuring code according to the data definition is advocated in the book
How to Design Programs by Felleisen et al. (2001).

Preliminaries 7

def is_exp(e):
match e:

case Constant(n):
return True

case Call(Name('input_int'), []):
return True

case UnaryOp(USub(), e1):
return is_exp(e1)

case BinOp(e1, Add(), e2):
return is_exp(e1) and is_exp(e2)

case BinOp(e1, Sub(), e2):
return is_exp(e1) and is_exp(e2)

case _:
return False

def is_stmt(s):
match s:

case Expr(Call(Name('print'), [e])):
return is_exp(e)

case Expr(e):
return is_exp(e)

case _:
return False

def is_Lint(p):
match p:

case Module(body):
return all([is_stmt(s) for s in body])

case _:
return False

print(is_Lint(Module([Expr(ast1_1)])))
print(is_Lint(Module([Expr(BinOp(read, Sub(),

UnaryOp(Add(), Constant(8))))])))

Figure 1.3
Example of recursive functions for LInt. These functions recognize whether an AST is in LInt.

a LInt statement. Finally, figure 1.3 contains the definition of is_Lint, which
determines whether an AST is a program in LInt. In general, we can write one
recursive function to handle each nonterminal in a grammar. Of the two examples
at the bottom of the figure, the first is in LInt and the second is not.

1.5 Interpreters

The behavior of a program is defined by the specification of the programming
language. For example, the Python language is defined in the Python language ref-
erence (Python Software Foundation 2021b) and the CPython interpreter (Python

8 Chapter 1

def interp_exp(e):
match e:

case BinOp(left, Add(), right):
l = interp_exp(left); r = interp_exp(right)
return add64(l, r)

case BinOp(left, Sub(), right):
l = interp_exp(left); r = interp_exp(right)
return sub64(l, r)

case UnaryOp(USub(), v):
return neg64(interp_exp(v))

case Constant(value):
return value

case Call(Name('input_int'), []):
return input_int()

def interp_stmt(s):
match s:

case Expr(Call(Name('print'), [arg])):
print(interp_exp(arg))

case Expr(value):
interp_exp(value)

def interp_Lint(p):
match p:

case Module(body):
for s in body:

interp_stmt(s)

Figure 1.4
Interpreter for the LInt language.

Software Foundation 2021a). In this book we use interpreters to specify each lan-
guage that we consider. An interpreter that is designated as the definition of a
language is called a definitional interpreter (Reynolds 1972). We warm up by cre-
ating a definitional interpreter for the LInt language. This interpreter serves as a
second example of structural recursion. The definition of the interp_Lint function
is shown in figure 1.4. The body of the function matches on the Module AST node
and then invokes interp_stmt on each statement in the module. The interp_stmt
function includes a case for each grammar rule of the stmt nonterminal, and it calls
interp_exp on each subexpression. The interp_exp function includes a case for
each grammar rule of the exp nonterminal. We use several auxiliary functions such
as add64 and input_int that are defined in the support code for this book.

Let us consider the result of interpreting a few LInt programs. The following
program adds two integers:

print(10 + 32)

Preliminaries 9

The result is 42, the answer to life, the universe, and everything: 42!2 We wrote
this program in concrete syntax, whereas the parsed abstract syntax is

Module([Expr(Call(Name('print'),
[BinOp(Constant(10), Add(), Constant(32))]))])

The following program demonstrates that expressions may be nested within each
other, in this case nesting several additions and negations.

print(10 + -(12 + 20))

What is the result of this program?
The last feature of the LInt language, the input_int operation, prompts the user

of the program for an integer. Recall that program (1.1) requests an integer input
and then subtracts 8. So, if we run

interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))

and if the input is 50, the result is 42.
We include the input_int operation in LInt so that a clever student cannot

implement a compiler for LInt that simply runs the interpreter during compilation
to obtain the output and then generates the trivial code to produce the output.3

The job of a compiler is to translate a program in one language into a program
in another language so that the output program behaves the same way as the
input program. This idea is depicted in the following diagram. Suppose we have
two languages, L1 and L2, and a definitional interpreter for each language. Given a
compiler that translates from language L1 to L2 and given any program P1 in L1,
the compiler must translate it into some program P2 such that interpreting P1 and
P2 on their respective interpreters with same input i yields the same output o.

P1 P2

o

compile

interp_L2(i)interp_L1(i)
(1.8)

We establish the convention that if running the definitional interpreter on a pro-
gram produces an error, then the meaning of that program is unspecified unless
the exception raised is a TrappedError. A compiler for the language is under no
obligation regarding programs with unspecified behavior; it does not have to pro-
duce an executable, and if it does, that executable can do anything. On the other
hand, if the error is a TrappedError, then the compiler must produce an executable
and it is required to report that an error occurred. To signal an error, exit with a

2. The Hitchhiker’s Guide to the Galaxy by Douglas Adams.
3. Yes, a clever student did this in the first instance of this course!

10 Chapter 1

return code of 255. The interpreters in chapters 10 and 11 and in section 7.9 use
TrappedError.

In the next section we see our first example of a compiler.

1.6 Example Compiler: A Partial Evaluator

In this section we consider a compiler that translates LInt programs into LInt

programs that may be more efficient. The compiler eagerly computes the parts
of the program that do not depend on any inputs, a process known as partial
evaluation (Jones, Gomard, and Sestoft 1993). For example, given the following
program

print(input_int() + -(5 + 3))

our compiler translates it into the program

print(input_int() + -8)

Figure 1.5 gives the code for a simple partial evaluator for the LInt language. The
output of the partial evaluator is a program in LInt. In figure 1.5, the structural
recursion over exp is captured in the pe_exp function, whereas the code for partially
evaluating the negation and addition operations is factored into three auxiliary
functions: pe_neg, pe_add and pe_sub. The input to these functions is the output
of partially evaluating the children. The pe_neg, pe_add and pe_sub functions
check whether their arguments are integers and if they are, perform the appropriate
arithmetic. Otherwise, they create an AST node for the arithmetic operation.

To gain some confidence that the partial evaluator is correct, we can test whether
it produces programs that produce the same result as the input programs. That is,
we can test whether it satisfies the diagram of (1.8).

Exercise 1.1 Create three programs in the LInt language and test whether partially
evaluating them with pe_Lint and then interpreting them with interp_Lint gives
the same result as directly interpreting them with interp_Lint.

Preliminaries 11

def pe_neg(r):
match r:

case Constant(n):
return Constant(neg64(n))

case _:
return UnaryOp(USub(), r)

def pe_add(r1, r2):
match (r1, r2):

case (Constant(n1), Constant(n2)):
return Constant(add64(n1, n2))

case _:
return BinOp(r1, Add(), r2)

def pe_sub(r1, r2):
match (r1, r2):

case (Constant(n1), Constant(n2)):
return Constant(sub64(n1, n2))

case _:
return BinOp(r1, Sub(), r2)

def pe_exp(e):
match e:

case BinOp(left, Add(), right):
return pe_add(pe_exp(left), pe_exp(right))

case BinOp(left, Sub(), right):
return pe_sub(pe_exp(left), pe_exp(right))

case UnaryOp(USub(), v):
return pe_neg(pe_exp(v))

case Constant(value):
return e

case Call(Name('input_int'), []):
return e

def pe_stmt(s):
match s:

case Expr(Call(Name('print'), [arg])):
return Expr(Call(Name('print'), [pe_exp(arg)]))

case Expr(value):
return Expr(pe_exp(value))

def pe_P_int(p):
match p:

case Module(body):
new_body = [pe_stmt(s) for s in body]
return Module(new_body)

Figure 1.5
A partial evaluator for LInt.

2 Integers and Variables

This chapter covers compiling a subset of Python to x86-64 assembly code (Intel
2015). The subset, named LVar, includes integer arithmetic and local variables. We
often refer to x86-64 simply as x86. The chapter first describes the LVar language
(section 2.1) and then introduces x86 assembly (section 2.2). Because x86 assembly
language is large, we discuss only the instructions needed for compiling LVar. We
introduce more x86 instructions in subsequent chapters. After introducing LVar and
x86, we reflect on their differences and create a plan to break down the translation
from LVar to x86 into a handful of steps (section 2.3). The rest of the chapter gives
detailed hints regarding each step. We aim to give enough hints that the well-
prepared reader, together with a few friends, can implement a compiler from LVar

to x86 in a short time. To suggest the scale of this first compiler, we note that the
instructor solution for the LVar compiler is approximately 300 lines of code.

2.1 The LVar Language

The LVar language extends the LInt language with variables. The concrete syntax
of the LVar language is defined by the grammar presented in figure 2.1, and the
abstract syntax is presented in figure 2.2. The nonterminal var may be any Python
identifier. As in LInt, input_int is a nullary operator, - is a unary operator, and
+ is a binary operator. Similarly to LInt, the abstract syntax of LVar includes the
Module instance to mark the top of the program. Despite the simplicity of the LVar

language, it is rich enough to exhibit several compilation techniques.
The LVar language includes an assignment statement, which defines a variable for

use in later statements and initializes the variable with the value of an expression.
The abstract syntax for assignment is defined in figure 2.2. The concrete syntax for
assignment is

var = exp

For example, the following program initializes the variable x to 32 and then prints
the result of 10 + x, producing 42.

x = 12 + 20
print(10 + x)

14 Chapter 2

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
LVar ::= stmt∗

Figure 2.1
The concrete syntax of LVar.

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
LVar ::= Module(stmt∗)

Figure 2.2
The abstract syntax of LVar.

2.1.1 Extensible Interpreters via Method Overriding
To prepare for discussing the interpreter of LVar, we explain why we implement it
in an object-oriented style. Throughout this book we define many interpreters, one
for each language that we study. Because each language builds on the prior one,
there is a lot of commonality between these interpreters. We want to write down the
common parts just once instead of many times. A naive interpreter for LVar would
handle the case for variables but dispatch to an interpreter for LInt in the rest of
the cases. The following code sketches this idea. (We explain the env parameter in
section 2.1.2.)

def interp_Lint(e, env):
match e:

case UnaryOp(USub(), e1):
return - interp_Lint(e1, env)

...

def interp_Lvar(e, env):
match e:

case Name(id):
return env[id]

case _:
return interp_Lint(e, env)

The problem with this naive approach is that it does not handle situations in which
an LVar feature, such as a variable, is nested inside an LInt feature, such as the -
operator, as in the following program.

y = 10
print(-y)

Integers and Variables 15

If we invoke interp_Lvar on this program, it dispatches to interp_Lint to handle
the - operator, but then it recursively calls interp_Lint again on its argument.
Because there is no case for Name in interp_Lint, we get an error!

To make our interpreters extensible we need something called open recursion, in
which the tying of the recursive knot is delayed until the functions are composed.
Object-oriented languages provide open recursion via method overriding. The fol-
lowing code uses method overriding to interpret LInt and LVar using Python class
definitions. We define one class for each language and define a method for inter-
preting expressions inside each class. The class for LVar inherits from the class for
LInt, and the method interp_exp in LVar overrides the interp_exp in LInt. Note
that the default case of interp_exp in LVar uses super to invoke interp_exp, and
because LVar inherits from LInt, that dispatches to the interp_exp in LInt.

class InterpLint:
def interp_exp(e):

match e:
case UnaryOp(USub(), e1):

return neg64(self.interp_exp(e1))
...

...

def InterpLvar(InterpLint):
def interp_exp(e):

match e:
case Name(id):

return env[id]
case _:

return super().interp_exp(e)
...

We return to the troublesome example, repeated here:

y = 10
print(-y)

We can invoke the interp_exp method for LVar on the -y expression, which we call
e0, by creating an object of the LVar class and calling the interp_exp method

InterpLvar().interp_exp(e0)

To process the - operator, the default case of interp_exp in LVar dispatches to the
interp_exp method in LInt. But then for the recursive method call, it dispatches
to interp_exp in LVar, where the Name node is handled correctly. Thus, method
overriding gives us the open recursion that we need to implement our interpreters
in an extensible way.

2.1.2 Definitional Interpreter for LVar

Having justified the use of classes and methods to implement interpreters, we revisit
the definitional interpreter for LInt shown in figure 2.3 and then extend it to create
an interpreter for LVar, shown in figure 2.4. We change the interp_stmt method in
the interpreter for LInt to take two extra parameters named env, which we discuss
in the next paragraph, and cont for continuation, which is the technical name for
what comes after a particular point in a program. The cont parameter is the list
of statements that follow the current statement. Note that interp_stmts invokes
interp_stmt on the first statement and passes the rest of the statements as the
argument for cont. This organization enables each statement to decide what if

16 Chapter 2

anything should be evaluated after it, for example, allowing a return statement to
exit early from a function (see Chapter 8).

The interpreter for LVar adds two new cases for variables and assignment. For
assignment, we need a way to communicate the value bound to a variable to all the
uses of the variable. To accomplish this, we maintain a mapping from variables to
values called an environment. We use a Python dictionary to represent the environ-
ment. The interp_exp function takes the current environment, env, as an extra
parameter. When the interpreter encounters a variable, it looks up the correspond-
ing value in the environment. If the variable is not in the environment (because
the variable was not defined) then the lookup will fail and the interpreter will halt
with an error. Recall that the compiler is not obligated to compile such programs
(Section 1.5).1 When the interpreter encounters an assignment, it evaluates the
initializing expression and then associates the resulting value with the variable in
the environment.

The goal for this chapter is to implement a compiler that translates any program
P1 written in the LVar language into an x86 assembly program P2 such that P2

exhibits the same behavior when run on a computer as the P1 program interpreted
by interp_Lvar. That is, they output the same integer n. We depict this correctness
criteria in the following diagram:

P1 P2

n

compile

interp_Lvar interp_x86int

Next we introduce the x86Int subset of x86 that suffices for compiling LVar.

2.2 The x86Int Assembly Language

Figure 2.5 defines the concrete syntax for x86Int. We use the AT&T syntax expected
by the GNU assembler. A program begins with a main label followed by a sequence
of instructions. The globl directive makes the main procedure externally visible so
that the operating system can call it. An x86 program is stored in the computer’s
memory. For our purposes, the computer’s memory is a mapping of 64-bit addresses
to 64-bit values. The computer has a program counter (PC) stored in the rip
register that points to the address of the next instruction to be executed. For most
instructions, the program counter is incremented after the instruction is executed
so that it points to the next instruction in memory. Most x86 instructions take
two operands, each of which is an integer constant (called an immediate value), a
register , or a memory location.

1. In Chapter 5 we introduce type checking rules that prohibit access to undefined variables.

https://docs.python.org/3.10/library/stdtypes.html#mapping-types-dict

Integers and Variables 17

class InterpLint:
def interp_exp(self, e, env):

match e:
case BinOp(left, Add(), right):

l = self.interp_exp(left, env)
r = self.interp_exp(right, env)
return add64(l, r)

case BinOp(left, Sub(), right):
l = self.interp_exp(left, env)
r = self.interp_exp(right, env)
return sub64(l, r)

case UnaryOp(USub(), v):
return neg64(self.interp_exp(v, env))

case Constant(value):
return value

case Call(Name('input_int'), []):
return int(input())

def interp_stmt(self, s, env, cont):
match s:

case Expr(Call(Name('print'), [arg])):
val = self.interp_exp(arg, env)
print(val, end='')
return self.interp_stmts(cont, env)

case Expr(value):
self.interp_exp(value, env)
return self.interp_stmts(cont, env)

case _:
raise Exception('error in interp_stmt, unexpected ' + repr(s))

def interp_stmts(self, ss, env):
match ss:

case []:
return 0

case [s, *ss]:
return self.interp_stmt(s, env, ss)

def interp(self, p):
match p:

case Module(body):
self.interp_stmts(body, {})

def interp_Lint(p):
return InterpLint().interp(p)

Figure 2.3
Interpreter for LInt as a class.

18 Chapter 2

class InterpLvar(InterpLint):
def interp_exp(self, e, env):

match e:
case Name(id):

return env[id]
case _:

return super().interp_exp(e, env)

def interp_stmt(self, s, env, cont):
match s:

case Assign([Name(id)], value):
env[id] = self.interp_exp(value, env)
return self.interp_stmts(cont, env)

case _:
return super().interp_stmt(s, env, cont)

def interp_Lvar(p):
return InterpLvar().interp(p)

Figure 2.4
Interpreter for the LVar language.

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

callq label | pushq arg | popq arg | retq
x86Int ::= .globl main

main: instr∗

Figure 2.5
The syntax of the x86Int assembly language (AT&T syntax).

A register is a special kind of variable that holds a 64-bit value. There are 16
general-purpose registers in the computer; their names are given in figure 2.5. A
register is written with a percent sign, %, followed by its name, for example, %rax.

An immediate value is written using the notation $n where n is an integer. An
access to memory is specified using the syntax n(%r), which obtains the address
stored in register r and then adds n bytes to the address. The resulting address is
used to load or to store to memory depending on whether it occurs as a source or
destination argument of an instruction.

An arithmetic instruction such as addq s, d reads from the source s and des-
tination d, applies the arithmetic operation, and then writes the result to the
destination d. The move instruction movq s, d reads from s and stores the result

Integers and Variables 19

.globl main
main:

movq $10, %rax
addq $32, %rax
retq

Figure 2.6
An x86 program that computes 10 + 32.

in d. The callq label instruction jumps to the procedure specified by the label, and
retq returns from a procedure to its caller. We discuss procedure calls in more
detail further in this chapter and in chapter 8. The last letter q indicates that these
instructions operate on quadwords, which are 64-bit values.

Appendix A.1 contains a reference for all the x86 instructions used in this book.
Figure 2.6 depicts an x86 program that computes 10 + 32. The instruction

movq $10, %rax puts 10 into register rax, and then addq $32, %rax adds 32 to the
10 in rax and puts the result, 42, into rax. The last instruction retq finishes the
main function by returning the integer in rax to the operating system. The oper-
ating system interprets this integer as the program’s exit code. By convention, an
exit code of 0 indicates that a program has completed successfully, and all other
exit codes indicate various errors.

We exhibit the use of memory for storing intermediate results in the next example.
Figure 2.7 lists an x86 program that computes 52 + -10. This program uses a region
of memory called the procedure call stack (stack for short). The stack consists of a
separate frame for each procedure call. The memory layout for an individual frame
is shown in figure 2.8. The register rsp is called the stack pointer and contains the
address of the item at the top of the stack. In general, we use the term pointer
for something that contains an address. The stack grows downward in memory,
so we increase the size of the stack by subtracting from the stack pointer. In the
context of a procedure call, the return address is the location of the instruction
that immediately follows the call instruction on the caller side. The function call
instruction, callq, pushes the return address onto the stack prior to jumping to
the procedure. The register rbp is the base pointer and is used to access variables
that are stored in the frame of the current procedure call. The base pointer of the
caller is stored immediately after the return address. Figure 2.8 shows the memory
layout of a frame with storage for n variables, which are numbered from 1 to n.
Variable 1 is stored at address –8(%rbp), variable 2 at –16(%rbp), and so on.

In the program shown in figure 2.7, consider how control is transferred from the
operating system to the main function. The operating system issues a callq main
instruction that pushes its return address on the stack and then jumps to main. In
x86-64, the stack pointer rsp must be divisible by 16 bytes prior to the execution
of any callq instruction, so that when control arrives at main, the rsp is 8 bytes
out of alignment (because the callq pushed the return address). The first three

20 Chapter 2

.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movq $10, -8(%rbp)
negq -8(%rbp)
movq -8(%rbp), %rax
addq $52, %rax
addq $16, %rsp
popq %rbp
retq

Figure 2.7
An x86 program that computes 52 + -10.

Position Contents
8(%rbp) return address
0(%rbp) old rbp

–8(%rbp) variable 1
–16(%rbp) variable 2

… …

0(%rsp) variable n

Figure 2.8
Memory layout of a frame.

instructions are the typical prelude for a procedure. The instruction pushq %rbp
first subtracts 8 from the stack pointer rsp and then saves the base pointer of the
caller at address rsp on the stack. The next instruction movq %rsp, %rbp sets the
base pointer to the current stack pointer, which is pointing to the location of the
old base pointer. The instruction subq $16, %rsp moves the stack pointer down to
make enough room for storing variables. This program needs one variable (8 bytes),
but we round up to 16 bytes so that rsp is 16-byte-aligned, and then we are ready
to make calls to other functions.

The first instruction after the prelude is movq $10, -8(%rbp), which stores 10
in variable 1. The instruction negq -8(%rbp) changes the contents of variable 1
to –10. The next instruction moves the –10 from variable 1 into the rax register.
Finally, addq $52, %rax adds 52 to the value in rax, updating its contents to 42.

The conclusion of the main function consists of the last three instructions. The
first two restore the rsp and rbp registers to their states at the beginning of the
procedure. In particular, addq $16, %rsp moves the stack pointer to point to the
old base pointer. Then popq %rbp restores the old base pointer to rbp and adds 8

Integers and Variables 21

reg ::= 'rsp' | 'rbp' | 'rax' | 'rbx' | 'rcx' | 'rdx' | 'rsi' | 'rdi' |
'r8' | 'r9' | 'r10' | 'r11' | 'r12' | 'r13' | 'r14' | 'r15'

arg ::= Immediate(int) | Reg(reg) | Deref(reg,int)
instr ::= Instr('addq',[arg,arg]) | Instr('subq',[arg,arg])

| Instr('movq',[arg,arg]) | Instr('negq',[arg])
| Instr('pushq',[arg]) | Instr('popq',[arg])
| Callq(label,int) | Retq() | Jump(label)

x86Int ::= X86Program(instr∗)

Figure 2.9
The abstract syntax of x86Int assembly.

to the stack pointer. The last instruction, retq, jumps back to the procedure that
called this one and adds 8 to the stack pointer.

Our compiler needs a convenient representation for manipulating x86 programs,
so we define an abstract syntax for x86, shown in figure 2.9. We refer to this lan-
guage as x86Int. The main difference between this and the concrete syntax of x86Int

(figure 2.5) is that labels, instruction names, and register names are explicitly rep-
resented by strings. Regarding the abstract syntax for callq, the Callq AST node
includes an integer for representing the arity of the function, that is, the number
of arguments, which is helpful to know during register allocation (chapter 4).

2.3 Planning the Trip to x86

To compile one language to another, it helps to focus on the differences between
the two languages because the compiler will need to bridge those differences. What
are the differences between LVar and x86 assembly? Here are some of the most
important ones:

1. x86 arithmetic instructions typically have two arguments and update the second
argument in place. In contrast, LVar arithmetic operations take two arguments
and produce a new value. An x86 instruction may have at most one memory-
accessing argument. Furthermore, some x86 instructions place special restrictions
on their arguments.

2. An argument of an LVar operator can be a deeply nested expression, whereas
x86 instructions restrict their arguments to be integer constants, registers, and
memory locations.

3. A program in LVar can have any number of variables, whereas x86 has 16 registers
and the procedure call stack.

We ease the challenge of compiling from LVar to x86 by breaking down the problem
into several steps, which deal with these differences one at a time. Each of these steps
is called a pass of the compiler. This term indicates that each step passes over, or
traverses, the AST of the program. Furthermore, we follow the nanopass approach,
which means that we strive for each pass to accomplish one clear objective rather

22 Chapter 2

than two or three at the same time. We begin by sketching how we might implement
each pass and give each pass a name. We then figure out an ordering of the passes
and the input/output language for each pass. The very first pass has LVar as its
input language, and the last pass has x86Int as its output language. In between these
two passes, we can choose whichever language is most convenient for expressing the
output of each pass, whether that be LVar, x86Int, or a new intermediate language
of our own design. Finally, to implement each pass we write one recursive function
per nonterminal in the grammar of the input language of the pass.

Our compiler for LVar consists of the following passes:

remove_complex_operands ensures that each subexpression of a primitive opera-
tion or function call is a variable or integer, that is, an atomic expression. We refer
to nonatomic expressions as complex. This pass introduces temporary variables
to hold the results of complex subexpressions.

select_instructions handles the difference between LVar operations and x86
instructions. This pass converts each LVar operation to a short sequence of
instructions that accomplishes the same task.

assign_homes replaces variables with registers or stack locations.

The next question is, in what order should we apply these passes? This question
can be challenging because it is difficult to know ahead of time which orderings will
be better (that is, will be easier to implement, produce more efficient code, and so
on), and therefore ordering often involves trial and error. Nevertheless, we can plan
ahead and make educated choices regarding the ordering.

The select_instructions and assign_homes passes are intertwined. In chap-
ter 8 we learn that in x86, registers are used for passing arguments to functions
and that it is preferable to assign parameters to their corresponding registers. This
suggests that it would be better to start with the select_instructions pass,
which generates the instructions for argument passing, before performing register
allocation. On the other hand, by selecting instructions first we may run into a
dead end in assign_homes. Recall that only one argument of an x86 instruction
may be a memory access, but assign_homes might be forced to assign both argu-
ments to memory locations. A sophisticated approach is to repeat the two passes
until a solution is found. However, to reduce implementation complexity we rec-
ommend placing select_instructions first, followed by the assign_homes, and
then a third pass named patch_instructions that uses a reserved register to fix
outstanding problems.

Figure 2.10 presents the ordering of the compiler passes and identifies the input
and output language of each pass. The output of the select_instructions pass is
the x86Var language, which extends x86Int with an unbounded number of program-
scope variables and removes the restrictions regarding instruction arguments. The
last pass, prelude_and_conclusion, places the program instructions inside a main
function with instructions for the prelude and conclusion. The remainder of this
chapter provides guidance on the implementation of each of the compiler passes
represented in figure 2.10.

Integers and Variables 23

LVar Lmon
Var

x86Var x86Var x86Int x86Int

remove_complex_operands

select_instructions

assign_homes

patch_instructions

prelude_and_conclusion

Figure 2.10
Diagram of the passes for compiling LVar.

atm ::= Constant(int) | Name(var)
exp ::= atm | Call(Name('input_int'),[])

| UnaryOp(USub(),atm) | BinOp(atm,Add(),atm)
| BinOp(atm,Sub(),atm)

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

Lmon
Var ::= Module(stmt∗)

Figure 2.11
Lmon

Var is LVar with operands restricted to atomic expressions.

2.4 Remove Complex Operands

The remove_complex_operands pass compiles LVar programs into a restricted form
in which the arguments of operations are atomic expressions. Put another way,
this pass removes complex operands, such as the expression -10 in the following
program. This is accomplished by introducing a new temporary variable, assigning
the complex operand to the new variable, and then using the new variable in place
of the complex operand, as shown in the output of remove_complex_operands on
the right.

x = 42 + -10
print(x + 10) ⇒

tmp_0 = -10
x = 42 + tmp_0
tmp_1 = x + 10
print(tmp_1)

Figure 2.11 presents the grammar for the output of this pass, the language Lmon
Var .

The only difference is that operator arguments are restricted to be atomic expres-
sions that are defined by the atm nonterminal. In particular, integer constants and
variables are atomic.

The atomic expressions are pure (they do not cause or depend on
side effects) whereas complex expressions may have side effects, such as

24 Chapter 2

Call(Name('input_int'),[]). A language with this separation between pure
expressions versus expressions with side effects is said to be in monadic normal
form (Moggi 1991; Danvy 2003), which explains the mon in the name Lmon

Var . An
important invariant of the remove_complex_operands pass is that the relative
ordering among complex expressions is not changed, but the relative ordering
between atomic expressions and complex expressions can change and often does.
These changes are behavior preserving because atomic expressions are pure.

We recommend implementing this pass with an auxiliary method named rco_exp
with two parameters: an LVar expression and a Boolean that specifies whether the
expression needs to become atomic or not. The rco_exp method should return a
pair consisting of the new expression and a list of pairs, associating new temporary
variables with their initializing expressions.

Returning to the example program with the expression 42 + -10, the subexpres-
sion -10 should be processed using the rco_exp function with True as the second
argument, because -10 is an argument of the + operator and therefore needs to
become atomic. The output of rco_exp applied to -10 is as follows.

-10 ⇒ tmp_1
[(tmp_1, -10)]

Take special care of programs, such as the following, that assign an atomic
expression to a variable. You should leave such assignments unchanged, as shown
in the program on the right:

a = 42
b = a
print(b)

⇒
a = 42
b = a
print(b)

A careless implementation might produce the following output with unnecessary
temporary variables.

tmp_1 = 42
a = tmp_1
tmp_2 = a
b = tmp_2
print(b)

Exercise 2.1 Implement the remove_complex_operands pass in compiler.py, cre-
ating auxiliary functions for each nonterminal in the grammar, that is, rco_exp
and rco_stmt. We recommend that you use the function utils.generate_name()
to generate fresh names from a stub string.

Exercise 2.2 Create five LVar programs that exercise the most interesting parts of
the remove_complex_operands pass. The five programs should be placed in the
subdirectory tests/var, and the file names should end with the file extension .py.

Integers and Variables 25

Run the run-tests.py script in the support code to check whether the output
programs produce the same result as the input programs.

2.5 Select Instructions

In the select_instructions pass we begin the work of translating to x86Var. The
target language of this pass is a variant of x86 that still uses variables, so we add
an AST node of the form Name(var) to the arg nonterminal of the x86Int abstract
syntax (figure 2.9). We recommend implementing an auxiliary function named
select_stmt for the stmt nonterminal.

Next consider the cases for the stmt nonterminal, starting with arithmetic opera-
tions. For example, consider the following addition operation, on the left side. (Let
arg1 and arg2 be the translations of atm1 and atm2, respectively.) There is an addq
instruction in x86, but it performs an in-place update. So, we could move arg1 into
the rax register, then add arg2 to rax, and then finally move rax into var.

var = atm1 + atm2 ⇒
movq arg1, %rax
addq arg2, %rax
movq %rax, var

However, with some care we can generate shorter sequences of instructions. Suppose
that one or more of the arguments of the addition is the same variable as the left-
hand side of the assignment. Then the assignment statement can be translated into
a single addq instruction, as follows.

var = atm1 + var ⇒ addq arg1, var

On the other hand, if atm2 is not the same variable as the left-hand side, then we
can move arg1 into the left-hand var and then add arg2 to var.

var = atm1 + atm2 ⇒ movq arg1, var
addq arg2, var

The input_int operation does not have a direct counterpart in x86 assembly,
so we provide this functionality with the function read_int in the file runtime.c,
written in C (Kernighan and Ritchie 1988). In general, we refer to all the func-
tionality in this file as the runtime system, or simply the runtime for short. When
compiling your generated x86 assembly code, you need to compile runtime.c to
runtime.o (an object file, using gcc with option -c) and link it into the executable.
For our purposes of code generation, all you need to do is translate an assignment
of input_int into a call to the read_int function followed by a move from rax to
the left-hand side variable. (The return value of a function is placed in rax.)

var = input_int(); ⇒ callq read_int
movq %rax, var

26 Chapter 2

Similarly, we translate the print operation, shown below, into a call to the
print_int function defined in runtime.c. In x86, the first six arguments to func-
tions are passed in registers, with the first argument passed in register rdi. So we
move the arg into rdi and then call print_int using the callq instruction.

print(atm) ⇒ movq arg, %rdi
callq print_int

We recommend that you use the function utils.label_name to transform strings
into labels, for example, in the target of the callq instruction. This practice makes
your compiler portable across Linux and Mac OS X, which requires an underscore
prefixed to all labels.

Exercise 2.3 Implement the select_instructions pass in compiler.py. Create
three new example programs that are designed to exercise all the interesting cases
in this pass. Run the run-tests.py script to check whether the output programs
produce the same result as the input programs.

2.6 Assign Homes

The assign_homes pass compiles x86Var programs to x86Var programs that no longer
use program variables. Thus, the assign_homes pass is responsible for placing all
the program variables in registers or on the stack. For runtime efficiency, it is better
to place variables in registers, but because there are only sixteen registers, some
programs must necessarily resort to placing some variables on the stack. In this
chapter we focus on the mechanics of placing variables on the stack. We study an
algorithm for placing variables in registers in chapter 4.

Consider again the following LVar program from section 2.4:
a = 42
b = a
print(b)

The output of select_instructions is shown next, on the left, and the output
of assign_homes is on the right. In this example, we assign variable a to stack
location -8(%rbp) and variable b to location -16(%rbp).

movq $42, a
movq a, b
movq b, %rax

⇒
movq $42, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -16(%rbp), %rax

The assign_homes pass should replace all uses of variables with stack locations.
In the process of assigning variables to stack locations, it is convenient for you to
compute and store the size of the frame (in bytes) in the field stack_space of
the X86Program node, which is needed later to generate the conclusion of the main
procedure. The x86-64 standard requires the frame size to be a multiple of 16 bytes.

Integers and Variables 27

Exercise 2.4 Implement the assign_homes pass in compiler.py, defining auxiliary
functions for each of the nonterminals in the x86Var grammar. We recommend that
the auxiliary functions take an extra parameter that maps variable names to homes
(stack locations for now). Run the run-tests.py script to check whether the
output programs produce the same result as the input programs.

2.7 Patch Instructions

The patch_instructions pass compiles from x86Var to x86Int by making sure
that each instruction adheres to the restriction that at most one argument of an
instruction may be a memory reference.

We return to the following example.
a = 42
b = a
print(b)

The assign_homes pass produces the following translation.

movq $42, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -16(%rbp), %rdi
callq print_int

The second movq instruction is problematic because both arguments are stack loca-
tions. We suggest fixing this problem by moving from the source location to the
register rax and then from rax to the destination location, as follows.

movq -8(%rbp), %rax
movq %rax, -16(%rbp)

There is a similar corner case that also needs to be dealt with. If one argument is
an immediate integer larger than 216 and the other is a memory reference, then the
instruction is invalid. One can fix this, for example, by first moving the immediate
integer into rax and then using rax in place of the integer.

Exercise 2.5 Implement the patch_instructions pass in compiler.py. Create
three new example programs that are designed to exercise all the interesting cases
in this pass. Run the run-tests.py script to check whether the output programs
produce the same result as the input programs.

2.8 Generate Prelude and Conclusion

The last step of the compiler from LVar to x86 is to generate the main function
with a prelude and conclusion wrapped around the rest of the program, as shown
in figure 2.7 and discussed in section 2.2.

When running on Mac OS X, your compiler should prefix an underscore to all
labels (for example, changing main to _main). The Python platform.system
function returns 'Linux', 'Windows', or 'Darwin' (for Mac).

28 Chapter 2

Exercise 2.6 Implement the prelude_and_conclusion pass in compiler.py. Run
the run-tests.py script to check whether the output programs produce the same
result as the input programs. That script translates the x86 AST that you produce
into a string by invoking the repr method that is implemented by the x86 AST
classes in x86_ast.py.

2.9 Challenge: Partial Evaluator for LVar

This section describes two optional challenge exercises that involve adapting and
improving the partial evaluator for LInt that was introduced in section 1.6.

Exercise 2.7 Adapt the partial evaluator from section 1.6 (figure 1.5) so that it
applies to LVar programs instead of LInt programs. Recall that LVar adds variables
and assignment to the LInt language, so you will need to add cases for them in the
pe_exp and pe_stmt functions. Once complete, add the partial evaluation pass to
the front of your compiler, and check that your compiler still passes all the tests.

Exercise 2.8 Improve on the partial evaluator by replacing the pe_neg and pe_add
auxiliary functions with functions that know more about arithmetic. For example,
your partial evaluator should translate

1 + (input_int() + 1) into 2 + input_int()

To accomplish this, the pe_exp function should produce output in the form of the
residual nonterminal of the following grammar. The idea is that when processing
an addition expression, we can always produce one of the following: (1) an inte-
ger constant, (2) an addition expression with an integer constant on the left-hand
side but not the right-hand side, or (3) an addition expression in which neither
subexpression is a constant.

inert ::= var | input_int() | -var | -input_int() | inert + inert
residual ::= int | int + inert | inert

The pe_add and pe_neg functions may assume that their inputs are residual
expressions and they should return residual expressions. Once the improvements
are complete, make sure that your compiler still passes all the tests. After all, fast
code is useless if it produces incorrect results!

3 Parsing

In this chapter we learn how to use the Lark parser framework (Shinan 2020) to
translate the concrete syntax of LInt (a sequence of characters) into an abstract
syntax tree. You are then asked to create a parser for LVar using Lark. We also
describe the parsing algorithms used inside Lark, studying the Earley (1970) and
LALR(1) algorithms (DeRemer 1969; Anderson, Eve, and Horning 1973).

A parser framework such as Lark takes in a specification of the concrete syntax
and an input program and produces a parse tree. Even though a parser framework
does most of the work for us, using one properly requires some knowledge. In
particular, we must learn about its specification languages and we must learn how
to deal with ambiguity in our language specifications. Also, some algorithms, such
as LALR(1), place restrictions on the grammars they can handle, in which case
knowing the algorithm helps with trying to decipher the error messages.

The process of parsing is traditionally subdivided into two phases: lexical analysis
(also called scanning) and syntax analysis (also called parsing). The lexical analysis
phase translates the sequence of characters into a sequence of tokens, that is, words
consisting of several characters. The parsing phase organizes the tokens into a parse
tree that captures how the tokens were matched by rules in the grammar of the
language. The reason for the subdivision into two phases is to enable the use of a
faster but less powerful algorithm for lexical analysis and the use of a slower but
more powerful algorithm for parsing. The Lark parser framework that we use in
this chapter includes both lexical analyzers and parsers. The next section discusses
lexical analysis, and the remainder of the chapter discusses parsing.

3.1 Lexical Analysis and Regular Expressions

The lexical analyzers produced by Lark turn a sequence of characters (a string) into
a sequence of token objects. For example, a Lark generated lexer for LInt converts
the string

'print(1 + 3)'

into the following sequence of token objects:

30 Chapter 3

Token('PRINT', 'print')
Token('LPAR', '(')
Token('INT', '1')
Token('PLUS', '+')
Token('INT', '3')
Token('RPAR', ')')
Token('NEWLINE', '\n')

Each token includes a field for its type, such as 'INT', and a field for its value,
such as '1'.

Following in the tradition of lex (Lesk and Schmidt 1975), the specification
language for Lark’s lexer is one regular expression for each type of token. The term
regular comes from the term regular languages, which are the languages that can
be recognized by a finite state machine. A regular expression is a pattern formed of
the following core elements:1

• A single character c is a regular expression, and it matches only itself. For
example, the regular expression a matches only the string 'a'.

• Two regular expressions separated by a vertical bar R1|R2 form a regular expres-
sion that matches any string that matches R1 or R2. For example, the regular
expression a|c matches the string 'a' and the string 'c'.

• Two regular expressions in sequence R1R2 form a regular expression that matches
any string that can be formed by concatenating two strings, where the first string
matches R1 and the second string matches R2. For example, the regular expression
(a|c)b matches the strings 'ab' and 'cb'. (Parentheses can be used to control
the grouping of operators within a regular expression.)

• A regular expression followed by an asterisks R* (called Kleene closure) is a
regular expression that matches any string that can be formed by concatenating
zero or more strings that each match the regular expression R. For example, the
regular expression ((a|c)b)* matches the string 'abcbab' but not 'abc'.

For our convenience, Lark also accepts the following extended set of regular
expressions that are automatically translated into the core regular expressions.

• A set of characters enclosed in square brackets [c1c2 … cn] is a regular expression
that matches any one of the characters. So, [c1c2 … cn] is equivalent to the regular
expression c1 | c2 | … | cn.

• A range of characters enclosed in square brackets [c1-c2] is a regular expression
that matches any character between c1 and c2, inclusive. For example, [a-z]
matches any lowercase letter in the alphabet.

• A regular expression followed by the plus symbol R+ is a regular expression that
matches any string that can be formed by concatenating one or more strings that

1. Regular expressions traditionally include the empty regular expression that matches any zero-
length part of a string, but Lark does not support the empty regular expression.

Parsing 31

each match R. So R+ is equivalent to R(R∗). For example, [a-z]+ matches 'b'
and 'bzca'.

• A regular expression followed by a question mark R? is a regular expression that
matches any string that either matches R or is the empty string. For example,
a?b matches both 'ab' and 'b'.

In a Lark grammar file, each kind of token is specified by a terminal, which
is defined by a rule that consists of the name of the terminal followed by a colon
followed by a sequence of literals. The literals include strings such as "abc", regular
expressions surrounded by / characters, terminal names, and literals composed
using the regular expression operators (+, ∗, etc.). For example, the DIGIT, INT,
and NEWLINE terminals are specified as follows:

DIGIT: /[0-9]/
INT: "-"? DIGIT+
NEWLINE: (/\r/? /\n/)+

3.2 Grammars and Parse Trees

In section 1.2 we learned how to use grammar rules to specify the abstract syntax of
a language. We now take a closer look at using grammar rules to specify the concrete
syntax. Recall that each rule has a left-hand side and a right-hand side, where the
left-hand side is a nonterminal and the right-hand side is a pattern that defines
what can be parsed as that nonterminal. For concrete syntax, each right-hand side
expresses a pattern for a string instead of a pattern for an abstract syntax tree. In
particular, each right-hand side is a sequence of symbols, where a symbol is either a
terminal or a nonterminal. The nonterminals play the same role as in the abstract
syntax, defining categories of syntax. The nonterminals of a grammar include the
tokens defined in the lexer and all the nonterminals defined by the grammar rules.

As an example, let us take a closer look at the concrete syntax of the LInt language,
repeated here.

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
LInt ::= stmt∗

The Lark syntax for grammar rules differs slightly from the variant of BNF that we
use in this book. In particular, the notation ::= is replaced by a single colon, and
the use of typewriter font for string literals is replaced by quotation marks. The
following grammar serves as a first draft of a Lark grammar for LInt.

32 Chapter 3

INT

"+"

INT

exp exp

exp

"1" "3"

Figure 3.1
The parse tree for '1+3'.

exp: INT
| "input_int" "(" ")"
| "-" exp
| exp "+" exp
| exp "-" exp
| "(" exp ")"

stmt_list:
| stmt NEWLINE stmt_list

lang_int: stmt_list

Let us begin by discussing the rule exp: INT, which says that if the lexer matches
a string to INT, then the parser also categorizes the string as an exp. Recall that
in section 1.2 we defined the corresponding int nonterminal with a sentence in
English. Here we specify INT more formally using a type of token INT and its
regular expression "-"? DIGIT+.

The rule exp: exp "+" exp says that any string that matches exp, followed by
the + character, followed by another string that matches exp, is itself an exp. For
example, the string '1+3' is an exp because '1' and '3' are both exp by the rule
exp: INT, and then the rule for addition applies to categorize '1+3' as an exp.
We can visualize the application of grammar rules to parse a string using a parse
tree. Each internal node in the tree is an application of a grammar rule and is
labeled with its left-hand side nonterminal. Each leaf node is a substring of the
input program. The parse tree for '1+3' is shown in figure 3.1.

The result of parsing '1+3' with this Lark grammar is the following parse tree
as represented by Tree and Token objects.

Tree('lang_int',
[Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),

Tree('exp', [Token('INT', '3')])])]),
Token('NEWLINE', '\n')])

Parsing 33

The nodes that come from the lexer are Token objects, whereas the nodes from the
parser are Tree objects. Each Tree object has a data field containing the name of
the nonterminal for the grammar rule that was applied. Each Tree object also has
a children field that is a list containing trees and/or tokens. Note that Lark does
not produce nodes for string literals in the grammar. For example, the Tree node
for the addition expression has only two children for the two integers but is missing
its middle child for the "+" terminal. This would be problematic except that Lark
provides a mechanism for customizing the data field of each Tree node on the basis
of which rule was applied. Next to each alternative in a grammar rule, write ->
followed by a string that you want to appear in the data field. The following is a
second draft of a Lark grammar for LInt, this time with more specific labels on the
Tree nodes.

exp: INT -> int
| "input_int" "(" ")" -> input_int
| "-" exp -> usub
| exp "+" exp -> add
| exp "-" exp -> sub
| "(" exp ")" -> paren

stmt: "print" "(" exp ")" -> print
| exp -> expr

stmt_list: -> empty_stmt
| stmt NEWLINE stmt_list -> add_stmt

lang_int: stmt_list -> module

Here is the resulting parse tree.

Tree('module',
[Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),

Tree('int', [Token('INT', '3')])])]),
Token('NEWLINE', '\n')])

3.3 Ambiguous Grammars

A grammar is ambiguous when a string can be parsed in more than one way. For
example, consider the string '1-2+3'. This string can be parsed in two different
ways using our draft grammar, resulting in the two parse trees shown in figure 3.2.
This example is problematic because interpreting the second parse tree would yield
-4 even through the correct answer is 2.

To deal with this problem we can change the grammar by categorizing the syntax
in a more fine-grained fashion. In this case we want to disallow the application of
the rule exp: exp "-" exp when the child on the right is an addition. To do this we
can replace the exp after "-" with a nonterminal that categorizes all the expressions
except for addition, as in the following.

34 Chapter 3

INT INT

exp exp

exp

INT

exp

exp

exp exp

exp

exp

exp

"1" “-“ "2" "+" "3"

INT INT INT

"1" “-“ "2" "+" "3"

Figure 3.2
The two parse trees for '1-2+3'.

exp: exp "-" exp_no_add -> sub
| exp "+" exp -> add
| exp_no_add

exp_no_add: INT -> int
| "input_int" "(" ")" -> input_int
| "-" exp -> usub
| exp "-" exp_no_add -> sub
| "(" exp ")" -> paren

However, there remains some ambiguity in the grammar. For example, the string
'1-2-3' can still be parsed in two different ways, as '(1-2)-3' (correct) or '1-(2-3)'
(incorrect). That is, subtraction is left associative. Likewise, addition in Python is
left associative. We also need to consider the interaction of unary subtraction with
both addition and subtraction. How should we parse '-1+2'? Unary subtraction has
higher precedence than addition and subtraction, so '-1+2' should parse the same
as '(-1)+2' and not '-(1+2)'. The grammar in figure 3.3 handles the associativity
of addition and subtraction by using the nonterminal exp_hi for all the other
expressions, and it uses exp_hi for the second child in the rules for addition and
subtraction. Furthermore, unary subtraction uses exp_hi for its child.

For languages with more operators and more precedence levels, one must refine
the exp nonterminal into several nonterminals, one for each precedence level.

3.4 From Parse Trees to Abstract Syntax Trees

As we have seen, the output of a Lark parser is a parse tree, that is, a tree con-
sisting of Tree and Token nodes. So, the next step is to convert the parse tree to
an abstract syntax tree. This can be accomplished with a recursive function that
inspects the data field of each node and then constructs the corresponding AST
node, using recursion to handle its children. The following is an excerpt from the
parse_tree_to_ast function for LInt.

Parsing 35

exp: exp "+" exp_hi -> add
| exp "-" exp_hi -> sub
| exp_hi

exp_hi: INT -> int
| "input_int" "(" ")" -> input_int
| "-" exp_hi -> usub
| "(" exp ")" -> paren

stmt: "print" "(" exp ")" -> print
| exp -> expr

stmt_list: -> empty_stmt
| stmt NEWLINE stmt_list -> add_stmt

lang_int: stmt_list -> module

Figure 3.3
An unambiguous Lark grammar for LInt.

def parse_tree_to_ast(e):
if e.data == 'int':

return Constant(int(e.children[0].value))
elif e.data == 'input_int':

return Call(Name('input_int'), [])
elif e.data == 'add':

e1, e2 = e.children
return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))

...
else:

raise Exception('unhandled parse tree', e)

Exercise 3.1 Use Lark to create a lexer and parser for LVar. Use Lark’s default
parsing algorithm (Earley) with the ambiguity option set to 'explicit' so that if
your grammar is ambiguous, the output will include multiple parse trees that will
indicate to you that there is a problem with your grammar. Your parser should
ignore white space, so we recommend using Lark’s %ignore directive as follows.

%import common.WS_INLINE
%ignore WS_INLINE

Change your compiler from chapter 2 to use your Lark parser instead of using the
parse function from the ast module. Test your compiler on all the LVar programs
that you have created, and create four additional programs that test for ambiguities
in your grammar.

36 Chapter 3

3.5 Earley’s Algorithm

In this section we discuss the parsing algorithm of Earley (1970), the default algo-
rithm used by Lark. The algorithm is powerful in that it can handle any context-free
grammar, which makes it easy to use, but it is not a particularly efficient parsing
algorithm. Earley’s algorithm is O(n3) for ambiguous grammars and O(n2) for unam-
biguous grammars, where n is the number of tokens in the input string (Hopcroft,
Motwani, and Ullman 2006). In section 3.6 we learn about the LALR(1) algorithm,
which is more efficient but cannot handle all context-free grammars.

Earley’s algorithm can be viewed as an interpreter; it treats the grammar as the
program being interpreted, and it treats the concrete syntax of the program-to-be-
parsed as its input. Earley’s algorithm uses a data structure called a chart to keep
track of its progress and to store its results. The chart is an array with one slot for
each position in the input string, where position 0 is before the first character and
position n is immediately after the last character. So, the array has length n + 1 for
an input string of length n. Each slot in the chart contains a set of dotted rules.
A dotted rule is simply a grammar rule with a period indicating how much of its
right-hand side has already been parsed. For example, the dotted rule

exp: exp "+" . exp_hi

represents a partial parse that has matched an exp followed by + but has not yet
parsed an exp to the right of +. Earley’s algorithm starts with an initialization
phase and then repeats three actions—prediction, scanning, and completion—for
as long as opportunities arise. We demonstrate Earley’s algorithm on a running
example, parsing the following program:

print(1 + 3)

The algorithm’s initialization phase creates dotted rules for all the grammar rules
whose left-hand side is the start symbol and places them in slot 0 of the chart. We
also record the starting position of the dotted rule in parentheses on the right. For
example, given the grammar in figure 3.3, we place

lang_int: . stmt_list (0)

in slot 0 of the chart. The algorithm then proceeds with prediction actions in which
it adds more dotted rules to the chart based on the nonterminals that come imme-
diately after a period. In the dotted rule above, the nonterminal stmt_list appears
after a period, so we add all the rules for stmt_list to slot 0, with a period at the
beginning of their right-hand sides, as follows:

stmt_list: . (0)
stmt_list: . stmt NEWLINE stmt_list (0)

We continue to perform prediction actions as more opportunities arise. For example,
the stmt nonterminal now appears after a period, so we add all the rules for stmt.

stmt: . "print" "(" exp ")" (0)
stmt: . exp (0)

Parsing 37

This reveals yet more opportunities for prediction, so we add the grammar rules
for exp and exp_hi to slot 0.

exp: . exp "+" exp_hi (0)
exp: . exp "-" exp_hi (0)
exp: . exp_hi (0)
exp_hi: . INT (0)
exp_hi: . "input_int" "(" ")" (0)
exp_hi: . "-" exp_hi (0)
exp_hi: . "(" exp ")" (0)

We have exhausted the opportunities for prediction, so the algorithm proceeds to
scanning, in which we inspect the next input token and look for a dotted rule at the
current position that has a matching terminal immediately following the period. In
our running example, the first input token is "print", so we identify the rule in
slot 0 of the chart where "print" follows the period:

stmt: . "print" "(" exp ")" (0)

We advance the period past "print" and add the resulting rule to slot 1:

stmt: "print" . "(" exp ")" (0)

If the new dotted rule had a nonterminal after the period, we would need to carry
out a prediction action, adding more dotted rules to slot 1. That is not the case, so
we continue scanning. The next input token is "(", so we add the following to slot
2 of the chart.

stmt: "print" "(" . exp ")" (0)

Now we have a nonterminal after the period, so we carry out several prediction
actions, adding dotted rules for exp and exp_hi to slot 2 with a period at the
beginning and with starting position 2.

exp: . exp "+" exp_hi (2)
exp: . exp "-" exp_hi (2)
exp: . exp_hi (2)
exp_hi: . INT (2)
exp_hi: . "input_int" "(" ")" (2)
exp_hi: . "-" exp_hi (2)
exp_hi: . "(" exp ")" (2)

With this prediction complete, we return to scanning, noting that the next input
token is "1", which the lexer parses as an INT. There is a matching rule in slot 2:

exp_hi: . INT (2)

so we advance the period and put the following rule into slot 3.

exp_hi: INT . (2)

This brings us to completion actions. When the period reaches the end of a dotted
rule, we recognize that the substring has matched the nonterminal on the left-hand
side of the rule, in this case exp_hi. We therefore need to advance the periods in

38 Chapter 3

any dotted rules into slot 2 (the starting position for the finished rule) if the period
is immediately followed by exp_hi. So we identify

exp: . exp_hi (2)

and add the following dotted rule to slot 3

exp: exp_hi . (2)

This triggers another completion step for the nonterminal exp, adding two more
dotted rules to slot 3.

exp: exp . "+" exp_hi (2)
exp: exp . "-" exp_hi (2)

Returning to scanning, the next input token is "+", so we add the following to
slot 4.

exp: exp "+" . exp_hi (2)

The period precedes the nonterminal exp_hi, so prediction adds the following
dotted rules to slot 4 of the chart.

exp_hi: . INT (4)
exp_hi: . "input_int" "(" ")" (4)
exp_hi: . "-" exp_hi (4)
exp_hi: . "(" exp ")" (4)

The next input token is "3" which the lexer categorized as an INT, so we advance
the period past INT for the rules in slot 4, of which there is just one, and put the
following into slot 5.

exp_hi: INT . (4)

The period at the end of the rule triggers a completion action for the rules in
slot 4, one of which has a period before exp_hi. So we advance the period and put
the following into slot 5.

exp: exp "+" exp_hi . (2)

This triggers another completion action for the rules in slot 2 that have a period
before exp.

stmt: "print" "(" exp . ")" (0)
exp: exp . "+" exp_hi (2)
exp: exp . "-" exp_hi (2)

We scan the next input token ")", placing the following dotted rule into slot 6.

stmt: "print" "(" exp ")" . (0)

This triggers the completion of stmt in slot 0

stmt_list: stmt . NEWLINE stmt_list (0)

The last input token is a NEWLINE, so we advance the period and place the new
dotted rule into slot 7.

Parsing 39

stmt_list: stmt NEWLINE . stmt_list (0)

We are close to the end of parsing the input! The period is before the stmt_list
nonterminal, so we apply prediction for stmt_list and then stmt.

stmt_list: . (7)
stmt_list: . stmt NEWLINE stmt_list (7)
stmt: . "print" "(" exp ")" (7)
stmt: . exp (7)

There is immediately an opportunity for completion of stmt_list, so we add the
following to slot 7.

stmt_list: stmt NEWLINE stmt_list . (0)

This triggers another completion action for stmt_list in slot 0

lang_int: stmt_list . (0)

which in turn completes lang_int, the start symbol of the grammar, so the parsing
of the input is complete.

For reference, we give a general description of Earley’s algorithm.

1. The algorithm begins by initializing slot 0 of the chart with the grammar rule
for the start symbol, placing a period at the beginning of the right-hand side,
and recording its starting position as 0.

2. The algorithm repeatedly applies the following three kinds of actions for as long
as there are opportunities to do so.
• Prediction: If there is a rule in slot k whose period comes before a nonterminal,

add the rules for that nonterminal into slot k, placing a period at the beginning
of their right-hand sides and recording their starting position as k.

• Scanning: If the token at position k of the input string matches the symbol
after the period in a dotted rule in slot k of the chart, advance the period in
the dotted rule, adding the result to slot k + 1.

• Completion: If a dotted rule in slot k has a period at the end, inspect the
rules in the slot corresponding to the starting position of the completed rule.
If any of those rules have a nonterminal following their period that matches
the left-hand side of the completed rule, then advance their period, placing
the new dotted rule in slot k.

While repeating these three actions, take care never to add duplicate dotted
rules to the chart.

We have described how Earley’s algorithm recognizes that an input string
matches a grammar, but we have not described how it builds a parse tree. The
basic idea is simple, but building parse trees in an efficient way is more complex,
requiring a data structure called a shared packed parse forest (Tomita 1985). The
simple idea is to attach a partial parse tree to every dotted rule in the chart. Ini-
tially, the node associated with a dotted rule has no children. As the period moves
to the right, the nodes from the subparses are added as children to the node.

40 Chapter 3

As mentioned at the beginning of this section, Earley’s algorithm is O(n2) for
unambiguous grammars, which means that it can parse input files that contain
thousands of tokens in a reasonable amount of time, but not millions. In the next
section we discuss the LALR(1) parsing algorithm, which is efficient enough to use
with even the largest of input files.

3.6 The LALR(1) Algorithm

The LALR(1) algorithm (DeRemer 1969; Anderson, Eve, and Horning 1973) can be
viewed as a two-phase approach in which it first compiles the grammar into a state
machine and then runs the state machine to parse an input string. The second phase
has time complexity O(n) where n is the number of tokens in the input, so LALR(1)
is the best one could hope for with respect to efficiency. A particularly influential
implementation of LALR(1) is the yacc parser generator by Johnson (1979); yacc
stands for “yet another compiler compiler.” The LALR(1) state machine uses a
stack to record its progress in parsing the input string. Each element of the stack is
a pair: a state number and a grammar symbol (a terminal or a nonterminal). The
symbol characterizes the input that has been parsed so far, and the state number
is used to remember how to proceed once the next symbol’s worth of input has
been parsed. Each state in the machine represents where the parser stands in the
parsing process with respect to certain grammar rules. In particular, each state is
associated with a set of dotted rules.

Figure 3.4 shows an example LALR(1) state machine (also called parse table) for
the following simple but ambiguous grammar:

exp: INT
| exp "+" exp

stmt: "print" exp
start: stmt

Consider state 1 in figure 3.4. The parser has just read in a "print" token, so the top
of the stack is (1,"print"). The parser is part of the way through parsing the input
according to grammar rule 1, which is signified by showing rule 1 with a period
after the "print" token and before the exp nonterminal. There are two rules that
could apply next, rules 2 and 3, so state 1 also shows those rules with a period at
the beginning of their right-hand sides. The edges between states indicate which
transitions the machine should make depending on the next input token. So, for
example, if the next input token is INT then the parser will push INT and the target
state 4 on the stack and transition to state 4. Suppose that we are now at the end
of the input. State 4 says that we should reduce by rule 3, so we pop from the stack
the same number of items as the number of symbols in the right-hand side of the
rule, in this case just one. We then momentarily jump to the state at the top of the
stack (state 1) and then follow the goto edge that corresponds to the left-hand side
of the rule we just reduced by, in this case exp, so we arrive at state 3. (A slightly
longer example parse is shown in figure 3.4.)

Parsing 41

State 0
start ::= . stmt
stmt ::= . “print” exp

State 1
stmt ::= "print" . exp
exp ::= . exp "+" exp
exp ::= . INT

"print", shift

State 2
start ::= stmt .

stmt, goto

State 3
stmt ::="print" exp .
exp ::= exp . "+" exp

end, reduce by rule 1

State 4
exp ::= INT .

end, reduce by rule 3
"+", reduce by rule 3

INT, shift exp, goto

State 5
exp ::= exp "+" . exp
exp ::= . exp "+" exp
exp ::= . INT

INT, shift "+", shift
State 6
exp ::= exp "+" exp .
exp ::= exp . "+" exp

end, reduce by rule 2
"+", reduce by rule 2

exp, goto
"+", shift

Grammar:
0. start ::= stmt
1. stmt ::= “print” exp
2. exp ::= exp “+” exp
3. exp ::= INT

Example parse of 'print 1 + 2'
Stack
[]
[(1,"print")]
[(1,"print"),(4,INT)]
[(1,"print"),(3,exp)]
[(1,"print"),(3,exp),(5,+)]
[(1,"print"),(3,exp),(5,+),(4,INT)]
[(1,"print"),(3,exp),(5,+),(6,exp)]
[(1,"print"),(3,exp)]
[(2,stmt)]

Input
'print 1 + 2'
'1 + 2'
'+ 2'
'+ 2'
'2'
''
''
''
''

Action
shift to state 1
shift to state 4
reduce by rule 3 to state 1, goto 3
shift to state 5
shift to state 4
reduce by rule 3 to state 5, goto 6
reduce by rule 2 to state 1, goto 3
reduce by rule 1 to state 0, goto 2
accept

Figure 3.4
An LALR(1) parse table and a trace of an example run.

In general, the algorithm works as follows. First, set the current state to state 0.
Then repeat the following, looking at the next input token.

• If there there is a shift edge for the input token in the current state, push the
edge’s target state and the input token onto the stack and proceed to the edge’s
target state.

• If there is a reduce action for the input token in the current state, pop k elements
from the stack, where k is the number of symbols in the right-hand side of the

42 Chapter 3

rule being reduced. Jump to the state at the top of the stack and then follow the
goto edge for the nonterminal that matches the left-hand side of the rule that we
are reducing by. Push the edge’s target state and the nonterminal on the stack.

Notice that in state 6 of figure 3.4 there is both a shift and a reduce action for
the token PLUS, so the algorithm does not know which action to take in this case.
When a state has both a shift and a reduce action for the same token, we say there
is a shift/reduce conflict. In this case, the conflict will arise, for example, in trying
to parse the input print 1 + 2 + 3. After having consumed print 1 + 2, the parser
will be in state 6 and will not know whether to reduce to form an exp of 1 + 2 or
to proceed by shifting the next + from the input.

A similar kind of problem, known as a reduce/reduce conflict, arises when there
are two reduce actions in a state for the same token. To understand which grammars
give rise to shift/reduce and reduce/reduce conflicts, it helps to know how the parse
table is generated from the grammar, which we discuss next.

The parse table is generated one state at a time. State 0 represents the start
of the parser. We add the grammar rule for the start symbol to this state with a
period at the beginning of the right-hand side, similarly to the initialization phase
of the Earley parser. If the period appears immediately before another nonterminal,
we add all the rules with that nonterminal on the left-hand side. Again, we place a
period at the beginning of the right-hand side of each new rule. This process, called
state closure, is continued until there are no more rules to add (similarly to the
prediction actions of an Earley parser). We then examine each dotted rule in the
current state I. Suppose that a dotted rule has the form A ::= s1. X s2, where A and X
are symbols and s1 and s2 are sequences of symbols. We create a new state and call
it J. If X is a terminal, we create a shift edge from I to J (analogously to scanning
in Earley), whereas if X is a nonterminal, we create a goto edge from I to J. We
then need to add some dotted rules to state J. We start by adding all dotted rules
from state I that have the form B ::= s1. X s2 (where B is any nonterminal and s1 and
s2 are arbitrary sequences of symbols), with the period moved past the X. (This is
analogous to completion in Earley’s algorithm.) We then perform state closure on
J. This process repeats until there are no more states or edges to add.

We then mark states as accepting states if they have a dotted rule that is the
start rule with a period at the end. Also, to add the reduce actions, we look for any
state containing a dotted rule with a period at the end. Let n be the rule number
for this dotted rule. We then put a reduce n action into that state for every token
Y. For example, in figure 3.4 state 4 has a dotted rule with a period at the end. We
therefore put a reduce by rule 3 action into state 4 for every token.

When inserting reduce actions, take care to spot any shift/reduce or reduce/re-
duce conflicts. If there are any, abort the construction of the parse table.

Exercise 3.2 Working on paper, walk through the parse table generation process
for the grammar at the top of figure 3.4, and check your results against the parse
table shown in figure 3.4.

Parsing 43

Exercise 3.3 Change the parser in your compiler for LVar to set the parser option
of Lark to 'lalr'. Test your compiler on all the LVar programs that you have
created. In doing so, Lark may signal an error due to shift/reduce or reduce/reduce
conflicts in your grammar. If so, change your Lark grammar for LVar to remove
those conflicts.

3.7 Further Reading

In this chapter we have just scratched the surface of the field of parsing, with the
study of a very general but less efficient algorithm (Earley) and with a more limited
but highly efficient algorithm (LALR). There are many more algorithms and classes
of grammars that fall between these two ends of the spectrum. We recommend to
the reader Aho et al. (2006) for a thorough treatment of parsing.

Regarding lexical analysis, we have described the specification language, which
are the regular expressions, but not the algorithms for recognizing them. In short,
regular expressions can be translated to nondeterministic finite automata, which in
turn are translated to finite automata. We refer the reader again to Aho et al. (2006)
for all the details on lexical analysis.

4 Register Allocation

In chapter 2 we learned how to compile LVar to x86, storing variables on the pro-
cedure call stack. The CPU may require tens to hundreds of cycles to access a
location on the stack, whereas accessing a register takes only a single cycle. In this
chapter we improve the efficiency of our generated code by storing some variables in
registers. The goal of register allocation is to fit as many variables into registers as
possible. Some programs have more variables than registers, so we cannot always
map each variable to a different register. Fortunately, it is common for different
variables to be in use during different periods of time during program execution,
and in those cases we can map multiple variables to the same register.

The program shown in figure 4.1 serves as a running example. The source program
is on the left and the output of instruction selection is on the right. The program is
almost completely in the x86 assembly language, but it still uses variables. Consider
variables x and z. After the variable x has been moved to z, it is no longer in use.
Variable z, on the other hand, is used only after this point, so x and z could share
the same register.

Example LVar program:

v = 1
w = 42
x = v + 7
y = x
z = x + w
print(z + (- y))

After instruction selection:

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, tmp_0
negq tmp_0
movq z, tmp_1
addq tmp_0, tmp_1
movq tmp_1, %rdi
callq print_int

Figure 4.1
A running example for register allocation.

46 Chapter 4

The topic of section 4.2 is how to compute where a variable is in use. Once we
have that information, we compute which variables are in use at the same time,
that is, which ones interfere with each other, and represent this relation as an
undirected graph whose vertices are variables and edges indicate when two variables
interfere (section 4.3). We then model register allocation as a graph coloring problem
(section 4.4).

If we run out of registers despite these efforts, we place the remaining variables
on the stack, similarly to how we handled variables in chapter 2. It is common to
use the verb spill for assigning a variable to a stack location. The decision to spill
a variable is handled as part of the graph coloring process.

We make the simplifying assumption that each variable is assigned to one location
(a register or stack address). A more sophisticated approach is to assign a variable
to one or more locations in different regions of the program. For example, if a
variable is used many times in short sequence and then used again only after many
other instructions, it could be more efficient to assign the variable to a register
during the initial sequence and then move it to the stack for the rest of its lifetime.
We refer the interested reader to Cooper and Torczon (2011) (chapter 13) for more
information about that approach.

4.1 Registers and Calling Conventions

As we perform register allocation, we must be aware of the calling conventions
that govern how function calls are performed in x86. Even though LVar does not
include programmer-defined functions, our generated code includes a main function
that is called by the operating system and our generated code contains calls to the
read_int function.

Function calls require coordination between two pieces of code that may be writ-
ten by different programmers or generated by different compilers. Here we follow
the System V calling conventions that are used by the GNU C compiler on Linux
and MacOS (Bryant and O’Hallaron 2005; Matz et al. 2013). The calling conven-
tions include rules about how functions share the use of registers. In particular, the
caller is responsible for freeing some registers prior to the function call for use by
the callee. These are called the caller-saved registers and they are

rax rcx rdx rsi rdi r8 r9 r10 r11

On the other hand, the callee is responsible for preserving the values of the callee-
saved registers, which are

rsp rbp rbx r12 r13 r14 r15

We can think about this caller/callee convention from two points of view, the
caller view and the callee view, as follows:

• The caller should assume that all the caller-saved registers get overwritten with
arbitrary values by the callee. On the other hand, the caller can safely assume
that all the callee-saved registers retain their original values.

Register Allocation 47

• The callee can freely use any of the caller-saved registers. However, if the callee
wants to use a callee-saved register, the callee must arrange to put the orig-
inal value back in the register prior to returning to the caller. This can be
accomplished by saving the value to the stack in the prelude of the function
and restoring the value in the conclusion of the function.

In x86, registers are also used for passing arguments to a function and for the
return value. In particular, the first six arguments of a function are passed in the
following six registers, in this order.

rdi rsi rdx rcx r8 r9

We refer to these six registers are the argument-passing registers . If there are more
than six arguments, the convention is to use space on the frame of the caller for the
rest of the arguments. In chapter 8, we instead pass a tuple containing the sixth
argument and the rest of the arguments, which simplifies the treatment of efficient
tail calls. For now, the only functions we care about are read_int and print_int,
which take zero and one argument, respectively. The register rax is used for the
return value of a function.

The next question is how these calling conventions impact register allocation.
Consider the LVar program presented in figure 4.2. We first analyze this example
from the caller point of view and then from the callee point of view. We refer to a
variable that is in use during a function call as a call-live variable.

The program makes two calls to input_int. The variable x is call-live because
it is in use during the second call to input_int; we must ensure that the value in
x does not get overwritten during the call to input_int. One obvious approach is
to save all the values that reside in caller-saved registers to the stack prior to each
function call and to restore them after each call. That way, if the register allocator
chooses to assign x to a caller-saved register, its value will be preserved across the
call to input_int. However, saving and restoring to the stack is relatively slow. If x
is not used many times, it may be better to assign x to a stack location in the first
place. Or better yet, if we can arrange for x to be placed in a callee-saved register,
then it won’t need to be saved and restored during function calls.

We recommend an approach that captures these issues in the interference graph,
without complicating the graph coloring algorithm. During liveness analysis we
know which variables are call-live because we compute which variables are in use at
every instruction (section 4.2). When we build the interference graph (section 4.3),
we can place an edge in the interference graph between each call-live variable and the
caller-saved registers. This will prevent the graph coloring algorithm from assigning
call-live variables to caller-saved registers.

On the other hand, for variables that are not call-live, we prefer placing them in
caller-saved registers to leave more room for call-live variables in the callee-saved
registers. This can also be implemented without complicating the graph coloring
algorithm. We recommend that the graph coloring algorithm assign variables to
natural numbers, choosing the lowest number for which there is no interference.
After the coloring is complete, we map the numbers to registers and stack locations:

48 Chapter 4

Example LVar program:

x = input_int()
y = input_int()
print((x + y) + 42)

Generated x86 assembly:

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $8, %rsp
callq read_int
movq %rax, %rbx
callq read_int
movq %rax, %rcx
movq %rbx, %rdx
addq %rcx, %rdx
movq %rdx, %rcx
addq $42, %rcx
movq %rcx, %rdi
callq print_int
addq $8, %rsp
popq %rbx
popq %rbp
retq

Figure 4.2
An example with function calls.

mapping the lowest numbers to caller-saved registers, the next lowest to callee-
saved registers, and the largest numbers to stack locations. This ordering gives
preference to registers over stack locations and to caller-saved registers over callee-
saved registers.

Returning to the example in figure 4.2, let us analyze the generated x86 code on
the right-hand side. Variable x is assigned to rbx, a callee-saved register. Thus, it
is already in a safe place during the second call to read_int. Next, variable y is
assigned to rcx, a caller-saved register, because y is not a call-live variable.

We have completed the analysis from the caller point of view, so now we switch
to the callee point of view, focusing on the prelude and conclusion of the main
function. As usual, the prelude begins with saving the rbp register to the stack
and setting the rbp to the current stack pointer. We now know why it is necessary
to save the rbp: it is a callee-saved register. The prelude then pushes rbx to the
stack because (1) rbx is a callee-saved register and (2) rbx is assigned to a variable
(x). The other callee-saved registers are not saved in the prelude because they are
not used. The prelude subtracts 8 bytes from the rsp to make it 16-byte aligned.
Shifting attention to the conclusion, we see that rbx is restored from the stack with
a popq instruction.

Register Allocation 49

4.2 Liveness Analysis

The uncover_live function performs liveness analysis; that is, it discovers which
variables are in use in different regions of a program. A variable or register is live at
a program point if its current value is used at some later point in the program. We
refer to variables, stack locations, and registers collectively as locations. Consider
the following code fragment in which there are two writes to b. Are variables a and
b both live at the same time?

1 movq $5, a
2 movq $30, b
3 movq a, c
4 movq $10, b
5 addq b, c

The answer is no, because a is live from line 1 to 3 and b is live from line 4 to 5.
The integer written to b on line 2 is never used because it is overwritten (line 4)
before the next read (line 5).

The live locations for each instruction can be computed by traversing the instruc-
tion sequence back to front (i.e., backward in execution order). Let I1, … , In be the
instruction sequence. We write Lafter(k) for the set of live locations after instruc-
tion Ik and write Lbefore(k) for the set of live locations before instruction Ik. We
recommend representing these sets with the Python set data structure.

The locations that are live after an instruction are its live-after set, and the
locations that are live before an instruction are its live-before set. The live-after set
of an instruction is always the same as the live-before set of the next instruction.

Lafter(k) = Lbefore(k + 1) (4.1)

To start things off, there are no live locations after the last instruction, so

Lafter(n) = ∅ (4.2)

We then apply the following rule repeatedly, traversing the instruction sequence
back to front.

Lbefore(k) = (Lafter(k) – W(k))∪R(k), (4.3)
where W(k) are the locations written to by instruction Ik, and R(k) are the locations
read by instruction Ik.

Let us walk through the previous example, applying these formulas starting with
the instruction on line 5 of the code fragment. We collect the answers in figure 4.3.
The Lafter for the addq b, c instruction is ∅ because it is the last instruction (for-
mula (4.2)). The Lbefore for this instruction is {b, c} because it reads from variables
b and c (formula (4.3)):

Lbefore(5) = (∅ – {c})∪ {b, c} = {b, c}

https://docs.python.org/3.10/library/stdtypes.html#set-types-set-frozenset

50 Chapter 4

1 movq $5, a
2 movq $30, b
3 movq a, c
4 movq $10, b
5 addq b, c

Lbefore(1) = ∅, Lafter(1) = {a}

Lbefore(2) = {a}, Lafter(2) = {a}

Lbefore(3) = {a}, Lafter(3) = {c}

Lbefore(4) = {c}, Lafter(4) = {b, c}

Lbefore(5) = {b, c}, Lafter(5) = ∅

Figure 4.3
Example output of liveness analysis on a short example.

Moving on the the instruction movq $10, b at line 4, we copy the live-before set
from line 5 to be the live-after set for this instruction (formula (4.1)).

Lafter(4) = {b, c}

This move instruction writes to b and does not read from any variables, so we have
the following live-before set (formula (4.3)).

Lbefore(4) = ({b, c} – {b})∪∅= {c}

The live-before for instruction movq a, c is {a} because it writes to {c} and reads
from {a} (formula (4.3)). The live-before for movq $30, b is {a} because it writes to
a variable that is not live and does not read from a variable. Finally, the live-before
for movq $5, a is ∅ because it writes to variable a.

Exercise 4.1 Perform liveness analysis by hand on the running example in figure 4.1,
computing the live-before and live-after sets for each instruction. Compare your
answers to the solution shown in figure 4.4.

Exercise 4.2 Implement the uncover_live function. Return a dictionary that
maps each instruction to its live-after set. We recommend creating auxiliary func-
tions to (1) compute the set of locations that appear in an arg, (2) compute the
locations read by an instruction (the R function), and (3) the locations written
by an instruction (the W function). The callq instruction should include all the
caller-saved registers in its write set W because the calling convention says that
those registers may be written to during the function call. Likewise, the callq
instruction should include the appropriate argument-passing registers in its read
set R, depending on the arity of the function being called. (This is why the abstract
syntax for callq includes the arity.)

Register Allocation 51

movq $1, v
{v}

movq $42, w
{w, v}

movq v, x
{w, x}

addq $7, x
{w, x}

movq x, y
{w, x, y}

movq x, z
{w, y, z}

addq w, z
{y, z}

movq y, tmp_0
{tmp_0, z}

negq tmp_0
{tmp_0, z}

movq z, tmp_1
{tmp_0, tmp_1}

addq tmp_0, tmp_1
{tmp_1}

movq tmp_1, %rdi
{rdi}

callq print_int
{}

Figure 4.4
The running example annotated with live-after sets.

4.3 Build the Interference Graph

On the basis of the liveness analysis, we know where each location is live. However,
during register allocation, we need to answer questions of the specific form: are
locations u and v live at the same time? (If so, they cannot be assigned to the same
register.) To make this question more efficient to answer, we create an explicit data
structure, an interference graph. An interference graph is an undirected graph that
has a node for every variable and register and has an edge between two nodes
if they are live at the same time, that is, if they interfere with each other. We
provide implementations of directed and undirected graph data structures in the
file graph.py of the support code.

A straightforward way to compute the interference graph is to look at the set of
live locations between each instruction and add an edge to the graph for every pair
of variables in the same set. This approach is less than ideal for two reasons. First,
it can be expensive because it takes O(n2) time to consider every pair in a set of
n live locations. Second, in the special case in which two locations hold the same

52 Chapter 4

value (because one was assigned to the other), they can be live at the same time
without interfering with each other.

A better way to compute the interference graph is to focus on writes (Appel
and Palsberg 2003). The writes performed by an instruction must not overwrite
something in a live location. So for each instruction, we create an edge between
the locations being written to and the live locations. (However, a location never
interferes with itself.) For the callq instruction, we consider all the caller-saved
registers to have been written to, so an edge is added between every live variable and
every caller-saved register. Also, for movq there is the special case of two variables
holding the same value. If a live variable v is the same as the source of the movq,
then there is no need to add an edge between v and the destination, because they
both hold the same value. Hence we have the following two rules:

1. If instruction Ik is a move instruction of the form movq s, d, then for every
v∈Lafter(k), if v ̸= d and v ̸= s, add the edge (d, v).

2. For any other instruction Ik, for every d∈W(k) and every v∈Lafter(k), if v ̸= d, add
the edge (d, v).

Working from the top to bottom of figure 4.4, we apply these rules to each instruc-
tion. We highlight a few of the instructions. The first instruction is movq $1, v,
and the live-after set is {v}. Rule 1 applies, but there is no interference because
v is the destination of the move. The fourth instruction is addq $7, x, and the
live-after set is {w, x}. Rule 2 applies, so x interferes with w. The next instruction
is movq x, y, and the live-after set is {w, x, y}. Rule 1 applies, so y interferes with
w but not x, because x is the source of the move and therefore x and y hold the
same value. Figure 4.5 lists the interference results for all the instructions, and the
resulting interference graph is shown in figure 4.6. We elide the register nodes from
the interference graph in figure 4.6 because there were no interference edges involv-
ing registers and we did not wish to clutter the graph, but in general one needs to
include all the registers in the interference graph.

Exercise 4.3 Implement a function named build_interference according to the
algorithm suggested above that returns the interference graph.

4.4 Graph Coloring via Sudoku

We come to the main event discussed in this chapter, mapping variables to registers
and stack locations. Variables that interfere with each other must be mapped to
different locations. In terms of the interference graph, this means that adjacent
vertices must be mapped to different locations. If we think of locations as colors,
the register allocation problem becomes the graph coloring problem (Balakrishnan
1996; Rosen 2002).

The reader may be more familiar with the graph coloring problem than he or she
realizes; the popular game of sudoku is an instance of the graph coloring problem.
The following describes how to build a graph out of an initial sudoku board.

Register Allocation 53

movq $1, v no interference
movq $42, w w interferes with v
movq v, x x interferes with w
addq $7, x x interferes with w
movq x, y y interferes with w but not x
movq x, z z interferes with w and y
addq w, z z interferes with y
movq y, tmp_0 tmp_0 interferes with z
negq tmp_0 tmp_0 interferes with z
movq z, tmp_1 tmp_0 interferes with tmp_1
addq tmp_0, tmp_1 no interference
movq tmp_1, %rdi no interference
callq print_int no interference.

Figure 4.5
Interference results for the running example.

tmp_0

tmp_1

z x

y w v

Figure 4.6
The interference graph of the example program.

• There is one vertex in the graph for each sudoku square.
• There is an edge between two vertices if the corresponding squares are in the

same row, in the same column, or in the same 3× 3 region.
• Choose nine colors to correspond to the numbers 1 to 9.
• On the basis of the initial assignment of numbers to squares on the sudoku board,

assign the corresponding colors to the corresponding vertices in the graph.

If you can color the remaining vertices in the graph with the nine colors, then
you have also solved the corresponding game of sudoku. Figure 4.7 shows an initial
sudoku game board and the corresponding graph with colored vertices. Here we use
a monochrome representation of colors, mapping the sudoku number 1 to black, 2 to
white, and 3 to gray. We show edges for only a sampling of the vertices (the colored
ones) because showing edges for all the vertices would make the graph unreadable.

Some techniques for playing sudoku correspond to heuristics used in graph color-
ing algorithms. For example, one of the basic techniques for sudoku is called Pencil
Marks. The idea is to use a process of elimination to determine what numbers are
no longer available for a square and to write those numbers in the square (writing
very small). For example, if the number 1 is assigned to a square, then write the

54 Chapter 4

1

1

1

2 3

2

2

3

3

3

2

Figure 4.7
A sudoku game board and the corresponding colored graph.

pencil mark 1 in all the squares in the same row, column, and region to indicate
that 1 is no longer an option for those other squares. The Pencil Marks technique
corresponds to the notion of saturation due to Brélaz (1979). The saturation of a
vertex, in sudoku terms, is the set of numbers that are no longer available. In graph
terminology, we have the following definition:

saturation(u) = {c |∃v.v∈ adjacent(u) and color(v) = c}

where adjacent(u) is the set of vertices that share an edge with u.
The Pencil Marks technique leads to a simple strategy for filling in numbers: if

there is a square with only one possible number left, then choose that number! But
what if there are no squares with only one possibility left? One brute-force approach
is to try them all: choose the first one, and if that ultimately leads to a solution,
great. If not, backtrack and choose the next possibility. One good thing about Pencil
Marks is that it reduces the degree of branching in the search tree. Nevertheless,
backtracking can be terribly time consuming. One way to reduce the amount of
backtracking is to use the most-constrained-first heuristic (aka minimum remaining
values) (Russell and Norvig 2003). That is, in choosing a square, always choose one
with the fewest possibilities left (the vertex with the highest saturation). The idea is
that choosing highly constrained squares earlier rather than later is better, because
later on there may not be any possibilities left in the highly saturated squares.

However, register allocation is easier than sudoku, because the register alloca-
tor can fall back to assigning variables to stack locations when the registers run
out. Thus, it makes sense to replace backtracking with greedy search: make the
best choice at the time and keep going. We still wish to minimize the number of
colors needed, so we use the most-constrained-first heuristic in the greedy search.
Figure 4.8 gives the pseudocode for a simple greedy algorithm for register allocation

Register Allocation 55

Algorithm: DSATUR
Input: A graph G
Output: An assignment color[v] for each vertex v∈G

W← vertices(G)
while W ̸= ∅ do

pick a vertex u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color[v] : v∈ adjacent(u)}
color[u]← c
W←W – {u}

Figure 4.8
The saturation-based greedy graph coloring algorithm.

based on saturation and the most-constrained-first heuristic. It is roughly equiva-
lent to the DSATUR graph coloring algorithm (Brélaz 1979). Just as in sudoku, the
algorithm represents colors with integers. The integers 0 through k – 1 correspond
to the k registers that we use for register allocation. In particular, we recommend
the following correspondence, with k = 11.

0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
6: r10, 7: rbx, 8: r12, 9: r13, 10: r14

The integers k and larger correspond to stack locations. The registers that are
not used for register allocation, such as rax, are assigned to negative integers. In
particular, we recommend the following correspondence.

-1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15

With the DSATUR algorithm in hand, let us return to the running example and
consider how to color the interference graph shown in figure 4.6. We annotate each
variable node with a dash to indicate that it has not yet been assigned a color.
Each register node (not shown) should be assigned the number that the register
corresponds to, for example, color rcx with the number 0 and rdx with 1. The
saturation sets are also shown for each node; all of them start as the empty set.

tmp_0 : –, {}

tmp_1 : –, {}

z : –, {} x : –, {}

y : –, {} w : –, {} v : –, {}

The algorithm says to select a maximally saturated vertex, but they are all equally
saturated. So we flip a coin and pick tmp_0 and then we color it with the first
available integer, which is 0. We mark 0 as no longer available for tmp_1 and z

56 Chapter 4

because they interfere with tmp_0.

tmp_0 : 0, {}

tmp_1 : –, {0}

z : –, {0} x : –, {}

y : –, {} w : –, {} v : –, {}

We repeat the process. The most saturated vertices are z and tmp_1, so we choose z
and color it with the first available number, which is 1. We add 1 to the saturation
for the neighboring vertices tmp_0, y, and w.

tmp_0 : 0, {1}

tmp_1 : –, {0}

z : 1, {0} x : –, {}

y : –, {1} w : –, {1} v : –, {}

The most saturated vertices are now tmp_1, w, and y. We color w with the first
available color, which is 0.

tmp_0 : 0, {1}

tmp_1 : –, {0}

z : 1, {0} x : –, {0}

y : –, {0, 1} w : 0, {1} v : –, {0}

Now y is the most saturated, so we color it with 2.

tmp_0 : 0, {1}

tmp_1 : –, {0}

z : 1, {0, 2} x : –, {0}

y : 2, {0, 1} w : 0, {1, 2} v : –, {0}

The most saturated vertices are tmp_1, x, and v. We choose to color v with 1.

tmp_0 : 0, {1}

tmp_1 : –, {0}

z : 1, {0, 2} x : –, {0}

y : 2, {0, 1} w : 0, {1, 2} v : 1, {0}

We color the remaining two variables, tmp_1 and x, with 1.

tmp_0 : 0, {1}

tmp_1 : 1, {0}

z : 1, {0, 2} x : 1, {0}

y : 2, {0, 1} w : 0, {1, 2} v : 1, {0}

Register Allocation 57

So, we obtain the following coloring:

{tmp_0 7→ 0, tmp_1 7→ 1, z 7→ 1, x 7→ 1, y 7→ 2, w 7→ 0, v 7→ 1}

We recommend creating an auxiliary function named color_graph that takes an
interference graph and a list of all the variables in the program. This function should
return a mapping of variables to their colors (represented as natural numbers). By
creating this helper function, you will be able to reuse it in chapter 8 when we add
support for functions.

To prioritize the processing of highly saturated nodes inside the color_graph
function, we recommend using the priority queue data structure in the file
priority_queue.py of the support code.

With the coloring complete, we finalize the assignment of variables to registers
and stack locations. We map the first k colors to the k registers and the rest of the
colors to stack locations. Suppose for the moment that we have just one register to
use for register allocation, rcx. Then we have the following assignment.

{0 7→ %rcx, 1 7→ -8(%rbp), 2 7→ -16(%rbp)}

Composing this mapping with the coloring, we arrive at the following assignment
of variables to locations.

{v 7→ -8(%rbp), w 7→ %rcx, x 7→ -8(%rbp), y 7→ -16(%rbp),

z 7→ -8(%rbp), tmp_0 7→ %rcx, tmp_1 7→ -8(%rbp)}

Adapt the code from the assign_homes pass (section 2.6) to replace the variables
with their assigned location. Applying this assignment to our running example
shown next, on the left, yields the program on the right.

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, tmp_0
negq tmp_0
movq z, tmp_1
addq tmp_0, tmp_1
movq tmp_1, %rdi
callq print_int

⇒

movq $1, -8(%rbp)
movq $42, %rcx
movq -8(%rbp), -8(%rbp)
addq $7, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -8(%rbp), %rdi
callq print_int

Exercise 4.4 Implement the allocate_registers pass. Create five programs that
exercise all aspects of the register allocation algorithm, including spilling variables
to the stack. Run the run-tests.py script to check whether the output programs
produce the same result as the input programs.

58 Chapter 4

4.5 Patch Instructions

The remaining step in the compilation to x86 is to ensure that the instructions have
at most one argument that is a memory access. In the running example, the instruc-
tion movq -8(%rbp), -16(%rbp) is problematic. Recall from section 2.7 that the
fix is to first move -8(%rbp) into rax and then move rax into -16(%rbp). The moves
from -8(%rbp) to -8(%rbp) are also problematic, but they can simply be deleted.
In general, we recommend deleting all the trivial moves whose source and destina-
tion are the same location. The following is the output of patch_instructions on
the running example.

movq $1, -8(%rbp)
movq $42, %rcx
movq -8(%rbp), -8(%rbp)
addq $7, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -8(%rbp), %rdi
callq print_int

⇒

movq $1, -8(%rbp)
movq $42, %rcx
addq $7, -8(%rbp)
movq -8(%rbp), %rax
movq %rax, -16(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
addq %rcx, -8(%rbp)
movq -8(%rbp), %rdi
callq print_int

Exercise 4.5 Update the patch_instructions compiler pass to delete trivial
moves. Run the script to test the patch_instructions pass.

4.6 Generate Prelude and Conclusion

Recall that this pass generates the prelude and conclusion instructions to satisfy
the x86 calling conventions (section 4.1). With the addition of the register alloca-
tor, the callee-saved registers used by the register allocator must be saved in the
prelude and restored in the conclusion. In the allocate_registers pass, add a
field named used_callee to the X86Program AST node that stores the set of callee-
saved registers that were assigned to variables. The prelude_and_conclusion pass
can then access this information to decide which callee-saved registers need to be
saved and restored. When calculating the amount to adjust the rsp in the prelude,
make sure to take into account the space used for saving the callee-saved registers.
Also, remember that the frame needs to be a multiple of 16 bytes! We recommend
using the following equation for the amount A to subtract from the rsp. Let S be
the number of stack locations used by spilled variables1 and C be the number of
callee-saved registers that were allocated to variables. The align function rounds a

1. Sometimes two or more spilled variables are assigned to the same stack location, so S can be
less than the number of spilled variables.

Register Allocation 59

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $8, %rsp
movq $1, %rcx
movq $42, %rbx
addq $7, %rcx
movq %rcx, -16(%rbp)
addq %rbx, -16(%rbp)
negq %rcx
movq -16(%rbp), %rbx
addq %rcx, %rbx
movq %rbx, %rdi
callq print_int
addq $8, %rsp
popq %rbx
popq %rbp
retq

Figure 4.9
The x86 output from the running example (figure 4.1), limiting allocation to just rbx and rcx.

number up to the nearest 16 bytes.

A = align(8S + 8C) – 8C

The reason we subtract 8C in this equation is that the prelude uses pushq to save
each of the callee-saved registers, and pushq subtracts 8 from the rsp.

Figure 4.9 shows the x86 code generated for the running example (figure 4.1). To
demonstrate both the use of registers and the stack, we limit the register allocator
for this example to use just two registers: rcx (color 0) and rbx (color 1). In the
prelude of the main function, we push rbx onto the stack because it is a callee-saved
register and it was assigned to a variable by the register allocator. We subtract 8
from the rsp at the end of the prelude to reserve space for the one spilled variable.
After that subtraction, the rsp is aligned to 16 bytes.

Moving on to the program proper, we see how the registers were allocated. Vari-
ables v, x, y, and tmp_0 were assigned to rcx, and variables w and tmp_1 were
assigned to rbx. Variable z was spilled to the stack location -16(%rbp). Recall that
the prelude saved the callee-save register rbx onto the stack. The spilled variables
must be placed lower on the stack than the saved callee-save registers, so in this
case z is placed at -16(%rbp).

In the conclusion, we undo the work that was done in the prelude. We move the
stack pointer up by 8 bytes (the room for spilled variables), then pop the old values
of rbx and rbp (callee-saved registers), and finish with retq to return control to
the operating system.

60 Chapter 4

Exercise 4.6 Update the prelude_and_conclusion pass as described in this
section. Run the script to test the complete compiler for LVar that performs register
allocation.

4.7 Challenge: Move Biasing

This section describes an enhancement to the register allocator, called move biasing,
for students who are looking for an extra challenge.

To motivate the need for move biasing we return to the running example and
recall that in section 4.5 we were able to remove three trivial move instructions
from the running example. However, we could remove another trivial move if we
were able to allocate y and tmp_0 to the same register.

We say that two variables p and q are move related if they participate together in
a movq instruction, that is, movq p, q or movq q, p. Recall that we color variables
that are more saturated before coloring variables that are less saturated, and in the
case of equally saturated variables, we choose randomly. Now we break such ties by
giving preference to variables that have an available color that is the same as the
color of a move-related variable. Furthermore, when the register allocator chooses
a color for a variable, it should prefer a color that has already been used for a
move-related variable if one exists (and assuming that they do not interfere). This
preference should not override the preference for registers over stack locations. So,
this preference should be used as a tie breaker in choosing between two registers or
in choosing between two stack locations.

We recommend representing the move relationships in a graph, similarly to how
we represented interference. The following is the move graph for our example.

tmp_0

tmp_1

z x

y w v

Now we replay the graph coloring, pausing before the coloring of w. Recall the
following configuration. The most saturated vertices were tmp_1, w, and y.

tmp_0 : 0, {1}

tmp_1 : –, {0}

z : 1, {0} x : –, {}

y : –, {1} w : –, {1} v : –, {}

We have arbitrarily chosen to color w instead of tmp_1 or y. Note, however, that w is
not move related to any variables, whereas y and tmp_1 are move related to tmp_0
and z, respectively. If we instead choose y and color it 0, we can delete another

Register Allocation 61

move instruction.

tmp_0 : 0, {1}

tmp_1 : –, {0}

z : 1, {0} x : –, {}

y : 0, {1} w : –, {0, 1} v : –, {}

Now w is the most saturated, so we color it 2.

tmp_0 : 0, {1}

tmp_1 : –, {0}

z : 1, {0} x : –, {2}

y : 0, {1, 2} w : 2, {0, 1} v : –, {2}

To finish the coloring, x and v get 0 and tmp_1 gets 1.

tmp_0 : 0, {1}

tmp_1 : 1, {0}

z : 1, {0} x : 0, {2}

y : 0, {1, 2} w : 2, {0, 1} v : 0, {2}

So, we have the following assignment of variables to registers.

{v 7→ %rcx, w 7→ -16(%rbp), x 7→ %rcx, y 7→ %rcx,

z 7→ -8(%rbp), tmp_0 7→ %rcx, tmp_1 7→ -8(%rbp)}

We apply this register assignment to the running example shown next, on the left,
to obtain the code in the middle. The patch_instructions then deletes the trivial
moves to obtain the code on the right.

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, tmp_0
negq tmp_0
movq z, tmp_1
addq tmp_0, tmp_1
movq tmp_1, %rdi
callq _print_int

⇒

movq $1, %rcx
movq $42, -16(%rbp)
movq %rcx, %rcx
addq $7, %rcx
movq %rcx, %rcx
movq %rcx, -8(%rbp)
addq -16(%rbp), -8(%rbp)
movq %rcx, %rcx
negq %rcx
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -8(%rbp), %rdi
callq _print_int

⇒

movq $1, %rcx
movq $42, -16(%rbp)
addq $7, %rcx
movq %rcx, -8(%rbp)
movq -16(%rbp), %rax
addq %rax, -8(%rbp)
negq %rcx
addq %rcx, -8(%rbp)
movq -8(%rbp), %rdi
callq print_int

Exercise 4.7 Change your implementation of allocate_registers to take move
biasing into account. Create two new tests that include at least one opportunity
for move biasing, and visually inspect the output x86 programs to make sure that
your move biasing is working properly. Make sure that your compiler still passes
all the tests.

62 Chapter 4

4.8 Further Reading

Early register allocation algorithms were developed for Fortran compilers in the
1950s (Horwitz et al. 1966; Backus 1978). The use of graph coloring began in the
late 1970s and early 1980s with the work of Chaitin et al. (1981) on an optimizing
compiler for PL/I. The algorithm is based on the following observation of Kempe
(1879). If a graph G has a vertex v with degree lower than k, then G is k colorable if
the subgraph of G with v removed is also k colorable. To see why, suppose that the
subgraph is k colorable. At worst, the neighbors of v are assigned different colors,
but because there are fewer than k neighbors, there will be one or more colors left
over to use for coloring v in G.

The algorithm of Chaitin et al. (1981) removes a vertex v of degree less than k
from the graph and recursively colors the rest of the graph. Upon returning from the
recursion, it colors v with one of the available colors and returns. Chaitin (1982)
augments this algorithm to handle spilling as follows. If there are no vertices of
degree lower than k then pick a vertex at random, spill it, remove it from the
graph, and proceed recursively to color the rest of the graph.

Prior to coloring, Chaitin et al. (1981) merged variables that are move-related
and that don’t interfere with each other, in a process called coalescing. Although
coalescing decreases the number of moves, it can make the graph more difficult
to color. Briggs, Cooper, and Torczon (1994) proposed conservative coalescing in
which two variables are merged only if they have fewer than k neighbors of high
degree. George and Appel (1996) observes that conservative coalescing is sometimes
too conservative and made it more aggressive by iterating the coalescing with the
removal of low-degree vertices. Attacking the problem from a different angle, Briggs,
Cooper, and Torczon (1994) also proposed biased coloring, in which a variable is
assigned to the same color as another move-related variable if possible, as discussed
in section 4.7. The algorithm of Chaitin et al. (1981) and its successors iteratively
performs coalescing, graph coloring, and spill code insertion until all variables have
been assigned a location.

Briggs, Cooper, and Torczon (1994) observes that Chaitin (1982) sometimes
spilled variables that don’t have to be: a high-degree variable can be colorable
if many of its neighbors are assigned the same color. Briggs, Cooper, and Torczon
(1994) proposed optimistic coloring, in which a high-degree vertex is not immedi-
ately spilled. Instead the decision is deferred until after the recursive call, when it is
apparent whether there is an available color or not. We observe that this algorithm
is equivalent to the smallest-last ordering algorithm (Matula, Marble, and Isaacson
1972) if one takes the first k colors to be registers and the rest to be stack locations.
Earlier editions of the compiler course at Indiana University (Dybvig and Keep
2010) were based on the algorithm of Briggs, Cooper, and Torczon (1994).

The smallest-last ordering algorithm is one of many greedy coloring algorithms.
A greedy coloring algorithm visits all the vertices in a particular order and assigns
each one the first available color. An offline greedy algorithm chooses the ordering
up front, prior to assigning colors. The algorithm of Chaitin et al. (1981) should
be considered offline because the vertex ordering does not depend on the colors

Register Allocation 63

assigned. Other orderings are possible. For example, Chow and Hennessy (1984)
ordered variables according to an estimate of runtime cost.

An online greedy coloring algorithm uses information about the current assign-
ment of colors to influence the order in which the remaining vertices are colored.
The saturation-based algorithm described in this chapter is one such algorithm. We
choose to use saturation-based coloring because it is fun to introduce graph coloring
via sudoku!

A register allocator may choose to map each variable to just one location, as in
Chaitin et al. (1981), or it may choose to map a variable to one or more locations.
The latter can be achieved by live range splitting, where a variable is replaced by
several variables that each handle part of its live range (Chow and Hennessy 1984;
Briggs, Cooper, and Torczon 1994; Cooper and Simpson 1998).

Palsberg (2007) observes that many of the interference graphs that arise from
Java programs in the JoeQ compiler are chordal; that is, every cycle with four or
more edges has an edge that is not part of the cycle but that connects two vertices
on the cycle. Such graphs can be optimally colored by the greedy algorithm with a
vertex ordering determined by maximum cardinality search.

In situations in which compile time is of utmost importance, such as in just-in-
time compilers, graph coloring algorithms can be too expensive, and the linear scan
algorithm of Poletto and Sarkar (1999) may be more appropriate.

5 Booleans and Conditionals

The LVar language has only a single kind of value, the integers. In this chapter we
add a second kind of value, the Booleans, to create the LIf language. In Python,
the Boolean values true and false are written True and False, respectively. The
LIf language includes several operations that involve Booleans (and, or, not, ==,
<, etc.) and the if conditional expression and statement. With the addition of
if, programs can have nontrivial control flow, which impacts liveness analysis and
motivates a new pass named explicate_control. Also, because we now have two
kinds of values, we need to handle programs that apply an operation to the wrong
kind of value, such as not 1.

There are two language design options for such situations. One option is to signal
an error and the other is to provide a wider interpretation of the operation. Python
uses a mixture of these two options, depending on the operation and the kind of
value. For example, the result of not 1 is False because Python treats nonzero
integers as if they were True. On the other hand, 1[0] results in a runtime error
in Python because an “int object is not subscriptable.”

The MyPy type checker makes similar design choices as Python, except that
much of the error detection happens at compile time instead of runtime (Lehtosalo
2021). MyPy accepts not 1. But in the case of 1[0], MyPy reports a compile-time
error stating that a “value of type int is not indexable.”

The LIf language performs type checking during compilation just as MyPy. In
chapter 10 we study the alternative choice, that is, a dynamically typed language
like Python. The LIf language is a subset of MyPy; for some operations we are
more restrictive, for example, rejecting not 1. We keep the type checker for LIf

fairly simple because the focus of this book is on compilation and not type systems,
about which there are already several excellent books (Pierce 2002, 2004; Harper
2016; Pierce et al. 2018).

This chapter is organized as follows. We begin by defining the syntax and inter-
preter for the LIf language (section 5.1). We then introduce the idea of type checking
(aka semantic analysis) and define a type checker for LIf (section 5.2). The remain-
ing sections of this chapter discuss how Booleans and conditional control flow
require changes to the existing compiler passes and the addition of new ones. We
introduce the shrink pass to translate some operators into others, thereby reducing
the number of operators that need to be handled in later passes. The main event
of this chapter is the explicate_control pass that is responsible for translating

66 Chapter 5

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

LIf ::= stmt∗

Figure 5.1
The concrete syntax of LIf, extending LVar (figure 2.1) with Booleans and conditionals.

ifs into conditional gotos (section 5.7). Regarding register allocation, there is the
interesting question of how to handle conditional gotos during liveness analysis.

5.1 The LIf Language

Definitions of the concrete syntax and abstract syntax of the LIf language are shown
in figures 5.1 and 5.2, respectively. The LIf language includes all of LVar (shown in
gray), the Boolean literals True and False, the if expression, and the if statement.
We expand the set of operators to include

1. the logical operators and, or, and not,
2. the == and != operations for comparing integers or Booleans for equality, and
3. the <, <=, >, and >= operations for comparing integers.

Figure 5.3 shows the definition of the interpreter for LIf, which inherits from
the interpreter for LVar (figure 2.4). The constants True and False evaluate to the
corresponding Boolean values, behavior that is inherited from the interpreter for
LInt (figure 2.3). The conditional expression e2 if e1 else e3 evaluates expression
e1 and then either evaluates e2 or e3, depending on whether e1 produced True or
False. The logical operations and, or, and not behave according to propositional
logic. In addition, the and and or operations perform short-circuit evaluation. That
is, given the expression e1 and e2, the expression e2 is not evaluated if e1 evaluates
to False. Similarly, given e1 or e2, the expression e2 is not evaluated if e1 evaluates
to True.

5.2 Type Checking LIf Programs

It is helpful to think about type checking in two complementary ways. A type
checker predicts the type of value that will be produced by each expression in the

Booleans and Conditionals 67

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
LIf ::= Module(stmt∗)

Figure 5.2
The abstract syntax of LIf.

program. For LIf, we have just two types, int and bool. So, a type checker should
predict that

10 + -(12 + 20)

produces a value of type int, whereas

(not False) and True

produces a value of type bool.
A second way to think about type checking is that it enforces a set of rules about

which operators can be applied to which kinds of values. For example, our type
checker for LIf signals an error for the following expression:

not (10 + -(12 + 20))

The subexpression (10 + -(12 + 20)) has type int, but the type checker enforces
the rule that the argument of not must be an expression of type bool.

We implement type checking using classes and methods because they provide
the open recursion needed to reuse code as we extend the type checker in subse-
quent chapters, analogous to the use of classes and methods for the interpreters
(section 2.1.1).

We separate the type checker for the LVar subset into its own class, shown in
figure 5.5. The type checker for LIf is shown in figure 5.6, and it inherits from the
type checker for LVar. These type checkers are in the files type_check_Lvar.py
and type_check_Lif.py of the support code. Each type checker is a structurally
recursive function over the AST. Given an input expression e, the type checker
either signals an error or returns its type.

68 Chapter 5

class InterpLif(InterpLvar):
def interp_exp(self, e, env):

match e:
case IfExp(test, body, orelse):

if self.interp_exp(test, env):
return self.interp_exp(body, env)

else:
return self.interp_exp(orelse, env)

case UnaryOp(Not(), v):
return not self.interp_exp(v, env)

case BoolOp(And(), values):
if self.interp_exp(values[0], env):

return self.interp_exp(values[1], env)
else:

return False
case BoolOp(Or(), values):

if self.interp_exp(values[0], env):
return True

else:
return self.interp_exp(values[1], env)

case Compare(left, [cmp], [right]):
l = self.interp_exp(left, env)
r = self.interp_exp(right, env)
return self.interp_cmp(cmp)(l, r)

case _:
return super().interp_exp(e, env)

def interp_stmt(self, s, env, cont):
match s:

case If(test, body, orelse):
match self.interp_exp(test, env):

case True:
return self.interp_stmts(body + cont, env)

case False:
return self.interp_stmts(orelse + cont, env)

case _:
return super().interp_stmt(s, env, cont)

...

Figure 5.3
Interpreter for the LIf language. (See figure 5.4 for interp_cmp.)

Next we discuss the type_check_exp function of LVar shown in figure 5.5. The
type of an integer constant is int. To handle variables, the type checker uses the
environment env to map variables to types. Consider the case for assignment.
We type check the initializing expression to obtain its type t. If the variable id is
already in the environment because there was a prior assignment, we check that
this initializer has the same type as the prior one. If this is the first assignment to

Booleans and Conditionals 69

class InterpLif(InterpLvar):
...
def interp_cmp(self, cmp):

match cmp:
case Lt():

return lambda x, y: x < y
case LtE():

return lambda x, y: x <= y
case Gt():

return lambda x, y: x > y
case GtE():

return lambda x, y: x >= y
case Eq():

return lambda x, y: x == y
case NotEq():

return lambda x, y: x != y

Figure 5.4
Interpreter for the comparison operators in the LIf language.

the variable, we associate type t with the variable id in the environment. Thus,
when the type checker encounters a use of variable x, it can find its type in the
environment. Regarding addition, subtraction, and negation, we recursively analyze
the arguments, check that they have type int, and return int.

The auxiliary method check_type_equal triggers an error if the two types are
not equal.

The definition of the type checker for LIf is shown in figure 5.6. The type of a
Boolean constant is bool. The logical not operator requires its argument to be a
bool and produces a bool. Similarly for the logical and and logical or operators.
The equality operator requires the two arguments to have the same type, and
therefore we handle it separately from the other operators. The other comparisons
(less-than, etc.) require their arguments to be of type int, and they produce a bool.
The condition of an if must be of bool type, and the two branches must have the
same type.

Exercise 5.1 Create ten new test programs in LIf. Half the programs should have a
type error. The other half of the test programs should not have type errors. Run
the test script to check that these test programs type check as expected.

70 Chapter 5

class TypeCheckLvar:
def check_type_equal(self, t1, t2, e):

if t1 != t2:
msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
raise Exception(msg)

def type_check_exp(self, e, env):
match e:

case BinOp(left, (Add() | Sub()), right):
l = self.type_check_exp(left, env)
check_type_equal(l, int, left)
r = self.type_check_exp(right, env)
check_type_equal(r, int, right)
return int

case UnaryOp(USub(), v):
t = self.type_check_exp(v, env)
check_type_equal(t, int, v)
return int

case Name(id):
return env[id]

case Constant(value) if isinstance(value, int):
return int

case Call(Name('input_int'), []):
return int

def type_check_stmts(self, ss, env):
if len(ss) == 0:

return
match ss[0]:

case Assign([Name(id)], value):
t = self.type_check_exp(value, env)
if id in env:

check_type_equal(env[id], t, value)
else:

env[id] = t
return self.type_check_stmts(ss[1:], env)

case Expr(Call(Name('print'), [arg])):
t = self.type_check_exp(arg, env)
check_type_equal(t, int, arg)
return self.type_check_stmts(ss[1:], env)

case Expr(value):
self.type_check_exp(value, env)
return self.type_check_stmts(ss[1:], env)

def type_check_P(self, p):
match p:

case Module(body):
self.type_check_stmts(body, {})

Figure 5.5
Type checker for the LVar language.

Booleans and Conditionals 71

class TypeCheckLif(TypeCheckLvar):
def type_check_exp(self, e, env):

match e:
case Constant(value) if isinstance(value, bool):

return bool
case BinOp(left, Sub(), right):

l = self.type_check_exp(left, env); check_type_equal(l, int, left)
r = self.type_check_exp(right, env); check_type_equal(r, int, right)
return int

case UnaryOp(Not(), v):
t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
return bool

case BoolOp(op, values):
left = values[0] ; right = values[1]
l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
return bool

case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
or isinstance(cmp, NotEq):

l = self.type_check_exp(left, env)
r = self.type_check_exp(right, env)
check_type_equal(l, r, e)
return bool

case Compare(left, [cmp], [right]):
l = self.type_check_exp(left, env); check_type_equal(l, int, left)
r = self.type_check_exp(right, env); check_type_equal(r, int, right)
return bool

case IfExp(test, body, orelse):
t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
b = self.type_check_exp(body, env)
o = self.type_check_exp(orelse, env)
check_type_equal(b, o, e)
return b

case _:
return super().type_check_exp(e, env)

def type_check_stmts(self, ss, env):
if len(ss) == 0:

return
match ss[0]:

case If(test, body, orelse):
t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
b = self.type_check_stmts(body, env)
o = self.type_check_stmts(orelse, env)
check_type_equal(b, o, ss[0])
return self.type_check_stmts(ss[1:], env)

case _:
return super().type_check_stmts(ss, env)

Figure 5.6
Type checker for the LIf language.

72 Chapter 5

atm ::= int | var | bool
exp ::= atm | input_int() | - atm | atm + atm | atm - atm | atm cmp atm
stmt ::= print(atm) | exp | var = exp
tail ::= return exp | goto label

| if atm cmp atm: goto label else: goto label
CIf ::= (label: stmt∗ tail) …

Figure 5.7
The concrete syntax of the CIf intermediate language.

atm ::= Constant(int) | Name(var) | Constant(bool)
exp ::= atm | Call(Name('input_int'),[]) | UnaryOp(USub(),atm)

| BinOp(atm,Sub(),atm) | BinOp(atm,Add(),atm)
| Compare(atm,[cmp],[atm])

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

tail ::= Return(exp) | Goto(label)
| If(Compare(atm,[cmp],[atm]), [Goto(label)], [Goto(label)])

CIf ::= CProgram({label: [stmt, … , tail], … })

Figure 5.8
The abstract syntax of CIf.

5.3 The CIf Intermediate Language

The output of explicate_control is a language similar to the C lan-
guage (Kernighan and Ritchie 1988) in that it has labels and goto statements,
so we name it CIf. The CIf language supports most of the operators in LIf, but the
arguments of operators are restricted to atomic expressions. The CIf language does
not include if expressions, but it does include a restricted form of if statement.
The condition must be a comparison, and the two branches may contain only goto
statements. These restrictions make it easier to translate if statements to x86.
The CIf language also adds a return statement to finish the program with a speci-
fied value. The CProgram construct contains a dictionary mapping labels to lists of
statements that end with a tail statement, which is either a return statement, a
goto, or an if statement. A goto transfers control to the sequence of statements
associated with its label. Figure 5.7 shows the concrete syntax for CIf, and figure 5.8
shows its abstract syntax.

5.4 The x86If Language

To implement Booleans, the new logical operations, the comparison operations, and
the if expression and statement, we delve further into the x86 language. Figures 5.9

Booleans and Conditionals 73

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |
label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= %bytereg
cc ::= e | ne | l | le | g | ge
instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label
x86If ::= .globl main

main: instr …

Figure 5.9
The concrete syntax of x86If (extends x86Int of figure 2.5).

and 5.10 present the definitions of the concrete and abstract syntax for the x86If

subset of x86, which includes instructions for logical operations, comparisons, and
jumps. The abstract syntax for an x86If program contains a dictionary mapping
labels to sequences of instructions, each of which we refer to as a basic block.

As x86 does not provide direct support for Booleans, we take the usual approach
of encoding Booleans as integers, with True as 1 and False as 0.

Furthermore, x86 does not provide an instruction that directly implements logical
negation (not in LIf and CIf). However, the xorq instruction can be used to encode
not. The xorq instruction takes two arguments, performs a pairwise exclusive-or
(XOR) operation on each bit of its arguments, and writes the results into its second
argument. Recall the following truth table for exclusive-or:

0 1
0 0 1
1 1 0

For example, applying XOR to each bit of the binary numbers 0011 and 0101 yields
0110. Notice that in the row of the table for the bit 1, the result is the opposite of
the second bit. Thus, the not operation can be implemented by xorq with 1 as the
first argument, as follows, where arg is the translation of atm to x86:

var = not atm ⇒ movq arg,var
xorq $1,var

Next we consider the x86 instructions that are relevant for compiling the com-
parison operations. The cmpq instruction compares its two arguments to determine
whether one argument is less than, equal to, or greater than the other argument.
The cmpq instruction is unusual regarding the order of its arguments and where

74 Chapter 5

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= Immediate(int) | Reg(reg) | Deref(reg,int)
instr ::= Instr('addq',[arg,arg]) | Instr('subq',[arg,arg])

| Instr('negq',[arg]) | Instr('movq',[arg,arg])
| Instr('pushq',[arg]) | Instr('popq',[arg])
| Callq(label,int) | Retq() | Jump(label)

block ::= instr+

bytereg ::= 'ah' | 'al' | 'bh' | 'bl' | 'ch' | 'cl' | 'dh' | 'dl'
arg ::= Immediate(int) | Reg(reg) | Deref(reg,int) | ByteReg(bytereg)
cc ::= 'e' | 'ne' | 'l' | 'le' | 'g' | 'ge'
instr ::= Jump(label)

| Instr('xorq',[arg,arg]) | Instr('cmpq',[arg,arg])
| Instr('set'+cc,[arg]) | Instr('movzbq',[arg,arg])
| JumpIf(cc,label)

x86If ::= X86Program({label : block, … })

Figure 5.10
The abstract syntax of x86If (extends x86Int shown in figure 2.9).

the result is placed. The argument order is backward: if you want to test whether
x < y, then write cmpq y, x. The result of cmpq is placed in the special EFLAGS
register. This register cannot be accessed directly, but it can be queried by a num-
ber of instructions, including the set instruction. The instruction setcc d puts a
1 or 0 into the destination d, depending on whether the contents of the EFLAGS
register matches the condition code cc: e for equal, l for less, le for less-or-equal,
g for greater, ge for greater-or-equal. The set instruction has a quirk in that its
destination argument must be a single-byte register, such as al (l for lower bits)
or ah (h for higher bits), which are part of the rax register. Thankfully, the movzbq
instruction can be used to move from a single-byte register to a normal 64-bit reg-
ister. The abstract syntax for the set instruction differs from the concrete syntax
in that it separates the instruction name from the condition code.

The x86 instructions for jumping are relevant to the compilation of if expres-
sions. The instruction jmp label updates the program counter to the address of the
instruction after the specified label. The instruction jcc label updates the program
counter to point to the instruction after label, depending on whether the result in
the EFLAGS register matches the condition code cc; otherwise, the jump instruc-
tion falls through to the next instruction. Like the abstract syntax for set, the
abstract syntax for conditional jump separates the instruction name from the con-
dition code. For example, JumpIf('le' , 'foo') corresponds to jle foo. Because
the conditional jump instruction relies on the EFLAGS register, it is common for
it to be immediately preceded by a cmpq instruction to set the EFLAGS register.

Booleans and Conditionals 75

5.5 Shrink the LIf Language

The shrink pass translates some of the language features into other features,
thereby reducing the kinds of expressions in the language. For example, the short-
circuiting nature of the and and or logical operators can be expressed using if as
follows.

e1 and e2 ⇒ e2 if e1 else False

e1 or e2 ⇒ True if e1 else e2

By performing these translations in the front end of the compiler, subsequent passes
of the compiler can be shorter.

On the other hand, translations sometimes reduce the efficiency of the generated
code by increasing the number of instructions. For example, expressing subtraction
in terms of addition and negation

e1 - e2 ⇒ e1 + - e2

produces code with two x86 instructions (negq and addq) instead of just one (subq).
Thus, we do not recommend translating subtraction into addition and negation.

Exercise 5.2 Implement the pass shrink to remove and and or from the language
by translating them to if expressions in LIf. Create four test programs that involve
these operators. Run the script to test your compiler on all the test programs.

5.6 Remove Complex Operands

The output language of remove_complex_operands is Lmon
if (figure 5.11), the

monadic normal form of LIf. A Boolean constant is an atomic expression, but the
if expression is not. All three subexpressions of an if are allowed to be complex
expressions, but the operands of the not operator and comparison operators must
be atomic. We add a new language form, the Begin expression, to aid in the trans-
lation of if expressions. When we recursively process the two branches of the if,
we generate temporary variables and their initializing expressions. However, these
expressions may contain side effects and should be executed only when the condi-
tion of the if is true (for the “then” branch) or false (for the “else” branch). The
Begin expression provides a way to initialize the temporary variables within the
two branches of the if expression. In general, the Begin(ss, e) form executes the
statements ss and then returns the result of expression e.

Add cases to the rco_exp and rco_atom functions for the new features in LIf. In
recursively processing subexpressions, recall that you should invoke rco_atom when
the output needs to be an atm (as specified in the grammar for Lmon

if) and invoke
rco_exp when the output should be exp. Regarding if, it is particularly important
not to replace its condition with a temporary variable, because that would interfere
with the generation of high-quality output in the upcoming explicate_control
pass.

76 Chapter 5

atm ::= Constant(int) | Name(var)
exp ::= atm | Call(Name('input_int'),[])

| UnaryOp(USub(),atm) | BinOp(atm,Add(),atm)
| BinOp(atm,Sub(),atm)

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

atm ::= Constant(bool)
exp ::= UnaryOp(Not(),exp) | Compare(atm,[cmp],[atm])

| IfExp(exp,exp,exp) | Begin(stmt∗, exp)
stmt ::= If(exp, stmt∗, stmt∗)
Lmon

if ::= Module(stmt∗)

Figure 5.11
Lmon

if is LIf in monadic normal form (extends Lmon
Var in figure 2.11).

Exercise 5.3 Add cases for Boolean constants and if to the rco_atom and rco_exp
functions. Create three new LIf programs that exercise the interesting code in this
pass.

5.7 Explicate Control

The explicate_control pass translates from LIf to CIf. The main challenge to
overcome is that the condition of an if can be an arbitrary expression in LIf,
whereas in CIf the condition must be a comparison.

As a motivating example, consider the following program that has an if
expression nested in the condition of another if:1

x = input_int()
y = input_int()
print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)

The naive way to compile if and the comparison operations would be to handle
each of them in isolation, regardless of their context. Each comparison would be
translated into a cmpq instruction followed by several instructions to move the result
from the EFLAGS register into a general purpose register or stack location. Each
if would be translated into a cmpq instruction followed by a conditional jump. The
generated code for the inner if in this example would be as follows:

1. Programmers rarely write nested if expressions, but they do write nested expressions involving
logical and, which, as we have seen, translates to if.

Booleans and Conditionals 77

cmpq $1, x
setl %al
movzbq %al, tmp
cmpq $1, tmp
je then_branch_1
jmp else_branch_1

Notice that the three instructions starting with setl are redundant; the conditional
jump could come immediately after the first cmpq.

Our goal is to compile if expressions so that the relevant comparison instruction
appears directly before the conditional jump. For example, we want to generate the
following code for the inner if:

cmpq $1, x
jl then_branch_1
jmp else_branch_1

One way to achieve this goal is to reorganize the code at the level of LIf, pushing
the outer if inside the inner one, yielding the following code:

x = input_int()
y = input_int()
print(((y + 2) if x == 0 else (y + 10)) \

if (x < 1) \
else ((y + 2) if (x == 2) else (y + 10)))

Unfortunately, this approach duplicates the two branches from the outer if, and a
compiler must never duplicate code! After all, the two branches could be very large
expressions.

How can we apply this transformation without duplicating code? In other words,
how can two different parts of a program refer to one piece of code? The answer is
that we must move away from abstract syntax trees and instead use graphs. At the
level of x86 assembly, this is straightforward because we can label the code for each
branch and insert jumps in all the places that need to execute the branch. In this
way, jump instructions are edges in the graph and the basic blocks are the nodes.
Likewise, our language CIf provides the ability to label a sequence of statements and
to jump to a label via goto.

As a preview of what explicate_control will do, figure 5.12 shows the output
of explicate_control on this example. Note how the condition of every if is a
comparison operation and that we have not duplicated any code but instead have
used labels and goto to enable sharing of code.

We recommend implementing explicate_control using the following four
auxiliary functions.

explicate_effect generates code for expressions as statements, so their result is
ignored and only their side effects matter.

78 Chapter 5

x = input_int()
y = input_int()
print(y + 2 \

if (x == 0 \
if x < 1 \
else x == 2) \

else y + 10)

⇒

start:
x = input_int()
y = input_int()
if x < 1:

goto block_6
else:

goto block_7
block_6:

if x == 0:
goto block_4

else:
goto block_5

block_7:
if x == 2:

goto block_4
else:

goto block_5
block_4:

tmp.82 = (y + 2)
goto block_3

block_5:
tmp.82 = (y + 10)
goto block_3

block_3:
print(tmp.82)
return 0

Figure 5.12
Translation from LIf to CIf via the explicate_control.

explicate_assign generates code for expressions on the right-hand side of an
assignment.

explicate_pred generates code for an if expression or statement by analyzing
the condition expression.

explicate_stmt generates code for statements.

These four functions should build the dictionary of basic blocks. The following
auxiliary function create_block is used to create a new basic block from a list of
statements. If the list just contains a goto, then create_block returns the list.
Otherwise create_block creates a new basic block and returns a goto to its label.

Booleans and Conditionals 79

def create_block(stmts, basic_blocks):
match stmts:

case [Goto(l)]:
return stmts

case _:
label = label_name(generate_name('block'))
basic_blocks[label] = stmts
return [Goto(label)]

Figure 5.13 provides a skeleton for the explicate_control pass.
The explicate_effect function has three parameters: (1) the expression to be

compiled; (2) the already-compiled code for this expression’s continuation, that is,
the list of statements that should execute after this expression; and (3) the dictio-
nary of generated basic blocks. The explicate_effect function returns a list of CIf

statements and it may add to the dictionary of basic blocks. Let’s consider a few of
the cases for the expression to be compiled. If the expression to be compiled is a con-
stant, then it can be discarded because it has no side effects. If it’s a input_int(),
then it has a side effect and should be preserved. So the expression should be trans-
lated into a statement using the Expr AST class. If the expression to be compiled is
an if expression, we translate the two branches using explicate_effect and then
translate the condition expression using explicate_pred, which generates code for
the entire if.

The explicate_assign function has four parameters: (1) the right-hand side of
the assignment, (2) the left-hand side of the assignment (the variable), (3) the con-
tinuation, and (4) the dictionary of basic blocks. The explicate_assign function
returns a list of CIf statements, and it may add to the dictionary of basic blocks.

When the right-hand side is an if expression, there is some work to do. In
particular, the two branches should be translated using explicate_assign, and
the condition expression should be translated using explicate_pred. Otherwise we
can simply generate an assignment statement, with the given left- and right-hand
sides, concatenated with its continuation.

The explicate_pred function has four parameters: (1) the condition expression,
(2) the generated statements for the then branch, (3) the generated statements
for the else branch, and (4) the dictionary of basic blocks. The explicate_pred
function returns a list of statements, and it adds to the dictionary of basic blocks.

Consider the case for comparison operators. We translate the comparison to an if
statement whose branches are goto statements created by applying create_block
to the thn and els parameters. Let us illustrate this translation by returning
to the program with an if expression in tail position, shown next. We invoke
explicate_pred on its condition x == 0.

x = input_int()
42 if x == 0 else 777

The two branches 42 and 777 were already compiled to return statements, from
which we now create the following blocks:

80 Chapter 5

def explicate_effect(e, cont, basic_blocks):
match e:

case IfExp(test, body, orelse):
...

case Call(func, args):
...

case Begin(body, result):
...

case _:
...

def explicate_assign(rhs, lhs, cont, basic_blocks):
match rhs:

case IfExp(test, body, orelse):
...

case Begin(body, result):
...

case _:
return [Assign([lhs], rhs)] + cont

def explicate_pred(cnd, thn, els, basic_blocks):
match cnd:

case Compare(left, [op], [right]):
goto_thn = create_block(thn, basic_blocks)
goto_els = create_block(els, basic_blocks)
return [If(cnd, goto_thn, goto_els)]

case Constant(True):
return thn;

case Constant(False):
return els;

case UnaryOp(Not(), operand):
...

case IfExp(test, body, orelse):
...

case Begin(body, result):
...

case _:
return [If(Compare(cnd, [Eq()], [Constant(False)]),

create_block(els, basic_blocks),
create_block(thn, basic_blocks))]

def explicate_stmt(s, cont, basic_blocks):
match s:

case Assign([lhs], rhs):
return explicate_assign(rhs, lhs, cont, basic_blocks)

case Expr(value):
return explicate_effect(value, cont, basic_blocks)

case If(test, body, orelse):
...

def explicate_control(p):
match p:

case Module(body):
new_body = [Return(Constant(0))]
basic_blocks = {}
for s in reversed(body):

new_body = explicate_stmt(s, new_body, basic_blocks)
basic_blocks[label_name('start')] = new_body
return CProgram(basic_blocks)

Figure 5.13
Skeleton for the explicate_control pass.

Booleans and Conditionals 81

block_1:
return 42;

block_2:
return 777;

After that, explicate_pred compiles the comparison x == 0 to the following if
statement:

if x == 0:
goto block_1;

else
goto block_2;

Next consider the case for Boolean constants. We perform a kind of partial eval-
uation and output either the thn or els parameter, depending on whether the
constant is True or False. Let us illustrate this with the following program:

42 if True else 777

Again, the two branches 42 and 777 were compiled to return statements, so
explicate_pred compiles the constant True to the code for the then branch.

return 42;

This case demonstrates that we sometimes discard the thn or els blocks that are
input to explicate_pred.

The case for if expressions in explicate_pred is particularly illuminating
because it deals with the challenges discussed previously regarding nested if expres-
sions (figure 5.12). The body and orelse branches of the if inherit their context
from the current one, that is, predicate context. So, you should recursively apply
explicate_pred to the body and orelse branches. For both of those recursive
calls, pass thn and els as the extra parameters. Thus, thn and els may be used
twice, once inside each recursive call. As discussed previously, to avoid duplicating
code, we need to add them to the dictionary of basic blocks so that we can instead
refer to them by name and execute them with a goto.

The last of the auxiliary functions is explicate_stmt. It has three parame-
ters: (1) the statement to be compiled, (2) the code for its continuation, and (3)
the dictionary of basic blocks. The explicate_stmt returns a list of statements,
and it may add to the dictionary of basic blocks. The cases for assignment and
an expression-statement are given in full in the skeleton code: they simply dis-
patch to explicate_assign and explicate_effect, respectively. The case for if
statements is not given; it is similar to the case for if expressions.

The explicate_control function itself is given in figure 5.13. It applies
explicate_stmt to each statement in the program, from back to front. Thus, the
result so far, stored in new_body, can be used as the continuation parameter in the
next call to explicate_stmt. The new_body is initialized to a Return statement.
Once complete, we add the new_body to the dictionary of basic blocks, labeling it
the “start” block.

82 Chapter 5

Figure 5.12 shows the output of the remove_complex_operands pass and
then the explicate_control pass on the example program. We walk through
the output program. Following the order of evaluation in the output of
remove_complex_operands, we first have two calls to input_int() and then
the comparison x < 1 in the predicate of the inner if. In the output of
explicate_control, in the block labeled start, two assignment statements are
followed by an if statement that branches to block_6 or block_7. The blocks
associated with those labels contain the translations of the code x == 0 and x ==
2, respectively. In particular, we start block_6 with the comparison x == 0 and
then branch to block_4 or block_5, which correspond to the two branches of the
outer if, that is, y + 2 and y + 10. The story for block_7 is similar to that of
block_6. The block_3 is the translation of the print statement.

Exercise 5.4 Implement explicate_control pass with its four auxiliary functions.
Create test cases that exercise all the new cases in the code for this pass.

5.8 Select Instructions

The select_instructions pass translates CIf to x86Var
If . We begin with the Boolean

constants. As previously discussed, we encode them as integers.

True ⇒ 1 False ⇒ 0

For translating statements, we discuss some of the cases. The not operation can
be implemented in terms of xorq, as we discussed at the beginning of this section.
Given an assignment, if the left-hand-side variable is the same as the argument of
not, then just the xorq instruction suffices.

var = not var ⇒ xorq $1, var

Otherwise, a movq is needed to adapt to the update-in-place semantics of x86. In
the following translation, let arg be the result of translating atm to x86.

var = not atm ⇒ movq arg, var
xorq $1, var

Next consider the cases for equality comparisons. Translating this operation to
x86 is slightly involved due to the unusual nature of the cmpq instruction that
we discussed in section 5.4. We recommend translating an assignment with an
equality on the right-hand side into a sequence of three instructions. Let arg1 be
the translation of atm1 to x86 and likewise for arg2.

var = (atm1 == atm2) ⇒
cmpq arg2, arg1
sete %al
movzbq %al, var

The translations for the other comparison operators are similar to this but use
different condition codes for the set instruction.

Booleans and Conditionals 83

A goto statement becomes a jump instruction.

goto ℓ ⇒ jmp ℓ

An if statement becomes a compare instruction followed by a conditional jump (for
the then branch), and the fall-through is to a regular jump (for the else branch).
Again, arg1 and arg2 are the translations of atm1 and atm2, respectively.

if atm1 == atm2:
goto ℓ1

else:
goto ℓ2

⇒
cmpq arg2, arg1
je ℓ1

jmp ℓ2

Again, the translations for the other comparison operators are similar to this but
use different condition codes for the conditional jump instruction.

Regarding the return statement, we recommend treating it as an assignment to
the rax register followed by a jump to the conclusion of the main function. (See
section 5.11 for more about the conclusion of main.)

Exercise 5.5 Expand your select_instructions pass to handle the new features
of the CIf language. Run the script to test your compiler on all the test programs.

5.9 Register Allocation

The changes required for compiling LIf affect liveness analysis, building the inter-
ference graph, and assigning homes, but the graph coloring algorithm itself does
not change.

5.9.1 Liveness Analysis
Recall that for LVar we implemented liveness analysis for a single basic block
(section 4.2). With the addition of if expressions to LIf, explicate_control
produces many basic blocks.

The first question is, in what order should we process the basic blocks? Recall
that to perform liveness analysis on a basic block we need to know the live-after
set for the last instruction in the block. If a basic block has no successors (i.e.,
contains no jumps to other blocks), then it has an empty live-after set and we
can immediately apply liveness analysis to it. If a basic block has some successors,
then we need to complete liveness analysis on those blocks first. These ordering
constraints are the reverse of a topological order on a graph representation of the
program. In particular, the control flow graph (CFG) (Allen 1970) of a program has
a node for each basic block and an edge for each jump from one block to another.
It is straightforward to generate a CFG from the dictionary of basic blocks. One
then transposes the CFG and applies the topological sort algorithm. We provide
implementations of topological_sort and transpose in the file graph.py of the
support code. As an aside, a topological ordering is only guaranteed to exist if the
graph does not contain any cycles. This is the case for the control-flow graphs that
we generate from LIf programs. However, in chapter 6 we add loops to create LWhile

and learn how to handle cycles in the control-flow graph.

84 Chapter 5

The next question is how to analyze jump instructions. The locations that are
live before a jmp should be the locations in Lbefore at the target of the jump. So we
recommend maintaining a dictionary named live_before_block that maps each
label to the Lbefore for the first instruction in its block. After performing liveness
analysis on each block, we take the live-before set of its first instruction and associate
that with the block’s label in the live_before_block dictionary.

In x86Var
If we also have the conditional jump JumpIf(cc,label) to deal with.

Liveness analysis for this instruction is particularly interesting because during com-
pilation, we do not know which way a conditional jump will go. Thus we do not
know whether to use the live-before set for the block associated with the label or
the live-before set for the following instruction. So we use both, by taking the union
of the live-before sets from the following instruction and from the mapping for label
in live_before_block.

The auxiliary functions for computing the variables in an instruction’s argument
and for computing the variables read-from (R) or written-to (W) by an instruction
need to be updated to handle the new kinds of arguments and instructions in x86Var

If .

Exercise 5.6 Update the uncover_live function to perform liveness analysis, in
reverse topological order, on all the basic blocks in the program.

5.9.2 Build the Interference Graph
Many of the new instructions in x86Var

If can be handled in the same way as the
instructions in x86Var. Some instructions, such as the movzbq instruction, require
special care, similar to the movq instruction. Refer to rule number 1 in section 4.3.

Exercise 5.7 Update the build_interference pass for x86Var
If .

5.10 Patch Instructions

The new instructions cmpq and movzbq have some special restrictions that need to
be handled in the patch_instructions pass. The second argument of the cmpq
instruction must not be an immediate value (such as an integer). So, if you are
comparing two immediates, we recommend inserting a movq instruction to put
the second argument in rax. On the other hand, if you implemented the partial
evaluator (section 2.9), you could update it for LIf and then this situation would
not arise. As usual, cmpq may have at most one memory reference. The second
argument of the movzbq must be a register.

Exercise 5.8 Update patch_instructions pass for x86Var
If .

5.11 Generate Prelude and Conclusion

The generation of the main function with its prelude and conclusion must change
to accommodate how the program now consists of one or more basic blocks. After
the prelude in main, jump to the start block. Place the conclusion in a basic block
labeled with conclusion.

Booleans and Conditionals 85

Figure 5.14 shows a simple example program in LIf translated to x86, showing the
results of explicate_control, select_instructions, and the final x86 assembly.

Figure 5.15 lists all the passes needed for the compilation of LIf.

5.12 Challenge: Optimize Blocks and Remove Jumps

We discuss two challenges that involve optimizing the control-flow of the program.

5.12.1 Optimize Blocks
The algorithm for explicate_control that we discussed in section 5.7 sometimes
generates too many blocks. It creates a block whenever a continuation might get
used more than once (for example, whenever the cont parameter is passed into two
or more recursive calls). However, some continuation arguments may not be used
at all. Consider the case for the constant True in explicate_pred, in which we
discard the els continuation. The following example program falls into this case,
and it creates the unused block_9.

if True:
print(0)

else:
x = 1 if False else 2
print(x)

⇒

start:
print(0)
goto block_8

block_9:
print(x)
goto block_8

block_8:
return 0

The question is, how can we decide whether to create a basic block? Lazy evalua-
tion (Friedman and Wise 1976) can solve this conundrum by delaying the creation
of a basic block until the point in time at which we know that it will be used.
Although Python does not provide direct support for lazy evaluation, it is easy to
mimic. We delay the evaluation of a computation by wrapping it inside a func-
tion with no parameters. We force its evaluation by calling the function. However,
we might need to force multiple times, so we store the result of calling the func-
tion instead of recomputing it each time. The following Promise class handles this
memoization process.

@dataclass
class Promise:

fun : typing.Any
cache : list[stmt] = None
def force(self):

if self.cache is None:
self.cache = self.fun(); return self.cache

else:
return self.cache

However, in some cases of explicate_pred, we return a list of statements, and in
other cases we return a function that computes a list of statements. To uniformly
deal with both regular data and promises, we define the following force function

86 Chapter 5

print(42 if input_int() == 1 else 0)

⇓

start:
tmp_0 = input_int()
if tmp_0 == 1:

goto block_3
else:

goto block_4
block_3:

tmp_1 = 42
goto block_2

block_4:
tmp_1 = 0
goto block_2

block_2:
print(tmp_1)
return 0

⇓

start:
callq read_int
movq %rax, tmp_0
cmpq 1, tmp_0
je block_3
jmp block_4

block_3:
movq 42, tmp_1
jmp block_2

block_4:
movq 0, tmp_1
jmp block_2

block_2:
movq tmp_1, %rdi
callq print_int
movq 0, %rax
jmp conclusion

⇒

.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $0, %rsp
jmp start

start:
callq read_int
movq %rax, %rcx
cmpq $1, %rcx
je block_3
jmp block_4

block_3:
movq $42, %rcx
jmp block_2

block_4:
movq $0, %rcx
jmp block_2

block_2:
movq %rcx, %rdi
callq print_int
movq $0, %rax
jmp conclusion

conclusion:
addq $0, %rsp
popq %rbp
retq

Figure 5.14
Example compilation of an if expression to x86, showing the results of explicate_control,
select_instructions, and the final x86 assembly code.

Booleans and Conditionals 87

LIf LIf Lmon
if

CIf

x86Var
If x86Var

If x86If x86If

shrink remove_complex_operands

explicate_control

select_instructions

assign_homes

patch_instructions

prelude_and_conclusion

Figure 5.15
Diagram of the passes for LIf, a language with conditionals.

that checks whether its input is delayed (i.e., whether it is a Promise) and then
either (1) forces the promise or (2) returns the input.

def force(promise):
if isinstance(promise, Promise):

return promise.force()
else:

return promise

We use promises for the input and output of the functions explicate_pred,
explicate_assign, explicate_effect, and explicate_stmt. So, instead of tak-
ing and returning lists of statements, they take and return promises. Furthermore,
when we come to a situation in which a continuation might be used more than
once, as in the case for if in explicate_pred, we create a delayed computation
that creates a basic block for each continuation (if there is not already one) and
then returns a goto statement to that basic block. When we come to a situation in
which we have a promise but need an actual piece of code, for example, to create a
larger piece of code with a constructor such as Seq, then insert a call to force.

Here is the new version of the create_block auxiliary function that delays the
creation of the new basic block.

def create_block(promise, basic_blocks):
def delay():

stmts = force(promise)
match stmts:

case [Goto(l)]:
return [Goto(l)]

case _:
label = label_name(generate_name('block'))
basic_blocks[label] = stmts
return [Goto(label)]

return Promise(delay)

88 Chapter 5

if True:
print(0)

else:
x = 1 if False else 2
print(x)

⇒

start:
print(0)
goto block_4

block_4:
return 0

Figure 5.16
Translation from LIf to CIf via the improved explicate_control.

Figure 5.16 shows the output of improved explicate_control on this example.
As you can see, the number of basic blocks has been reduced from three blocks to
two blocks.

Exercise 5.9 Implement the improvements to the explicate_control pass. Check
that it removes trivial blocks in a few example programs. Then check that your
compiler still passes all your tests.

5.12.2 Remove Jumps
There is an opportunity for removing jumps that is apparent in the example of
figure 5.14. The start block ends with a jump to block_4, and there are no other
jumps to block_4 in the rest of the program. In this situation we can avoid the run-
time overhead of this jump by merging block_4 into the preceding block, which in
this case is the start block. Figure 5.17 shows the output of allocate_registers
on the left and the result of this optimization on the right.

Exercise 5.10 Implement a pass named remove_jumps that merges basic blocks
into their preceding basic block, when there is only one preceding block. The pass
should translate from x86Var

If to x86Var
If . Run the script to test your compiler. Check

that remove_jumps accomplishes the goal of merging basic blocks on several test
programs.

5.13 Further Reading

The algorithm for explicate_control is based on the expose-basic-blocks pass
in the course notes of Dybvig and Keep (2010). It has similarities to the algorithms
of Danvy (2003) and Appel and Palsberg (2003), and is related to translations into
continuation passing style (van Wijngaarden 1966; Fischer 1972; Reynolds 1972;
Plotkin 1975; Friedman, Wand, and Haynes 2001). The treatment of conditionals in
the explicate_control pass is similar to short-cut Boolean evaluation (Logothetis
and Mishra 1981; Aho et al. 2006; Clarke 1989; Danvy 2003) and the case-of-case
transformation (Peyton Jones and Santos 1998).

Booleans and Conditionals 89

start:
callq read_int
movq %rax, tmp_0
cmpq 1, tmp_0
je block_3
jmp block_4

block_3:
movq 42, tmp_1
jmp block_2

block_4:
movq 0, tmp_1
jmp block_2

block_2:
movq tmp_1, %rdi
callq print_int
movq 0, %rax
jmp conclusion

⇒

start:
callq read_int
movq %rax, tmp_0
cmpq 1, tmp_0
je block_3
movq 0, tmp_1
jmp block_2

block_3:
movq 42, tmp_1
jmp block_2

block_2:
movq tmp_1, %rdi
callq print_int
movq 0, %rax
jmp conclusion

Figure 5.17
Merging basic blocks by removing unnecessary jumps.

6 Loops and Dataflow Analysis

In this chapter we study loops, one of the hallmarks of imperative programming
languages. The following example demonstrates the while loop by computing the
sum of the first five positive integers.

sum = 0
i = 5
while i > 0:

sum = sum + i
i = i - 1

print(sum)

The while loop consists of a condition and a body (a sequence of statements). The
body is evaluated repeatedly so long as the condition remains true.

6.1 The LWhile Language

Figure 6.1 shows the definition of the concrete syntax of LWhile, and figure 6.2 shows
the definition of its abstract syntax. The definitional interpreter for LWhile is shown
in figure 6.3. We add a new case for While in the interp_stmts function, in which
we repeatedly interpret the body so long as the test expression remains true.

The definition of the type checker for LWhile is shown in figure 6.4. A while loop
is well typed if the type of the test expression is bool and the statements in the
body are well typed.

At first glance, the translation of while loops to x86 seems straightforward
because the CIf intermediate language already supports goto and conditional
branching. However, there are complications that arise, which we discuss in the
next section. After that we introduce the changes necessary to the existing passes.

6.2 Cyclic Control Flow and Dataflow Analysis

Up until this point, the programs generated in explicate_control were guaranteed
to be acyclic. However, each while loop introduces a cycle. Does that matter?
Indeed, it does. Recall that for register allocation, the compiler performs liveness
analysis to determine which variables can share the same register. To accomplish
this, we analyzed the control-flow graph in reverse topological order (section 5.9.1),
but topological order is well defined only for acyclic graphs.

92 Chapter 6

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

stmt ::= while exp: stmt+

LWhile ::= stmt∗

Figure 6.1
The concrete syntax of LWhile, extending LIf (figure 5.1).

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
LWhile ::= Module(stmt∗)

Figure 6.2
The abstract syntax of LWhile, extending LIf (figure 5.2).

class InterpLwhile(InterpLif):
def interp_stmt(self, s, env, cont):

match s:
case While(test, body, []):

if self.interp_exp(test, env):
self.interp_stmts(body + [s] + cont, env)

else:
return self.interp_stmts(cont, env)

case _:
return super().interp_stmt(s, env, cont)

Figure 6.3
Interpreter for LWhile.

Loops and Dataflow Analysis 93

class TypeCheckLwhile(TypeCheckLif):
def type_check_stmts(self, ss, env):

if len(ss) == 0:
return

match ss[0]:
case While(test, body, []):

test_t = self.type_check_exp(test, env)
check_type_equal(bool, test_t, test)
body_t = self.type_check_stmts(body, env)
return self.type_check_stmts(ss[1:], env)

case _:
return super().type_check_stmts(ss, env)

Figure 6.4
Type checker for the LWhile language.

Let us return to the example of computing the sum of the first five posi-
tive integers. Here is the program after instruction selection but before register
allocation.

mainstart:
movq $0, sum
movq $5, i
jmp block5

block5:
cmpq $0, i
jg block7
jmp block8

block7:
addq i, sum
subq $1, i
jmp block5

block8:
movq sum, %rdi
callq print_int
movq $0, %rax
jmp mainconclusion

Recall that liveness analysis works backward, starting at the end of each function.
For this example we could start with block8 because we know what is live at the
beginning of the conclusion: only rax and rsp. So the live-before set for block8 is
{rsp,sum}. Next we might try to analyze block5 or block7, but block5 jumps to
block7 and vice versa, so it seems that we are stuck.

The way out of this impasse is to realize that we can compute an underap-
proximation of each live-before set by starting with empty live-after sets. By
underapproximation, we mean that the set contains only variables that are live
for some execution of the program, but the set may be missing some variables
that are live. Next, the underapproximations for each block can be improved by (1)
updating the live-after set for each block using the approximate live-before sets from
the other blocks, and (2) performing liveness analysis again on each block. In fact,
by iterating this process, the underapproximations eventually become the correct
solutions! This approach of iteratively analyzing a control-flow graph is applicable
to many static analysis problems and goes by the name dataflow analysis. It was
invented by Kildall (1973) in his PhD thesis at the University of Washington.

94 Chapter 6

Let us apply this approach to the previously presented example. We use the
empty set for the initial live-before set for each block. Let m0 be the following
mapping from label names to sets of locations (variables and registers):

mainstart: {}, block5: {}, block7: {}, block8: {}

Using the above live-before approximations, we determine the live-after for each
block and then apply liveness analysis to each block. This produces our next
approximation m1 of the live-before sets.

mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}

For the second round, the live-after for mainstart is the current live-before for
block5, which is {i}. Therefore the liveness analysis for mainstart computes the
empty set. The live-after for block5 is the union of the live-before sets for block7
and block8, which is {i, rsp, sum}. So the liveness analysis for block5 computes
{i, rsp, sum}. The live-after for block7 is the live-before for block5 (from the
previous iteration), which is {i}. So the liveness analysis for block7 remains {i,
sum}. Together these yield the following approximation m2 of the live-before sets:

mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}

In the preceding iteration, only block5 changed, so we can limit our attention to
mainstart and block7, the two blocks that jump to block5. As a result, the live-
before sets for mainstart and block7 are updated to include rsp, yielding the
following approximation m3:

mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}

Because block7 changed, we analyze block5 once more, but its live-before set
remains {i,rsp,sum}. At this point our approximations have converged, so m3 is
the solution.

This iteration process is guaranteed to converge to a solution by the Kleene
fixed-point theorem, a general theorem about functions on lattices (Kleene 1952).
Roughly speaking, a lattice is any collection that comes with a partial ordering ⊑
on its elements, a least element ⊥ (pronounced bottom), and a join operator ⊔.1
When two elements are ordered mi⊑mj, it means that mj contains at least as much
information as mi, so we can think of mj as a better-than-or-equal-to approximation
in relation to mi. The bottom element ⊥ represents the complete lack of information,
that is, the worst approximation. The join operator takes two lattice elements and
combines their information; that is, it produces the least upper bound of the two.

A dataflow analysis typically involves two lattices: one lattice to represent
abstract states and another lattice that aggregates the abstract states of all the

1. Technically speaking, we will be working with join semilattices.

Loops and Dataflow Analysis 95

blocks in the control-flow graph. For liveness analysis, an abstract state is a set
of locations. We form the lattice L by taking its elements to be sets of locations,
the ordering to be set inclusion (⊆), the bottom to be the empty set, and the join
operator to be set union. We form a second lattice M by taking its elements to be
mappings from the block labels to sets of locations (elements of L). We order the
mappings point-wise, using the ordering of L. So, given any two mappings mi and
mj, mi⊑M mj when mi(ℓ)⊆mj(ℓ) for every block label ℓ in the program. The bottom
element of M is the mapping ⊥M that sends every label to the empty set, ⊥M(ℓ) = ∅.

We can think of one iteration of liveness analysis applied to the whole program
as being a function f on the lattice M. It takes a mapping as input and computes
a new mapping.

f (mi) = mi+1

Next let us think for a moment about what a final solution ms should look like. If
we perform liveness analysis using the solution ms as input, we should get ms again
as the output. That is, the solution should be a fixed point of the function f .

f (ms) = ms

Furthermore, the solution should include only locations that are forced to be there
by performing liveness analysis on the program, so the solution should be the least
fixed point.

The Kleene fixed-point theorem states that if a function f is monotone (better
inputs produce better outputs), then the least fixed point of f is the least upper
bound of the ascending Kleene chain that starts at ⊥ and iterates f as follows:

⊥⊑ f (⊥)⊑ f (f (⊥))⊑ · · ·⊑ f n(⊥)⊑ · · ·

When a lattice contains only finitely long ascending chains, then every Kleene chain
tops out at some fixed point after some number of iterations of f .

⊥⊑ f (⊥)⊑ f (f (⊥))⊑ · · ·⊑ f k(⊥) = f k+1(⊥) = ms

The liveness analysis is indeed a monotone function and the lattice M has finitely
long ascending chains because there are only a finite number of variables and blocks
in the program. Thus we are guaranteed that iteratively applying liveness analysis
to all blocks in the program will eventually produce the least fixed point solution.

Next let us consider dataflow analysis in general and discuss the generic work list
algorithm (figure 6.5). The algorithm has four parameters: the control-flow graph
G, a function transfer that applies the analysis to one block, and the bottom and
join operators for the lattice of abstract states. The analyze_dataflow function
is formulated as a forward dataflow analysis; that is, the inputs to the transfer
function come from the predecessor nodes in the control-flow graph. However, live-
ness analysis is a backward dataflow analysis, so in that case one must supply the
analyze_dataflow function with the transpose of the control-flow graph.

The algorithm begins by creating the bottom mapping, represented by a hash
table. It then pushes all the nodes in the control-flow graph onto the work list (a
queue). The algorithm repeats the while loop as long as there are items in the

96 Chapter 6

def analyze_dataflow(G, transfer, bottom, join):
trans_G = transpose(G)
mapping = dict((v, bottom) for v in G.vertices())
worklist = deque(G.vertices)
while worklist:

node = worklist.pop()
inputs = [mapping[v] for v in trans_G.adjacent(node)]
input = reduce(join, inputs, bottom)
output = transfer(node, input)
if output != mapping[node]:

mapping[node] = output
worklist.extend(G.adjacent(node))

Figure 6.5
Generic work list algorithm for dataflow analysis.

work list. In each iteration, a node is popped from the work list and processed.
The input for the node is computed by taking the join of the abstract states of
all the predecessor nodes. The transfer function is then applied to obtain the
output abstract state. If the output differs from the previous state for this block,
the mapping for this block is updated and its successor nodes are pushed onto the
work list.

Having discussed the complications that arise from adding support for assignment
and loops, we turn to discussing the individual compilation passes.

6.3 Remove Complex Operands

The change needed for this pass is to add a case for the while statement. The
condition of a loop is allowed to be a complex expression, just like the condition of
the if statement. Figure 6.6 defines the output language Lmon

While of this pass.

6.4 Explicate Control

The output of this pass is the language CIf. No new language features are needed
in the output, because a while loop can be expressed in terms of goto and
if statements, which are already in CIf. Add a case for the while statement
to the explicate_stmt method, using explicate_pred to process the condition
expression.

6.5 Register Allocation

As discussed in section 6.2, the presence of loops in LWhile means that the control-
flow graphs may contain cycles, which complicates the liveness analysis needed for
register allocation. We recommend using the generic analyze_dataflow function

Loops and Dataflow Analysis 97

atm ::= Constant(int) | Name(var)
exp ::= atm | Call(Name('input_int'),[])

| UnaryOp(USub(),atm) | BinOp(atm,Add(),atm)
| BinOp(atm,Sub(),atm)

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

atm ::= Constant(bool)
exp ::= UnaryOp(Not(),exp) | Compare(atm,[cmp],[atm])

| IfExp(exp,exp,exp) | Begin(stmt∗, exp)
stmt ::= If(exp, stmt∗, stmt∗)
stmt ::= While(exp, stmt+, [])
Lmon

While ::= Module(stmt∗)

Figure 6.6
Lmon

While is LWhile in monadic normal form.

that was presented at the end of section 6.2 to perform liveness analysis, replacing
the code in uncover_live that processed the basic blocks in topological order
(section 5.9.1).

The analyze_dataflow function has the following four parameters.

1. The first parameter G should be passed the transpose of the control-flow graph.
2. The second parameter transfer should be passed a function that applies liveness

analysis to a basic block. It takes two parameters: the label for the block to
analyze and the live-after set for that block. The transfer function should return
the live-before set for the block. Also, as a side effect, it should update the
live-before and live-after sets for each instruction. To implement the transfer
function, you should be able to reuse the code you already have for analyzing
basic blocks.

3. The third and fourth parameters of analyze_dataflow are bottom and join
for the lattice of abstract states, that is, sets of locations. For liveness analysis,
the bottom of the lattice is the empty set, and the join operator is set union.

Figure 6.7 provides an overview of all the passes needed for the compilation of
LWhile.

98 Chapter 6

LWhile LWhile Lmon
While

CIf

x86Var
If x86Var

If x86If x86If

shrink remove_complex_operands

explicate_control

select_instructions

assign_homes

patch_instructions

prelude_and_conclusion

Figure 6.7
Diagram of the passes for LWhile.

7 Tuples and Garbage Collection

In this chapter we study the implementation of tuples. A tuple is a fixed-length
sequence of elements in which each element may have a different type. This language
feature is the first to use the computer’s heap, because the lifetime of a tuple is
indefinite; that is, a tuple lives forever from the programmer’s viewpoint. Of course,
from an implementer’s viewpoint, it is important to reclaim the space associated
with a tuple when it is no longer needed, which is why we also study garbage
collection techniques in this chapter.

Section 7.1 introduces the LTup language, including its interpreter and type
checker. The LTup language extends the LWhile language (chapter 6) with tuples.
Section 7.2 describes a garbage collection algorithm based on copying live tuples
back and forth between two halves of the heap. The garbage collector requires coor-
dination with the compiler so that it can find all the live tuples. Sections 7.3 through
7.8 discuss the necessary changes and additions to the compiler passes, including a
new compiler pass named expose_allocation.

7.1 The LTup Language

Figure 7.1 shows the definition of the concrete syntax for LTup, and figure 7.2 shows
the definition of the abstract syntax. The LTup language adds (1) tuple creation
via a comma-separated list of expressions; (2) accessing an element of a tuple with
the square bracket notation (i.e., t[n] returns the element at index n of tuple t);
(3) the is comparison operator; and (4) obtaining the number of elements (the
length) of a tuple. In this chapter, we restrict access indices to constant integers.
The following program shows an example of the use of tuples. It creates a tuple
t containing the elements 40, True, and another tuple that contains just 2. The
element at index 1 of t is True, so the then branch of the if is taken. The element
at index 0 of t is 40, to which we add 2, the element at index 0 of the tuple. The
result of the program is 42.

t = 40, True, (2,)
print(t[0] + t[2][0] if t[1] else 44)

Tuples raise several interesting new issues. First, variable binding performs a
shallow copy in dealing with tuples, which means that different variables can refer
to the same tuple; that is, two variables can be aliases for the same entity. Consider

100 Chapter 7

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

stmt ::= while exp: stmt+

cmp ::= is
exp ::= exp, … ,exp | exp[int] | len(exp)

LTup ::= stmt∗

Figure 7.1
The concrete syntax of LTup, extending LWhile (figure 6.1).

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
LTup ::= Module(stmt∗)

Figure 7.2
The abstract syntax of LTup.

the following example, in which t1 and t2 refer to the same tuple value and t3
refers to a different tuple value with equal elements. The result of the program is
42.

t1 = 3, 7
t2 = t1
t3 = 3, 7
print(42 if (t1 is t2) and not (t1 is t3) else 0)

Tuples and Garbage Collection 101

class InterpLtup(InterpLwhile):
def interp_cmp(self, cmp):

match cmp:
case Is():

return lambda x, y: x is y
case _:

return super().interp_cmp(cmp)
def interp_exp(self, e, env):

match e:
case Tuple(es, Load()):

return tuple([self.interp_exp(e, env) for e in es])
case Subscript(tup, index, Load()):

t = self.interp_exp(tup, env)
n = self.interp_exp(index, env)
return t[n]

case _:
return super().interp_exp(e, env)

Figure 7.3
Interpreter for the LTup language.

The next issue concerns the lifetime of tuples. When does a tuple’s lifetime end?
Notice that LTup does not include an operation for deleting tuples. Furthermore,
the lifetime of a tuple is not tied to any notion of static scoping. For example, the
following program returns 42 even though the variable x goes out of scope when
the function returns, prior to reading the tuple element at index 0. (We study the
compilation of functions in chapter 8.)

def f():
x = 42, 43
return x

t = f()
print(t[0])

From the perspective of programmer-observable behavior, tuples live forever.
However, if they really lived forever then many long-running programs would run
out of memory. To solve this problem, the language’s runtime system performs
automatic garbage collection.

Figure 7.3 shows the definitional interpreter for the LTup language. We repre-
sent tuples with Python lists in the interpreter because we need to write to them
(section 7.3). (Python tuples are immutable.) We define element access, the is
operator, and the len operator for LTup in terms of the corresponding operations
in Python.

Figure 7.4 shows the type checker for LTup. The type of a tuple is a TupleType
type that contains a type for each of its elements. The type of accessing the ith
element of a tuple is the ith element type of the tuple’s type, if there is one. If not,

102 Chapter 7

class TypeCheckLtup(TypeCheckLwhile):
def type_check_exp(self, e, env):

match e:
case Compare(left, [cmp], [right]) if isinstance(cmp, Is):

l = self.type_check_exp(left, env)
r = self.type_check_exp(right, env)
check_type_equal(l, r, e)
return bool

case Tuple(es, Load()):
ts = [self.type_check_exp(e, env) for e in es]
e.has_type = TupleType(ts)
return e.has_type

case Subscript(tup, Constant(i), Load()):
tup_ty = self.type_check_exp(tup, env)
i_ty = self.type_check_exp(Constant(i), env)
check_type_equal(i_ty, int, i)
match tup_ty:

case TupleType(ts):
return ts[i]

case _:
raise Exception('expected a tuple, not ' + repr(tup_ty))

case _:
return super().type_check_exp(e, env)

Figure 7.4
Type checker for the LTup language.

an error is signaled. Note that the index i is required to be a constant integer (and
not, for example, a call to input_int) so that the type checker can determine the
element’s type given the tuple type.

7.2 Garbage Collection

Garbage collection is a runtime technique for reclaiming space on the heap that
will not be used in the future of the running program. We use the term object to
refer to any value that is stored in the heap, which for now includes only tuples.1
Unfortunately, it is impossible to know precisely which objects will be accessed in
the future and which will not. Instead, garbage collectors overapproximate the set of
objects that will be accessed by identifying which objects can possibly be accessed.
The running program can directly access objects that are in registers and on the
procedure call stack. It can also transitively access the elements of tuples, starting
with a tuple whose address is in a register or on the procedure call stack. We define
the root set to be all the tuple addresses that are in registers or on the procedure

1. The term object as it is used in the context of object-oriented programming has a more specific
meaning than the way in which we use the term here.

Tuples and Garbage Collection 103

call stack. We define the live objects to be the objects that are reachable from the
root set. Garbage collectors reclaim the space that is allocated to objects that are
no longer live. That means that some objects may not get reclaimed as soon as
they could be, but at least garbage collectors do not reclaim the space dedicated
to objects that will be accessed in the future! The programmer can influence which
objects get reclaimed by causing them to become unreachable.

So the goal of the garbage collector is twofold:

1. to preserve all the live objects, and
2. to reclaim the memory of everything else, that is, the garbage.

7.2.1 Two-Space Copying Collector
Here we study a relatively simple algorithm for garbage collection that is the basis
of many state-of-the-art garbage collectors (Lieberman and Hewitt 1983; Ungar
1984; Jones and Lins 1996; Detlefs et al. 2004; Dybvig 2006; Tene, Iyengar, and
Wolf 2011). In particular, we describe a two-space copying collector (Wilson 1992)
that uses Cheney’s algorithm to perform the copy (Cheney 1970). Figure 7.5 gives
a coarse-grained depiction of what happens in a two-space collector, showing two
time steps, prior to garbage collection (on the top) and after garbage collection (on
the bottom). In a two-space collector, the heap is divided into two parts named
the FromSpace and the ToSpace. Initially, all allocations go to the FromSpace until
there is not enough room for the next allocation request. At that point, the garbage
collector goes to work to make room for the next allocation.

A copying collector makes more room by copying all the live objects from the
FromSpace into the ToSpace and then performs a sleight of hand, treating the
ToSpace as the new FromSpace and the old FromSpace as the new ToSpace. In
the example shown in figure 7.5, the root set consists of three pointers, one in a
register and two on the stack. All the live objects have been copied to the ToSpace
(the right-hand side of figure 7.5) in a way that preserves the pointer relationships.
For example, the pointer in the register still points to a tuple that in turn points
to two other tuples. There are four tuples that are not reachable from the root set
and therefore do not get copied into the ToSpace.

The exact situation shown in figure 7.5 cannot be created by a well-typed program
in LTup because it contains a cycle. However, creating cycles will be possible once
we get to LDyn (chapter 10). We design the garbage collector to deal with cycles to
begin with, so we will not need to revisit this issue.

7.2.2 Graph Copying via Cheney’s Algorithm
Let us take a closer look at the copying of the live objects. The allocated objects
and pointers can be viewed as a graph, and we need to copy the part of the graph
that is reachable from the root set. To make sure that we copy all the reachable
vertices in the graph, we need an exhaustive graph traversal algorithm, such as
depth-first search or breadth-first search (Moore 1959; Cormen et al. 2001). Recall
that such algorithms take into account the possibility of cycles by marking which
vertices have already been visited, so to ensure termination of the algorithm. These

104 Chapter 7

7 5

True 42

4

8

3

5

6

2

Stack

Registers

1 False …

9

True
0

…

Heap
FromSpace ToSpace

7 5

True 42

4

8

3

5

6

2

Stack

Registers

1 False …

9

True
0

…

Heap
FromSpace ToSpace

7 5

True 42

4

8

3

Figure 7.5
A copying collector in action.

search algorithms also use a data structure such as a stack or queue as a to-do list
to keep track of the vertices that need to be visited. We use breadth-first search
and a trick due to Cheney (1970) for simultaneously representing the queue and
copying tuples into the ToSpace.

Figure 7.6 shows several snapshots of the ToSpace as the copy progresses. The
queue is represented by a chunk of contiguous memory at the beginning of the
ToSpace, using two pointers to track the front and the back of the queue, called the
free pointer and the scan pointer, respectively. The algorithm starts by copying all
tuples that are immediately reachable from the root set into the ToSpace to form
the initial queue. When we copy a tuple, we mark the old tuple to indicate that
it has been visited. We discuss how this marking is accomplished in section 7.2.3.
Note that any pointers inside the copied tuples in the queue still point back to
the FromSpace. Once the initial queue has been created, the algorithm enters a
loop in which it repeatedly processes the tuple at the front of the queue and pops
it off the queue. To process a tuple, the algorithm copies all the objects that are

Tuples and Garbage Collection 105

7 5 4

scan
pointer

free
pointer

7 5 4

scan
pointer

free
pointer

True 42

7 5 4

scan
pointer

free
pointer

True 42 3

7 5 4

scan
pointer

free
pointer

True 42 3 8

7 5 4

scan
pointer

free
pointer

True 42 3 8

Figure 7.6
Depiction of the Cheney algorithm copying the live tuples.

directly reachable from it to the ToSpace, placing them at the back of the queue.
The algorithm then updates the pointers in the popped tuple so that they point to
the newly copied objects.

As shown in figure 7.6, in the first step we copy the tuple whose second element is
42 to the back of the queue. The other pointer goes to a tuple that has already been
copied, so we do not need to copy it again, but we do need to update the pointer to
the new location. This can be accomplished by storing a forwarding pointer to the
new location in the old tuple, when we initially copied the tuple into the ToSpace.

106 Chapter 7

This completes one step of the algorithm. The algorithm continues in this way until
the queue is empty; that is, when the scan pointer catches up with the free pointer.

7.2.3 Data Representation
The garbage collector places some requirements on the data representations used
by our compiler. First, the garbage collector needs to distinguish between pointers
and other kinds of data such as integers. The following are three ways to accomplish
this:

1. Attach a tag to each object that identifies what type of object it is (McCarthy
1960).

2. Store different types of objects in different regions (Steele 1977).
3. Use type information from the program to either (a) generate type-specific

code for collecting, or (b) generate tables that guide the collector (Appel 1989;
Goldberg 1991; Diwan, Moss, and Hudson 1992).

Dynamically typed languages, such as Python, need to tag objects in any case, so
option 1 is a natural choice for those languages. However, LTup is a statically typed
language, so it would be unfortunate to require tags on every object, especially small
and pervasive objects like integers and Booleans. Option 3 is the best-performing
choice for statically typed languages, but it comes with a relatively high implemen-
tation complexity. To keep this chapter within a reasonable scope of complexity,
we recommend a combination of options 1 and 2, using separate strategies for the
stack and the heap.

Regarding the stack, we recommend using a separate stack for pointers, which
we call the root stack (aka shadow stack) (Siebert 2001; Henderson 2002; Baker
et al. 2009). That is, when a local variable needs to be spilled and is of type
TupleType, we put it on the root stack instead of putting it on the procedure
call stack. Furthermore, we always spill tuple-typed variables if they are live during
a call to the collector, thereby ensuring that no pointers are in registers during a
collection. Figure 7.7 reproduces the example shown in figure 7.5 and contrasts it
with the data layout using a root stack. The root stack contains the two pointers
from the regular stack and also the pointer in the second register.

The problem of distinguishing between pointers and other kinds of data also
arises inside each tuple on the heap. We solve this problem by attaching a tag, an
extra 64 bits, to each tuple. Figure 7.8 shows a zoomed-in view of the tags for two
of the tuples in the example given in figure 7.5. Note that we have drawn the bits
in a big-endian way, from right to left, with bit location 0 (the least significant bit)
on the far right, which corresponds to the direction of the x86 shifting instructions
salq (shift left) and sarq (shift right). Part of each tag is dedicated to specifying
which elements of the tuple are pointers, the part labeled pointer mask. Within the
pointer mask, a 1 bit indicates that there is a pointer, and a 0 bit indicates some
other kind of data. The pointer mask starts at bit location 7. We limit tuples to

Tuples and Garbage Collection 107

Stack

Registers
1 False …

9
True

0
…

Root Stack
7 5

4

Heap

Figure 7.7
Maintaining a root stack to facilitate garbage collection.

Unused Pointer mask Vector length

Forwarding

101000011…

7 5

111000000… 1

Figure 7.8
Representation of tuples in the heap.

a maximum size of fifty elements, so we need 50 bits for the pointer mask.2 The
tag also contains two other pieces of information. The length of the tuple (number
of elements) is stored in bits at locations 1 through 6. Finally, the bit at location
0 indicates whether the tuple has yet to be copied to the ToSpace. If the bit has
value 1, then this tuple has not yet been copied. If the bit has value 0, then the
entire tag is a forwarding pointer. (The lower 3 bits of a pointer are always zero in
any case, because our tuples are 8-byte aligned.)

2. A production-quality compiler would handle arbitrarily sized tuples and use a more complex
approach.

108 Chapter 7

void initialize(uint64_t rootstack_size, uint64_t heap_size);
void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
int64_t* free_ptr;
int64_t* fromspace_begin;
int64_t* fromspace_end;
int64_t** rootstack_begin;

Figure 7.9
The compiler’s interface to the garbage collector.

7.2.4 Implementation of the Garbage Collector
An implementation of the copying collector is provided in the runtime.c file.
Figure 7.9 defines the interface to the garbage collector that is used by the com-
piler. The initialize function creates the FromSpace, ToSpace, and root stack and
should be called in the prelude of the main function. The arguments of initialize
are the root stack size and the heap size. Both need to be multiples of sixty-four,
and 16, 384 is a good choice for both. The initialize function puts the address
of the beginning of the FromSpace into the global variable free_ptr. The global
variable fromspace_end points to the address that is one past the last element of
the FromSpace. We use half-open intervals to represent chunks of memory (Dijkstra
1982). The rootstack_begin variable points to the first element of the root stack.

As long as there is room left in the FromSpace, your generated code can allo-
cate tuples simply by moving the free_ptr forward. The amount of room left in
the FromSpace is the difference between the fromspace_end and the free_ptr.
The collect function should be called when there is not enough room left in the
FromSpace for the next allocation. The collect function takes a pointer to the
current top of the root stack (one past the last item that was pushed) and the
number of bytes that need to be allocated. The collect function performs the
copying collection and leaves the heap in a state such that there is enough room
for the next allocation.

The introduction of garbage collection has a nontrivial impact on our com-
piler passes. We introduce a new compiler pass named expose_allocation
that elaborates the code for allocating tuples. We also make significant
changes to select_instructions, build_interference, allocate_registers,
and prelude_and_conclusion and make minor changes in several more passes.

The following program serves as our running example. It creates two tuples, one
nested inside the other. Both tuples have length one. The program accesses the
element in the inner tuple.

v1 = (42,)
v2 = (v1,)
print(v2[0][0])

Tuples and Garbage Collection 109

7.3 Expose Allocation

The pass expose_allocation lowers tuple creation into making a condi-
tional call to the collector followed by allocating the appropriate amount
of memory and initializing it. We choose to place the expose_allocation
pass before remove_complex_operands because it generates code that con-
tains complex operands. However, with some care it can also be placed before
remove_complex_operands, which would simplify tuple creation by removing the
need to assign the initializing expressions to temporary variables (see below).

The output of expose_allocation is a language LAlloc that replaces tuple
creation with new lower-level forms that we use in the translation of tuple creation.

exp ::= collect(int) | allocate(int, type) | global_value(name)
stmt ::= exp[int] = exp

The collect(n) form runs the garbage collector, requesting that there be n
bytes ready to be allocated. During instruction selection, the collect(n) form
will become a call to the collect function in runtime.c. The allocate(n,type)
form obtains memory for n elements (and space at the front for the 64-bit tag),
but the elements are not initialized. The type parameter is the type of the tuple:
TupleType([type1, … , typen]) where typei is the type of the ith element. The
global_value(name) form reads the value of a global variable, such as free_ptr.

The following shows the transformation of tuple creation into (1) a sequence of
temporary variable bindings for the initializing expressions, (2) a conditional call
to collect, (3) a call to allocate, and (4) the initialization of the tuple. The len
placeholder refers to the length of the tuple, and bytes is the total number of bytes
that need to be allocated for the tuple, which is 8 for the tag plus len times 8. The
type needed for the second argument of the allocate form can be obtained from
the has_type field of the tuple AST node, which is stored there by running the
type checker for LTup immediately before this pass.

(e0, … , en–1)
=⇒
begin:

x0 = e0

...
xn–1 = en–1

if global_value(free_ptr) + bytes < global_value(fromspace_end):
0

else:
collect(bytes)

v = allocate(len, type)
v[0] = x0

...
v[n – 1] = xn–1

v

110 Chapter 7

v1 = begin:
init.514 = 42
if (free_ptr + 16) < fromspace_end:
else:

collect(16)
alloc.513 = allocate(1,tuple[int])
alloc.513[0] = init.514
alloc.513

v2 = begin:
init.516 = v1
if (free_ptr + 16) < fromspace_end:
else:

collect(16)
alloc.515 = allocate(1,tuple[tuple[int]])
alloc.515[0] = init.516
alloc.515

print(v2[0][0])

Figure 7.10
Output of the expose_allocation pass.

The sequencing of the initializing expressions e0, … , en–1 prior to the allocate
is important because they may trigger garbage collection and we cannot have an
allocated but uninitialized tuple on the heap during a collection.

Figure 7.10 shows the output of the expose_allocation pass on our running
example.

7.4 Remove Complex Operands

The expressions allocate, begin, and tuple access should be treated as complex
operands. The subexpressions of tuple access must be atomic. The global_value
AST node is atomic. Figure 7.11 shows the grammar for the output language Lmon

Alloc
of this pass, which is LAlloc in monadic normal form.

7.5 Explicate Control and the CTup Language

The output of explicate_control is a program in the intermediate language CTup,
for which figure 7.12 shows the definition of the abstract syntax. The new expres-
sions of CTup include allocate, accessing tuple elements, and global_value. CTup

also includes the collect statement and assignment to a tuple element. The
explicate_control pass can treat these new forms much like the other forms
that we’ve already encountered. The output of the explicate_control pass on
the running example is shown on the left side of figure 7.15 in the next section.

Tuples and Garbage Collection 111

atm ::= Constant(int) | Name(var)
exp ::= atm | Call(Name('input_int'),[])

| UnaryOp(USub(),atm) | BinOp(atm,Add(),atm)
| BinOp(atm,Sub(),atm)

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

atm ::= Constant(bool)
exp ::= UnaryOp(Not(),exp) | Compare(atm,[cmp],[atm])

| IfExp(exp,exp,exp) | Begin(stmt∗, exp)
stmt ::= If(exp, stmt∗, stmt∗)
stmt ::= While(exp, stmt+, [])
atm ::= GlobalValue(var)
exp ::= Subscript(atm,atm,Load()) | Call(Name('len'),[atm])

| Allocate(int, type)
stmt ::= Assign([Subscript(atm,atm,Store())], atm)

| Collect(int)
Lmon

Alloc ::= Module(stmt∗)

Figure 7.11
Lmon

Alloc is LAlloc in monadic normal form.

atm ::= Constant(int) | Name(var) | Constant(bool)
exp ::= atm | Call(Name('input_int'),[]) | UnaryOp(USub(),atm)

| BinOp(atm,Sub(),atm) | BinOp(atm,Add(),atm)
| Compare(atm,[cmp],[atm])

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

tail ::= Return(exp) | Goto(label)
| If(Compare(atm,[cmp],[atm]), [Goto(label)], [Goto(label)])

atm ::= GlobalValue(var)
exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

| Call(Name('len'),[atm])
stmt ::= Collect(int) | Assign([Subscript(atm,atm,Store())], atm)
CTup ::= CProgram({label: stmt∗ tail, … })

Figure 7.12
The abstract syntax of CTup, extending CIf (figure 5.8).

7.6 Select Instructions and the x86Global Language

In this pass we generate x86 code for most of the new operations that are needed to
compile tuples, including Allocate, Collect, accessing tuple elements, and the Is
comparison. We compile GlobalValue to Global because the latter has a different
concrete syntax (see figures 7.13 and 7.14).

112 Chapter 7

The tuple read and write forms translate into movq instructions. (The +1 in the
offset serves to move past the tag at the beginning of the tuple representation.)

lhs = tup[n]
=⇒
movq tup′, %r11
movq 8(n + 1)(%r11), lhs′

tup[n] = rhs
=⇒
movq tup′, %r11
movq rhs′, 8(n + 1)(%r11)

The tup′ and rhs′ are obtained by translating from CTup to x86. The move of tup′

to register r11 ensures that the offset expression 8(n + 1)(%r11) contains a register
operand. This requires removing r11 from consideration by the register allocator.

Why not use rax instead of r11? Suppose that we instead used rax. Then the
generated code for tuple assignment would be

movq tup′, %rax
movq rhs′, 8(n + 1)(%rax)

Next, suppose that rhs′ ends up as a stack location, so patch_instructions would
insert a move through rax as follows:

movq tup′, %rax
movq rhs′, %rax
movq %rax, 8(n + 1)(%rax)

However, this sequence of instructions does not work because we’re trying to use
rax for two different values (tup′ and rhs′) at the same time!

The len operation should be translated into a sequence of instructions that read
the tag of the tuple and extract the 6 bits that represent the tuple length, which are
the bits starting at index 1 and going up to and including bit 6. The x86 instructions
andq (for bitwise-and) and sarq (shift right) can be used to accomplish this.

We compile the allocate form to operations on the free_ptr, as shown next.
This approach is called inline allocation because it implements allocation without a
function call by simply incrementing the allocation pointer. It is much more efficient
than calling a function for each allocation. The address in the free_ptr is the next
free address in the FromSpace, so we copy it into r11 and then move it forward by
enough space for the tuple being allocated, which is 8(len + 1) bytes because each
element is 8 bytes (64 bits) and we use 8 bytes for the tag. We then initialize the
tag and finally copy the address in r11 to the left-hand side. Refer to figure 7.8
to see how the tag is organized. We recommend using the bitwise-or operator
| and the shift-left operator « to compute the tag during compilation. The type
annotation in the allocate form is used to determine the pointer mask region of
the tag. The addressing mode free_ptr(%rip) essentially stands for the address of
the free_ptr global variable using a special instruction-pointer-relative addressing
mode of the x86-64 processor. In particular, the assembler computes the distance

Tuples and Garbage Collection 113

d between the address of free_ptr and where the rip would be at that moment
and then changes the free_ptr(%rip) argument to d(%rip), which at runtime will
compute the address of free_ptr.

lhs = allocate(len, TupleType([type, …]));
=⇒
movq free_ptr(%rip), %r11
addq 8(len + 1), free_ptr(%rip)
movq $tag, 0(%r11)
movq %r11, lhs′

The collect form is compiled to a call to the collect function in the runtime.
The arguments to collect are (1) the top of the root stack, and (2) the number
of bytes that need to be allocated. We use another dedicated register, r15, to store
the pointer to the top of the root stack. Therefore r15 is not available for use by
the register allocator.

collect(bytes)
=⇒
movq %r15, %rdi
movq $bytes, %rsi
callq collect

The is comparison is compiled similarly to the other comparison operators, using
the cmpq instruction. Because the value of a tuple is its address, we can translate
is into a simple check for equality using the e condition code.

var = (atm1 is atm2) ⇒
cmpq arg2, arg1
sete %al
movzbq %al, var

The definitions of the concrete and abstract syntax of the x86Global language are
shown in figures 7.13 and 7.14. It differs from x86If only in the addition of global
variables. Figure 7.15 shows the output of the select_instructions pass on the
running example.

114 Chapter 7

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |
label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= %bytereg
cc ::= e | ne | l | le | g | ge
instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label
arg ::= label(%rip)
x86Global ::= .globl main

main: instr∗

Figure 7.13
The concrete syntax of x86Global (extends x86If shown in figure 5.9).

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= Immediate(int) | Reg(reg) | Deref(reg,int)
instr ::= Instr('addq',[arg,arg]) | Instr('subq',[arg,arg])

| Instr('negq',[arg]) | Instr('movq',[arg,arg])
| Instr('pushq',[arg]) | Instr('popq',[arg])
| Callq(label,int) | Retq() | Jump(label)

block ::= instr+

bytereg ::= 'ah' | 'al' | 'bh' | 'bl' | 'ch' | 'cl' | 'dh' | 'dl'
arg ::= Immediate(int) | Reg(reg) | Deref(reg,int) | ByteReg(bytereg)
cc ::= 'e' | 'ne' | 'l' | 'le' | 'g' | 'ge'
instr ::= Jump(label)

| Instr('xorq',[arg,arg]) | Instr('cmpq',[arg,arg])
| Instr('set'+cc,[arg]) | Instr('movzbq',[arg,arg])
| JumpIf(cc,label)

arg ::= Global(label)
x86Global ::= X86Program({label : block, … })

Figure 7.14
The abstract syntax of x86Global (extends x86If shown in figure 5.10).

Tuples and Garbage Collection 115

start:
init.514 = 42
tmp.517 = free_ptr
tmp.518 = (tmp.517 + 16)
tmp.519 = fromspace_end
if tmp.518 < tmp.519:

goto block.529
else:

goto block.530

block.529:
goto block.528

block.530:
collect(16)
goto block.528

block.528:
alloc.513 = allocate(1,tuple[int])
alloc.513:tuple[int][0] = init.514
v1 = alloc.513
init.516 = v1
tmp.520 = free_ptr
tmp.521 = (tmp.520 + 16)
tmp.522 = fromspace_end
if tmp.521 < tmp.522:

goto block.526
else:

goto block.527

block.526:
goto block.525

block.527:
collect(16)
goto block.525

block.525:
alloc.515 = allocate(1,tuple[tuple[int]])
alloc.515:tuple[tuple[int]][0] = init.516
v2 = alloc.515
tmp.523 = v2[0]
tmp.524 = tmp.523[0]
print(tmp.524)
return 0

⇒

start:
movq $42, init.514
movq free_ptr(%rip), tmp.517
movq tmp.517, tmp.518
addq $16, tmp.518
movq fromspace_end(%rip), tmp.519
cmpq tmp.519, tmp.518
jl block.529
jmp block.530

block.529:
jmp block.528

block.530:
movq %r15, %rdi
movq $16, %rsi
callq collect
jmp block.528

block.528:
movq free_ptr(%rip), %r11
addq $16, free_ptr(%rip)
movq $3, 0(%r11)
movq %r11, alloc.513
movq alloc.513, %r11
movq init.514, 8(%r11)
movq alloc.513, v1
movq v1, init.516
movq free_ptr(%rip), tmp.520
movq tmp.520, tmp.521
addq $16, tmp.521
movq fromspace_end(%rip), tmp.522
cmpq tmp.522, tmp.521
jl block.526
jmp block.527

block.526:
jmp block.525

block.527:
movq %r15, %rdi
movq $16, %rsi
callq collect
jmp block.525

block.525:
movq free_ptr(%rip), %r11
addq $16, free_ptr(%rip)
movq $131, 0(%r11)
movq %r11, alloc.515
movq alloc.515, %r11
movq init.516, 8(%r11)
movq alloc.515, v2
movq v2, %r11
movq 8(%r11), %r11
movq %r11, tmp.523
movq tmp.523, %r11
movq 8(%r11), %r11
movq %r11, tmp.524
movq tmp.524, %rdi
callq print_int
movq $0, %rax
jmp conclusion

Figure 7.15
Output of explicate_control (left) and select_instructions (right) on the running example.

116 Chapter 7

7.7 Register Allocation

As discussed previously in this chapter, the garbage collector needs to access all
the pointers in the root set, that is, all variables that are tuples. It will be the
responsibility of the register allocator to make sure that

1. the root stack is used for spilling tuple-typed variables, and
2. if a tuple-typed variable is live during a call to the collector, it must be spilled

to ensure that it is visible to the collector.

The latter responsibility can be handled during construction of the interference
graph, by adding interference edges between the call-live tuple-typed variables and
all the callee-saved registers. (They already interfere with the caller-saved registers.)
The type information for variables is generated by the type checker for CTup, stored
in a field named var_types in the CProgram AST mode. You’ll need to propagate
that information so that it is available in this pass.

The spilling of tuple-typed variables to the root stack can be handled after graph
coloring, in choosing how to assign the colors (integers) to registers and stack loca-
tions. The CProgram output of this pass changes to also record the number of spills
to the root stack.

7.8 Generate Prelude and Conclusion

Figure 7.16 shows the output of the prelude_and_conclusion pass on the running
example. In the prelude of the main function, we allocate space on the root stack
to make room for the spills of tuple-typed variables. We do so by incrementing the
root stack pointer (r15), taking care that the root stack grows up instead of down.
For the running example, there was just one spill, so we increment r15 by 8 bytes.
In the conclusion we subtract 8 bytes from r15.

One issue that deserves special care is that there may be a call to collect prior
to the initializing assignments for all the variables in the root stack. We do not want
the garbage collector to mistakenly determine that some uninitialized variable is a
pointer that needs to be followed. Thus, we zero out all locations on the root stack
in the prelude of main. In figure 7.16, the instruction movq $0, 0(%r15) is sufficient
to accomplish this task because there is only one spill. In general, we have to clear
as many words as there are spills of tuple-typed variables. The garbage collector
tests each root to see if it is null prior to dereferencing it.

Figure 7.17 gives an overview of all the passes needed for the compilation of LTup.

Tuples and Garbage Collection 117

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $8, %rsp
movq $65536, %rdi
movq $16, %rsi
callq initialize
movq rootstack_begin(%rip), %r15
movq $0, 0(%r15)
addq $8, %r15
jmp start

conclusion:
subq $8, %r15
addq $8, %rsp
popq %rbx
popq %rbp
retq

Figure 7.16
The prelude and conclusion for the running example.

LTup LTup LAlloc Lmon
Alloc

CTup

x86Var
Global x86Var

Global x86Global x86Global

shrink expose_allocation remove_complex_operands

explicate_control

select_instructions

assign_homes

patch_instructions

prelude_and_conclusion

Figure 7.17
Diagram of the passes for LTup, a language with tuples.

118 Chapter 7

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

stmt ::= while exp: stmt+

cmp ::= is
exp ::= exp, … ,exp | exp[int] | len(exp)

type ::= list[type]
exp ::= exp * exp | exp[exp] | [exp, …]
stmt ::= exp[exp] = exp
LArray ::= stmt∗

Figure 7.18
The concrete syntax of LArray, extending LTup (figure 7.1).

7.9 Challenge: Arrays

In this chapter we have studied tuples, that is, heterogeneous sequences of elements
whose length is determined at compile time. This challenge is also about sequences,
but this time the length is determined at runtime and all the elements have the
same type (they are homogeneous). We use the traditional term array for this latter
kind of sequence. Arrays correspond to the list type in the Python language.

Figure 7.18 presents the definition of the concrete syntax for LArray, and figure 7.19
presents the definition of the abstract syntax, extending LTup with the list type
and the bracket notation for creating an array literal. The subscript operator
becomes overloaded for use with arrays and tuples and now may appear on the
left-hand side of an assignment. Note that the index of the subscript, when applied
to an array, may be an arbitrary expression and not exclusively a constant integer.
The len function is also applicable to arrays. We include integer multiplication in
LArray because it is useful in many examples involving arrays such as computing the
inner product of two arrays (figure 7.20).

The type checker for LArray is defined in figures 7.21 and 7.22. The result type
of a list literal is list[T], where T is the type of the initializing expressions. The
type checking of the len function and the subscript operator are updated to handle
lists. The type checker now also handles a subscript on the left-hand side of an
assignment. Regarding multiplication, it takes two integers and returns an integer.

The definition of the interpreter for LArray is shown in figure 7.23. We implement
array creation with a Python list comprehension, and multiplication is implemented
with 64-bit multiplication. We add a case for a subscript on the left-hand side of
assignment. Other uses of subscript can be handled by the existing code for tuples.

Tuples and Garbage Collection 119

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
type ::= ListType(type)
exp ::= BinOp(exp,Mult(),exp) | Subscript(exp,exp,Load())

| List(exp, … , Load())
stmt ::= Assign([Subscript(exp,exp,Store())], exp)
LArray ::= stmt∗

Figure 7.19
The abstract syntax of LArray, extending LTup (figure 7.2).

A = [2, 2]
B = [3, 3]
i = 0
prod = 0
while i != len(A):

prod = prod + A[i] * B[i]
i = i + 1

print(prod)

Figure 7.20
Example program that computes the inner product.

7.9.1 Data Representation
Just as with tuples, we store arrays on the heap, which means that the garbage
collector will need to inspect arrays. An immediate thought is to use the same
representation for arrays that we use for tuples. However, we limit tuples to a
length of fifty so that their length and pointer mask can fit into the 64-bit tag at
the beginning of each tuple (section 7.2.3). We intend arrays to allow millions of
elements, so we need more bits to store the length. However, because arrays are

120 Chapter 7

class TypeCheckLarray(TypeCheckLtup):
def type_check_exp(self, e, env):

match e:
case ast.List(es, Load()):

ts = [self.type_check_exp(e, env) for e in es]
elt_ty = ts[0]
for (ty, elt) in zip(ts, es):

self.check_type_equal(elt_ty, ty, elt)
e.has_type = ListType(elt_ty)
return e.has_type

case Call(Name('len'), [tup]):
tup_t = self.type_check_exp(tup, env)
tup.has_type = tup_t
match tup_t:

case TupleType(ts):
return IntType()

case ListType(ty):
return IntType()

case _:
raise Exception('len expected a tuple, not ' + repr(tup_t))

case Subscript(tup, index, Load()):
tup_ty = self.type_check_exp(tup, env)
index_ty = self.type_check_exp(index, env)
self.check_type_equal(index_ty, IntType(), index)
match tup_ty:

case TupleType(ts):
match index:

case Constant(i):
return ts[i]

case _:
raise Exception('subscript required constant integer index')

case ListType(ty):
return ty

case _:
raise Exception('subscript expected a tuple, not ' + repr(tup_ty))

case BinOp(left, Mult(), right):
l = self.type_check_exp(left, env)
self.check_type_equal(l, IntType(), left)
r = self.type_check_exp(right, env)
self.check_type_equal(r, IntType(), right)
return IntType()

case _:
return super().type_check_exp(e, env)

Figure 7.21
Type checker for the LArray language, part 1.

homogeneous, we need only 1 bit for the pointer mask instead of 1 bit per array
element. Finally, the garbage collector must be able to distinguish between tuples
and arrays, so we need to reserve one bit for that purpose. We arrive at the following
layout for the 64-bit tag at the beginning of an array:

• The right-most bit is the forwarding bit, just as in a tuple. A 0 indicates that it
is a forwarding pointer, and a 1 indicates that it is not.

Tuples and Garbage Collection 121

def type_check_stmts(self, ss, env):
if len(ss) == 0:

return VoidType()
match ss[0]:

case Assign([Subscript(tup, index, Store())], value):
tup_t = self.type_check_exp(tup, env)
value_t = self.type_check_exp(value, env)
index_ty = self.type_check_exp(index, env)
self.check_type_equal(index_ty, IntType(), index)
match tup_t:

case ListType(ty):
self.check_type_equal(ty, value_t, ss[0])

case TupleType(ts):
return self.type_check_stmts(ss, env)

case _:
raise Exception('type_check_stmts: '

'expected tuple or list, not ' + repr(tup_t))
return self.type_check_stmts(ss[1:], env)

case _:
return super().type_check_stmts(ss, env)

Figure 7.22
Type checker for the LArray language, part 2.

• The next bit to the left is the pointer mask. A 0 indicates that none of the
elements are pointers, and a 1 indicates that all the elements are pointers.

• The next 60 bits store the length of the array.
• The bit at position 62 distinguishes between a tuple (0) and an array (1).
• The left-most bit is reserved as explained in chapter 11.

In the following subsections we provide hints regarding how to update the passes
to handle arrays.

7.9.2 Overload Resolution
As noted previously, with the addition of arrays, several operators have become
overloaded; that is, they can be applied to values of more than one type. In this
case, the element access and length operators can be applied to both tuples and
arrays. This kind of overloading is quite common in programming languages, so
many compilers perform overload resolution to handle it. The idea is to translate
each overloaded operator into different operators for the different types.

Implement a new pass named resolve. Translate the reading of an array element
to array_load and the writing of an array element to array_store. Translate calls
to len into array_len. When these operators are applied to tuples, leave them as
is. The type checker for LArray adds a has_type field, which can be inspected to
determine whether the operator is applied to a tuple or an array.

122 Chapter 7

class InterpLarray(InterpLtup):
def interp_exp(self, e, env):

match e:
case ast.List(es, Load()):

return [self.interp_exp(e, env) for e in es]
case BinOp(left, Mult(), right):

l = self.interp_exp(left, env)
r = self.interp_exp(right, env)
return mul64(l, r)

case Subscript(tup, index, Load()):
t = self.interp_exp(tup, env)
n = self.interp_exp(index, env)
if n < len(t):

return t[n]
else:

raise TrappedError('array index out of bounds')
case _:

return super().interp_exp(e, env)

def interp_stmt(self, s, env, cont):
match s:

case Assign([Subscript(tup, index)], value):
t = self.interp_exp(tup, env)
n = self.interp_exp(index, env)
if n < len(t):

t[n] = self.interp_exp(value, env)
else:

raise TrappedError('array index out of bounds')
return self.interp_stmts(cont, env)

case _:
return super().interp_stmt(s, env, cont)

Figure 7.23
Interpreter for LArray.

7.9.3 Bounds Checking
Recall that the interpreter for LArray signals a TrappedError when there is an array
access that is out of bounds. Therefore your compiler is obliged to also catch these
errors during execution and halt, signaling an error. We recommend inserting a
new pass named check_bounds that inserts code around each subscript operation
to ensure that the index is greater than or equal to zero and less than the array’s
length. If not, the program should halt, for which we recommend using a new
primitive operation named exit.

7.9.4 Expose Allocation
This pass should translate array creation into lower-level operations. In particular,
the new AST node AllocateArray(exp, type) is analogous to the Allocate AST
node for tuples. The type argument must be ListType(T), where T is the element
type for the array. The AllocateArray AST node allocates an array of the length
specified by the exp (of type int), but does not initialize the elements of the array.
Generate code in this pass to initialize the elements analogous to the case for tuples.

Tuples and Garbage Collection 123

7.9.5 Remove Complex Operands
Add cases in the rco_atom and rco_exp for AllocateArray. In particular, an
AllocateArray node is complex, and its subexpression must be atomic.

7.9.6 Explicate Control
Add cases for AllocateArray to explicate_tail and explicate_assign.

7.9.7 Select Instructions
Generate instructions for AllocateArray similar to those for Allocate given in
section 7.6 except that the tag at the front of the array should instead use the
representation discussed in section 7.9.1.

Regarding array_len, extract the length from the tag.
The instructions generated for accessing an element of an array differ from those

for a tuple (section 7.6) in that the index is not a constant so you need to generate
instructions that compute the offset at runtime.

Compile the exit primitive into a call to the exit function of the C standard
library, with an argument of 255.

Exercise 7.1 Implement a compiler for the LArray language by extending your
compiler for LWhile. Test your compiler on a half dozen new programs, including
the one shown in figure 7.20 and also a program that multiplies two matrices.
Note that although matrices are two-dimensional arrays, they can be encoded into
one-dimensional arrays by laying out each row in the array, one after the next.

7.10 Further Reading

Appel (1990) describes many data representation approaches including the ones
used in the compilation of Standard ML.

There are many alternatives to copying collectors (and their bigger siblings,
the generational collectors) with regard to garbage collection, such as mark-and-
sweep (McCarthy 1960) and reference counting (Collins 1960). The strengths
of copying collectors are that allocation is fast (just a comparison and pointer
increment), there is no fragmentation, cyclic garbage is collected, and the time
complexity of collection depends only on the amount of live data and not on the
amount of garbage (Wilson 1992). The main disadvantages of a two-space copying
collector is that it uses a lot of extra space and takes a long time to perform the copy,
though these problems are ameliorated in generational collectors. Object-oriented
programs tend to allocate many small objects and generate a lot of garbage, so
copying and generational collectors are a good fit (Dieckmann and Hölzle 1999).
Garbage collection is an active research topic, especially concurrent garbage collec-
tion (Tene, Iyengar, and Wolf 2011). Researchers are continuously developing new
techniques and revisiting old trade-offs (Blackburn, Cheng, and McKinley 2004;
Jones, Hosking, and Moss 2011; Shahriyar et al. 2013; Cutler and Morris 2015; Shi-
dal et al. 2015; Österlund and Löwe 2016; Jacek and Moss 2019; Gamari and Dietz

124 Chapter 7

2020). Researchers meet every year at the International Symposium on Memory
Management to present these findings.

8 Functions

This chapter studies the compilation of a subset of Python in which only top-level
function definitions are allowed. This kind of function appears in the C programming
language, and it serves as an important stepping-stone to implementing lexically
scoped functions in the form of lambda abstractions, which is the topic of chapter 9.

8.1 The LFun Language

The concrete syntax and abstract syntax for function definitions and function appli-
cation are shown in figures 8.1 and 8.2, with which we define the LFun language.
Programs in LFun begin with zero or more function definitions. The function names
from these definitions are in scope for the entire program, including all the function
definitions, and therefore the ordering of function definitions does not matter. The
abstract syntax for function parameters in figure 8.2 is a list of pairs, each of which
consists of a parameter name and its type. This design differs from Python’s ast
module, which has a more complex structure for function parameters to handle
keyword parameters, defaults, and so on. The type checker in type_check_Lfun
converts the complex Python abstract syntax into the simpler syntax shown in
figure 8.2. The fourth and sixth parameters of the FunctionDef constructor are
for decorators and a type comment, neither of which are used by our compiler. We
recommend replacing them with None in the shrink pass. The concrete syntax for
function application is exp(exp, …), where the first expression must evaluate to a
function and the remaining expressions are the arguments. The abstract syntax for
function application is Call(exp, exp∗).

Functions are first-class in the sense that a function pointer is data and can be
stored in memory or passed as a parameter to another function. Thus, there is a
function type, written

Callable[[type1,· · · ,typen], typeR]

for a function whose n parameters have the types type1 through typen and whose
return type is typeR. The main limitation of these functions (with respect to Python
functions) is that they are not lexically scoped. That is, the only external entities
that can be referenced from inside a function body are other globally defined func-
tions. The syntax of LFun prevents function definitions from being nested inside
each other.

126 Chapter 8

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

stmt ::= while exp: stmt+

cmp ::= is
exp ::= exp, … ,exp | exp[int] | len(exp)

type ::= int | bool | void | tuple[type+] | Callable[[type, …], type]
exp ::= exp(exp, …)
stmt ::= return exp
def ::= def var(var:type, …) -> type: stmt+

LFun ::= def … stmt …

Figure 8.1
The concrete syntax of LFun, extending LTup (figure 7.1).

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
type ::= IntType() | BoolType() | VoidType() | TupleType[type+]

| FunctionType(type∗, type)
exp ::= Call(exp, exp∗)
stmt ::= Return(exp)
params ::= (var,type)∗

def ::= FunctionDef(var, params, stmt+, None, type, None)
LFun ::= Module([def … stmt …])

Figure 8.2
The abstract syntax of LFun, extending LTup (figure 7.2).

Functions 127

def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
return f(v[0]), f(v[1])

def inc(x : int) -> int:
return x + 1

print(map(inc, (0, 41))[1])

Figure 8.3
Example of using functions in LFun.

The program shown in figure 8.3 is a representative example of defining and using
functions in LFun. We define a function map that applies some other function f to
both elements of a tuple and returns a new tuple containing the results. We also
define a function inc. The program applies map to inc and (0, 41). The result is
(1, 42), from which we return 42.

The definitional interpreter for LFun is shown in figure 8.4. The case for the
Module AST is responsible for setting up the mutual recursion between the top-level
function definitions. We create a dictionary named env and fill it in by mapping
each function name to a new Function value, each of which stores a reference to the
env. (We define the class Function for this purpose.) To interpret a function call,
we match the result of the function expression to obtain a function value. We then
extend the function’s environment with the mapping of parameters to argument
values. Finally, we interpret the body of the function in this extended environment.

The type checker for LFun is shown in figure 8.5. (We omit the code that parses
function parameters into the simpler abstract syntax.) Similarly to the interpreter,
the case for the Module AST is responsible for setting up the mutual recursion
between the top-level function definitions. We begin by creating a mapping env
from every function name to its type. We then type check the program using this
mapping. To check a function definition, we copy and extend the env with the
parameters of the function. We then type check the body of the function and obtain
the actual return type rt, which is either the type of the expression in a return
statement or the VoidType if control reaches the end of the function without a
return statement. (If there are multiple return statements, the types of their
expressions must agree.) Finally, we check that the actual return type rt is equal
to the declared return type returns. To check a function call, we match the type of
the function expression to a function type and check that the types of the argument
expressions are equal to the function’s parameter types. The type of the call as a
whole is the return type from the function type.

128 Chapter 8

class InterpLfun(InterpLtup):
def apply_fun(self, fun, args, e):

match fun:
case Function(name, xs, body, env):

new_env = env.copy().update(zip(xs, args))
return self.interp_stmts(body, new_env)

case _:
raise Exception('apply_fun: unexpected: ' + repr(fun))

def interp_exp(self, e, env):
match e:

case Call(Name('input_int'), []):
return super().interp_exp(e, env)

case Call(func, args):
f = self.interp_exp(func, env)
vs = [self.interp_exp(arg, env) for arg in args]
return self.apply_fun(f, vs, e)

case _:
return super().interp_exp(e, env)

def interp_stmt(self, s, env, cont):
match s:

case Return(value):
return self.interp_exp(value, env)

case FunctionDef(name, params, bod, dl, returns, comment):
if isinstance(params, ast.arguments):

ps = [p.arg for p in params.args]
else:

ps = [x for (x,t) in params]
env[name] = Function(name, ps, bod, env)
return self.interp_stmts(cont, env)

case _:
return super().interp_stmt(s, env, cont)

def interp(self, p):
match p:

case Module(ss):
env = {}
self.interp_stmts(ss, env)
if 'main' in env.keys():

self.apply_fun(env['main'], [], None)
case _:

raise Exception('interp: unexpected ' + repr(p))

Figure 8.4
Interpreter for the LFun language.

Functions 129

class TypeCheckLfun(TypeCheckLtup):
def type_check_exp(self, e, env):

match e:
case Call(Name('input_int'), []):

return super().type_check_exp(e, env)
case Call(func, args):

func_t = self.type_check_exp(func, env)
args_t = [self.type_check_exp(arg, env) for arg in args]
match func_t:

case FunctionType(params_t, return_t):
for (arg_t, param_t) in zip(args_t, params_t):

check_type_equal(param_t, arg_t, e)
return return_t

case _:
raise Exception('type_check_exp: in call, unexpected ' +

repr(func_t))
case _:

return super().type_check_exp(e, env)

def type_check_stmts(self, ss, env):
if len(ss) == 0:

return VoidType()
match ss[0]:

case FunctionDef(name, params, body, dl, returns, comment):
new_env = env.copy().update(params)
rt = self.type_check_stmts(body, new_env)
check_type_equal(returns, rt, ss[0])
return self.type_check_stmts(ss[1:], env)

case Return(value):
return self.type_check_exp(value, env)

case _:
return super().type_check_stmts(ss, env)

def type_check(self, p):
match p:

case Module(body):
env = {}
for s in body:

match s:
case FunctionDef(name, params, bod, dl, returns, comment):

if name in env:
raise Exception('type_check: function ' +

repr(name) + ' defined twice')
params_t = [t for (x,t) in params]
env[name] = FunctionType(params_t, returns)

self.type_check_stmts(body, env)
case _:

raise Exception('type_check: unexpected ' + repr(p))

Figure 8.5
Type checker for the LFun language.

130 Chapter 8

8.2 Functions in x86

The x86 architecture provides a few features to support the implementation of
functions. We have already seen that there are labels in x86 so that one can refer
to the location of an instruction, as is needed for jump instructions. Labels can also
be used to mark the beginning of the instructions for a function. Going further, we
can obtain the address of a label by using the leaq instruction. For example, the
following puts the address of the inc label into the rbx register:

leaq inc(%rip), %rbx

Recall from section 7.6 that inc(%rip) is an example of instruction-pointer-relative
addressing.

In section 2.2 we used the callq instruction to jump to functions whose locations
were given by a label, such as read_int. To support function calls in this chapter
we instead jump to functions whose location are given by an address in a register;
that is, we use indirect function calls. The x86 syntax for this is a callq instruction
that requires an asterisk before the register name.

callq *%rbx

8.2.1 Calling Conventions
The callq instruction provides partial support for implementing functions: it
pushes the return address on the stack and it jumps to the target. However, callq
does not handle

1. parameter passing,
2. pushing frames on the procedure call stack and popping them off, or
3. determining how registers are shared by different functions.

Regarding parameter passing, recall that the x86-64 calling convention for Unix-
based systems uses the following six registers to pass arguments to a function, in
the given order:

rdi rsi rdx rcx r8 r9

If there are more than six arguments, then the calling convention mandates using
space on the frame of the caller for the rest of the arguments. However, to ease the
implementation of efficient tail calls (section 8.2.2), we arrange never to need more
than six arguments. The return value of the function is stored in register rax.

Regarding frames and the procedure call stack, recall from section 2.2 that the
stack grows down and each function call uses a chunk of space on the stack called
a frame. The caller sets the stack pointer, register rsp, to the last data item in its
frame. The callee must not change anything in the caller’s frame, that is, anything
that is at or above the stack pointer. The callee is free to use locations that are
below the stack pointer.

Recall that we store variables of tuple type on the root stack. So, the prelude of
a function needs to move the root stack pointer r15 up according to the number

Functions 131

Caller View Callee View Contents Frame
8(%rbp) return address

Caller
0(%rbp) old rbp

-8(%rbp) callee-saved 1
… …

–8j(%rbp) callee-saved j
–8(j + 1)(%rbp) local variable 1

… …

–8(j + k)(%rbp) local variable k
8(%rbp) return address

Callee
0(%rbp) old rbp

-8(%rbp) callee-saved 1
… …

–8n(%rbp) callee-saved n
–8(n + 1)(%rbp) local variable 1

… …

–8(n + m)(%rbp) local variable m

Figure 8.6
Memory layout of caller and callee frames.

of variables of tuple type and the conclusion needs to move the root stack pointer
back down. Also, the prelude must initialize to 0 this frame’s slots in the root stack
to signal to the garbage collector that those slots do not yet contain a valid pointer.
Otherwise the garbage collector will interpret the garbage bits in those slots as
memory addresses and try to traverse them, causing serious mayhem!

Regarding the sharing of registers between different functions, recall from
section 4.1 that the registers are divided into two groups, the caller-saved registers
and the callee-saved registers. The caller should assume that all the caller-saved
registers are overwritten with arbitrary values by the callee. For that reason we
recommend in section 4.1 that variables that are live during a function call should
not be assigned to caller-saved registers.

On the flip side, if the callee wants to use a callee-saved register, the callee must
save the contents of those registers on their stack frame and then put them back
prior to returning to the caller. For that reason we recommend in section 4.1 that if
the register allocator assigns a variable to a callee-saved register, then the prelude
of the main function must save that register to the stack and the conclusion of main
must restore it. This recommendation now generalizes to all functions.

Recall that the base pointer, register rbp, is used as a point of reference within
a frame, so that each local variable can be accessed at a fixed offset from the base
pointer (section 2.2). Figure 8.6 shows the layout of the caller and callee frames.

132 Chapter 8

8.2.2 Efficient Tail Calls
In general, the amount of stack space used by a program is determined by the
longest chain of nested function calls. That is, if function f1 calls f2, f2 calls f3, and
so on to fn, then the amount of stack space is linear in n. The depth n can grow
quite large if functions are recursive. However, in some cases we can arrange to use
only a constant amount of space for a long chain of nested function calls.

A tail call is a function call that happens as the last action in a function body.
For example, in the following program, the recursive call to tail_sum is a tail call:

def tail_sum(n : int, r : int) -> int:
if n == 0:

return r
else:

return tail_sum(n - 1, n + r)

print(tail_sum(3, 0) + 36)

At a tail call, the frame of the caller is no longer needed, so we can pop the caller’s
frame before making the tail call. With this approach, a recursive function that
makes only tail calls ends up using a constant amount of stack space.

Some care is needed with regard to argument passing in tail calls. As mentioned,
for arguments beyond the sixth, the convention is to use space in the caller’s frame
for passing arguments. However, for a tail call we pop the caller’s frame and can
no longer use it. An alternative is to use space in the callee’s frame for passing
arguments. However, this option is also problematic because the caller and callee’s
frames overlap in memory. As we begin to copy the arguments from their sources
in the caller’s frame, the target locations in the callee’s frame might collide with
the sources for later arguments! We solve this problem by using the heap instead
of the stack for passing more than six arguments (section 8.5).

As mentioned, for a tail call we pop the caller’s frame prior to making the tail
call. The instructions for popping a frame are the instructions that we usually place
in the conclusion of a function. Thus, we also need to place such code immediately
before each tail call. These instructions include restoring the callee-saved registers,
so it is fortunate that the argument passing registers are all caller-saved registers.

One note remains regarding which instruction to use to make the tail call. When
the callee is finished, it should not return to the current function but instead return
to the function that called the current one. Thus, the return address that is already
on the stack is the right one, and we should not use callq to make the tail call
because that would overwrite the return address. Instead we simply use the jmp
instruction. As with the indirect function call, we write an indirect jump with a
register prefixed with an asterisk. We recommend using rax to hold the jump target
because the conclusion can overwrite just about everything else.

jmp *%rax

Functions 133

8.3 Shrink LFun

The shrink pass performs a minor modification to ease the later passes. This pass
introduces an explicit main function that gobbles up all the top-level statements of
the module.

Module(def … stmt …)
⇒ Module(def … mainDef)

where mainDef is

FunctionDef('main', [], int, None, stmt … Return(Constant(0)), None)

8.4 Reveal Functions and the LFunRef Language

The syntax of LFun is inconvenient for purposes of compilation in that it conflates
the use of function names and local variables. This is a problem because we need to
compile the use of a function name differently from the use of a local variable. In
particular, we use leaq to convert the function name (a label in x86) to an address
in a register. Thus, we create a new pass that changes function references from
Name(f) to FunRef(f , n) where n is the arity of the function.1 This pass is named
reveal_functions and the output language is LFunRef.

The reveal_functions pass should come before the remove_complex_operands
pass because function references should be categorized as complex expressions.

8.5 Limit Functions

Recall that we wish to limit the number of function parameters to six so that we do
not need to use the stack for argument passing, which makes it easier to implement
efficient tail calls. However, because the input language LFun supports arbitrary
numbers of function arguments, we have some work to do! The limit_functions
pass transforms functions and function calls that involve more than six arguments
to pass the first five arguments as usual, but it packs the rest of the arguments into
a tuple and passes it as the sixth argument.2

Each function definition with seven or more parameters is transformed as follows:

FunctionDef(f , [(x1,T1), … ,(xn,Tn)], Tr, None, body, None)
⇒

FunctionDef(f , [(x1,T1), … ,(x5,T5),(tup,TupleType([T6, … , Tn]))],
Tr, None, body′, None)

where the body is transformed into body′ by replacing the occurrences of each
parameter xi where i > 5 with the kth element of the tuple, where k = i – 6.

Name(xi) ⇒ Subscript(tup, Constant(k), Load())

1. The arity is not needed in this chapter but is used in chapter 10.
2. The implementation this pass can be postponed to last because you can test the rest of the
passes on functions with six or fewer parameters.

134 Chapter 8

atm ::= Constant(int) | Name(var)
exp ::= atm | Call(Name('input_int'),[])

| UnaryOp(USub(),atm) | BinOp(atm,Add(),atm)
| BinOp(atm,Sub(),atm)

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

atm ::= Constant(bool)
exp ::= UnaryOp(Not(),exp) | Compare(atm,[cmp],[atm])

| IfExp(exp,exp,exp) | Begin(stmt∗, exp)
stmt ::= If(exp, stmt∗, stmt∗)
stmt ::= While(exp, stmt+, [])
atm ::= GlobalValue(var)
exp ::= Subscript(atm,atm,Load()) | Call(Name('len'),[atm])

| Allocate(int, type)
stmt ::= Assign([Subscript(atm,atm,Store())], atm)

| Collect(int)
type ::= IntType() | BoolType() | VoidType() | TupleType[type+]

| FunctionType(type∗, type)
exp ::= FunRef(label, int) | Call(atm, atm∗)
stmt ::= Return(exp)
params ::= (var,type)∗

def ::= FunctionDef(var, params, stmt+, None, type, None)
Lmon

FunRef ::= Module([def … stmt …])

Figure 8.7
Lmon

FunRef is LFunRef in monadic normal form.

For function calls with too many arguments, the limit_functions pass trans-
forms them in the following way:

Call(e0, [e1, … , en]) ⇒ Call(e0, [e1, … , e5,Tuple([e6, … , en])])

8.6 Remove Complex Operands

The primary decisions to make for this pass are whether to classify FunRef and Call
as either atomic or complex expressions. Recall that an atomic expression ends up
as an immediate argument of an x86 instruction. Function application translates to
a sequence of instructions, so Call must be classified as a complex expression. On
the other hand, the arguments of Call should be atomic expressions. Regarding
FunRef, as discussed previously, the function label needs to be converted to an
address using the leaq instruction. Thus, even though FunRef seems rather simple,
it needs to be classified as a complex expression so that we generate an assignment
statement with a left-hand side that can serve as the target of the leaq.

The output of this pass, Lmon
FunRef (figure 8.7), extends Lmon

Alloc (figure 7.11) with
FunRef and Call in the grammar for expressions and augments programs to
include a list of function definitions. Also, Lmon

FunRef adds Return to the grammar
for statements.

Functions 135

atm ::= Constant(int) | Name(var) | Constant(bool)
exp ::= atm | Call(Name('input_int'),[]) | UnaryOp(USub(),atm)

| BinOp(atm,Sub(),atm) | BinOp(atm,Add(),atm)
| Compare(atm,[cmp],[atm])

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

tail ::= Return(exp) | Goto(label)
| If(Compare(atm,[cmp],[atm]), [Goto(label)], [Goto(label)])

atm ::= GlobalValue(var)
exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

| Call(Name('len'),[atm])
stmt ::= Collect(int) | Assign([Subscript(atm,atm,Store())], atm)
exp ::= FunRef(label, int) | Call(atm, atm∗)
tail ::= TailCall(atm, atm∗)
params ::= [(var,type), …]
block ::= label:stmt∗ tail
def ::= FunctionDef(label, params, {block, … }, None, type, None)
CFun ::= CProgramDefs([def , …])

Figure 8.8
The abstract syntax of CFun, extending CTup (figure 7.12).

8.7 Explicate Control and the CFun Language

Figure 8.8 defines the abstract syntax for CFun, the output of explicate_control.
The auxiliary functions for assignment should be updated with cases for Call and
FunRef and the function for predicate context should be updated for Call but not
FunRef. (A FunRef cannot be a Boolean.) In assignment and predicate contexts,
Apply becomes Call. We recommend defining a new auxiliary function for process-
ing function definitions. This code is similar to the case for Program in LTup. The
top-level explicate_control function that handles the ProgramDefs form of LFun

can then apply this new function to all the function definitions.
The translation of Return statements requires a new auxiliary function to handle

expressions in tail context, called explicate_tail. The function should take an
expression and the dictionary of basic blocks and produce a list of statements in the
CFun language. The explicate_tail function should include cases for Begin, IfExp,
and Call, and a default case for other kinds of expressions. The default case should
produce a Return statement. The case for Call should change it into TailCall.
The other cases should recursively process their subexpressions and statements,
choosing the appropriate explicate functions for the various contexts.

136 Chapter 8

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

pushq arg | popq arg | callq label | retq | jmp label |
label: instr

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= %bytereg
cc ::= e | ne | l | le | g | ge
instr ::= xorq arg, arg | cmpq arg, arg | setcc arg | movzbq arg, arg

| jcc label
arg ::= label(%rip)
instr ::= callq *arg | tailjmp arg | leaq arg, %reg
block ::= instr+

def ::= .globl .align 8 label (label: block)∗

x86Def
callq∗ ::= def ∗

Figure 8.9
The concrete syntax of x86Def

callq∗ (extends x86Global of figure 7.13).

arg ::= Constant(int) | Reg(reg) | Deref(reg,int) | ByteReg(reg)
| Global(label) | FunRef(label, int)

instr ::= … | IndirectCallq(arg, int) | TailJmp(arg, int)
| Instr('leaq',[arg,Reg(reg)])

block ::= label: instr∗

def ::= FunctionDef(label, [], {block, … }, _, type, _)
x86Def

callq∗ ::= X86ProgramDefs([def , …])

Figure 8.10
The abstract syntax of x86Def

callq∗ (extends x86Global of figure 7.14).

8.8 Select Instructions and the x86Def
callq∗ Language

The output of select instructions is a program in the x86Def
callq∗ language; the definition

of its concrete syntax is shown in figure 8.9, and the definition of its abstract
syntax is shown in figure 8.10. We use the align directive on the labels of function
definitions to make sure the bottom three bits are zero, which we put to use in
chapter 10. We discuss the new instructions as needed in this section.

An assignment of a function reference to a variable becomes a load-effective-
address instruction as follows, where lhs′ is the translation of lhs from atm in CFun

to arg in x86Var,Def
callq∗ . The FunRef becomes a Global AST node, whose concrete syntax

is instruction-pointer-relative addressing.

lhs = FunRef(f n); ⇒ leaq f (%rip), lhs′

Functions 137

Regarding function definitions, we need to remove the parameters and instead
perform parameter passing using the conventions discussed in section 8.2. That is,
the arguments are passed in registers. We recommend turning the parameters into
local variables and generating instructions at the beginning of the function to move
from the argument-passing registers (section 8.2.1) to these local variables.

FunctionDef(f , [(x1, T1), …], B, _, Tr, _)
⇒
FunctionDef(f , [], B′, _, int, _)

The basic blocks B′ are the same as B except that the start block is modified
to add the instructions for moving from the argument registers to the parameter
variables. So the start block of B shown on the left of the following is changed to
the code on the right:

start:
instr1

· · ·
instrn

⇒

f start:
movq %rdi, x1

movq %rsi, x2

· · ·
instr1

· · ·
instrn

Recall that we use the label start for the initial block of a program, and in
section 2.5 we recommend labeling the conclusion of the program with conclusion,
so that Return(Arg) can be compiled to an assignment to rax followed by a jump
to conclusion. With the addition of function definitions, there is a start block and
conclusion for each function, but their labels need to be unique. We recommend
prepending the function’s name to start and conclusion, respectively, to obtain
unique labels.

By changing the parameters to local variables, we are giving the register allocator
control over which registers or stack locations to use for them. If you implement
the move-biasing challenge (section 4.7), the register allocator will try to assign
the parameter variables to the corresponding argument register, in which case the
patch_instructions pass will remove the movq instruction. This happens in the
example translation given in figure 8.12 in section 8.12, in the add function. Also,
note that the register allocator will perform liveness analysis on this sequence of
move instructions and build the interference graph. So, for example, x1 will be
marked as interfering with rsi, and that will prevent the mapping of x1 to rsi,
which is good because otherwise the first movq would overwrite the argument in
rsi that is needed for x2.

Next, consider the compilation of function calls. In the mirror image of the
handling of parameters in function definitions, the arguments are moved to the
argument-passing registers. Note that the function is not given as a label, but its
address is produced by the argument arg0. So, we translate the call into an indirect
function call. The return value from the function is stored in rax, so it needs to be
moved into the lhs.

138 Chapter 8

lhs = Call(arg0, [arg1 arg2 …])
⇒
movq arg1, %rdi
movq arg2, %rsi
...
callq *arg0
movq %rax, lhs

The IndirectCallq AST node includes an integer for the arity of the function,
that is, the number of parameters. That information is useful in the uncover_live
pass for determining which argument-passing registers are potentially read during
the call.

For tail calls, the parameter passing is the same as non-tail calls: generate instruc-
tions to move the arguments into the argument-passing registers. After that we need
to pop the frame from the procedure call stack. However, we do not yet know how
big the frame is; that gets determined during register allocation. So, instead of
generating those instructions here, we invent a new instruction that means “pop
the frame and then do an indirect jump,” which we name TailJmp. The abstract
syntax for this instruction includes an argument that specifies where to jump and
an integer that represents the arity of the function being called.

8.9 Register Allocation

The addition of functions requires some changes to all three aspects of register
allocation, which we discuss in the following subsections.

8.9.1 Liveness Analysis
The IndirectCallq instruction should be treated like Callq regarding its written
locations W, in that they should include all the caller-saved registers. Recall that
the reason for that is to force variables that are live across a function call to be
assigned to callee-saved registers or to be spilled to the stack.

Regarding the set of read locations R, the arity fields of TailJmp and
IndirectCallq determine how many of the argument-passing registers should be
considered as read by those instructions. Also, the target field of TailJmp and
IndirectCallq should be included in the set of read locations R.

8.9.2 Build Interference Graph
With the addition of function definitions, we compute a separate interference graph
for each function (not just one for the whole program).

Recall that in section 7.7 we discussed the need to spill tuple-typed variables
that are live during a call to collect, the garbage collector. With the addition
of functions to our language, we need to revisit this issue. Functions that perform
allocation contain calls to the collector. Thus, we should not only spill a tuple-typed
variable when it is live during a call to collect, but we should spill the variable if it
is live during a call to any user-defined function. Thus, in the build_interference

Functions 139

pass, we recommend adding interference edges between call-live tuple-typed vari-
ables and the callee-saved registers (in addition to creating edges between call-live
variables and the caller-saved registers).

8.9.3 Allocate Registers
The primary change to the allocate_registers pass is adding an auxiliary func-
tion for handling definitions (the def nonterminal shown in figure 8.10) with one case
for function definitions. The logic is the same as described in chapter 4 except that
now register allocation is performed many times, once for each function definition,
instead of just once for the whole program.

8.10 Patch Instructions

In patch_instructions, you should deal with the x86 idiosyncrasy that the desti-
nation argument of leaq must be a register. Additionally, you should ensure that
the argument of TailJmp is rax, our reserved register—because we trample many
other registers before the tail call, as explained in the next section.

8.11 Generate Prelude and Conclusion

Now that register allocation is complete, we can translate the TailJmp into a
sequence of instructions. A naive translation of TailJmp would simply be jmp *arg.
However, before the jump we need to pop the current frame to achieve efficient tail
calls. This sequence of instructions is the same as the code for the conclusion of a
function, except that the retq is replaced with jmp *arg.

Regarding function definitions, we generate a prelude and conclusion for each one.
This code is similar to the prelude and conclusion generated for the main function
presented in chapter 7. To review, the prelude of every function should carry out
the following steps:

1. Push rbp to the stack and set rbp to current stack pointer.
2. Push to the stack all the callee-saved registers that were used for register

allocation.
3. Move the stack pointer rsp down to make room for the regular spills (aligned

to 16 bytes).
4. Move the root stack pointer r15 up by the size of the root-stack frame for this

function, which depends on the number of spilled tuple-typed variables.
5. Initialize to zero all new entries in the root-stack frame.
6. Jump to the start block.

The prelude of the main function has an additional task: call the initialize
function to set up the garbage collector, and then move the value of the global
rootstack_begin in r15. This initialization should happen before step 4, which
depends on r15.

The conclusion of every function should do the following:

140 Chapter 8

LFun LFun LFunRef LFunRef

LAlloc
FunRefLmon

FunRef

CFun

x86Var,Def
callq∗ x86Var,Def

callq∗ x86Def
callq∗ x86callq∗

shrink reveal_functions limit_functions

expose_allocation
remove_complex_operands

explicate_control

select_instructions

assign_homes

patch_instructions

prelude_and_conclusion

Figure 8.11
Diagram of the passes for LFun, a language with functions.

1. Move the stack pointer back up past the regular spills.
2. Restore the callee-saved registers by popping them from the stack.
3. Move the root stack pointer back down by the size of the root-stack frame for

this function.
4. Restore rbp by popping it from the stack.
5. Return to the caller with the retq instruction.

The output of this pass is x86callq∗, which differs from x86Def
callq∗ in that there is no

longer an AST node for function definitions. Instead, a program is just a dictionary
of basic blocks, as in x86Global. So we have the following grammar rule:

x86callq∗ ::= X86Program({label: instr∗, … })

Figure 8.11 gives an overview of the passes for compiling LFun to x86.

Exercise 8.1 Expand your compiler to handle LFun as outlined in this chapter. Cre-
ate eight new programs that use functions including examples that pass functions
and return functions from other functions, recursive functions, functions that cre-
ate tuples, and functions that make tail calls. Test your compiler on these new
programs and all your previously created test programs.

8.12 An Example Translation

Figure 8.12 shows an example translation of a simple function in LFun to x86. The
figure includes the results of explicate_control and select_instructions.

Functions 141

def add(x:int, y:int) -> int:
return x + y

print(add(40, 2))

⇓
def add(x:int, y:int) -> int:

addstart:
return x + y

def main() -> int:
mainstart:

fun.0 = add
tmp.1 = fun.0(40, 2)
print(tmp.1)
return 0

⇒

def add() -> int:
addstart:

movq %rdi, x
movq %rsi, y
movq x, %rax
addq y, %rax
jmp addconclusion

def main() -> int:
mainstart:

leaq add, fun.0
movq $40, %rdi
movq $2, %rsi
callq *fun.0
movq %rax, tmp.1
movq tmp.1, %rdi
callq print_int
movq $0, %rax
jmp mainconclusion

⇓

.align 8
add:

pushq %rbp
movq %rsp, %rbp
subq $0, %rsp
jmp addstart

addstart:
movq %rdi, %rdx
movq %rsi, %rcx
movq %rdx, %rax
addq %rcx, %rax
jmp addconclusion

addconclusion:
subq $0, %r15
addq $0, %rsp
popq %rbp
retq

.globl main

.align 8
main:

pushq %rbp
movq %rsp, %rbp
subq $0, %rsp
movq $65536, %rdi
movq $65536, %rsi
callq initialize
movq rootstack_begin(%rip), %r15
jmp mainstart

mainstart:
leaq add(%rip), %rcx
movq $40, %rdi
movq $2, %rsi
callq *%rcx
movq %rax, %rcx
movq %rcx, %rdi
callq print_int
movq $0, %rax
jmp mainconclusion

mainconclusion:
subq $0, %r15
addq $0, %rsp
popq %rbp
retq

Figure 8.12
Example compilation of a simple function to x86.

9 Lexically Scoped Functions

This chapter studies lexically scoped functions. Lexical scoping means that a func-
tion’s body may refer to variables whose binding site is outside of the function,
in an enclosing scope. Consider the example shown in figure 9.1 written in Lλ,
which extends LFun with the lambda form for creating lexically scoped functions.
The body of the lambda refers to three variables: x, y, and z. The binding sites
for x and y are outside of the lambda. Variable y is a local variable of function f,
and x is a parameter of function f. Note that function f returns the lambda as
its result value. The main expression of the program includes two calls to f with
different arguments for x: first 5 and then 3. The functions returned from f are
bound to variables g and h. Even though these two functions were created by the
same lambda, they are really different functions because they use different values
for x. Applying g to 11 produces 20 whereas applying h to 15 produces 22, so the
result of the program is 42.

The approach that we take for implementing lexically scoped functions is to
compile them into top-level function definitions, translating from Lλ into LFun.
However, the compiler must give special treatment to variable occurrences such as
x and y in the body of the lambda shown in figure 9.1. After all, an LFun function
may not refer to variables defined outside of it. To identify such variable occurrences,
we review the standard notion of free variable.

Definition 9.1 A variable is free in expression e if the variable occurs inside e but does
not have an enclosing definition that is also in e.

def f(x : int) -> Callable[[int], int]:
y = 4
return lambda z: x + y + z

g = f(5)
h = f(3)
print(g(11) + h(15))

Figure 9.1
Example of a lexically scoped function.

144 Chapter 9

5 4

x y
g

Code

3 4

x y
h

Figure 9.2
Flat closure representations for the two functions produced by the lambda in figure 9.1.

For example, in the expression x + y + z the variables x, y, and z are all free.
On the other hand, only x and y are free in the following expression, because z is
defined by the lambda

lambda z: x + y + z

Thus the free variables of a lambda are the ones that need special treatment. We
need to transport at runtime the values of those variables from the point where the
lambda was created to the point where the lambda is applied. An efficient solution
to the problem, due to Cardelli (1983), is to bundle the values of the free variables
together with a function pointer into a tuple, an arrangement called a flat closure
(which we shorten to just closure). By design, we have all the ingredients to make
closures: chapter 7 gave us tuples, and chapter 8 gave us function pointers. The
function pointer resides at index 0, and the values for the free variables fill in the
rest of the tuple.

Let us revisit the example shown in figure 9.1 to see how closures work. It is
a three-step dance. The program calls function f, which creates a closure for the
lambda. The closure is a tuple whose first element is a pointer to the top-level
function that we will generate for the lambda; the second element is the value of x,
which is 5; and the third element is 4, the value of y. The closure does not contain
an element for z because z is not a free variable of the lambda. Creating the closure
is step 1 of the dance. The closure is returned from f and bound to g, as shown
in figure 9.2. The second call to f creates another closure, this time with 3 in the
second slot (for x). This closure is also returned from f but bound to h, which is
also shown in figure 9.2.

Continuing with the example, consider the application of g to 11 shown in
figure 9.1. To apply a closure, we obtain the function pointer from the first ele-
ment of the closure and call it, passing in the closure itself and then the regular
arguments, in this case 11. This technique for applying a closure is step 2 of the
dance. But doesn’t this lambda take only one argument, for parameter z? The third
and final step of the dance is generating a top-level function for a lambda. We add
an additional parameter for the closure and insert an initialization at the beginning

Lexically Scoped Functions 145

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

stmt ::= while exp: stmt+

cmp ::= is
exp ::= exp, … ,exp | exp[int] | len(exp)

type ::= int | bool | void | tuple[type+] | Callable[[type, …], type]
exp ::= exp(exp, …)
stmt ::= return exp
def ::= def var(var:type, …) -> type: stmt+

exp ::= lambda var, … : exp | arity(exp)
stmt ::= var : type = exp
LFun ::= def … stmt …

Figure 9.3
The concrete syntax of Lλ, extending LFun (figure 8.1) with lambda.

of the function for each free variable, to bind those variables to the appropriate
elements from the closure parameter. This three-step dance is known as closure
conversion. We discuss the details of closure conversion in section 9.5 and show the
code generated from the example in section 9.5.1. First, we define the syntax and
semantics of Lλ in section 9.1.

9.1 The Lλ Language

The definitions of the concrete syntax and abstract syntax for Lλ, a language with
anonymous functions and lexical scoping, are shown in figures 9.3 and 9.4. They add
the lambda form to the grammar for LFun, which already has syntax for function
application. The syntax also includes an assignment statement that includes a type
annotation for the variable on the left-hand side, which facilitates the type checking
of lambda expressions that we discuss later in this section. The arity operation
returns the number of parameters of a given function, an operation that we need
for the translation of dynamic typing that is discussed in chapter 10. The arity
operation is not in Python, but the same functionality is available in a more complex
form. We include arity in the Lλ source language to enable testing.

Figure 9.5 shows the definitional interpreter for Lλ. The case for Lambda saves
the current environment inside the returned function value. Recall that during
function application, the environment stored in the function value, extended with
the mapping of parameters to argument values, is used to interpret the body of the
function.

146 Chapter 9

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
type ::= IntType() | BoolType() | VoidType() | TupleType[type+]

| FunctionType(type∗, type)
exp ::= Call(exp, exp∗)
stmt ::= Return(exp)
params ::= (var,type)∗

def ::= FunctionDef(var, params, stmt+, None, type, None)
exp ::= Lambda(var∗, exp) | Call(Name('arity'), [exp])
stmt ::= AnnAssign(var, type, exp, 0)
Lλ ::= Module([def … stmt …])

Figure 9.4
The abstract syntax of Lλ, extending LFun (figure 8.2).

Figures 9.6 and 9.7 define the type checker for Lλ, which is more complex than
one might expect. The reason for the added complexity is that the syntax of lambda
does not include type annotations for the parameters or return type. Instead they
must be inferred. There are many approaches to type inference from which to
choose, of varying degrees of complexity. We choose one of the simpler approaches,
bidirectional type inference (Pierce and Turner 2000; Dunfield and Krishnaswami
2021), because the focus of this book is compilation, not type inference.

The main idea of bidirectional type inference is to add an auxiliary function,
here named check_exp, that takes an expected type and checks whether the given
expression is of that type. Thus, in check_exp, type information flows in a top-
down manner with respect to the AST, in contrast to the regular type_check_exp
function, where type information flows in a primarily bottom-up manner. The idea
then is to use check_exp in all the places where we already know what the type
of an expression should be, such as in the return statement of a top-level function
definition or on the right-hand side of an annotated assignment statement.

Lexically Scoped Functions 147

class InterpLlambda(InterpLfun):
def arity(self, v):

match v:
case Function(name, params, body, env):

return len(params)
case _:

raise Exception('Llambda arity unexpected ' + repr(v))

def interp_exp(self, e, env):
match e:

case Call(Name('arity'), [fun]):
f = self.interp_exp(fun, env)
return self.arity(f)

case Lambda(params, body):
return Function('lambda', params, [Return(body)], env)

case _:
return super().interp_exp(e, env)

def interp_stmt(self, s, env, cont):
match s:

case AnnAssign(lhs, typ, value, simple):
env[lhs.id] = self.interp_exp(value, env)
return self.interp_stmts(cont, env)

case Pass():
return self.interp_stmts(cont, env)

case _:
return super().interp_stmt(s, env, cont)

Figure 9.5
Interpreter for Lλ.

With regard to lambda, it is straightforward to check a lambda inside check_exp
because the expected type provides the parameter types and the return type. On
the other hand, inside type_check_exp we disallow lambda, which means that
we do not allow lambda in contexts in which we don’t already know its type. This
restriction does not incur a loss of expressiveness for Lλ because it is straightforward
to modify a program to sidestep the restriction, for example, by using an annotated
assignment statement to assign the lambda to a temporary variable.

Note that for the Name and Lambda AST nodes, the type checker records their
type in a has_type field. This type information is used further on in this chapter.

148 Chapter 9

class TypeCheckLlambda(TypeCheckLfun):
def type_check_exp(self, e, env):

match e:
case Name(id):

e.has_type = env[id]
return env[id]

case Lambda(params, body):
raise Exception('cannot synthesize a type for a lambda')

case Call(Name('arity'), [func]):
func_t = self.type_check_exp(func, env)
match func_t:

case FunctionType(params_t, return_t):
return IntType()

case _:
raise Exception('in arity, unexpected ' + repr(func_t))

case _:
return super().type_check_exp(e, env)

def check_exp(self, e, ty, env):
match e:

case Lambda(params, body):
e.has_type = ty
match ty:

case FunctionType(params_t, return_t):
new_env = env.copy().update(zip(params, params_t))
self.check_exp(body, return_t, new_env)

case _:
raise Exception('lambda does not have type ' + str(ty))

case Call(func, args):
func_t = self.type_check_exp(func, env)
match func_t:

case FunctionType(params_t, return_t):
for (arg, param_t) in zip(args, params_t):

self.check_exp(arg, param_t, env)
self.check_type_equal(return_t, ty, e)

case _:
raise Exception('type_check_exp: in call, unexpected ' + \

repr(func_t))
case _:

t = self.type_check_exp(e, env)
self.check_type_equal(t, ty, e)

Figure 9.6
Type checking Lλ, part 1.

Lexically Scoped Functions 149

def check_stmts(self, ss, return_ty, env):
if len(ss) == 0:

return
match ss[0]:

case FunctionDef(name, params, body, dl, returns, comment):
new_env = env.copy().update(params)
rt = self.check_stmts(body, returns, new_env)
self.check_stmts(ss[1:], return_ty, env)

case Return(value):
self.check_exp(value, return_ty, env)

case Assign([Name(id)], value):
if id in env:

self.check_exp(value, env[id], env)
else:

env[id] = self.type_check_exp(value, env)
self.check_stmts(ss[1:], return_ty, env)

case Assign([Subscript(tup, Constant(index), Store())], value):
tup_t = self.type_check_exp(tup, env)
match tup_t:

case TupleType(ts):
self.check_exp(value, ts[index], env)

case _:
raise Exception('expected a tuple, not ' + repr(tup_t))

self.check_stmts(ss[1:], return_ty, env)
case AnnAssign(Name(id), ty_annot, value, simple):

ss[0].annotation = ty_annot
if id in env:

self.check_type_equal(env[id], ty_annot)
else:

env[id] = ty_annot
self.check_exp(value, ty_annot, env)
self.check_stmts(ss[1:], return_ty, env)

case _:
self.type_check_stmts(ss, env)

def type_check(self, p):
match p:

case Module(body):
env = {}
for s in body:

match s:
case FunctionDef(name, params, bod, dl, returns, comment):

params_t = [t for (x,t) in params]
env[name] = FunctionType(params_t, returns)

self.check_stmts(body, int, env)

Figure 9.7
Type checking the lambda’s in Lλ, part 2.

150 Chapter 9

9.2 Assignment and Lexically Scoped Functions

The combination of lexically scoped functions and assignment to variables raises a
challenge with the flat-closure approach to implementing lexically scoped functions.
Consider the following example in which function f has a free variable x that is
changed after f is created but before the call to f.

def g(z : int) -> int:
x = 0
y = 0
f : Callable[[int],int] = lambda a: a + x + z
x = 10
y = 12
return f(y)

print(g(20))

The correct output for this example is 42 because the call to f is required to
use the current value of x (which is 10). Unfortunately, the closure conversion pass
(section 9.5) generates code for the lambda that copies the old value of x into a
closure. Thus, if we naively applied closure conversion, the output of this program
would be 32.

A first attempt at solving this problem would be to save a pointer to x in the clo-
sure and change the occurrences of x inside the lambda to dereference the pointer.
Of course, this would require assigning x to the stack and not to a register. How-
ever, the problem goes a bit deeper. Consider the following example that returns a
function that refers to a local variable of the enclosing function:

def f():
x = 0
g = lambda: x
x = 42
return g

print(f()())

In this example, the lifetime of x extends beyond the lifetime of the call to f. Thus,
if we were to store x on the stack frame for the call to f, it would be gone by the
time we called g, leaving us with dangling pointers for x. This example demonstrates
that when a variable occurs free inside a function, its lifetime becomes indefinite.
Thus, the value of the variable needs to live on the heap. The verb box is often
used for allocating a single value on the heap, producing a pointer, and unbox for
dereferencing the pointer. We introduce a new pass named convert_assignments
to address this challenge. But before diving into that, we have one more problem
to discuss.

Lexically Scoped Functions 151

9.3 Uniquify Variables

With the addition of lambda we have a complication to deal with: name shadowing.
Consider the following program with a function f that has a parameter x. Inside
f there are two lambda expressions. The first lambda has a parameter that is also
named x.

def f(x:int, y:int) -> Callable[[int], int]:
g : Callable[[int],int] = (lambda x: x + y)
h : Callable[[int],int] = (lambda y: x + y)
x = input_int()
return g

print(f(0, 10)(32))

Many of our compiler passes rely on being able to connect variable uses with
their definitions using just the name of the variable. However, in the example above,
the name of the variable does not uniquely determine its definition. To solve this
problem we recommend implementing a pass named uniquify that renames every
variable in the program to make sure that they are all unique.

The following shows the result of uniquify for the example above. The x param-
eter of function f is renamed to x_0, and the x parameter of the first lambda is
renamed to x_4.

def f(x_0:int, y_1:int) -> Callable[[int], int] :
g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
x_0 = input_int()
return g_2

def main() -> int :
print(f(0, 10)(32))
return 0

9.4 Assignment Conversion

The purpose of the convert_assignments pass is to address the challenge regard-
ing the interaction between variable assignments and closure conversion. First we
identify which variables need to be boxed, and then we transform the program to
box those variables. In general, boxing introduces runtime overhead that we would
like to avoid, so we should box as few variables as possible. We recommend boxing
the variables in the intersection of the following two sets of variables:

1. The variables that are free in a lambda.
2. The variables that appear on the left-hand side of an assignment.

The first condition is a must but the second condition is conservative. It is possible
to develop a more liberal condition using static program analysis.

Consider again the first example from section 9.2:

152 Chapter 9

def g(z : int) -> int:
x = 0
y = 0
f : Callable[[int],int] = lambda a: a + x + z
x = 10
y = 12
return f(y)

print(g(20))

The variables x and y appear on the left-hand side of assignments. The variables
x and z occur free inside the lambda. Thus, variable x needs to be boxed but not
y or z. The boxing of x consists of three transformations: initialize x with a tuple
whose element is uninitialized, replace reads from x with tuple reads, and replace
each assignment to x with a tuple write. The output of convert_assignments for
this example is as follows:

def g(z : int)-> int:
x = (uninitialized(int),)
x[0] = 0
y = 0
f : Callable[[int], int] = (lambda a: a + x[0] + z)
x[0] = 10
y = 12
return f(y)

def main() -> int:
print(g(20))
return 0

To compute the free variables of all the lambda expressions, we recommend
defining the following two auxiliary functions:

1. free_variables computes the free variables of an expression, and
2. free_in_lambda collects all the variables that are free in any of the lambda

expressions, using free_variables in the case for each lambda.

To compute the variables that are assigned to, we recommend defining an aux-
iliary function named assigned_vars_stmt that returns the set of variables that
occur in the left-hand side of an assignment statement and otherwise returns the
empty set.

Let AF be the intersection of the set of variables that are free in a lambda and
that are assigned to in the enclosing function definition.

Next we discuss the convert_assignments pass. In the case for Name(x), if x is
in AF, then unbox it by translating Name(x) to a tuple read.

Name(x)
⇒
Subscript(Name(x), Constant(0), Load())

Lexically Scoped Functions 153

In the case for assignment, recursively process the right-hand side rhs to obtain
rhs′. If the left-hand side x is in AF, translate the assignment into a tuple write as
follows:

Assign([Name(x)],rhs)
⇒
Assign([Subscript(Name(x), Constant(0), Store())], rhs′)

To translate a function definition, we first compute AF, the intersection of the
variables that are free in a lambda and that are assigned to. We then apply
assignment conversion to the body of the function definition. Finally, we box the
parameters of this function definition that are in AF. For example, the parameter
x of the following function g needs to be boxed:

def g(x : int) -> int:
f : Callable[[int],int] = lambda a: a + x
x = 10
return f(32)

We box parameter x by creating a local variable named x that is initialized to a
tuple whose contents is the value of the parameter, which is renamed to x_0.

def g(x_0 : int)-> int:
x = (x_0,)
f : Callable[[int], int] = (lambda a: a + x[0])
x[0] = 10
return f(32)

9.5 Closure Conversion

The compiling of lexically scoped functions into top-level function definitions and
flat closures is accomplished in the pass convert_to_closures that comes after
reveal_functions and before limit_functions.

As usual, we implement the pass as a recursive function over the AST. The
interesting cases are for lambda and function application. We transform a lambda
expression into an expression that creates a closure, that is, a tuple for which the
first element is a function pointer and the rest of the elements are the values of the
free variables of the lambda. However, we use the Closure AST node instead of
using a tuple so that we can record the arity. In the generated code that follows,
fvs is the list of free variables of the lambda and name is a unique symbol generated
to identify the lambda.

Lambda([x1, … , xn], body)
⇒
Closure(n, [FunRef(name, n), fvs1, … , fvsm])

In addition to transforming each Lambda AST node into a tuple, we create a
top-level function definition for each Lambda, as shown next.

154 Chapter 9

def name(clos : closTy, x1 : T ′
1, … , xn : T ′

n) -> rt′:
fvs1 = clos[1]
…

fvsm = clos[m]
body′

The clos parameter refers to the closure. The type closTy is a tuple type for which
the first element type is Bottom() and the rest of the element types are the types of
the free variables in the lambda. We use Bottom() because it is nontrivial to give a
type to the function in the closure’s type.1 The has_type field of the Lambda AST
node is of the form FunctionType([x1 : T1, … , xn : Tn], rt). Translate the parame-
ter types T1, … , Tn and return type rt to obtain T ′

1, … , T ′
n and rt′. The free variables

become local variables that are initialized with their values in the closure.
Closure conversion turns every function into a tuple, so the type annotations in

the program must also be translated. We recommend defining an auxiliary recursive
function for this purpose. Function types should be translated as follows:

FunctionType([T1, … , Tn], Tr)
⇒
TupleType([FunctionType([TupleType([]), T ′

1, … , T ′
n], T ′

r)])

This type indicates that the first thing in the tuple is a function. The first param-
eter of the function is a tuple (a closure) and the rest of the parameters are the ones
from the original function, with types T ′

1, … , T ′
n. The type for the closure omits the

types of the free variables because (1) those types are not available in this context,
and (2) we do not need them in the code that is generated for function application.
So this type describes only the first component of the closure tuple. At runtime the
tuple may have more components, but we ignore them at this point.

We transform function application into code that retrieves the function from the
closure and then calls the function, passing the closure as the first argument. We
place e′ in a temporary variable to avoid code duplication.

Call(e, [e1, … , en])
⇒
Begin([Assign([tmp], e′)],

Call(Subscript(Name(tmp), Constant(0)),
[tmp, e′

1, … , e′
n]))

There is also the question of what to do with references to top-level function defi-
nitions. To maintain a uniform translation of function application, we turn function
references into closures.

FunRef(f , n) ⇒ Closure(n, [FunRef(f n)])

1. To give an accurate type to a closure, we would need to add existential types to the type
checker (Minamide, Morrisett, and Harper 1996).

Lexically Scoped Functions 155

def f(x: int) -> Callable[[int],int]:
y = 4
return lambda z: x + y + z

g = f(5)
h = f(3)
print(g(11) + h(15))

⇒

def lambda_0(fvs_1: tuple[bot,int,tuple[int]], z: int) -> int:
x = fvs_1[1]
y = fvs_1[2]
return (x + y[0] + z)

def f(fvs_2: tuple[bot], x: int) -> tuple[Callable[[tuple[],int],int]]:
y = (uninitialized(int),)
y[0] = 4
return closure{1}({lambda_0}, x, y)

def main() -> int:
g = (begin: clos_3 = closure{1}({f})

clos_3[0](clos_3, 5))
h = (begin: clos_4 = closure{1}({f})

clos_4[0](clos_4, 3))
print((begin: clos_5 = g

clos_5[0](clos_5, 11))
+ (begin: clos_6 = h

clos_6[0](clos_6, 15)))
return 0

Figure 9.8
Example of closure conversion.

We no longer need the annotated assignment statement AnnAssign to support
the type checking of lambda expressions, so we translate it to a regular Assign
statement.

The top-level function definitions need to be updated to take an extra closure
parameter, but that parameter is ignored in the body of those functions.

9.5.1 An Example Translation
Figure 9.8 shows the result of reveal_functions and convert_to_closures
for the example program demonstrating lexical scoping that we discussed at the
beginning of this chapter.

Exercise 9.1 Expand your compiler to handle Lλ as outlined in this chapter. Create
five new programs that use lambda functions and make use of lexical scoping. Test
your compiler on these new programs and all your previously created test programs.

156 Chapter 9

atm ::= Constant(int) | Name(var) | Constant(bool)
exp ::= atm | Call(Name('input_int'),[]) | UnaryOp(USub(),atm)

| BinOp(atm,Sub(),atm) | BinOp(atm,Add(),atm)
| Compare(atm,[cmp],[atm])

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

tail ::= Return(exp) | Goto(label)
| If(Compare(atm,[cmp],[atm]), [Goto(label)], [Goto(label)])

atm ::= GlobalValue(var)
exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

| Call(Name('len'),[atm])
stmt ::= Collect(int) | Assign([Subscript(atm,atm,Store())], atm)
exp ::= FunRef(label, int) | Call(atm, atm∗)
tail ::= TailCall(atm, atm∗)
params ::= [(var,type), …]
block ::= label:stmt∗ tail
def ::= FunctionDef(label, params, {block, … }, None, type, None)
exp ::= Uninitialized(type) | AllocateClosure(len, type, arity)

| Call(Name('arity'), [atm]) | UncheckedCast(exp, type)
CClos ::= CProgramDefs([def , …])

Figure 9.9
The abstract syntax of CClos, extending CFun (figure 8.8).

9.6 Expose Allocation

Compile the Closure(arity, exp∗) form into code that allocates and initializes a
tuple, similar to the translation of the tuple creation in section 7.3. The main
difference is replacing the use of Allocate(len, type) with AllocateClosure(len,
type, arity). The result type of the translation of Closure(arity, exp∗) should be
a tuple type, but only a single element tuple type. The types of the tuple elements
that correspond to the free variables of the closure should not appear in the tuple
type. The new AST class UncheckedCast can be used to adjust the result type.

9.7 Explicate Control and CClos

The output language of explicate_control is CClos; the definition of its abstract
syntax is shown in figure 9.9. The differences with respect to CFun are the additions
of Uninitialized, AllocateClosure, and arity to the grammar for exp. The
handling of them in the explicate_control pass is similar to the handling of
other expressions such as primitive operators.

9.8 Select Instructions

Compile AllocateClosure(len, type, arity) in almost the same way as the
Allocate(len, type) form (section 7.6). The only difference is that you should

Lexically Scoped Functions 157

place the arity in the tag that is stored at position 0 of the tuple. Recall that in
section 7.6 a portion of the 64-bit tag was not used. We store the arity in the 5 bits
starting at position 58.

Compile a call to the arity operator to a sequence of instructions that access
the tag from position 0 of the tuple (representing a closure) and extract the 5 bits
starting at position 58 from the tag.

Figure 9.10 provides an overview of the passes needed for the compilation of Lλ.

Lλ Lλ Lλ LFunRef
λ

LFunRef
λLFunRefLFunRefLAlloc

FunRef

Lmon
FunRef

CFun

x86Var,Def
callq∗ x86Var,Def

callq∗ x86Def
callq∗ x86Def

callq∗

shrink uniquify reveal_functions

convert_assignments

convert_to_closureslimit_functions

expose_allocation

remove_complex_operands

explicate_control

select_instructions

assign_homes patch_instructions

prelude_and_conclusion

Figure 9.10
Diagram of the passes for Lλ, a language with lexically scoped functions.

158 Chapter 9

9.9 Challenge: Optimize Closures

In this chapter we compile lexically scoped functions into a relatively efficient
representation: flat closures. However, even this representation comes with some
overhead. For example, consider the following program with a function tail_sum
that does not have any free variables and where all the uses of tail_sum are in
applications in which we know that only tail_sum is being applied (and not any
other functions):

def tail_sum(n : int, s : int) -> int:
if n == 0:

return s
else:

return tail_sum(n - 1, n + s)

print(tail_sum(3, 0) + 36)

As described in this chapter, we uniformly apply closure conversion to all functions,
obtaining the following output for this program:

def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
if n_0 == 0:

return s_1
else:

return (begin: clos_2 = (tail_sum,)
clos_2[0](clos_2, n_0 - 1, n_0 + s_1))

def main() -> int :
print((begin: clos_4 = (tail_sum,)

clos_4[0](clos_4, 3, 0)) + 36)
return 0

If this program were compiled according to the previous chapter, there would
be no allocation and the calls to tail_sum would be direct calls. In contrast, the
program presented here allocates memory for each closure and the calls to tail_sum
are indirect. These two differences incur considerable overhead in a program such
as this, in which the allocations and indirect calls occur inside a tight loop.

One might think that this problem is trivial to solve: can’t we just recognize calls
of the form Call(FunRef(f , n), args) and compile them to direct calls instead of
treating it like a call to a closure? We would also drop the new fvs parameter of
tail_sum. However, this problem is not so trivial, because a global function may
escape and become involved in applications that also involve closures. Consider
the following example in which the application f(41) needs to be compiled into a
closure application because the lambda may flow into f, but the inc function might
also flow into f:

Lexically Scoped Functions 159

def add1(x : int) -> int:
return x + 1

y = input_int()
g : Callable[[int], int] = lambda x: x - y
f = add1 if input_int() == 0 else g
print(f(41))

If a global function name is used in any way other than as the operator in a direct
call, then we say that the function escapes. If a global function does not escape,
then we do not need to perform closure conversion on the function.

Exercise 9.2 Implement an auxiliary function for detecting which global functions
escape. Using that function, implement an improved version of closure conversion
that does not apply closure conversion to global functions that do not escape but
instead compiles them as regular functions. Create several new test cases that check
whether your compiler properly detects whether global functions escape or not.

So far we have reduced the overhead of calling global functions, but it would
also be nice to reduce the overhead of calling a lambda when we can determine at
compile time which lambda will be called. We refer to such calls as known calls.
Consider the following example in which a lambda is bound to f and then applied.

y = input_int()
f : Callable[[int],int] = lambda x: x + y
print(f(21))

Closure conversion compiles the application f(21) into an indirect call, as follows:

def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
y_1 = fvs_4[1]
return x_2 + y_1[0]

def main() -> int:
y_1 = (777,)
y_1[0] = input_int()
f_0 = (lambda_3, y_1)
print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
return 0

However, we can instead compile the application f(21) into a direct call, as follows:

def main() -> int:
y_1 = (777,)
y_1[0] = input_int()
f_0 = (lambda_3, y_1)
print(lambda_3(f_0, 21))
return 0

The problem of determining which lambda will be called from a particular appli-
cation is quite challenging in general and the topic of considerable research (Shivers

160 Chapter 9

1988; Gilray et al. 2016). For the following exercise we recommend that you com-
pile an application to a direct call when the operator is a variable and the previous
assignment to the variable is a closure. This can be accomplished by maintaining
an environment that maps variables to function names. Extend the environment
whenever you encounter a closure on the right-hand side of an assignment, mapping
the variable to the name of the global function for the closure. This pass should
come after closure conversion.

Exercise 9.3 Implement a compiler pass, named optimize_known_calls, that com-
piles known calls into direct calls. Verify that your compiler is successful in this
regard on several example programs.

These exercises only scratch the surface of closure optimization. A good next step
for the interested reader is to look at the work of Keep, Hearn, and Dybvig (2012).

9.10 Further Reading

The notion of lexically scoped functions predates modern computers by about a
decade. They were invented by Church (1932), who proposed the lambda calculus as
a foundation for logic. Anonymous functions were included in the LISP (McCarthy
1960) programming language but were initially dynamically scoped. The Scheme
dialect of LISP adopted lexical scoping, and Steele (1978) demonstrated how to
efficiently compile Scheme programs. However, environments were represented as
linked lists, so variable look-up was linear in the size of the environment. Appel
(1991) gives a detailed description of several closure representations. In this chapter
we represent environments using flat closures, which were invented by Cardelli
(1983, 1984) for the purpose of compiling the ML language (Gordon et al. 1978;
Milner, Tofte, and Harper 1990). With flat closures, variable look-up is constant
time but the time to create a closure is proportional to the number of its free
variables. Flat closures were reinvented by Dybvig (1987b) in his PhD thesis and
used in Chez Scheme version 1 (Dybvig 2006).

10 Dynamic Typing

In this chapter we learn how to compile LDyn, a dynamically typed language that
is a subset of Python. The focus on dynamic typing is in contrast to the previ-
ous chapters, which have studied the compilation of statically typed languages. In
dynamically typed languages such as LDyn, a particular expression may produce a
value of a different type each time it is executed. Consider the following example
with a conditional if expression that may return a Boolean or an integer depending
on the input to the program:

not (False if input_int() == 1 else 0)

Languages that allow expressions to produce different kinds of values are called
polymorphic, a word composed of the Greek roots poly, meaning many, and
morph, meaning form. There are several kinds of polymorphism in programming
languages, such as subtype polymorphism and parametric polymorphism (aka
generics) (Cardelli and Wegner 1985). The kind of polymorphism that we study in
this chapter does not have a special name; it is the kind that arises in dynamically
typed languages.

Another characteristic of dynamically typed languages is that their primitive
operations, such as not, are often defined to operate on many different types of
values. In fact, in Python, the not operator produces a result for any kind of value:
given False it returns True, and given anything else it returns False.

Furthermore, even when primitive operations restrict their inputs to values of a
certain type, this restriction is enforced at runtime instead of during compilation.
For example, the tuple read operation True[0] results in a runtime error because
the first argument must be a tuple, not a Boolean.

10.1 The LDyn Language

The definitions of the concrete and abstract syntax of LDyn are shown in figures 10.1
and 10.2. There is no type checker for LDyn because it checks types only at runtime.

The definitional interpreter for LDyn is presented in figures 10.3 and 10.4,
and definitions of its auxiliary functions are shown in figure 10.5. Consider
the match case for Constant(n). Instead of simply returning the integer n (as
in the interpreter for LVar in figure 2.4), the interpreter for LDyn creates a
tagged value that combines an underlying value with a tag that identifies what

162 Chapter 10

cmp ::= == | != | < | <= | > | >= | is
exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)

| var | True | False | exp and exp | exp or exp | not exp
| exp cmp exp | exp if exp else exp
| exp, … ,exp | exp[exp] | len(exp)
| exp(exp, …) | lambda var, … : exp

stmt ::= print(exp) | exp | var = exp
| if exp: stmt+ else: stmt+ | while exp: stmt+

| return exp
def ::= def var(var, …): stmt+

LDyn ::= def … stmt …

Figure 10.1
Syntax of LDyn, an untyped language (a subset of Python).

boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE() | Is()
bool ::= True | False
exp ::= Constant(int) | Call(Name('input_int'),[])

| UnaryOp(USub(),exp)
| BinOp(exp,Add(),exp) | BinOp(exp,Sub(),exp)
| Name(var) | Constant(bool) | BoolOp(boolop,[exp,exp])
| Compare(exp,[cmp],[exp]) | IfExp(exp,exp,exp)
| Tuple(exp+,Load()) | Subscript(exp,exp,Load())
| Call(Name('len'),[exp])
| Call(exp, exp∗) | Lambda(var∗, exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
| Assign([Name(var)], exp)
| If(exp, stmt+, stmt+) | While(exp, stmt+, [])
| Return(exp)

params ::= (var,AnyType())∗

def ::= FunctionDef(var, params, stmt+, None, AnyType(), None)
LDyn ::= Module([def … stmt …])

Figure 10.2
The abstract syntax of LDyn.

kind of value it is. We define the following class to represent tagged values:
@dataclass(eq=True)
class Tagged(Value):

value : Value
tag : str
def __str__(self):

return str(self.value)

The tags are 'int', 'bool', 'none', 'tuple', and 'function'. Tags are closely
related to types but do not always capture all the information that a type does.

Dynamic Typing 163

class InterpLdyn(InterpLlambda):
def interp_exp(self, e, env):

match e:
case Constant(n):

return self.tag(super().interp_exp(e, env))
case Tuple(es, Load()):

return self.tag(super().interp_exp(e, env))
case Lambda(params, body):

return self.tag(super().interp_exp(e, env))
case Call(Name('input_int'), []):

return self.tag(super().interp_exp(e, env))
case BinOp(left, Add(), right):

l = self.interp_exp(left, env); r = self.interp_exp(right, env)
return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))

case BinOp(left, Sub(), right):
l = self.interp_exp(left, env); r = self.interp_exp(right, env)
return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))

case UnaryOp(USub(), e1):
v = self.interp_exp(e1, env)
return self.tag(- self.untag(v, 'int', e))

case IfExp(test, body, orelse):
v = self.interp_exp(test, env)
if self.untag(v, 'bool', e):

return self.interp_exp(body, env)
else:

return self.interp_exp(orelse, env)
case UnaryOp(Not(), e1):

v = self.interp_exp(e1, env)
return self.tag(not self.untag(v, 'bool', e))

case BoolOp(And(), values):
left = values[0]; right = values[1]
l = self.interp_exp(left, env)
if self.untag(l, 'bool', e):

return self.interp_exp(right, env)
else:

return self.tag(False)
case BoolOp(Or(), values):

left = values[0]; right = values[1]
l = self.interp_exp(left, env)
if self.untag(l, 'bool', e):

return self.tag(True)
else:

return self.interp_exp(right, env)

Figure 10.3
Interpreter for the LDyn language, part 1.

For example, a tuple of type TupleType([AnyType(),AnyType()]) is tagged
with 'tuple' and a function of type FunctionType([AnyType(), AnyType()],
AnyType()) is tagged with 'function'.

Next consider the match case for accessing the element of a tuple. The untag
auxiliary function (figure 10.5) is used to ensure that the first argument is a tuple
and the second is an integer. If they are not, an exception is raised. The compiled
code must also signal an error by exiting with return code 255. A exception is also
raised if the index is not less than the length of the tuple or if it is negative.

164 Chapter 10

interp_exp continued
case Compare(left, [cmp], [right]):

l = self.interp_exp(left, env)
r = self.interp_exp(right, env)
if l.tag == r.tag:

return self.tag(self.interp_cmp(cmp)(l.value, r.value))
else:

raise Exception('interp Compare unexpected '
+ repr(l) + ' ' + repr(r))

case Subscript(tup, index, Load()):
t = self.interp_exp(tup, env)
n = self.interp_exp(index, env)
return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]

case Call(Name('len'), [tup]):
t = self.interp_exp(tup, env)
return self.tag(len(self.untag(t, 'tuple', e)))

case _:
return self.tag(super().interp_exp(e, env))

def interp_stmt(self, s, env, cont):
match s:

case If(test, body, orelse):
v = self.interp_exp(test, env)
match self.untag(v, 'bool', s):

case True:
return self.interp_stmts(body + cont, env)

case False:
return self.interp_stmts(orelse + cont, env)

case While(test, body, []):
v = self.interp_exp(test, env)
if self.untag(v, 'bool', test):

self.interp_stmts(body + [s] + cont, env)
else:

return self.interp_stmts(cont, env)
case Assign([Subscript(tup, index)], value):

tup = self.interp_exp(tup, env)
index = self.interp_exp(index, env)
tup_v = self.untag(tup, 'tuple', s)
index_v = self.untag(index, 'int', s)
tup_v[index_v] = self.interp_exp(value, env)
return self.interp_stmts(cont, env)

case FunctionDef(name, params, bod, dl, returns, comment):
if isinstance(params, ast.arguments):

ps = [p.arg for p in params.args]
else:

ps = [x for (x,t) in params]
env[name] = self.tag(Function(name, ps, bod, env))
return self.interp_stmts(cont, env)

case _:
return super().interp_stmt(s, env, cont)

Figure 10.4
Interpreter for the LDyn language, part 2.

Dynamic Typing 165

class InterpLdyn(InterpLlambda):
def tag(self, v):

if v is True or v is False:
return Tagged(v, 'bool')

elif isinstance(v, int):
return Tagged(v, 'int')

elif isinstance(v, Function):
return Tagged(v, 'function')

elif isinstance(v, tuple):
return Tagged(v, 'tuple')

elif isinstance(v, type(None)):
return Tagged(v, 'none')

else:
raise Exception('tag: unexpected ' + repr(v))

def untag(self, v, expected_tag, ast):
match v:

case Tagged(val, tag) if tag == expected_tag:
return val

case _:
raise TrappedError('expected Tagged value with '

+ expected_tag + ', not ' + ' ' + repr(v))

def apply_fun(self, fun, args, e):
f = self.untag(fun, 'function', e)
return super().apply_fun(f, args, e)

Figure 10.5
Auxiliary functions for the LDyn interpreter.

10.2 Representation of Tagged Values

The interpreter for LDyn introduced a new kind of value: the tagged value. To
compile LDyn to x86 we must decide how to represent tagged values at the bit level.
Because almost every operation in LDyn involves manipulating tagged values, the
representation must be efficient. Recall that all our values are 64 bits. We shall
steal the right-most 3 bits to encode the tag. We use 001 to identify integers, 100
for Booleans, 010 for tuples, 011 for procedures, and 101 for the void value, None.
We define the following auxiliary function for mapping types to tag codes:

tagof (IntType()) = 001

tagof (BoolType()) = 100

tagof (TupleType(ts)) = 010

tagof (FunctionType(ps, rt)) = 011

tagof (type(None)) = 101

This stealing of 3 bits comes at some price: integers are now restricted to the
range –260 to 260 – 1. The stealing does not adversely affect tuples and procedures

166 Chapter 10

because those values are addresses, and our addresses are 8-byte aligned so the
rightmost 3 bits are unused; they are always 000. Thus, we do not lose information
by overwriting the rightmost 3 bits with the tag, and we can simply zero out the
tag to recover the original address.

To make tagged values into first-class entities, we can give them a type called
AnyType and define operations such as Inject and Project for creating and using
them, yielding the statically typed LAny intermediate language. We describe how
to compile LDyn to LAny in section 10.4; in the next section we describe the LAny

language in greater detail.

10.3 The LAny Language

The definition of the abstract syntax of LAny is given in figure 10.6. The
Inject(e, T) form converts the value produced by expression e of type T into
a tagged value. The Project(e, T) form either converts the tagged value pro-
duced by expression e into a value of type T or halts the program if the type tag
does not match T. Note that in both Inject and Project, the type T is restricted
to be a flat type (the nonterminal ftype) which simplifies the implementation and
complies with the needs for compiling LDyn.

The operators any_tuple_load and any_len adapt the tuple operations so that
they can be applied to a value of type AnyType. They also generalize the tuple
operations in that the index is not restricted to a literal integer in the grammar
but is allowed to be any expression.

The type checker for LAny is shown in figure 10.7. The interpreter for LAny is
shown in figure 10.8 and its auxiliary functions are shown in figure 10.9.

Dynamic Typing 167

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
type ::= IntType() | BoolType() | VoidType() | TupleType[type+]

| FunctionType(type∗, type)
exp ::= Call(exp, exp∗)
stmt ::= Return(exp)
params ::= (var,type)∗

def ::= FunctionDef(var, params, stmt+, None, type, None)
exp ::= Lambda(var∗, exp) | Call(Name('arity'), [exp])
stmt ::= AnnAssign(var, type, exp, 0)
type ::= AnyType()
ftype ::= IntType() | BoolType() | VoidType() | TupleType[AnyType()+]

| FunctionType(AnyType()∗, AnyType())
exp ::= Inject(exp, ftype) | Project(exp, ftype)

| Call(Name('any_tuple_load'), [exp, exp])
| Call(Name('any_len'), [exp])
| Call(Name('arity'), [exp])
| Call(Name('make_any'), [exp, Constant(int)])

LAny ::= Module([def … stmt …])

Figure 10.6
The abstract syntax of LAny, extending Lλ (figure 9.4).

168 Chapter 10

class TypeCheckLany(TypeCheckLlambda):
def type_check_exp(self, e, env):

match e:
case Inject(value, typ):

self.check_exp(value, typ, env)
return AnyType()

case Project(value, typ):
self.check_exp(value, AnyType(), env)
return typ

case Call(Name('any_tuple_load'), [tup, index]):
self.check_exp(tup, AnyType(), env)
self.check_exp(index, IntType(), env)
return AnyType()

case Call(Name('any_len'), [tup]):
self.check_exp(tup, AnyType(), env)
return IntType()

case Call(Name('arity'), [fun]):
ty = self.type_check_exp(fun, env)
match ty:

case FunctionType(ps, rt):
return IntType()

case TupleType([FunctionType(ps,rs)]):
return IntType()

case _:
raise Exception('type check arity unexpected ' + repr(ty))

case Call(Name('make_any'), [value, tag]):
self.type_check_exp(value, env)
self.check_exp(tag, IntType(), env)
return AnyType()

case AnnLambda(params, returns, body):
new_env = {x:t for (x,t) in env.items()}
for (x,t) in params:

new_env[x] = t
return_t = self.type_check_exp(body, new_env)
self.check_type_equal(returns, return_t, e)
return FunctionType([t for (x,t) in params], return_t)

case _:
return super().type_check_exp(e, env)

Figure 10.7
Type checker for the LAny language.

Dynamic Typing 169

class InterpLany(InterpLlambda):
def interp_exp(self, e, env):

match e:
case Inject(value, typ):

return Tagged(self.interp_exp(value, env), self.type_to_tag(typ))
case Project(value, typ):

match self.interp_exp(value, env):
case Tagged(val, tag) if self.type_to_tag(typ) == tag:

return val
case _:

raise Exception('failed project to ' + self.type_to_tag(typ))
case Call(Name('any_tuple_load'), [tup, index]):

match self.interp_exp(tup, env):
case Tagged(v, tag):

return v[self.interp_exp(index, env)]
case _:

raise Exception('in any_tuple_load untagged value')
case Call(Name('any_len'), [value]):

match self.interp_exp(value, env):
case Tagged(value, tag):

return len(value)
case _:

raise Exception('interp any_len untagged value')
case Call(Name('arity'), [fun]):

return self.arity(self.interp_exp(fun, env))
case _:

return super().interp_exp(e, env)

Figure 10.8
Interpreter for LAny.

class InterpLany(InterpLlambda):
def type_to_tag(self, typ):

match typ:
case FunctionType(params, rt):

return 'function'
case TupleType(fields):

return 'tuple'
case IntType():

return 'int'
case BoolType():

return 'bool'
case _:

raise Exception('type_to_tag unexpected ' + repr(typ))
def arity(self, v):

match v:
case Function(name, params, body, env):

return len(params)
case _:

raise Exception('Lany arity unexpected ' + repr(v))

Figure 10.9
Auxiliary functions for interpreting LAny.

170 Chapter 10

True ⇒ Inject(True, BoolType())

e1 + e2 ⇒
Inject(Project(e′

1, IntType())
+ Project(e′

2, IntType()),
IntType())

lambda x1 … : e ⇒ Inject(Lambda([(x1,AnyType), …], e′)
FunctionType([AnyType(), …], AnyType()))

e0(e1 … en) ⇒ Call(Project(e′
0, FunctionType([AnyType(), …],

AnyType())), e′
1, … , e′

n)

e1[e2] ⇒ Call(Name('any_tuple_load'),
[e′

1, Project(e′
2, IntType())])

Figure 10.10
Cast insertion.

10.4 Cast Insertion: Compiling LDyn to LAny

The cast_insert pass compiles from LDyn to LAny. Figure 10.10 shows the compila-
tion of many of the LDyn forms into LAny. An important invariant of this pass is that
given any subexpression e in the LDyn program, the pass will produce an expres-
sion e′ in LAny that has type AnyType. For example, the first row in figure 10.10
shows the compilation of the Boolean True, which must be injected to produce an
expression of type AnyType. The compilation of addition is shown in the second
row of figure 10.10. The compilation of addition is representative of many primitive
operations: the arguments have type AnyType and must be projected to IntType
before the addition can be performed.

The compilation of lambda (third row of figure 10.10) shows what happens when
we need to produce type annotations: we simply use AnyType.

10.5 Reveal Casts

In the reveal_casts pass, we recommend compiling Project into a conditional
expression that checks whether the value’s tag matches the target type; if it does,
the value is converted to a value of the target type by removing the tag; if it does
not, the program exits. To perform these actions we need two new AST classes:
TagOf and ValueOf. The TagOf operation retrieves the type tag from a tagged
value of type AnyType. The ValueOf operation retrieves the underlying value from
a tagged value. The ValueOf operation includes the type for the underlying value
that is used by the type checker.

If the target type of the projection is bool or int, then Project can be translated
as follows:

Dynamic Typing 171

Project(e, ftype)
⇒
Begin([Assign([tmp], e′)],

IfExp(Compare(TagOf(tmp),[Eq()],
[Constant(tagof (ftype))]),

ValueOf(tmp, ftype)
Call(Name('exit'), [])))

If the target type of the projection is a tuple or function type, then there is a
bit more work to do. For tuples, check that the length of the tuple type matches
the length of the tuple. For functions, check that the number of parameters in the
function type matches the function’s arity.

Regarding Inject, we recommend compiling it to a slightly lower-level primitive
operation named make_any. This operation takes a tag instead of a type.

Inject(e, ftype)
⇒
Call(Name('make_any'), [e′, Constant(tagof (ftype))])

The introduction of make_any makes it difficult to use bidirectional type checking
because we no longer have an expected type to use for type checking the expression
e′. Thus, we run into difficulty if e′ is a Lambda expression. We recommend trans-
lating Lambda to a new AST class AnnLambda (for annotated lambda) that contains
its return type and the types of its parameters.

The any_tuple_load operation combines the projection action with the load
operation. Also, the load operation allows arbitrary expressions for the index, so the
type checker for LAny (figure 10.7) cannot guarantee that the index is within bounds.
Thus, we insert code to perform bounds checking at runtime. The translation for
any_tuple_load is as follows.

Call(Name('any_tuple_load'), [e1,e2])
⇒
Block([Assign([t], e′

1), Assign([i], e′
2)],

IfExp(Compare(TagOf(t), [Eq()], [Constant(2)]),
IfExp(Compare(i, [Lt()], [Call(Name('any_len'), [t])]),

Call(Name('any_tuple_load_unsafe'), [t, i]),
Call(Name('exit'), [])),

Call(Name('exit'), [])))

10.6 Assignment Conversion

Update this pass to handle the TagOf, ValueOf, and AnnLambda AST classes.

10.7 Closure Conversion

Update this pass to handle the TagOf, ValueOf, and AnnLambda AST classes.

172 Chapter 10

atm ::= Constant(int) | Name(var) | Constant(bool)
exp ::= atm | Call(Name('input_int'),[]) | UnaryOp(USub(),atm)

| BinOp(atm,Sub(),atm) | BinOp(atm,Add(),atm)
| Compare(atm,[cmp],[atm])

stmt ::= Expr(Call(Name('print'),[atm])) | Expr(exp)
| Assign([Name(var)], exp)

tail ::= Return(exp) | Goto(label)
| If(Compare(atm,[cmp],[atm]), [Goto(label)], [Goto(label)])

atm ::= GlobalValue(var)
exp ::= Subscript(atm,atm,Load()) | Allocate(int, type)

| Call(Name('len'),[atm])
stmt ::= Collect(int) | Assign([Subscript(atm,atm,Store())], atm)
exp ::= FunRef(label, int) | Call(atm, atm∗)
tail ::= TailCall(atm, atm∗)
params ::= [(var,type), …]
block ::= label:stmt∗ tail
def ::= FunctionDef(label, params, {block, … }, None, type, None)
exp ::= Uninitialized(type) | AllocateClosure(len, type, arity)

| Call(Name('arity'), [atm]) | UncheckedCast(exp, type)
exp ::= Call(Name('make_any'), [atm, atm])

| TagOf(atm) | ValueOf(atm, ftype)
| Call(Name('any_tuple_load_unsafe'), [atm, atm])
| Call(Name('any_len'), [atm])
| Call(Name('exit'), [])

CAny ::= CProgramDefs([def , …])

Figure 10.11
The abstract syntax of CAny, extending CClos (figure 9.9).

10.8 Remove Complex Operands

The ValueOf and TagOf operations are both complex expressions. Their subexpres-
sions must be atomic.

10.9 Explicate Control and CAny

The output of explicate_control is the CAny language, whose syntax defini-
tion is shown in figure 10.11. Update the auxiliary functions explicate_tail,
explicate_effect, and explicate_pred as appropriate to handle the new
expressions in CAny.

10.10 Select Instructions

In the select_instructions pass, we translate the primitive operations on the
AnyType type to x86 instructions that manipulate the three tag bits of the tagged

Dynamic Typing 173

value. In the following descriptions, given an atom e we use a primed variable e′ to
refer to the result of translating e into an x86 argument:

make_any We recommend compiling the make_any operation as follows if the tag
is for int or bool. The salq instruction shifts the destination to the left by the
number of bits specified by its source argument (in this case three, the length of
the tag), and it preserves the sign of the integer. We use the orq instruction to
combine the tag and the value to form the tagged value.

Assign([lhs], Call(Name('make_any'), [e, Constant(tag)]))
⇒
movq e′, lhs′

salq $3, lhs′

orq $tag, lhs′

The instruction selection for tuples and procedures is different because there is
no need to shift them to the left. The rightmost 3 bits are already zeros, so we
simply combine the value and the tag using orq.

Assign([lhs], Call(Name('make_any'), [e, Constant(tag)]))
⇒
movq e′, lhs′

orq $tag, lhs′

TagOf Recall that the TagOf operation extracts the type tag from a value of type
AnyType. The type tag is the bottom 3 bits, so we obtain the tag by taking the
bitwise-and of the value with 111 (7 decimal).

Assign([lhs], TagOf(e))
⇒
movq e′, lhs′

andq $7, lhs′

ValueOf The instructions for ValueOf also differ, depending on whether the type T
is a pointer (tuple or function) or not (integer or Boolean). The following shows the
instruction selection for integers and Booleans, in which we produce an untagged
value by shifting it to the right by 3 bits:

Assign([lhs], ValueOf(e, T))
⇒
movq e′, lhs′

sarq $3, lhs′

In the case for tuples and procedures, we zero out the rightmost 3 bits. We
accomplish this by creating the bit pattern … 0111 (7 decimal) and apply bitwise-
not to obtain … 11111000 (-8 decimal), which we movq into the destination lhs′.
Finally, we apply andq with the tagged value to get the desired result.

Assign([lhs], ValueOf(e, T))
⇒
movq $–8, lhs′

174 Chapter 10

andq e′, lhs′

any_len The any_len operation combines the effect of ValueOf with accessing the
length of a tuple from the tag stored at the zero index of the tuple.

Assign([lhs], Call(Name('any_len'), [e1]))
=⇒
movq $–8, %r11
andq e′

1, %r11
movq 0(%r11), %r11
andq $126, %r11
sarq $1, %r11
movq %r11, lhs′

any_tuple_load_unsafe This operation combines the effect of ValueOf with read-
ing an element of the tuple (see section 7.6). However, the index may be an arbitrary
atom, so instead of computing the offset at compile time, we must generate instruc-
tions to compute the offset at runtime as follows. Note the use of the new instruction
imulq.

Assign([lhs], Call(Name('any_tuple_load_unsafe'), [e1,e2]))
=⇒
movq $–8, %r11
andq e′

1, %r11
movq e′

2, %rax
addq $1, %rax
imulq $8, %rax
addq %rax, %r11
movq 0(%r11) lhs′

10.11 Register Allocation for LAny

There is an interesting interaction between tagged values and garbage collection
that has an impact on register allocation. A variable of type AnyType might refer
to a tuple, and therefore it might be a root that needs to be inspected and copied
during garbage collection. Thus, we need to treat variables of type AnyType in
a similar way to variables of tuple type for purposes of register allocation, with
particular attention to the following:

• If a variable of type AnyType is live during a function call, then it must be spilled.
This can be accomplished by changing build_interference to mark all variables
of type AnyType that are live after a callq to be interfering with all the registers.

• If a variable of type AnyType is spilled, it must be spilled to the root stack instead
of the normal procedure call stack.

Another concern regarding the root stack is that the garbage collector needs to
differentiate among (1) plain old pointers to tuples, (2) a tagged value that points
to a tuple, and (3) a tagged value that is not a tuple. We enable this differentiation

Dynamic Typing 175

by choosing not to use the tag 000 in the tagof function. Instead, that bit pattern
is reserved for identifying plain old pointers to tuples. That way, if one of the first
three bits is set, then we have a tagged value and inspecting the tag can differentiate
between tuples (010) and the other kinds of values.

Exercise 10.1 Expand your compiler to handle LDyn as outlined in this chapter.
Create tests for LDyn by adapting ten of your previous test programs by removing
type annotations. Add five more test programs that specifically rely on the language
being dynamically typed. That is, they should not be legal programs in a statically
typed language, but nevertheless they should be valid LDyn programs that run to
completion without error.

Figure 10.12 gives an overview of the passes needed for the compilation of LDyn.

LDyn LDyn LDyn LFunRef
Dyn

LFunRef
AnyLFunRef

AnyLFunRef
AnyLFunRef

Any

LFunRef
Any LAlloc

Any LAlloc
Any

CAny

x86Var,Def
callq∗ x86Var,Def

callq∗ x86Def
callq∗ x86Def

callq∗

shrink uniquify reveal_functions

cast_insert

reveal_casts

convert_assignmentsconvert_to_closures

limit_functions

expose_allocation

remove_complex_operands

explicate_control

select_instructions

assign_homes patch_instructions

prelude_and_conclusion

Figure 10.12
Diagram of the passes for LDyn, a dynamically typed language.

11 Gradual Typing

This chapter studies the language L?, in which the programmer can choose between
static and dynamic type checking in different parts of a program, thereby mix-
ing the statically typed Lλ language with the dynamically typed LDyn. There are
several approaches to mixing static and dynamic typing, including multilanguage
integration (Tobin-Hochstadt and Felleisen 2006; Matthews and Findler 2007) and
hybrid type checking (Flanagan 2006; Gronski et al. 2006). In this chapter we focus
on gradual typing, in which the programmer controls the amount of static ver-
sus dynamic checking by adding or removing type annotations on parameters and
variables (Anderson and Drossopoulou 2003; Siek and Taha 2006).

The definition of the concrete syntax of L? is shown in figure 11.1, and the
definition of its abstract syntax is shown in figure 11.2. The main syntactic difference
between Lλ and L? is that type annotations are optional, which is specified in
the grammar using the prm and ret nonterminals. In the abstract syntax, type
annotations are not optional, but we use the Any type when a type annotation is
absent. Both the type checker and the interpreter for L? require some interesting
changes to enable gradual typing, which we discuss in the next two sections.

11.1 Type Checking L?

We begin by discussing the type checking of a partially typed variant of the map
example from chapter 8, shown in figure 11.3. The map function itself is statically
typed, so there is nothing special happening there with respect to type checking.
On the other hand, the inc function does not have type annotations, so the type
checker assigns the type Any to parameter x and the return type. Now consider
the + operator inside inc. It expects both arguments to have type int, but its
first argument x has type Any. In a gradually typed language, such differences are
allowed so long as the types are consistent; that is, they are equal except in places
where there is an Any type. That is, the type Any is consistent with every other type.
Figure 11.4 shows the definition of the consistent method. So the type checker
allows the + operator to be applied to x because Any is consistent with int. Next
consider the call to the map function shown in figure 11.3 with the arguments inc
and a tuple. The inc function has type Callable[[Any],Any], but parameter f
of map has type Callable[[int],int]. The type checker for L? accepts this call
because the two types are consistent.

178 Chapter 11

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

stmt ::= while exp: stmt+

cmp ::= is
exp ::= exp, … ,exp | exp[int] | len(exp)

type ::= Any | int | bool | tuple[type, …] | Callable[[type, …], type]
exp ::= exp(exp, …) | lambda var, … : exp | arity(exp)
stmt ::= var : type = exp | return exp
prm ::= var | var:type
ret ::= ϵ | -> type
def ::= def var(prm, …) ret: stmt+

L? ::= def … stmt …

Figure 11.1
The concrete syntax of L?, extending LTup (figure 7.1).

It is also helpful to consider how gradual typing handles programs with an
error, such as applying map to a function that sometimes returns a Boolean, as
shown in figure 11.5. The type checker for L? accepts this program because the
type of maybe_inc is consistent with the type of parameter f of map; that is,
Callable[[Any],Any] is consistent with Callable[[int],int]. One might say
that a gradual type checker is optimistic in that it accepts programs that might
execute without a runtime type error. The definition of the type checker for L? is
shown in figures 11.7, 11.8, and 11.9.

Running this program with input 1 triggers an error when the maybe_inc function
returns True. The L? language performs checking at runtime to ensure the integrity
of the static types, such as the Callable[[int],int] annotation on parameter f
of map. Here we give a preview of how the runtime checking is accomplished; the
following sections provide the details.

The runtime checking is carried out by a new Cast AST node that is generated
in a new pass named cast_insert. The output of cast_insert is a program in the
LCast language, which simply adds Cast and Any to Lλ. Figure 11.6 shows the output
of cast_insert for map and maybe_inc. The idea is that Cast is inserted every time
the type checker encounters two types that are consistent but not equal. In the inc
function, x is cast to int and the result of the + is cast to Any. In the call to map,
the inc argument is cast from Callable[[Any], Any] to Callable[[int],int].
In the next section we see how to interpret the Cast node.

Gradual Typing 179

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
type ::= AnyType() | IntType() | BoolType() | VoidType()

| TupleType(type∗) | FunctionType(type∗, type)
exp ::= Call(exp, exp∗) | Lambda(var∗, exp)

| Call(Name('arity'), [exp])
stmt ::= AnnAssign(var, type, exp, 0) | Return(exp)
prm ::= (var,type)
def ::= FunctionDef(var, prm∗, stmt+, None, type, None)
L? ::= Module([def … stmt …])

Figure 11.2
The abstract syntax of L?, extending LTup (figure 7.2).

def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
return f(v[0]), f(v[1])

def inc(x):
return x + 1

t = map(inc, (0, 41))
print(t[1])

Figure 11.3
A partially typed version of the map example.

180 Chapter 11

def consistent(self, t1, t2):
match (t1, t2):

case (AnyType(), _):
return True

case (_, AnyType()):
return True

case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)

case (TupleType(ts1), TupleType(ts2)):
return all(map(self.consistent, ts1, ts2))

case (_, _):
return t1 == t2

Figure 11.4
The consistency method on types.

def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
return f(v[0]), f(v[1])

def inc(x):
return x + 1

def true():
return True

def maybe_inc(x):
return inc(x) if input_int() == 0 else true()

t = map(maybe_inc, (0, 41))
print(t[1])

Figure 11.5
A variant of the map example with an error.

def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
return f(v[0]), f(v[1])

def inc(x : Any) -> Any:
return Cast(Cast(x, Any, int) + 1, int, Any)

def true() -> Any:
return Cast(True, bool, Any)

def maybe_inc(x : Any) -> Any:
return inc(x) if input_int() == 0 else true()

t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
(0, 41))

print(t[1])

Figure 11.6
Output of the cast_insert pass for the map and maybe_inc example.

Gradual Typing 181

class TypeCheckLgrad(TypeCheckLlambda):
def type_check_exp(self, e, env) -> Type:

match e:
case Name(id):

return env[id]
case Constant(value) if isinstance(value, bool):

return BoolType()
case Constant(value) if isinstance(value, int):

return IntType()
case Call(Name('input_int'), []):

return IntType()
case BinOp(left, op, right):

left_type = self.type_check_exp(left, env)
self.check_consistent(left_type, IntType(), left)
right_type = self.type_check_exp(right, env)
self.check_consistent(right_type, IntType(), right)
return IntType()

case IfExp(test, body, orelse):
test_t = self.type_check_exp(test, env)
self.check_consistent(test_t, BoolType(), test)
body_t = self.type_check_exp(body, env)
orelse_t = self.type_check_exp(orelse, env)
self.check_consistent(body_t, orelse_t, e)
return self.join_types(body_t, orelse_t)

case Call(func, args):
func_t = self.type_check_exp(func, env)
args_t = [self.type_check_exp(arg, env) for arg in args]
match func_t:

case FunctionType(params_t, return_t) \
if len(params_t) == len(args_t):

for (arg_t, param_t) in zip(args_t, params_t):
self.check_consistent(param_t, arg_t, e)

return return_t
case AnyType():

return AnyType()
case _:

raise Exception('type_check_exp: in call, unexpected '
+ repr(func_t))

...
case _:

raise Exception('type_check_exp: unexpected ' + repr(e))

Figure 11.7
Type checking expressions in the L? language.

182 Chapter 11

def check_exp(self, e, expected_ty, env):
match e:

case Lambda(params, body):
match expected_ty:

case FunctionType(params_t, return_t):
new_env = env.copy().update(zip(params, params_t))
e.has_type = expected_ty
body_ty = self.type_check_exp(body, new_env)
self.check_consistent(body_ty, return_t)

case AnyType():
new_env = env.copy().update((p, AnyType()) for p in params)
e.has_type = FunctionType([AnyType()for _ in params],AnyType())
body_ty = self.type_check_exp(body, new_env)

case _:
raise Exception('lambda is not of type ' + str(expected_ty))

case _:
e_ty = self.type_check_exp(e, env)
self.check_consistent(e_ty, expected_ty, e)

Figure 11.8
Checking expressions with respect to a type in the L? language.

def type_check_stmt(self, s, env, return_type):
match s:

case Assign([Name(id)], value):
value_ty = self.type_check_exp(value, env)
if id in env:

self.check_consistent(env[id], value_ty, value)
else:

env[id] = value_ty
...
case _:

raise Exception('type_check_stmts: unexpected ' + repr(ss))

def type_check_stmts(self, ss, env, return_type):
for s in ss:

self.type_check_stmt(s, env, return_type)

Figure 11.9
Type checking statements in the L? language.

Gradual Typing 183

def join_types(self, t1, t2):
match (t1, t2):

case (AnyType(), _):
return t2

case (_, AnyType()):
return t1

case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
return FunctionType(list(map(self.join_types, ps1, ps2)),

self.join_types(rt1,rt2))
case (TupleType(ts1), TupleType(ts2)):

return TupleType(list(map(self.join_types, ts1, ts2)))
case (_, _):

return t1

def check_consistent(self, t1, t2, e):
if not self.consistent(t1, t2):

raise Exception('error: ' + repr(t1) + ' inconsistent with ' \
+ repr(t2) + ' in ' + repr(e))

Figure 11.10
Auxiliary methods for type checking L?.

11.2 Interpreting LCast

The runtime behavior of casts involving simple types such as int and bool is
straightforward. For example, a cast from int to Any can be accomplished with the
Inject operator of LAny, which puts the integer into a tagged value (figure 10.8).
Similarly, a cast from Any to int is accomplished with the Project operator, by
checking the value’s tag and either retrieving the underlying integer or signaling an
error if the tag is not the one for integers (figure 10.9). Things get more interesting
with casts involving function, tuple, and array types.

Consider the cast of the function maybe_inc from Callable[[Any], Any] to
Callable[[int], int] shown in figure 11.5. When the maybe_inc function flows
through this cast at runtime, we don’t know whether it will return an integer,
because that depends on the input from the user. The LCast interpreter therefore
delays the checking of the cast until the function is applied. To do so it wraps
maybe_inc in a new function that casts its parameter from int to Any, applies
maybe_inc, and then casts the return value from Any to int.

There are further complications regarding casts on mutable data, such as the
list type introduced in the challenge assignment of section 7.9. Consider the
example presented in figure 11.11 that defines a partially typed version of map whose
parameter v has type list[Any] and that updates v in place instead of returning
a new tuple. We name this function map_inplace. We apply map_inplace to an
array of integers, so the type checker inserts a cast from list[int] to list[Any].
A naive way for the LCast interpreter to cast between array types would be to build

184 Chapter 11

def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
i = 0
while i != len(v):

v[i] = f(v[i])
i = i + 1

def inc(x : int) -> int:
return x + 1

v = [0, 41]
map_inplace(inc, v)
print(v[1])

Figure 11.11
An example involving casts on arrays.

a new array whose elements are the result of casting each of the original elements
to the target type. However, this approach is not valid for mutable data structures.
In the example of figure 11.11, if the cast created a new array, then the updates
inside map_inplace would happen to the new array and not the original one.

Instead the interpreter needs to create a new kind of value, a proxy, that intercepts
every array operation. On a read, the proxy reads from the underlying array and
then applies a cast to the resulting value. On a write, the proxy casts the argument
value and then performs the write to the underlying array. For the subscript v[i]
in f(v[i]) of map_inplace, the proxy casts the integer from int to Any. For the
subscript on the left of the assignment, the proxy casts the tagged value from Any
to int.

Finally we consider casts between the Any type and higher-order types such as
functions and lists. Figure 11.12 shows a variant of map_inplace in which param-
eter v does not have a type annotation, so it is given type Any. In the call to
map_inplace, the list has type list[int], so the type checker inserts a cast to
Any. A first thought is to use Inject, but that doesn’t work because list[int] is
not a flat type. Instead, we must first cast to list[Any], which is flat, and then
inject to Any.

The LCast interpreter uses an auxiliary function named apply_cast to cast a
value from a source type to a target type, shown in figure 11.13. You’ll find that it
handles all the kinds of casts that we’ve discussed in this section. The definition of
the interpreter for LCast is shown in figure 11.14, with the case for Cast dispatching
to apply_cast. Next we turn to the individual passes needed for compiling L?.

11.3 Overload Resolution

Recall that when we added support for arrays in section 7.9, the syntax for the array
operations were the same as for tuple operations (for example, accessing an element

Gradual Typing 185

def map_inplace(f : Callable[[Any], Any], v) -> None:
i = 0
while i != len(v):

v[i] = f(v[i])
i = i + 1

def inc(x):
return x + 1

v = [0, 41]
map_inplace(inc, v)
print(v[1])

Figure 11.12
Casting an array to Any.

and getting the length). So we performed overload resolution, with a pass named
resolve, to separate the array and tuple operations. In particular, we introduced
the primitives array_load, array_store, and array_len.

For gradual typing, we further overload these operators to work on values of type
Any. Thus, the resolve pass should be updated with new cases for the Any type,
translating the element access and length operations to the primitives any_load,
any_store, and any_len.

11.4 Cast Insertion

In our discussion of type checking of L?, we mentioned how the runtime aspect of
type checking is carried out by the Cast AST node, which is added to the program
by a new pass named cast_insert. The target of this pass is the LCast language.
We now discuss the details of this pass.

The cast_insert pass is closely related to the type checker for L? (starting in
figure 11.7). In particular, the type checker allows implicit casts between consistent
types. The job of the cast_insert pass is to make those casts explicit. It does so
by inserting Cast nodes into the AST. For the most part, the implicit casts occur
in places where the type checker checks two types for consistency. Consider the case
for binary operators in figure 11.7. The type checker requires that the type of the
left operand is consistent with int. Thus, the cast_insert pass should insert a
Cast around the left operand, converting from its type to int. The story is similar
for the right operand. It is not always necessary to insert a cast, for example, if the
left operand already has type int then there is no need for a Cast.

Some of the implicit casts are not as straightforward. One such case arises with
the conditional expression. In figure 11.7 we see that the type checker requires that
the two branches have consistent types and that type of the conditional expression
is the meet of the branches’ types. In the target language LCast, both branches

186 Chapter 11

def apply_cast(self, value, src, tgt):
match (src, tgt):

case (AnyType(), FunctionType(ps2, rt2)):
anyfun = FunctionType([AnyType() for p in ps2], AnyType())
return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)

case (AnyType(), TupleType(ts2)):
anytup = TupleType([AnyType() for t1 in ts2])
return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)

case (AnyType(), ListType(t2)):
anylist = ListType([AnyType() for t1 in ts2])
return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)

case (AnyType(), AnyType()):
return value

case (AnyType(), _):
return self.apply_project(value, tgt)

case (FunctionType(ps1,rt1), AnyType()):
anyfun = FunctionType([AnyType() for p in ps1], AnyType())
return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)

case (TupleType(ts1), AnyType()):
anytup = TupleType([AnyType() for t1 in ts1])
return self.apply_inject(self.apply_cast(value, src, anytup), anytup)

case (ListType(t1), AnyType()):
anylist = ListType(AnyType())
return self.apply_inject(self.apply_cast(value,src,anylist), anylist)

case (_, AnyType()):
return self.apply_inject(value, src)

case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
params = [generate_name('x') for p in ps2]
args = [Cast(Name(x), t2, t1)

for (x,t1,t2) in zip(params, ps1, ps2)]
body = Cast(Call(ValueExp(value), args), rt1, rt2)
return Function('cast', params, [Return(body)], {})

case (TupleType(ts1), TupleType(ts2)):
x = generate_name('x')
reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})

for (t1,t2) in zip(ts1,ts2)]
return ProxiedTuple(value, reads)

case (ListType(t1), ListType(t2)):
x = generate_name('x')
read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
return ProxiedList(value, read, write)

case (t1, t2) if t1 == t2:
return value

case (t1, t2):
raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))

def apply_inject(self, value, src):
return Tagged(value, self.type_to_tag(src))

def apply_project(self, value, tgt):
match value:

case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
return val

case _:
raise Exception('apply_project, unexpected ' + repr(value))

Figure 11.13
The apply_cast auxiliary method.

Gradual Typing 187

class InterpLcast(InterpLany):
def interp_exp(self, e, env):

match e:
case Cast(value, src, tgt):

v = self.interp_exp(value, env)
return self.apply_cast(v, src, tgt)

case ValueExp(value):
return value

...
case _:

return super().interp_exp(e, env)

Figure 11.14
The interpreter for LCast.

will need to have the same type, and that type will be the type of the conditional
expression. Thus, each branch requires a Cast to convert from its type to the meet
of the branches’ types.

The case for the function call exhibits another interesting situation. If the function
expression is of type Any, then it needs to be cast to a function type so that it can
be used in a function call in LCast. Which function type should it be cast to? The
parameter and return types are unknown, so we can simply use Any for all of them.
Furthermore, in LCast the argument types will need to exactly match the parameter
types, so we must cast all the arguments to type Any (if they are not already of
that type).

11.5 Lower Casts

The next step in the journey toward x86 is the lower_casts pass that translates the
casts in LCast to the lower-level Inject and Project operators and new operators
for proxies, extending the Lλ language to LProxy. The LProxy language can also be
described as an extension of LAny, with the addition of proxies. We recommend cre-
ating an auxiliary function named lower_cast that takes an expression (in LCast),
a source type, and a target type and translates it to an expression in LProxy.

The lower_cast function can follow a code structure similar to the apply_cast
function (figure 11.13) used in the interpreter for LCast, because it must handle the
same cases as apply_cast and it needs to mimic the behavior of apply_cast. The
most interesting cases concern the casts involving tuple, array, and function types.

As mentioned in section 11.2, a cast from one array type to another array type is
accomplished by creating a proxy that intercepts the operations on the underlying
array. Here we make the creation of the proxy explicit with the ListProxy AST
node. It takes fives arguments: the first is an expression for the array, the second is
a function for casting an element that is being read from the array, the third is a
function for casting an element that is being written to the array, the fourth is the

188 Chapter 11

def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
i = 0
while i != array_len(v):

array_store(v, i, inject(f(project(array_load(v, i), int)), int))
i = (i + 1)

def inc(x : int) -> int:
return (x + 1)

def main() -> int:
v = [0, 41]
map_inplace(inc, array_proxy(v, list[int], list[Any]))
print(array_load(v, 1))
return 0

Figure 11.15
Output of lower_casts on the example shown in figure 11.11.

type of the underlying array, and the fifth is the type of the proxied array. You can
create the functions for reading and writing using lambda expressions.

A cast between two tuple types can be handled in a similar manner. We create a
proxy with the TupleProxy AST node. Tuples are immutable, so there is no need
for a function to cast the value during a write. Because there is a separate element
type for each slot in the tuple, we need more than one function for casting during
a read: we need a tuple of functions. Also, as we show in the next section, we need
to differentiate these tuples from the user-created ones, so we recommend using a
new AST node named RawTuple instead of Tuple to create the tuples of functions.
Figure 11.15 shows the output of lower_casts on the example given in figure 11.11
that involves casting an array of integers to an array of Any.

A cast from one function type to another function type is accomplished by gener-
ating a lambda whose parameter and return types match the target function type.
The body of the lambda should cast the parameters from the target type to the
source type. (Yes, backward! Functions are contravariant in the parameters.) After-
ward, call the underlying function and then cast the result from the source return
type to the target return type. Figure 11.16 shows the output of the lower_casts
pass on the map example given in figure 11.3. Note that the inc argument in the
call to map is wrapped in a lambda.

11.6 Differentiate Proxies

So far, the responsibility of differentiating tuples and tuple proxies has been the job
of the interpreter. In the differentiate_proxies pass we shift this responsibility
to the generated code.

We begin by designing the output language LPOr. In L? we used the type
TupleType for both real tuples and tuple proxies. Similarly, we use the type
list for both arrays and array proxies. In LPOr we return the TupleType type

Gradual Typing 189

def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
return (f(v[0]), f(v[1]),)

def inc(x : any) -> any:
return inject((project(x, int) + 1), int)

def main() -> int:
t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
print(t[1])
return 0

Figure 11.16
Output of lower_casts on the example shown in figure 11.3.

to its original meaning, as the type of just tuples, and we introduce a new type,
ProxyOrTupleType, whose values can be either real tuples or tuple proxies. Like-
wise, we return the ListType type to its original meaning, as the type of arrays,
and we introduce a new type, ProxyOrListType, whose values can be either arrays
or array proxies. These new types come with a suite of new primitive operations.

A tuple proxy is represented by a tuple containing (1) the underlying tuple and
(2) a tuple of functions for casting elements that are read from the tuple. The LPOr

language includes the following AST classes and primitive functions.

InjectTuple
This AST node brands a tuple as a value of the ProxyOrTupleType type.

InjectTupleProxy
This AST node brands a tuple proxy as value of the ProxyOrTupleType type.

is_tuple_proxy
This primitive returns true if the value is a tuple proxy and false if it is a tuple.

project_tuple
Converts a tuple that is branded as ProxyOrTupleType back to a tuple.

proxy_tuple_len
Given a tuple proxy, returns the length of the underlying tuple.

proxy_tuple_load
Given a tuple proxy, returns the ith element of the underlying tuple.

An array proxy is represented by a tuple containing (1) the underlying array, (2)
a function for casting elements that are read from the array, and (3) a function
for casting elements that are written to the array. The LPOr language includes the
following AST classes and primitive functions.

InjectList
This AST node brands an array as a value of the ProxyOrListType type.

InjectListProxy
This AST node brands an array proxy as a value of the ProxyOrListType type.

190 Chapter 11

is_array_proxy
Returns true if the value is an array proxy and false if it is an array.

project_array
Converts an array that is branded as ProxyOrListType back to an array.

proxy_array_len
Given an array proxy, returns the length of the underlying array.

proxy_array_load
Given an array proxy, returns the ith element of the underlying array.

proxy_array_store
Given an array proxy, writes a value to the ith element of the underlying array.

Now we discuss the translation that differentiates tuples and arrays from proxies.
First, every type annotation in the program is translated (recursively) to replace
TupleType with ProxyOrTupleType. Next, we insert uses of ProxyOrTupleType
operations in the appropriate places. For example, we wrap every tuple creation
with an InjectTuple.

Tuple(e1, … , en)
⇒
InjectTuple(Tuple(e′

1, … , e′
n))

The RawTuple AST node that we introduced in the previous section does not get
injected.

RawTuple(e1, … , en)
⇒
Tuple(e′

1, … , e′
n)

The TupleProxy AST translates as follows:

TupleProxy(e1, e2, T1, T2)
⇒
InjectTupleProxy(Tuple(e′

1, e′
2, T ′

1, T ′
2))

We translate the element access operations into conditional expressions that check
whether the value is a proxy and then dispatch to either the appropriate proxy tuple
operation or the regular tuple operation. Note that in the branch for a tuple, we
must apply project_tuple before reading from the tuple.

The translation of array operations is similar to the ones for tuples.

11.7 Reveal Casts

Recall that the tagof function determines the bits used to identify values of different
types, and it is used in the reveal_casts pass in the translation of Project. The
ProxyOrTupleType and ProxyOrListType types can be mapped to 010 in binary (2
in decimal), just like the tuple and array types. Otherwise, the only other changes
are adding cases that copy the new AST nodes.

Gradual Typing 191

11.8 Closure Conversion

The auxiliary function that translates type annotations needs to be updated to
handle the ProxyOrTupleType and ProxyOrListType types. Otherwise, the only
other changes are adding cases that copy the new AST nodes.

11.9 Select Instructions

Recall that the select_instructions pass is responsible for lowering the primitive
operations into x86 instructions. So, we need to translate the new operations on
ProxyOrTupleType and ProxyOrListType to x86. To do so, the first question we
need to answer is how to differentiate between tuple and tuple proxies, and likewise
for arrays and array proxies. We need just one bit to accomplish this; we use the
bit in position 63 of the 64-bit tag at the front of every tuple (see figure 7.8) or
array (section 7.9.1). So far, this bit has been set to 0, so for InjectTuple we leave
it that way.

Assign([lhs], InjectTuple(e1))
⇒
movq e′

1, lhs′

The translation for InjectList is also a move instruction. On the other hand,
InjectTupleProxy sets bit 63 to 1.

Assign([lhs], InjectTupleProxy(e1))
⇒
movq e′

1, %r11
movq (1 << 63), %rax
orq 0(%r11), %rax
movq %rax, 0(%r11)
movq %r11, lhs′

The translation for InjectListProxy should set bit 63 of the tag and also bit 62,
to differentiate between arrays and tuples.

The is_tuple_proxy and is_array_proxy operations consume the information
so carefully stashed away by the injections. It isolates bit 63 to tell whether the
value is a proxy.

Assign([lhs], Call(Name('is_tuple_proxy'), [e1]))
⇒
movq e′

1, %r11
movq 0(%r11), %rax
sarq $63, %rax
andq $1, %rax
movq %rax, lhs′

The project_tuple and project_array operations are straightforward to
translate, so we leave that to the reader.

Regarding the element access operations for tuples and arrays, the runtime pro-
vides procedures that implement them (they are recursive functions!), so here we

192 Chapter 11

simply need to translate these tuple operations into the appropriate function call.
For example, here is the translation for proxy_tuple_load.

Assign([lhs], Call(Name('proxy_tuple_load'), [e1, e2]))
⇒
movq e′

1, %rdi
movq e′

2, %rsi
callq proxy_vector_ref
movq %rax, lhs′

We translate proxy_array_load to proxy_vecof_ref, proxy_array_store to
proxy_vecof_set, and proxy_array_len to proxy_vecof_length.

We have another batch of operations to deal with: those for the Any type. Recall
that we generate an any_load_unsafe when there is a element access on something
of type Any, and similarly for any_store_unsafe and any_len. In section 10.10 we
selected instructions for these operations on the basis of the idea that the underlying
value was a tuple or array. But in the current setting, the underlying value is of type
ProxyOrTupleType or ProxyOrListType. We have added three runtime functions to
deal with this: proxy_vector_ref, proxy_vector_set, and proxy_vector_length
that inspect bit 62 of the tag to determine whether the value is a proxy, and then
dispatches to the the appropriate code. So any_load_unsafe can be translated as
follows. We begin by projecting the underlying value out of the tagged value and
then call the proxy_vector_ref procedure in the runtime.

Assign([lhs], Call(Name('any_load_unsafe'), [e1, e2]))
⇒
movq ¬111, %rdi
andq e′

1, %rdi
movq e′

2, %rsi
callq proxy_vector_ref
movq %rax, lhs′

The any_store_unsafe and any_len operators are translated in a similar way.
Alternatively, you could generate instructions to open-code the proxy_vector_ref,
proxy_vector_set, and proxy_vector_length functions.

Exercise 11.1 Implement a compiler for the gradually typed L? language by extend-
ing and adapting your compiler for Lλ. Create ten new partially typed test
programs. In addition to testing with these new programs, test your compiler on
all the tests for Lλ and for LDyn. Sometimes you may get a type-checking error on
the LDyn programs, but you can adapt them by inserting a temporary variable of
type Any that is initialized with the troublesome expression.

Figure 11.17 provides an overview of the passes needed for the compilation of L?.

Gradual Typing 193

L? L? LCast LProxy

LPOrLPOrLPOrLFunRef
POr

LFunRef
POr LFunRef

POr LFunRef
POr LFunRef

POr

LAlloc
POrLAlloc

POrCPOr
⟲

x86Var,Def
callq∗ x86Var,Def

callq∗ x86Def
callq∗ x86Def

callq∗

shrink uniquify reveal_functions

resolve

cast_insert

lower_castsdifferentiate_proxies

reveal_casts

convert_assignments

convert_to_closures limit_functions

expose_allocationremove_complex_operandsexplicate_control

select_instructions

assign_homes patch_instructions

prelude_and_conclusion

Figure 11.17
Diagram of the passes for L? (gradual typing).

11.10 Further Reading

This chapter just scratches the surface of gradual typing. The basic approach
described here is missing two key ingredients that one would want in an imple-
mentation of gradual typing: blame tracking (Tobin-Hochstadt and Felleisen 2006;
Wadler and Findler 2009) and space-efficient casts (Herman, Tomb, and Flana-
gan 2007, 2010). The problem addressed by blame tracking is that when a cast
on a higher-order value fails, it often does so at a point in the program that is far
removed from the original cast. Blame tracking is a technique for propagating extra
information through casts and proxies so that when a cast fails, the error message
can point back to the original location of the cast in the source program.

The problem addressed by space-efficient casts also relates to higher-order casts.
It turns out that in partially typed programs, a function or tuple can flow through
a great many casts at runtime. With the approach described in this chapter, each
cast adds another lambda wrapper or a tuple proxy. Not only does this take up
considerable space, but it also makes the function calls and tuple operations slow.
For example, a partially typed version of quicksort could, in the worst case, build
a chain of proxies of length O(n) around the tuple, changing the overall time com-
plexity of the algorithm from O(n2) to O(n3)! Herman, Tomb, and Flanagan (2007)
suggested a solution to this problem by representing casts using the coercion cal-
culus of Henglein (1994), which prevents the creation of long chains of proxies by
compressing them into a concise normal form. Siek, Thiemann, and Wadler (2015)

194 Chapter 11

give an algorithm for compressing coercions, and Kuhlenschmidt, Almahallawi, and
Siek (2019) show how to implement these ideas in the Grift compiler:

https://github.com/Gradual-Typing/Grift

There are also interesting interactions between gradual typing and other language
features, such as generics, information-flow types, and type inference, to name a
few. We recommend to the reader the online gradual typing bibliography for more
material:

http://samth.github.io/gradual-typing-bib/

https://github.com/Gradual-Typing/Grift
http://samth.github.io/gradual-typing-bib/

12 Generics

This chapter studies the compilation of generics (aka parametric polymorphism),
compiling the LGen subset of Python. Generics enable programmers to make code
more reusable by parameterizing functions and data structures with respect to the
types on which they operate. For example, figure 12.1 revisits the map example
and this time gives it a more fitting type. This map function is parameterized with
respect to the element type of the tuple. The type of map is the following generic
type specified by the All type with parameter T:

All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]

The idea is that map can be used at all choices of a type for parameter T. In the
example shown in figure 12.1 we apply map to a tuple of integers, implicitly choos-
ing int for T, but we could have just as well applied map to a tuple of Booleans. A
monomorphic function is simply one that is not generic. We use the term instan-
tiation for the process (within the language implementation) of turning a generic
function into a monomorphic one, where the type parameters have been replaced
by types.

In Python, when writing a generic function such as map, one does not explicitly
write its generic type (using All). Instead, that the function is generic is implied
by the use of type variables (such as T) in the type annotations of its parameters.

def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
return (f(tup[0]), f(tup[1]))

def add1(x : int) -> int:
return x + 1

t = map(add1, (0, 41))
print(t[1])

Figure 12.1
A generic version of the map function.

196 Chapter 12

exp ::= int | input_int() | - exp | exp + exp | exp - exp | (exp)
stmt ::= print(exp) | exp
exp ::= var

stmt ::= var = exp
cmp ::= == | != | < | <= | > | >=
exp ::= True | False | exp and exp | exp or exp | not exp

| exp cmp exp | exp if exp else exp
stmt ::= if exp: stmt+ else: stmt+

stmt ::= while exp: stmt+

cmp ::= is
exp ::= exp, … ,exp | exp[int] | len(exp)

type ::= int | bool | void | tuple[type+] | Callable[[type, …], type]
exp ::= exp(exp, …)
stmt ::= return exp
def ::= def var(var:type, …) -> type: stmt+

exp ::= lambda var, … : exp | arity(exp)
stmt ::= var : type = exp
type ::= All[[var …], type] | var
LGen ::= def … stmt …

Figure 12.2
The concrete syntax of LGen, extending Lλ (figure 9.3).

Figure 12.2 presents the definition of the concrete syntax of LGen, and figure 12.3
shows the definition of the abstract syntax. The grammar for types is extended to
include the type of a generic (All) and type variables (GenericVar in the abstract
syntax).

By including the All type in the type nonterminal of the grammar we choose to
make generics first class, which has interesting repercussions on the compiler.1 Many
languages with generics, such as C++ (Stroustrup 1988) and Standard ML (Milner,
Tofte, and Harper 1990), support only second-class generics, so it may be helpful to
see an example of first-class generics in action. In figure 12.4 we define a function
apply_twice whose parameter is a generic function. Indeed, because the grammar
for type includes the All type, a generic function may also be returned from a
function or stored inside a tuple. The body of apply_twice applies the generic
function f to a Boolean and also to an integer, which would not be possible if f
were not generic.

The type checker for LGen shown in figure 12.5 has several new responsibilities
(compared to Lλ) which we discuss in the following paragraphs.

Regarding function definitions, if the type annotations on its parameters contain
generic variables, then the function is generic and therefore its type is an All type
wrapped around a function type. Otherwise the function is monomorphic and its
type is simply a function type.

1. The Python typing library does not include syntax for the All type. It is inferred for functions
whose type annotations contain type variables.

Generics 197

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
type ::= IntType() | BoolType() | VoidType() | TupleType[type+]

| FunctionType(type∗, type)
exp ::= Call(exp, exp∗)
stmt ::= Return(exp)
params ::= (var,type)∗

def ::= FunctionDef(var, params, stmt+, None, type, None)
exp ::= Lambda(var∗, exp) | Call(Name('arity'), [exp])
stmt ::= AnnAssign(var, type, exp, 0)
type ::= AllType([var …], type) | GenericVar(var)
LGen ::= Module([def … stmt …])

Figure 12.3
The abstract syntax of LGen, extending Lλ (figure 9.4).

def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
if f(True):

return f(42)
else:

return f(777)

def id(x: T) -> T:
return x

print(apply_twice(id))

Figure 12.4
An example illustrating first-class generics.

The type checking of a function application is extended to handle the case in
which the operator expression is a generic function. In that case the type argu-
ments are deduced by matching the types of the parameters with the types of
the arguments. The match_types auxiliary function (figure 12.6) carries out this
deduction by recursively descending through a parameter type param_ty and the

198 Chapter 12

corresponding argument type arg_ty, making sure that they are equal except when
there is a type parameter in the parameter type. Upon encountering a type param-
eter for the first time, the algorithm deduces an association of the type parameter
to the corresponding part of the argument type. If it is not the first time that the
type parameter has been encountered, the algorithm looks up its deduced type and
makes sure that it is equal to the corresponding part of the argument type. The
return type of the application is the return type of the generic function with the type
parameters replaced by the deduced type arguments, using the substitute_type
auxiliary function, which is also listed in figure 12.6.

The type checker extends type equality to handle the All type. This is not quite
as simple as for other types, such as function and tuple types, because two All
types can be syntactically different even though they are equivalent. For example,

All[[T], Callable[[T], T]]

is equivalent to

All[[U], Callable[[U], U]].

Two generic types are equal if they differ only in the choice of the names of the
type parameters. The definition of type equality shown in figure 12.6 renames the
type parameters in one type to match the type parameters of the other type.

Generics 199

def type_check_exp(self, e, env):
match e:

case Call(Name(f), args) if f in builtin_functions:
return super().type_check_exp(e, env)

case Call(func, args):
func_t = self.type_check_exp(func, env)
func.has_type = func_t
match func_t:

case AllType(ps, FunctionType(p_tys, rt)):
for arg in args:

arg.has_type = self.type_check_exp(arg, env)
arg_tys = [arg.has_type for arg in args]
deduced = {}
for (p, a) in zip(p_tys, arg_tys):

self.match_types(p, a, deduced, e)
return self.substitute_type(rt, deduced)

case _:
return super().type_check_exp(e, env)

case _:
return super().type_check_exp(e, env)

def type_check(self, p):
match p:

case Module(body):
env = {}
for s in body:

match s:
case FunctionDef(name, params, bod, dl, returns, comment):

params_t = [t for (x,t) in params]
ty_params = set()
for t in params_t:

ty_params |= self.generic_variables(t)
ty = FunctionType(params_t, returns)
if len(ty_params) > 0:

ty = AllType(list(ty_params), ty)
env[name] = ty

self.check_stmts(body, IntType(), env)
case _:

raise Exception('type_check: unexpected ' + repr(p))

Figure 12.5
Type checker for the LGen language.

200 Chapter 12

def match_types(self, param_ty, arg_ty, deduced, e):
match (param_ty, arg_ty):

case (GenericVar(id), _):
if id in deduced:

self.check_type_equal(arg_ty, deduced[id], e)
else:

deduced[id] = arg_ty
case (AllType(ps, ty), AllType(arg_ps, arg_ty)):

rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
new_arg_ty = self.substitute_type(arg_ty, rename)
self.match_types(ty, new_arg_ty, deduced, e)

case (TupleType(ps), TupleType(ts)):
for (p, a) in zip(ps, ts):

self.match_types(p, a, deduced, e)
case (ListType(p), ListType(a)):

self.match_types(p, a, deduced, e)
case (FunctionType(pps, prt), FunctionType(aps, art)):

for (pp, ap) in zip(pps, aps):
self.match_types(pp, ap, deduced, e)

self.match_types(prt, art, deduced, e)
case (IntType(), IntType()):

pass
case (BoolType(), BoolType()):

pass
case _:

raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))

def substitute_type(self, ty, var_map):
match ty:

case GenericVar(id):
return var_map[id]

case AllType(ps, ty):
new_map = copy.deepcopy(var_map)
for p in ps:

new_map[p] = GenericVar(p)
return AllType(ps, self.substitute_type(ty, new_map))

case TupleType(ts):
return TupleType([self.substitute_type(t, var_map) for t in ts])

case ListType(ty):
return ListType(self.substitute_type(ty, var_map))

case FunctionType(pts, rt):
return FunctionType([self.substitute_type(p, var_map) for p in pts],

self.substitute_type(rt, var_map))
case IntType():

return IntType()
case BoolType():

return BoolType()
case _:

raise Exception('substitute_type: unexpected ' + repr(ty))

def check_type_equal(self, t1, t2, e):
match (t1, t2):

case (AllType(ps1, ty1), AllType(ps2, ty2)):
rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)

case (_, _):
return super().check_type_equal(t1, t2, e)

Figure 12.6
Auxiliary functions for type checking LGen.

Generics 201

12.1 Compiling Generics

Broadly speaking, there are four approaches to compiling generics, as follows:

Monomorphization generates a different version of a generic function for each
set of type arguments with which it is used, producing type-specialized code.
This approach results in the most efficient code but requires whole-program
compilation (no separate compilation) and may increase code size. Unfortu-
nately, monomorphization is incompatible with first-class generics because it is
not always possible to determine which generic functions are used with which
type arguments during compilation. (It can be done at runtime with just-in-time
compilation.) Monomorphization is used to compile C++ templates (Stroustrup
1988) and generic functions in NESL (Blelloch et al. 1993) and ML (Weeks 2006).

Uniform representation generates one version of each generic function and requires
all values to have a common boxed format, such as the tagged values of type Any
in LAny. Both generic and monomorphic code is compiled similarly to code in
a dynamically typed language (like LDyn), in which primitive operators require
their arguments to be projected from Any and their results to be injected into Any.
(In object-oriented languages, the projection is accomplished via virtual method
dispatch.) The uniform representation approach is compatible with separate com-
pilation and with first-class generics. However, it produces the least efficient code
because it introduces overhead in the entire program. This approach is used in
Java (Bracha et al. 1998), CLU (Liskov et al. 1979; Liskov 1993), and some
implementations of ML (Cardelli 1984; Appel and MacQueen 1987).

Mixed representation generates one version of each generic function, using a boxed
representation for type variables. However, monomorphic code is compiled as
usual (as in Lλ), and conversions are performed at the boundaries between
monomorphic code and polymorphic code (for example, when a generic function
is instantiated and called). This approach is compatible with separate compi-
lation and first-class generics and maintains efficiency in monomorphic code.
The trade-off is increased overhead at the boundary between monomorphic and
generic code. This approach is used in implementations of ML (Leroy 1992) and
Java, starting in Java 5 with the addition of autoboxing.

Type passing uses the unboxed representation in both monomorphic and generic
code. Each generic function is compiled to a single function with extra parameters
that describe the type arguments. The type information is used by the generated
code to determine how to access the unboxed values at runtime. This approach
is used in implementation of Napier88 (Morrison et al. 1991) and ML (Harper
and Morrisett 1995). Type passing is compatible with separate compilation and
first-class generics and maintains the efficiency for monomorphic code. There is
runtime overhead in polymorphic code from dispatching on type information.

In this chapter we use the mixed representation approach, partly because of its
favorable attributes and partly because it is straightforward to implement using the
tools that we have already built to support gradual typing. The work of compiling

202 Chapter 12

exp ::= Constant(int) | Call(Name('input_int'),[])
| UnaryOp(USub(),exp) | BinOp(exp,Add(),exp)
| BinOp(exp,Sub(),exp)

stmt ::= Expr(Call(Name('print'),[exp])) | Expr(exp)
exp ::= Name(var)

stmt ::= Assign([Name(var)], exp)
boolop ::= And() | Or()
cmp ::= Eq() | NotEq() | Lt() | LtE() | Gt() | GtE()
bool ::= True | False
exp ::= Constant(bool) | BoolOp(boolop,[exp,exp])

| UnaryOp(Not(),exp) | Compare(exp,[cmp],[exp])
| IfExp(exp,exp,exp)

stmt ::= If(exp, stmt+, stmt+)
stmt ::= While(exp, stmt+, [])
cmp ::= Is()
exp ::= Tuple(exp+,Load()) | Subscript(exp,Constant(int),Load())

| Call(Name('len'),[exp])
type ::= IntType() | BoolType() | VoidType() | TupleType[type+]

| FunctionType(type∗, type)
exp ::= Call(exp, exp∗)
stmt ::= Return(exp)
params ::= (var,type)∗

def ::= FunctionDef(var, params, stmt+, None, type, None)
exp ::= Lambda(var∗, exp) | Call(Name('arity'), [exp])
stmt ::= AnnAssign(var, type, exp, 0)
type ::= AllType([var …], type) | var
exp ::= Inst(exp, {var:type … })
LInst ::= Module([def … stmt …])

Figure 12.7
The abstract syntax of LInst, extending Lλ (figure 9.4).

generic functions is performed in two passes, resolve and erase_types, that we
discuss next. The output of erase_types is LCast (section 11.4), so the rest of the
compilation is handled by the compiler of chapter 11.

12.2 Resolve Instantiation

Recall that the type checker for LGen deduces the type arguments at call sites to a
generic function. The purpose of the resolve pass is to turn this implicit instanti-
ation into an explicit one, by adding inst nodes to the syntax of the intermediate
language. An inst node records the mapping of type parameters to type arguments.
The semantics of the inst node is to instantiate the result of its first argument, a
generic function, to produce a monomorphic function. However, because the inter-
preter never analyzes type annotations, instantiation can be a no-op and simply
return the generic function. The output language of the resolve pass is LInst, for
which the definition is shown in figure 12.7.

Generics 203

def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
return (f(tup[0]), f(tup[1]))

def add1(x : int) -> int:
return x + 1

t = inst(map, {T: int})(add1, (0, 41))
print(t[1])

Figure 12.8
Output of the resolve pass on the map example.

def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
return (f(tup[0]), f(tup[1]))

def add1(x : int) -> int:
return (x + 1)

def main() -> int:
t = cast(map, T1, T2)(add1, (0, 41))
print(t[1])
return 0

where
T1 = Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]
T2 = Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]

Figure 12.9
The generic map example after type erasure.

The output of the resolve pass on the generic map example is listed in figure 12.8.
Note that the use of map is wrapped in an inst node, with the parameter T chosen
to be int.

12.3 Erase Generic Types

We use the Any type presented in chapter 10 to represent type variables. For exam-
ple, figure 12.9 shows the output of the erase_types pass on the generic map
(figure 12.1). The occurrences of type parameter T are replaced by Any, and the
generic All types are removed from the type of map.

This process of type erasure creates a challenge at points of instantiation. For
example, consider the instantiation of map shown in figure 12.8. The type of map is

All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]

204 Chapter 12

and it is instantiated to

Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]

After erasure, the type of map is

Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]

but we need to convert it to the instantiated type. This is easy to do in the language
LCast with a single cast. In the example shown in figure 12.9, the instantiation of
map has been compiled to a cast from the type of map to the instantiated type.
The source and the target type of a cast must be consistent (figure 11.4), which
indeed is the case because both the source and target are obtained from the same
generic type of map, replacing the type parameters with Any in the former and with
the deduced type arguments in the latter. (Recall that the Any type is consistent
with any type.)

To implement the erase_types pass, we first recommend defining a recursive
function that translates types, named erase_type. It replaces type variables with
Any as follows.

GenericVar(T)
⇒
Any

The erase_type function also removes the generic All types.

AllType(xs, T1)
⇒
T ′

1

where T ′
1 is the result of applying erase_type to T1. In this compiler pass, apply

the erase_type function to all the type annotations in the program.
Regarding the translation of expressions, the case for Inst is the interesting one.

We translate it into a Cast, as shown next. The type of the subexpression e is a
generic type of the form AllType(xs, T). The source type of the cast is the erasure
of T, the type Ts. The target type Tt is the result of substituting the deduced
argument types d in T and then performing type erasure.

Inst(e, d)
⇒
Cast(e′, Ts, Tt)

where Tt = erase_type(substitute_type(d, T)).
Finally, each generic function is translated to a regular function in which type

erasure has been applied to all the type annotations and the body.

Exercise 12.1 Implement a compiler for the polymorphic language LGen by extend-
ing and adapting your compiler for L?. Create six new test programs that use
polymorphic functions. Some of them should make use of first-class generics.

Figure 12.10 provides an overview of the passes needed to compile LGen.

Generics 205

LGen LGen LGen LGen

LInstLCastLPOrLPOr

LPOr LPOr LPOr LAlloc
POr

LAlloc
POrCPOr

⟲

x86Var,Def
callq∗ x86Var,Def

callq∗ x86Def
callq∗ x86Def

callq∗

shrink uniquify reveal_functions

resolve

erase_types

differentiate_proxiesreveal_casts

convert_assignments

convert_to_closures limit_functions

expose_allocation

remove_complex_operands

explicate_control
select_instructions

assign_homes patch_instructions

prelude_and_conclusion

Figure 12.10
Diagram of the passes for LGen (generics).

A Appendix

A.1 x86 Instruction Set Quick Reference

Table A.1 lists some x86 instructions and what they do. We write A→B to mean
that the value of A is written into location B. Address offsets are given in bytes.
The instruction arguments A, B, C can be immediate constants (such as $4), registers
(such as %rax), or memory references (such as -4(%ebp)). Most x86 instructions
allow at most one memory reference per instruction. Other operands must be
immediates or registers.

208 Appendix A

Table A.1
Quick reference for the x86 instructions used in this book.

Instruction Operation
addq A, B A + B→B
negq A –A→A
subq A, B B – A→B
imulq A, B A×B→B (B must be a register).
callq L Pushes the return address and jumps to label L.
callq *A Calls the function at the address A.
retq Pops the return address and jumps to it.
popq A ∗rsp→A; rsp + 8→ rsp
pushq A rsp – 8→ rsp; A→∗rsp
leaq A, B A→B (B must be a register.)
cmpq A, B Compare A and B and set the flag register (B must not be an

immediate).
je L Jump to label L if the flag register matches the condition

code of the instruction; otherwise go to the next instructions.
The condition codes are e for equal, l for less, le for less or
equal, g for greater, and ge for greater or equal.

jl L
jle L
jg L
jge L
jmp L Jump to label L.
movq A, B A→B
movzbq A, B

A→B, where A is a single-byte register (e.g., al or cl), B is
an 8-byte register, and the extra bytes of B are set to zero.

notq A ∼A→A (bitwise complement)
orq A, B A | B→B (bitwise-or)
andq A, B A&B→B (bitwise-and)
salq A, B B « A→B (arithmetic shift left, where A is a constant)
sarq A, B B » A→B (arithmetic shift right, where A is a constant)
sete A

If the flag matches the condition code, then 1→A; else
0→A. Refer to je for the description of the condition codes.
A must be a single byte register (e.g., al or cl).

setl A
setle A
setg A
setge A

References

Abelson, Harold, and Gerald J. Sussman. 1996. Structure and Interpretation of Computer
Programs. 2nd edition. MIT Press.
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles,
Techniques, and Tools. 2nd edition. Addison-Wesley Longman.
Allen, Frances E. 1970. “Control Flow Analysis.” In Proceedings of a Symposium on Compiler
Optimization, 1–19. Association for Computing Machinery.
Anderson, Christopher, and Sophia Drossopoulou. 2003. “BabyJ: From Object Based to Class
Based Programming via Types.” Electron. Notes Theor. Comput. Sci. 82 (8): 53–81.
Anderson, T., J. Eve, and J. Horning. 1973. “Efficient LR(1) Parsers.” Acta Informatica 2:2–39.
Appel, Andrew W. 1989. “Runtime Tags Aren’t Necessary.” LISP and Symbolic Computation 2
(2): 153–162.
Appel, Andrew W. 1990. “A Runtime System.” LISP and Symbolic Computation 3 (4): 343–380.
Appel, Andrew W. 1991. Compiling with Continuations. Cambridge University Press.
Appel, Andrew W., and David B. MacQueen. 1987. “A Standard ML Compiler.” In Functional
Programming Languages and Computer Architecture, 301–324. Springer.
Appel, Andrew W., and Jens Palsberg. 2003. Modern Compiler Implementation in Java.
Cambridge University Press.
Backus, J. W., F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser, et al.
1960. “Report on the Algorithmic Language ALGOL 60.” Edited by Peter Naur. Commun. ACM
3 (5): 299–314.
Backus, John. 1978. “The History of Fortran I, II, and III.” In History of Programming Languages,
25–74. Association for Computing Machinery.
Baker, J., A. Cunei, T. Kalibera, F. Pizlo, and J. Vitek. 2009. “Accurate Garbage Collection in
Uncooperative Environments Revisited.” Concurr. Comput.: Pract. Exper. 21 (12): 1572–1606.
Balakrishnan, V. K. 1996. Introductory Discrete Mathematics. Dover.
Barry, Paul. 2016. Head First Python. O’Reilly.
Blackburn, Stephen M., Perry Cheng, and Kathryn S. McKinley. 2004. “Myths and Realities: The
Performance Impact of Garbage Collection.” In Proceedings of the Joint International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’04/Performance ’04, 25–
36. Association for Computing Machinery.
Blelloch, Guy E., Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipelstein, and Marco Zagha.
1993. “Implementation of a Portable Nested Data-Parallel Language.” In Proceedings of the Fourth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP ’93,
102–111. Association for Computing Machinery.
Bracha, Gilad, Martin Odersky, David Stoutamire, and Philip Wadler. 1998. “Making the Future
Safe for the Past: Adding Genericity to the Java Programming Language.” In Proceedings of the
13th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA ’98, 183–200. Association for Computing Machinery.
Brélaz, Daniel. 1979. “New Methods to Color the Vertices of a Graph.” Commun. ACM 22 (4):
251–256.

210 References

Briggs, Preston, Keith D. Cooper, and Linda Torczon. 1994. “Improvements to Graph Coloring
Register Allocation.” ACM Trans. Program. Lang. Syst. 16 (3): 428–455.
Bryant, Randal, and David O’Hallaron. 2005. x86-64 Machine-Level Programming. Carnegie
Mellon University.
Bryant, Randal, and David O’Hallaron. 2010. Computer Systems: A Programmer’s Perspective.
2nd edition. Addison-Wesley.
Cardelli, Luca. 1983. The Functional Abstract Machine. Technical report TR-107. AT&T Bell
Laboratories.
Cardelli, Luca. 1984. “Compiling a Functional Language.” In ACM Symposium on LISP and
Functional Programming, LFP ’84, 208–221. Association for Computing Machinery.
Cardelli, Luca, and Peter Wegner. 1985. “On Understanding Types, Data Abstraction, and
Polymorphism.” ACM Comput. Surv. 17 (4): 471–523.
Chaitin, G. J. 1982. “Register Allocation & Spilling via Graph Coloring.” In SIGPLAN ’82:
Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, 98–105. Association
for Computing Machinery.
Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. 1981. “Register Allocation via Coloring.” Computer Languages 6:47–57.
Cheney, C. J. 1970. “A Nonrecursive List Compacting Algorithm.” Commun. of the ACM 13 (11).
Chow, Frederick, and John Hennessy. 1984. “Register Allocation by Priority-Based Coloring.” In
Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction, 222–232. Association
for Computing Machinery.
Church, Alonzo. 1932. “A Set of Postulates for the Foundation of Logic.” Ann. Math., Second
Series, 33 (2): 346–366.
Clarke, Keith. 1989. “One-Pass Code Generation Using Continuations.” Softw. Pract. Exper. 19
(12): 1175–1192.
Collins, George E. 1960. “A Method for Overlapping and Erasure of Lists.” Commun. ACM 3
(12): 655–657.
Cooper, Keith, and Linda Torczon. 2011. Engineering a Compiler. 2nd edition. Morgan Kaufmann.
Cooper, Keith D., and L. Taylor Simpson. 1998. “Live Range Splitting in a Graph Coloring
Register Allocator.” In Compiler Construction: Proceedings of the 7th International Conference,
CC ’98, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS ’98. Lecture Notes in Computer Science 1383. Springer.
Cormen, Thomas H., Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. 2001. Introduction
to Algorithms. McGraw-Hill Higher Education.
Cutler, Cody, and Robert Morris. 2015. “Reducing Pause Times with Clustered Collection.” In
Proceedings of the 2015 International Symposium on Memory Management, ISMM ’15, 131–142.
Association for Computing Machinery.
Danvy, Olivier. 1991. Three Steps for the CPS Transformation. Technical report CIS-92-02.
Kansas State University.
Danvy, Olivier. 2003. “A New One-Pass Transformation into Monadic Normal Form.” In Compiler
Construction: Proceedings of the 12th International Conference, CC ’03, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS ’03. Lecture Notes in
Computer Science 2622, 77–89. Springer.
DeRemer, Frank. 1969. “Practical Translators for LR(k) Languages.” PhD diss., MIT.
Detlefs, David, Christine Flood, Steve Heller, and Tony Printezis. 2004. “Garbage-First Garbage
Collection.” In Proceedings of the 4th International Symposium on Memory Management, ISMM
’04, 37–48. Association for Computing Machinery.
Dieckmann, Sylvia, and Urs Hölzle. 1999. “A Study of the Allocation Behavior of the SPECjvm98
Java Benchmark.” In Proceedings of the 13th European Conference on Object-Oriented Program-
ming, ECOOP 1999, Lecture Notes in Computer Science 1628, 92–115. Springer.
Dijkstra, E. W. 1982. Why Numbering Should Start at Zero. Technical report EWD831. University
of Texas at Austin.

References 211

Diwan, Amer, Eliot Moss, and Richard Hudson. 1992. “Compiler Support for Garbage Collection
in a Statically Typed Language.” In Proceedings of the ACM SIGPLAN 1992 Conference on Pro-
gramming Language Design and Implementation, PLDI ’92, 273–282. Association for Computing
Machinery.
Dunfield, Jana, and Neel Krishnaswami. 2021. “Bidirectional Typing.” ACM Comput. Surv. 54
(5).
Dybvig, R. Kent. 1987a. The Scheme Programming Language. Prentice Hall.
Dybvig, R. Kent. 1987b. “Three Implementation Models for Scheme.” PhD diss., University of
North Carolina at Chapel Hill.
Dybvig, R. Kent. 2006. “The Development of Chez Scheme.” In Proceedings of the Eleventh ACM
SIGPLAN International Conference on Functional Programming, ICFP ’06, 1–12. Association
for Computing Machinery.
Dybvig, R. Kent, and Andrew Keep. 2010. P523 Compiler Assignments. Technical report. Indiana
University.
Earley, Jay. 1970. “An efficient context-free parsing algorithm.” Commun. ACM 13 (2): 94–102.
Felleisen, Matthias, M.D. Barski Conrad, David Van Horn, and Eight Students of Northeastern
University. 2013. Realm of Racket: Learn to Program, One Game at a Time! No Starch Press.
Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. 2001. How
to Design Programs: An Introduction to Programming and Computing. MIT Press.
Fischer, Michael J. 1972. “Lambda Calculus Schemata.” In Proceedings of ACM Conference on
Proving Assertions about Programs, 104–109. Association for Computing Machinery.
Flanagan, Cormac. 2006. “Hybrid Type Checking.” In Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’06, 245–256. Association
for Computing Machinery.
Flanagan, Cormac, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. “The Essence of
Compiling with Continuations.” In Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation, PLDI ’93, 502–514. Association for Computing
Machinery.
Flatt, Matthew, Caner Derici, R. Kent Dybvig, Andrew W. Keep, Gustavo E. Massaccesi,
Sarah Spall, Sam Tobin-Hochstadt, and Jon Zeppieri. 2019. “Rebuilding Racket on Chez Scheme
(Experience Report).” Proc. ACM Program. Lang., ICFP (August) 3:1–15.
Flatt, Matthew, Robert Bruce Findler, and PLT. 2014. The Racket Guide. Technical report 6.0.
PLT.
Flatt, Matthew, and PLT. 2014. The Racket Reference 6.0. Technical report. PLT. https://docs
.racket-lang.org/reference/index.html.
Friedman, Daniel P., and Matthias Felleisen. 1996. The Little Schemer. 4th edition. MIT Press.
Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes. 2001. Essentials of Programming
Languages. 2nd edition. MIT Press.
Friedman, Daniel P., and David S. Wise. 1976. Cons Should Not Evaluate Its Arguments. Technical
report TR44. Indiana University.
Gamari, Ben, and Laura Dietz. 2020. “Alligator Collector: A Latency-Optimized Garbage Collector
for Functional Programming Languages.” In Proceedings of the 2020 ACM SIGPLAN Inter-
national Symposium on Memory Management, ISMM ’20, 87–99. Association for Computing
Machinery.
George, Lal, and Andrew W. Appel. 1996. “Iterated Register Coalescing.” ACM Trans. Program.
Lang. Syst. 18 (3): 300–324.
Ghuloum, Abdulaziz. 2006. “An Incremental Approach to Compiler Construction.” In Scheme ’06:
Proceedings of the Workshop on Scheme and Functional Programming. http://www.schemework
shop.org/2006/.
Gilray, Thomas, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn. 2016.
“Pushdown Control-Flow Analysis for Free.” In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, 691–704. Association
for Computing Machinery.

https://docs.racket-lang.org/reference/index.html
https://docs.racket-lang.org/reference/index.html
http://www.schemeworkshop.org/2006/
http://www.schemeworkshop.org/2006/

212 References

Goldberg, Benjamin. 1991. “Tag-free Garbage Collection for Strongly Typed Programming Lan-
guages.” In Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation, PLDI ’91, 165–176. Association for Computing Machinery.
Gordon, M., R. Milner, L. Morris, M. Newey, and C. Wadsworth. 1978. “A Metalanguage
for Interactive Proof in LCF.” In Proceedings of the 5th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL ’78, 119–130. Association for Computing
Machinery.
Gronski, Jessica, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cormac Flanagan. 2006.
“Sage: Hybrid Checking for Flexible Specifications.” In Scheme ’06: Proceedings of the Workshop
on Scheme and Functional Programming, 93–104. http://www.schemeworkshop.org/2006/.
Harper, Robert. 2016. Practical Foundations for Programming Languages. 2nd edition. Cambridge
University Press.
Harper, Robert, and Greg Morrisett. 1995. “Compiling Polymorphism Using Intensional Type
Analysis.” In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’95, 130–141. Association for Computing Machinery.
Hatcliff, John, and Olivier Danvy. 1994. “A Generic Account of Continuation-Passing Styles.”
In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’94, 458–471. Association for Computing Machinery.
Henderson, Fergus. 2002. “Accurate Garbage Collection in an Uncooperative Environment.” In
Proceedings of the 3rd International Symposium on Memory Management, ISMM ’02, 150–156.
Association for Computing Machinery.
Henglein, Fritz. 1994. “Dynamic Typing: Syntax and Proof Theory.” Science of Computer
Programming 22 (3): 197–230.
Herman, David, Aaron Tomb, and Cormac Flanagan. 2007. “Space-Efficient Gradual Typing.” In
Trends in Functional Programming, TFP ’07.
Herman, David, Aaron Tomb, and Cormac Flanagan. 2010. “Space-Efficient Gradual Typing.”
Higher-Order and Symbolic Computation 23 (2): 167–189.
Hopcroft, John, Rajeev Motwani, and Jeffrey Ullman. 2006. Introduction to Automata Theory,
Languages, and Computation. Pearson.
Horwitz, L. P., R. M. Karp, R. E. Miller, and S. Winograd. 1966. “Index Register Allocation.” J.
ACM 13 (1): 43–61.
Intel. 2015. Intel 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes:
1, 2A, 2B, 2C, 3A, 3B, 3C and 3D.
Jacek, Nicholas, and J. Eliot B. Moss. 2019. “Learning When to Garbage Collect with Ran-
dom Forests.” In Proceedings of the 2019 ACM SIGPLAN International Symposium on Memory
Management, ISMM ’19, 53–63. Association for Computing Machinery.
Johnson, Stephen C. 1979. “YACC: Yet Another Compiler-Compiler.” In UNIX Programmer’s
Manual, 2:353–387. Holt, Rinehart, and Winston.
Jones, Neil D., Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and Automatic
Program Generation. Prentice Hall.
Jones, Richard, Antony Hosking, and Eliot Moss. 2011. The Garbage Collection Handbook: The
Art of Automatic Memory Management. Chapman & Hall/CRC.
Jones, Richard, and Rafael Lins. 1996. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley & Sons.
Keep, Andrew W. 2012. “A Nanopass Framework for Commercial Compiler Development.” PhD
diss., Indiana University.
Keep, Andrew W., Alex Hearn, and R. Kent Dybvig. 2012. “Optimizing Closures in O(0)-time.” In
Scheme ’12: Proceedings of the Workshop on Scheme and Functional Programming. Association
for Computing Machinery.
Kelsey, R., W. Clinger, and J. Rees, eds. 1998. “Revised5 Report on the Algorithmic Language
Scheme.” Higher-Order and Symbolic Computation 11 (1).
Kempe, A. B. 1879. “On the Geographical Problem of the Four Colours.” American Journal of
Mathematics 2 (3): 193–200.

http://www.schemeworkshop.org/2006/

References 213

Kernighan, Brian W., and Dennis M. Ritchie. 1988. The C Programming Language. Prentice Hall.
Kildall, Gary A. 1973. “A Unified Approach to Global Program Optimization.” In Proceedings of
the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’73, 194–206. Association for Computing Machinery.
Kleene, S. 1952. Introduction to Metamathematics. Van Nostrand.
Knuth, Donald E. 1964. “Backus Normal Form vs. Backus Naur Form.” Commun. ACM 7 (12):
735–736.
Kuhlenschmidt, Andre, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. “Toward Efficient
Gradual Typing for Structural Types via Coercions.” In Proceedings of the ACM SIGPLAN 2019
Conference on Programming Language Design and Implementation, PLDI ’19. Association for
Computing Machinery.
Lawall, Julia L., and Olivier Danvy. 1993. “Separating Stages in the Continuation-Passing Style
Transformation.” In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’93, 124–136. Association for Computing Machinery.
Lehtosalo, Jukka. 2021. MyPy Optional Type Checker for Python. http://mypy-lang.org/.
Leroy, Xavier. 1992. “Unboxed Objects and Polymorphic Typing.” In Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92, 177–188.
Association for Computing Machinery.
Lesk, M. E., and E. Schmidt. 1975. Lex - A Lexical Analyzer Generator. Technical report. Bell
Laboratories, July.
Lieberman, Henry, and Carl Hewitt. 1983. “A Real-Time Garbage Collector Based on the Lifetimes
of Objects.” Commun. ACM 26 (6): 419–429.
Liskov, Barbara. 1993. “A History of CLU.” In The Second ACM SIGPLAN Conference on History
of Programming Languages, HOPL-II, 133–147. Association for Computing Machinery.
Liskov, Barbara, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert, Bob Scheifler, and Alan
Snyder. 1979. CLU Reference Manual. Technical report LCS-TR-225. MIT.
Logothetis, George, and Prateek Mishra. 1981. “Compiling Short-Circuit Boolean Expressions in
One Pass.” Software: Practice and Experience 11 (11): 1197–1214.
Lutz, Mark. 2013. Learning Python. 5th edition. O’Reilly.
Matthes, Eric. 2019. Python Crash Course. 2nd edition. No Starch Press.
Matthews, Jacob, and Robert Bruce Findler. 2007. “Operational Semantics for Multi-Language
Programs.” In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’07. Association for Computing Machinery.
Matula, David W., George Marble, and Joel D. Isaacson. 1972. “Graph Coloring Algorithms.” In
Graph Theory and Computing, 109–122. Academic Press.
Matz, Michael, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2013. System V Application
Binary Interface, AMD64 Architecture Processor Supplement. Linux Foundation.
McCarthy, John. 1960. “Recursive Functions of Symbolic Expressions and their Computation by
Machine, Part I.” Commun. ACM 3 (4): 184–195.
Microsoft. 2018. x64 Architecture. https://docs.microsoft.com/en-us/windows-hardware/drivers
/debugger/x64-architecture.
Microsoft. 2020. x64 Calling Convention. https://docs.microsoft.com/en-us/cpp/build/x64-calli
ng-convention.
Milner, Robin, Mads Tofte, and Robert Harper. 1990. The Definition of Standard ML. MIT Press.
Minamide, Yasuhiko, Greg Morrisett, and Robert Harper. 1996. “Typed Closure Conversion.”
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’96, 271–283. Association for Computing Machinery.
Moggi, Eugenio. 1991. “Notions of Computation and Monads.” Inf. Comput. 93 (1): 55–92.
Moore, E.F. 1959. “The Shortest Path Through a Maze.” In Proceedings of an International
Symposium on the Theory of Switching. Harvard University Press.
Morrison, R., A. Dearle, R. C. H. Connor, and A. L. Brown. 1991. “An Ad Hoc Approach to the
Implementation of Polymorphism.” ACM Trans. Program. Lang. Syst. 13 (3): 342–371.

http://mypy-lang.org/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention

214 References

Österlund, Erik, and Welf Löwe. 2016. “Block-Free Concurrent GC: Stack Scanning and Copying.”
In Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory Management,
ISMM ’16, 1–12. Association for Computing Machinery.
Palsberg, Jens. 2007. “Register Allocation via Coloring of Chordal Graphs.” In Proceedings of the
Thirteenth Australasian Symposium on Theory of Computing, 3–3. Australian Computer Society.
Peyton Jones, Simon L., and André L. M. Santos. 1998. “A Transformation-Based Optimiser for
Haskell.” Science of Computer Programming 32 (1): 3–47.
Pierce, Benjamin C. 2002. Types and Programming Languages. MIT Press.
Pierce, Benjamin C., ed. 2004. Advanced Topics in Types and Programming Languages. MIT
Press.
Pierce, Benjamin C., Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. 2018. Pro-
gramming Language Foundations. Vol. 2. Software Foundations. Electronic textbook. https : /
/softwarefoundations.cis.upenn.edu/plf-current/index.html.
Pierce, Benjamin C., and David N. Turner. 2000. “Local Type Inference.” ACM Trans. Program.
Lang. Syst. 22 (1): 1–44.
Plotkin, G. D. 1975. “Call-by-Name, Call-by-Value and the Lambda-Calculus.” Theoretical
Computer Science 1 (2): 125–159.
Poletto, Massimiliano, and Vivek Sarkar. 1999. “Linear Scan Register Allocation.” ACM Trans.
Program. Lang. Syst. 21 (5): 895–913.
Python Software Foundation. 2021a. Python GitHub Repository. Python Software Foundation.
https://github.com/python.
Python Software Foundation. 2021b. The Python Language Reference. Python Software Founda-
tion.
Reynolds, John C. 1972. “Definitional Interpreters for Higher-Order Programming Languages.”
In ACM ’72: Proceedings of the ACM Annual Conference, 717–740. Association for Computing
Machinery.
Rosen, Kenneth H. 2002. Discrete Mathematics and Its Applications. McGraw-Hill Higher
Education.
Russell, Stuart J., and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach. 2nd ed.
Pearson Education.
Sarkar, Dipanwita, Oscar Waddell, and R. Kent Dybvig. 2004. “A Nanopass Infrastructure for
Compiler Education.” In Proceedings of the Ninth ACM SIGPLAN International Conference on
Functional Programming, ICFP ’04, 201–212. Association for Computing Machinery.
Shahriyar, Rifat, Stephen M. Blackburn, Xi Yang, and Kathryn M. McKinley. 2013. “Taking
Off the Gloves with Reference Counting Immix.” In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA
’13. Association for Computing Machinery.
Shidal, Jonathan, Ari J. Spilo, Paul T. Scheid, Ron K. Cytron, and Krishna M. Kavi. 2015.
“Recycling Trash in Cache.” In Proceedings of the 2015 International Symposium on Memory
Management, ISMM ’15, 118–130. Association for Computing Machinery.
Shinan, Erez. 2020. Welcome to Lark’s Documentation! https : //lark-parser.readthedocs.io/en
/latest/index.html.
Shivers, O. 1988. “Control Flow Analysis in Scheme.” In Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation, PLDI ’88, 164–174.
Association for Computing Machinery.
Siebert, Fridtjof. 2001. “Constant-Time Root Scanning for Deterministic Garbage Collection.” In
Proceedings of Compiler Construction: 10th International Conference, CC 2001, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS ’01, edited by
Reinhard Wilhelm, 304–318. Springer.
Siek, Jeremy G., and Walid Taha. 2006. “Gradual Typing for Functional Languages.” In Scheme
’06: Proceedings of the Workshop on Scheme and Functional Programming, 81–92. http://www
.schemeworkshop.org/2006/.

https://softwarefoundations.cis.upenn.edu/plf-current/index.html
https://softwarefoundations.cis.upenn.edu/plf-current/index.html
https://github.com/python
https://lark-parser.readthedocs.io/en/latest/index.html
https://lark-parser.readthedocs.io/en/latest/index.html
http://www.schemeworkshop.org/2006/
http://www.schemeworkshop.org/2006/

References 215

Siek, Jeremy G., Peter Thiemann, and Philip Wadler. 2015. “Blame and Coercion: Together Again
for the First Time.” In Proceedings of the ACM SIGPLAN 2015 Conference on Programming
Language Design and Implementation, PLDI ’15. Association for Computing Machinery.
Sperber, Michael, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Robby Findler, and Jacob
Matthews. 2009. “Revised6 Report on the Algorithmic Language Scheme.” Journal of Functional
Programming 19:1–301.
Steele, Guy L. 1977. Data Representations in PDP-10 MacLISP. AI Memo 420. MIT Artificial
Intelligence Lab.
Steele, Guy L. 1978. Rabbit: A Compiler for Scheme. Technical report. MIT.
Stroustrup, Bjarne. 1988. “Parameterized Types for C++.” In Proceedings of the USENIX C++
Conference. USENIX.
Sweigart, Al. 2019. Automate the Boring Stuff with Python. No Starch Press.
Tene, Gil, Balaji Iyengar, and Michael Wolf. 2011. “C4: The Continuously Concurrent Compacting
Collector.” In Proceedings of the International Symposium on Memory Management, ISMM ’11,
79–88. Association for Computing Machinery.
Tobin-Hochstadt, Sam, and Matthias Felleisen. 2006. “Interlanguage Migration: From Scripts
to Programs.” In Companion to the 21st ACM SIGPLAN Conference on Object Oriented Pro-
gramming Systems Languages and Applications (Dynamic Languages Symposium), DLS ’06.
Association for Computing Machinery.
Tomita, Masaru. 1985. Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic.
Ungar, David. 1984. “Generation Scavenging: A Non-Disruptive High Performance Storage Recla-
mation Algorithm.” In Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, SDE 1, 157–167. Association for
Computing Machinery.
van Wijngaarden, Adriaan. 1966. “Recursive Definition of Syntax and Semantics.” In Formal
Language Description Languages for Computer Programming, edited by T. B. Steel Jr., 13–24.
North-Holland.
Wadler, Philip, and Robert Bruce Findler. 2009. “Well-Typed Programs Can’t Be Blamed.” In
Proceedings of Programming Languages and Systems, 31st European Symposium on Program-
ming, ESOP ’09, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS ’09, edited by Giuseppe Castagna, 1–16. Springer.
Weeks, Stephen. 2006. “Whole-Program Compilation in MLton.” In Proceedings of the 2006
Workshop on ML ’06, 1. Association for Computing Machinery.
Wilson, Paul. 1992. “Uniprocessor Garbage Collection Techniques. Lecture Notes in Computer
Science 637.” In Memory Management, edited by Yves Bekkers and Jacques Cohen, 1–42. Springer.

Index

abstract syntax, 1
abstract syntax tree, 1
Add, 5
alias, 99
allocate, 58, 103, 108, 109
ambiguous, 33
and, 65
argument-passing registers, 47
Assign, 13
AST, 1
atomic expression, 22

Backus-Naur form, 3
base pointer, 19
basic block, 73
Begin, 76
BinOp, 5
BNF, 3
Boolean, 65
BoolOp, 67
bottom, 94
box, 150

Call, 5
call-live variable, 47
callee-saved registers, 46
caller-saved registers, 46
calling conventions, 46, 58, 130
chart, 36
Cheney’s algorithm, 103
children, 2
class, 1
closure, 144
closure conversion, 145, 153
color, 52
Compare, 67
compiler pass, 21
complex expression, 22
complex operand, 23
conclusion, 20, 27, 48, 58, 59, 116, 131
concrete syntax, 1
conditional expression, 65
Constant, 5
context-free grammar, 3
contravariant, 188

control flow, 65
control-flow graph, 83
copying collector, 103

dataflow analysis, 93
definitional interpreter, 8
dynamic typing, 161

environment, 16
Expr, 5

False, 6, 65
fixed point, 95
flat closure, 144
forwarding pointer, 105
frame, 19, 26, 130, 132
free variable, 143
FromSpace, 103
function, 125
function application, 125
function pointer, 125

garbage collection, 99
generics, 195
Goto, 72
gradual typing, 177
grammar, 3
graph coloring, 52
>, 66
>=, 66
Gt, 67
GtE, 67

heap, 99

IfExp, 65
If, 65
immediate value, 16
indirect function call, 130
indirect jump, 132
input_ int, 5
instruction, 18
instruction selection, 45, 93, 109, 173
integer, 3
interfere, 46

218 Index

interference graph, 51
intermediate language, 22
internal node, 2
interpreter, 7, 145

join, 94

Kleene fixed-point theorem, 95

lambda, 125, 143
lattice, 94
lazy evaluation, 85
leaf, 2
least fixed point, 95
least upper bound, 94
<, 65
<=, 66
lexical scoping, 143
literals, 2, 5, 66
live objects, 103
live-after, 49
live-before, 49
liveness analysis, 49, 83, 138
Lt, 67
LtE, 67

match, 5
method overriding, 14
Module, 5
move biasing, 60
move related, 60

Name, 5
node, 2
nonterminal, 3
not, 65
NotEq, 67

object, 1, 102
open recursion, 15
or, 65
overload resolution, 121

parametric polymorphism, 161, 195
parent, 2
parse tree, 32
parsing, 1, 29
partial evaluation, 10, 28, 81
partial ordering, 94
pass, 21
pattern, 5
pattern matching, 5
PC, 16
pointer, 19
precedence, 34
prelude, 20, 27, 48, 58, 59, 108, 116, 130
print, 5
procedure call stack, 19, 130
program, 1
program counter, 16

recursive function, 6
register, 16
register allocation, 45, 83, 116, 174
regular expression, 30
Return, 72
return address, 19
root, 2
root set, 102
root stack, 106
runtime system, 25

saturation, 54
select instructions, 22, 25, 82, 111, 123, 136,

156, 172, 191
semantic analysis, 65
spill, 46
stack, 19
stack pointer, 19
structural recursion, 7
Sub, 5
subtype polymorphism, 161
sudoku, 52
symbol, 31

tagged value, 161
tail call, 132
terminal, 3, 31
topological order, 83
ToSpace, 103
True, 6, 65
tuple, 99
two-space copying collector, 103
type checking, 66

UnaryOp, 5
unbox, 150
unspecified behavior, 9
USub, 5

variable, 13
vector, 99

While, 92
white space, 3

x86, 16, 72, 111, 136, 207

	Preface
	1 Preliminaries
	1.1 Abstract Syntax Trees
	1.2 Grammars
	1.3 Pattern Matching
	1.4 Recursive Functions
	1.5 Interpreters
	1.6 Example Compiler: A Partial Evaluator

	2 Integers and Variables
	2.1 The LVar Language
	2.1.1 Extensible Interpreters via Method Overriding
	2.1.2 Definitional Interpreter for LVar

	2.2 The x86Int Assembly Language
	2.3 Planning the Trip to x86
	2.4 Remove Complex Operands
	2.5 Select Instructions
	2.6 Assign Homes
	2.7 Patch Instructions
	2.8 Generate Prelude and Conclusion
	2.9 Challenge: Partial Evaluator for LVar

	3 Parsing
	3.1 Lexical Analysis and Regular Expressions
	3.2 Grammars and Parse Trees
	3.3 Ambiguous Grammars
	3.4 From Parse Trees to Abstract Syntax Trees
	3.5 Earley's Algorithm
	3.6 The LALR(1) Algorithm
	3.7 Further Reading

	4 Register Allocation
	4.1 Registers and Calling Conventions
	4.2 Liveness Analysis
	4.3 Build the Interference Graph
	4.4 Graph Coloring via Sudoku
	4.5 Patch Instructions
	4.6 Generate Prelude and Conclusion
	4.7 Challenge: Move Biasing
	4.8 Further Reading

	5 Booleans and Conditionals
	5.1 The LIf Language
	5.2 Type Checking LIf Programs
	5.3 The CIf Intermediate Language
	5.4 The x86If Language
	5.5 Shrink the LIf Language
	5.6 Remove Complex Operands
	5.7 Explicate Control
	5.8 Select Instructions
	5.9 Register Allocation
	5.9.1 Liveness Analysis
	5.9.2 Build the Interference Graph

	5.10 Patch Instructions
	5.11 Generate Prelude and Conclusion
	5.12 Challenge: Optimize Blocks and Remove Jumps
	5.12.1 Optimize Blocks
	5.12.2 Remove Jumps

	5.13 Further Reading

	6 Loops and Dataflow Analysis
	6.1 The LWhile Language
	6.2 Cyclic Control Flow and Dataflow Analysis
	6.3 Remove Complex Operands
	6.4 Explicate Control
	6.5 Register Allocation

	7 Tuples and Garbage Collection
	7.1 The LTup Language
	7.2 Garbage Collection
	7.2.1 Two-Space Copying Collector
	7.2.2 Graph Copying via Cheney's Algorithm
	7.2.3 Data Representation
	7.2.4 Implementation of the Garbage Collector

	7.3 Expose Allocation
	7.4 Remove Complex Operands
	7.5 Explicate Control and the CTup Language
	7.6 Select Instructions and the x86Global Language
	7.7 Register Allocation
	7.8 Generate Prelude and Conclusion
	7.9 Challenge: Arrays
	7.9.1 Data Representation
	7.9.2 Overload Resolution
	7.9.3 Bounds Checking
	7.9.4 Expose Allocation
	7.9.5 Remove Complex Operands
	7.9.6 Explicate Control
	7.9.7 Select Instructions

	7.10 Further Reading

	8 Functions
	8.1 The LFun Language
	8.2 Functions in x86
	8.2.1 Calling Conventions
	8.2.2 Efficient Tail Calls

	8.3 Shrink LFun
	8.4 Reveal Functions and the LFunRef Language
	8.5 Limit Functions
	8.6 Remove Complex Operands
	8.7 Explicate Control and the CFun Language
	8.8 Select Instructions and the x86Defcallq* Language
	8.9 Register Allocation
	8.9.1 Liveness Analysis
	8.9.2 Build Interference Graph
	8.9.3 Allocate Registers

	8.10 Patch Instructions
	8.11 Generate Prelude and Conclusion
	8.12 An Example Translation

	9 Lexically Scoped Functions
	9.1 The L Language
	9.2 Assignment and Lexically Scoped Functions
	9.3 Uniquify Variables
	9.4 Assignment Conversion
	9.5 Closure Conversion
	9.5.1 An Example Translation

	9.6 Expose Allocation
	9.7 Explicate Control and CClos
	9.8 Select Instructions
	9.9 Challenge: Optimize Closures
	9.10 Further Reading

	10 Dynamic Typing
	10.1 The LDyn Language
	10.2 Representation of Tagged Values
	10.3 The LAny Language
	10.4 Cast Insertion: Compiling LDyn to LAny
	10.5 Reveal Casts
	10.6 Assignment Conversion
	10.7 Closure Conversion
	10.8 Remove Complex Operands
	10.9 Explicate Control and CAny
	10.10 Select Instructions
	10.11 Register Allocation for LAny

	11 Gradual Typing
	11.1 Type Checking L?
	11.2 Interpreting LCast
	11.3 Overload Resolution
	11.4 Cast Insertion
	11.5 Lower Casts
	11.6 Differentiate Proxies
	11.7 Reveal Casts
	11.8 Closure Conversion
	11.9 Select Instructions
	11.10 Further Reading

	12 Generics
	12.1 Compiling Generics
	12.2 Resolve Instantiation
	12.3 Erase Generic Types

	A Appendix
	A.1 x86 Instruction Set Quick Reference

	References
	Index

