A Bit-Vector Algorithm for Computing
Levenshtein and Damerau Edit Distances!

Heikki Hyyro

Department of Computer and Information Sciences
33014 University of Tampere
Finland

e-mail: Heikki.Hyyro@uta.fi

Abstract. The edit distance between strings A and B is defined as the min-
imum number of edit operations needed in converting A into B or vice versa.
The Levenshtein edit distance allows three types of operations: an insertion,
a deletion or a substitution of a character. The Damerau edit distance allows
the previous three plus in addition a transposition between two adjacent charac-
ters. To our best knowledge the best current practical algorithms for computing
these edit distances run in time O(dm) and O(o + [m/w]n), where d is the edit
distance between the two strings, m and n are their lengths (m < n), w is the
computer word size and o is the size of the alphabet. In this paper we present an
algorithm that runs in time O(o + [d/w]m). The structure of the algorithm is
such, that in practice it is mostly suitable for testing whether the edit distance
between two strings is within some pre-determined error threshold. We also
present some initial test results with thresholded edit distance computation. In
them our algorithm works faster than the original algorithm of Myers.

Key words: Levenshtein edit distance, Damerau edit distance, bit-parallelism,
approximate string matching

1 Introduction

The desire to measure the similarity between two strings may arise in many appli-
cations, like for example computational biology and spelling correction. A common
way to achieve this is to compute the edit distance between the strings. Throughout
the paper we will assume that A is a string of length m and B is a string of length n,
and that m < n. The edit distance ed(A, B) between strings A and B is defined as
the minimum number of edit operations needed in converting A into B or vice versa.
In this paper we concentrate on two typical edit distances: the Levenshtein edit dis-
tance [Lev66] and the Damerau edit distance [Dam64]. The Levenshtein edit distance
allows three edit operations, which are inserting, deleting or substituting a character
(Figures la, 1b and 1c). In addition to these three, the Damerau edit distance al-
lows also transposing two permanently adjacent characters (Figure 1d). When edit

! This work was supported by the Academy of Finland and Tampere Graduate School in Infor-
mation Science and Engineering

44

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances

distance is used, strings A and B are deemed similar iff their edit distance is small
enough, that is iff ed(A, B) < k, where k is some pre-determined error threshold. A
related problem is that of approximate string matching, which is typically defined as
follows: let pat be a string of length m and text a (much longer) string of length n.
The task of approximate string matching is then to find all such indices j, for which
exists such h > 0 that ed(pat, text[j — h..j]) < k.

The oldest, but most flexible in terms of permitting different edit operations
and/or edit operation costs, algorithms for computing edit distance (for example
[WE74]) are based on dynamic programming and run in time O(mn). Ukkonen
[Ukk85a] has later proposed two O(dm) methods, and Myers [Mye86] an O(n + d?)
method. The latter is based on using a suffix tree and is not viewed as being practi-
cal (e.g. [Ste94]). With fairly little modifications these methods can also be used in
computing the Damerau edit distance without affecting the asymptotic run times.

The methodology of using so-called “bit-parallelism” in developing fast and prac-
tical algorithms has recently become popular in the field of string matching. Wu and
Manber [WM92| presented an O(d[m/w]n) bit-parallel algorithm for Levenshtein edit
distance -based approximate string matching, and in [Nav01] it was modified to com-
pute both Levenshtein and Damerau edit distance. The run time remained the same.
Then Baeza-Yates and Navarro presented a method, which enables an O([dm/w]n)
algorithm for the Levenshtein edit distance. Currently this algorithm has not been
extended for the Damerau edit distance. Finally Myers [Mye99] has presented an
O([m/w]n) algorithm for approximate string matching under the Levenshtein edit
distance. In [HyyO01] the algorithm was extended for computing the Damerau edit
distance.

In this paper we will present an initial study on combining one of the O(dm)
edit distance algorithms of Ukkonen [Ukk85a] with the bit-parallel algorithm of My-
ers [Mye99] to obtain a faster algorithm. We begin by reviewing these underlying
algorithms in the next section.

2 Preliminaries

In the following discussion let A be a string of length m and B a string of length
n. We also use the notation Afu] to denote the uth character of A and the notation
Alu..v] to denote the substring of A, which begins from its uth character and ends
at its vth character. The superscript R denotes the reverse string: for example if A
= “ABC”, then A" = “CBA”. For bit operations we use the following notation: &’
denotes bitwise“and”, ’|” denotes bitwise “or”, ’A’ denotes bitwise “xor”, '~ denotes
bit complementation, and <<’ and ">>" denote shifting the bit-vector left and right,
respectively, using zero filling in both directions. We refer to the ith bit of the bit
vector V' as V[i]. Bit-positions are assumed to grow from right to left, and we use
superscript to denote bit-repetition. As en example let V' = 1001110 be a bit vector.
Then V1] = V[5] = V[6] = 0, V[2] = V[3] = V[4] = V[7] = 1, and we could also
write V' = 10%1°0.

45

Proceedings of the Prague Stringology Conference 02

s A BCQ b) A o B ¢]
A B|D|C A c® A c A c B
Figure 1: Four different edit operations. Figure a) shows inserting character "D’
between the last two characters of the string “ABC”, which results in the string
“ABCD”. Figure b) shows deleting the character “B”, which results in the string
“AC”. Figure c) shows substituting the character B’ with the character 'D’, which
results in the string “ADC”. Figure d) shows transposing the characters 'B’ and
’C’, which results in the string “ACB”. Transposition is allowed only between such
characters that were adjacent already in the original string.

2.1 Dynamic programming

Computing edit distance is a problem that seems to be most naturally solved with
dynamic programming. The value ed(A, B) can be computed by filling an (m + 1) X
(n + 1) dynamic programming matrix D, in which the cell DJ[i, j] contains the value
ed(A[l..i], B[1..7]). The following well-known Recurrence 1 gives the rule for filling
D when the Levenshtein edit distance is used.

Recurrence 1

D[i,0] = i, D[0, j] = j.

[Dli—1,j—1],if A[i] = B[j].
Dli. j] _{ 1+ min(D[i — 1,5 — 1], D[i — 1, j], D[i, j — 1), if A[i] # B[j].

The recurrence allows the cells with ¢ > 0 and 7 > 0 to be filled in any such order,
that the cell values D[i— 1, j], D[i—1,j —1] and DJi, j — 1] are known at the time the
cell DIi, j] is filled. A common way is to use column-wise filling, where each column
is filled from top to bottom (Figure 2). The Damerau edit distance can be computed
otherwise identically as the Levenshtein edit distance, but using Recurrence 2 [Hyy01]
instead in filling the dynamic programming matrix.

Recurrence 2

D[i— 1,5 —1], if A[i] = BJ[j].
Dli—1,j—1], if Ali — 1..i] = BE[j — 1..j]

and D[i — 1,5 —1] > D[i — 2,7 — 2.
1+ min(D[i — 1,7 — 1], D[i — 1,], D[i, j — 1]), otherwise.

D[Za]] =

As the basic dynamic programming scheme fills (m + 1)(n + 1) cells and filling each
cell takes a constant number of operations, the algorithm has a run time O(nm).
The following two properties hold in the dynamic programming matrix [Ukk85a,
Ukk85b]:

-The diagonal property: Dli,j]—D[i—1,j—1]=0or 1.
-The adjacency property: DJ[i, j] — D[i,j — 1] = —1,0, or 1, and
D[i,j]DJi — 1,j] = —1,0, or 1.

Even though these rules were initially presented with the Levenshtein edit distance,
they can easily be seen to apply also with the Damerau edit distance.

46

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances

T I I I
! ! ! !]]] !]] !
L L L L L

L L L]
v ivIvIv[¥ v (v v]v]vlv]v

O N0 AW N =[O

—H|O|O| D >| O] 4| >

Figure 2: An example of the column-wise filling order for the dynamic programming
table of strings “ATCAGCCT” and “TCTTGAAGGTCA”.

2.2 Using bit-parallelism

Myers [Mye99] presented an O(]m/w]|n) algorithm for approximate string matching
under the Levenshtein edit distance. Later in [Hyy01] the algorithm was slightly mod-
ified and extended for the Damerau edit distance. Originally these algorithms were
designed for approximate string matching, but they can easily be modified to compute
edit distance. The algorithms process the jth column of the dynamic programming
matrix in O([m/w]) time by using bit-parallelism. This is done by using delta en-
coding in the matrix: instead of explicitly computing the values DJi, j] for i = 1..m
and j = 1..n, the following length-m binary valued delta vectors are computed for

j=1.n:

VP[i] =1iff D[i,j]— D[i —1,j] = 1.
-The vertical negative delta vector: VN;[i] = 1iff D[i,j] — D[i — 1, j] = —1.
-The horizontal positive delta vector: HP;[i] =1 iff D[i,j] — D[i,j — 1] = 1.
-The horizontal negative delta vector: HN,[i| =1 iff D[i, j| — D[i,j — 1] = —1.

-The vertical positive delta vector:

When the values for these delta vectors are known for the (j — 1)th column, they
can be computed for the jth column in an efficient manner when the following match

vector is available for each character \.

-The match vector PM, : PM,[i] =1 iff Afi] = .

For simplicity we use the notion PM; = PMpy; for the rest of the paper. It is
straightforward to compute the pattern match vectors in O(c + m) time. In the
following we assume that these vectors have already been computed and are readily
available.

The delta vectors enable the value ed(A, B[1..j]) to be explicitly calculated for
j=1,2,...,n: ed(A,B[l..j]) = ed(A, B[1..j —1])+ 1 iff HP;[m] =1, ed(A, B[1..j]) =
ed(A, B[l..j—1])—1iff HN,;[m] =1, and ed(A, B[1..j]) = ed(A, B[1..j—1]) otherwise.
Thus after all n columns are processed, the value ed(A, B[1..n]) = ed(A, B) is known.
Figures 3 and 4 show the algorithms based on [Hyy01] for computing the jth column
when m < w, that is, when each vector can be represented by a single bit-vector.
Both algorithms are modified to compute edit distance. The algorithm in Figure 3 is
for the Levenshtein edit distance, and the algorithm in Figure 4 is for the Damerau
edit distance. Both algorithms involve a constant number of operations, and thus

47

Proceedings of the Prague Stringology Conference 02

compute the delta vectors for the jth column in O(1) time. In this paper we do not
separately discuss the case m > w. As each required operation for a length-m bit
vector can be simulated in O([m/w]) time using [m/w]| length-w bit vectors, the
general runtime of the algorithms is O([m/w]) for each column. This results in a
total time of O([m/w]n) over all n columns in computing ed(A, B).

Computing the jth column (Levenshtein distance)

DOj — (((PM] & Vijl) -I-Vijl) A Vijl) | PMj | VNj,I
HP; + VN | ~(D0; | VP;_y)

HNj — DOj & VPj_l

If HP; & 10™~! # 0 Then D[m, j] < D[m, j] + 1

If HN; & 10™" ! # 0 Then D[m, j] + Dim,j] — 1

VPj <+ (HN; <<1)| ~(D0; | (HP; << 1)) |1

VN < D0; & (HP; << 1)

N Utk N

Figure 3: Computation of the jth column using a modification of the DO0;-based
version of the algorithm of Myers (for the case m < w).

Computing the jth column (Damerau distance)

DOj — (((N DOjfl) & PMj) << 1) & PMj,1

DOj — DOj | (((PMJ & VPj_l) + Vljj_l) A VPj_l) | PMj | VNj_l
HPj VNj_1 | ~(D0; | VPjy)

HN]' — DOj & Vljj_l

If HP; & 10™~! # 0 Then D[m, j] < D[m,j] + 1

If HN; & 10™~! # 0 Then D[m,j] + D[m,j] — 1

VPj <+ (HN; <<1)| ~(D0j | (HP; <<1)) |1

VN « DOj & (Hpj << 1)

® N O Utk W=

Figure 4: Computation of the jth column using a modification of the DO0;-based
version of the algorithm of Myers with transposition (for the case m < w).

2.3 Filling only a necessary portion of the matrix

Ukkonen [Ukk85a] presented a method to try to cut down the area of the dynamic
programming matrix that is filled. By a ¢-diagonal we refer to the diagonal, which
consists of the cells DJi, j] for which j —i = ¢. From the diagonal and adjacency
properties Ukkonen concluded that if ed(A, B) < ¢t and m < n, then it is sufficient to
fill only the cells in the diagonals —|(t —n+m)/2|,—[(t —n+m)/2] +1,..., | (t+
n —m)/2] of the dynamic programming matrix. All the other cell values can be
assumed to have an infinite value without affecting correct computation of the value
D[m,n] = ed(A, B). He used this rule by beginning with ¢ = (n — m) + 1 and filling

48

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances

the above-mentioned diagonal interval of the dynamic programming matrix. If the
result is D[m,n] > ¢, t is doubled. Eventually D[m,n| < ¢, and in this case it is
known that D[m,n| = ed(A, B). The run time of this procedure is dominated by the
computation involving the last value of ¢. As this value is < 2 x ed(A, B) and with
each value of ¢ the computation takes O(¢ x min(m,n)) time, the overall run time is
O(ed(A, B) x min(m,n)).

In addition Ukkonen proposed a dynamic ” cutoff” method to improve the practical
performance of the diagonal restriction method. Assume that column-wise order is
used in filling the cells DJi, j] inside the required diagonals —|(t —n+m)/2], —|(t —
n+m)/2|+1,...,[(t+n—m)/2]. Let r, hold the diagonal number of the upmost
and r; the diagonal number of the lowest cell that was deemed to have to be filled in
the jth column. Then due to the diagonal property we can try to shrink the diagonal
region by decrementing r, as long as Dlr,,j] > t and incrementing r; as long as
Diry, j] > t. Then at the (j+ 1)th column it is enough to fill the cells in the diagonals
ry...ry. If 7 > r, the diagonal region vanishes and it is known that ed(A, B) > t.

This method of ”guessing” a starting limit ¢ for the edit distance and then doubling
it if necessary is not really practical for actual edit distance computation. Even
though the asymptotic run time is good, it involves large constant factor whenever
ed(A, B) is large. But the method works well in practice in thresholded edit distance
computation, as then one can immediately set ¢t = k£ and only a single pass is needed.

3 Our Method

In this section we present a bit-parallel version of the diagonal restriction scheme of
Ukkonen, which was briefly discussed in Section 2. In the following we concentrate
on the case where the computer word size w is large enough to cover the required
diagonal region. Let [, denote the length of the delta vectors. Then our assumption
means that w > [, = min(m, | (t — n+ m)/2] + [(¢t +n —m)/2] + 1). Note that in
this case each of the pattern match vectors PM, may have to be encoded with more
than one bit vector: If m > w, then PM), consists of [m/w] bit vectors.

3.1 Diagonal tiling

The basic idea is to mimic the diagonal restriction method of Ukkonen by tiling the
vertical delta vectors diagonally instead of horizontally (Figure 5a). We achieve this
by modifying slightly the way the vertical delta vectors V P; and V N; are used: Before
processing the jth column the vertical vectors V' P;_; and V N,_; are shifted one step
up (to the right in terms of the bit vector) (Figure 5b). When the vertical vectors are
shifted up, their new lowest bit-values V P;[l,] and V' N;][l,] are not explicitly known.
This turns out not to be a problem. From the diagonal and adjacency properties we
can see that the only situation which could be troublesome is if we would incorrectly
have a value V N;[l,] = 1. This is impossible, because it can happen only if D0, has
an “extra” set bit at position [, +1 and HP;[l,] = 1, and these two conditions cannot
simultaneously be true.

In addition to the obvious way of first computing V' P; and V' N; in normal fashion
and then shifting them up (to the right) when processing the (j + 1)th column, we
propose also a second option. It can be seen that essentially the same shifting effect

49

Proceedings of the Prague Stringology Conference 02

—.
—_

~.
:
N

—.
—_

a)

o
=

o
~

Figure 5: a) Horizontal tiling (left) and diagonal tiling (right). b) The figure shows
how the diagonal step aligns the (j — 1)th column vector one step above the jth
column vector. ¢) The digure depicts in gray the region of diagonals, which are filled
according to Ukkonen’s rule. The cells on the lower boundary are in darker tone.

can be achieved already when the vectors V P; and V' N; are computed by making the
following changes on the last two lines of the algorithms in Figures 3 and 4:

-The diagonal zero delta vector DO0; is shifted one step to the right on the

second last line.

-The left shifts of the horizontal delta vectors are removed.

-The OR-operation of V P; with 1 is removed.

This second alternative uses less bit operations, but the choice between the two may
depend on other practical issues. For example if several bit vectors have to be used
in encoding D0;, the column-wise top-to-bottom order may make it more difficult to
shift D0; up than shifting both V P; and V' N; down.

We also modify the way some cell values are explicitly maintained. We choose
to calculate the values along the lower boundary of the filled area of the dynamic
programming matrix (Figure 5¢). For two diagonally consecutive cells D[i — 1, j — 1]
and DJi, j] along the diagonal part of the boundary this means setting DIi, j| =
Dli—1,j—1]if D0[l,] =1, and D[i, j] = D[i—1,j—1]+1 otherwise. The horizontal
part of the boundary is handled in similar fashion as in the original algorithm of Myers:
For horizontally consecutive cells D[i, j — 1] and D[i, j] along the horizontal part of
the boundary we set D[i,j] = D[i,j — 1]+ 1 if HF;[l,] = 1,DJi,j] = D[i,j — 1] —1
if HN;[l,] =1, and D[i, j| = DJi,j — 1] otherwise. Here we assume that the vector
length [, is appropriately decremented as the diagonally shifted vectors would start
to protrude below the lower boundary.

Another necessary modification is in the way the pattern match vector PM; is
used. Since we are gradually moving the delta vectors down, the match vector has to
be aligned correctly. This is easily achieved in O(1) time by shifting and OR-ing the
corresponding at most two match vectors.

The last necessary modifications concern the first line of the algorithm for the
Damerau edit distance in Figure 4. First of all the diagonal delta vector DO, is
shifted down (left), which is not necessary when the vectors are tiled diagonally.
Because of similar reason the vector PM;_; has to be shifted one step up (to the
right). This means that also the value PM;_4[l, + 1] will have to be present in the
match vector PM;_;. We do not deal with this separately, but assume for now on
that [, + 1 < w when dealing with the Damerau edit distance. Another option would
be to set the last bit separately, which can be done in O(1) time.

Figures 6 and 7 show the algorithms for computing the vectors at the jth column

20

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances

when diagonal tiling is used. We do not show separate versions for the different cases
of updating the cell value at the lower boundary. It is done using one of the previously
mentioned ways of using D0; (diagonal stage) or HP; and HN; (horizontal stage).

When [, < w, each column of the dynamic programming matrix is computed in
O(1) time, which results in the total time being O(o + n) including also time for
preprocessing the pattern match vectors. In the general case, in which [, > w, each
length-1, vector can be simulated by using [[,/w] length-w vectors. This can be done
in O([l,/w]) time per operation, and therefore the algorithm has in general a run
time O(o + [l,/w]n), which is O(c +ed(A, B) x n) as I, = O(ed(A, B)). The slightly
more favourable time complexity of O(c + ed(A, B) x m) in the general case can be
achieved by simply reversing the roles of the strings A and B: We still have that
l, = O(ed(A, B)), but now there is m columns instead of n. In this case the cost of
preprocessing the match vectors is O(o + n), but the above complexities hold since
n = O(ed(A, B) x m) when n > m.

Computing the jth column in diagonal tiling (Levenshtein distance)
Build the correct match vector into PM;

DOj — (((PM] & Vijl) —I-Vijl) A Vijl) | PMj | VNj,I
HPj < VNj_1 | ~(D0; [VPj1)

HNj — DOj & Vijl

Update the appropriate cell value at the lower boundary.
VP« HN;j | ~((D0; >> 1) | HP))

VN « (D0 >> 1) & HP;

N Uk N

Figure 6: Computation of the jth column with the Levenshtein edit distance and
diagonal tiling (for the case [, < w).

Computing the jth column in diagonal tiling (Damerau distance)
Build the correct match vector into PM;

DOj — (N DOj_l) & (PMj << 1) & (PMj_l >> 1)

DOj — DOj | (((PM] & Vijl) —I-Vijl) A Vijl) | PMj | VNj,I
HP]' — VNj_l | ~ (DOJ | VPj_l)

HNj — DOj & Vijl

Update the appropriate cell value at the lower boundary.
VPj — HNj | ~ ((DOJ >> 1) | HPj)

VN < (D0 >> 1) & HP;

® N O Utk W=

Figure 7: Computation of the jth column with the Damerau edit distance and diag-
onal tiling (for the case [, < w).

ol

Proceedings of the Prague Stringology Conference 02

4 Test Results

In this section we present initial test results for our algorithm in the case of computing
the Levenshtein edit distance. We concentrate only on the case where one wants to
check whether the edit distance between two strings A and B is below some pre-
determined error-threshold k. This is because the principle of the algorithm makes it
in practice most suitable for this type of use. Therefore all tested algorithms used a
scheme similar to the cutoff method briefly discussed in the end of Section 2.3. As a
baseline we also show the runtime of using the O([m/w]|n) bit-parallel algorithm of
Myers.

The test consisted of repeatedly selecting two substrings in pseudo-random fashion
from the DNA-sequence of the baker’s yeast, and then testing whether their Leven-
shtein edit distance is at most k. The computer used in the tests was a 600Mhz
Pentium 3 with 256 MB RAM and running Microsoft Windows 2000. The code was
programmed in C and compiled with Microsoft Visual C++ 6.0 with full optimization.
The tested algorithms were:

MYERS: The algorithm of Myers [Mye99] (Section 2.2) modified to compute edit
distance. The run time of the algorithm does not depend on the number of
errors allowed. The underlying implementation is from the original author.

MYERS(cutoff): The algorithm of Myers using cutoff modified to compute edit
distance. The underlying implementation (including the cutoff-mechanism) is
from the original author.

UKKA (cutoff): The method of Ukkonen based on filling only a restricted region
of diagonals in the dynamic programming matrix and using the cutoff method
(Section 2.3).

UKKB(cutoff): . The method of Ukkonen [Ukk85a] based on computing the values
in the dynamic programming matrix in increasing order. That is, the method
first fills in the cells that get a value 0, then the cells that get a value 1, and so
on until the cell D[m, n] gets a value.

OURS(cutoff): Our method of combining the diagonal restriction scheme of Ukko-
nen with the bit-parallel algorithm of Myers (Section 3). We implemented a
similar cutoff method as was used by Hyyrd and Navarro with edit distance
computation in their version of the ABNDM algorithm [HN02].

The results ase shown in Figure 8. We tested sequence pairs with lengths 100,
1000 and 10000, and error thresholds of 10%, 20% and 50% of the sequence length
(for example & = 100, 200 and 500 for the sequence length m = n = 1000). It can
be seen that in the case of £ = 10 and m = 100 UKKB(cutoff) is the fastest, but in
all other tested cases our method becomes the fastest, being 8%-38% faster than the
original cutoff method of Myers that is modified to compute edit distance. The good
performance of UKKB(cutoff) with a low value of & is not surprising as its expected
run time has been shown to be O(m + k2?). [Mye86].

02

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances

m =mn = 100 m =n = 1000 m =n = 10000
error limit (%) | 10 20 50 10 20 50 10 20 50
UKKA (cutoff) 1,92 | 5,93 | 32,6 | 13,5 | 52,7 | 322 | 13,1 | 54,9 | 351
UKKB(cutoff) 1,23 13,02 | 14,9 | 6,17 | 22,9 | 139 | 5,57 | 22,4 | 146
MYERS(cutoff) | 2,46 | 3,23 | 4,07 | 2,47 | 4,48 | 15,9 | 0,71 | 2,35 | 13,4
OURS(cutoff) 2,27 12,47 13,32 1,96 | 3,08 |10,5| 0,48 | 1,47 | 9,03
MYERS 4,24 17,0 14,5

Figure 8: The results (in seconds) for thresholded edit distance computation between
pairs of randomly chosen DNA-sequences from the genome of the baker’s yeast. The
error threshold is shown as the percentage of the pattern length (tested pattern pairs
had equal length). The number of processed sequence pairs was 100000 for m =n =
100, 10000 for m = n = 1000, and 100 for m = n = 10000.

Conclusions and further considerations

In this paper we discussed how bit-parallelism and a diagonal restriction scheme
can be combined to achieve an algorithm for computing edit distance, which has an
asymtotic run time of O(o + [d/w]m). In practice the algorithm is mostly suitable
for checking whether ed(A, B) < k, where k is a pre-determined error threshold.
In this task the initial tests showed our algorithm to be competitive against other
tested algorithms [Ukk85a, Mye99], which have run times O(dm) and O(c +mn/w),
respectively.

During the preparation of this article we noticed that there seems to be a lack of
comprehensive experimental comparison of the relative performance between different
algorithms for computing edit distance. Thus we are planning to fill this gap in the
near future by composing a fairly comprehensive survey on algorithms for comput-
ing edit distance. The survey will also include a more comprehensive test with our
algorithm.

We would also like to point out that the algorithm pseudocodes we have shown
have not been optimized to remain more clear. Practical implementations could for
example avoid shifting the same variable twice and maintain only the needed delta
vector values in the memory (the delta vectors in the jth column are only needed
when processing the (j + 1)th column).

References

[Dam64] F. Damerau. A technique for computer detection and correction of spelling
errors. Comm. of the ACM, 7(3):171-176, 1964.

[HN02] H. Hyyré and G. Navarro. Faster bit-parallel approximate string matching.
In Proc. 13th Combinatorial Pattern Matching (CPM’2002), LNCS 2373,
pages 203-224, 2002.

[Hyy01] H. Hyyr6. Explaining and extending the bit-parallel algorithm of Myers.
Technical Report A-2001-10, University of Tampere, Finland, 2001.

53

Proceedings of the Prague Stringology Conference 02

[Lev66]

[Mye86]

[Mye99]

[Nav01]

[Ste94]
[Ukk85a]

[UKkS5b]

[WE74]

[WM92]

V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707-710, 1966. Original in Russian
in Doklady Akademii Nauk SSSR, 163(4):845-848, 1965.

G. Myers. An O(N D) difference algorithm and its variations. Algorithmica,
1:251-266, 1986.

G. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic progamming. Journal of the ACM, 46(3):395-415, 1999.

G. Navarro. NR-grep: a fast and flexible pattern matching tool. Software
Practice and Experience (SPE), 31:1265-1312, 2001.

G. A. Stephen. String Searching Algorithms. World Scientific, 1994.

E. Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100-118, 1985.

E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-
rithms, 6:132—-137, 1985.

R. Wagner and M. Fisher. The string to string correction problem. Journal
of the ACM, 21:168-178, 1974.

S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the
ACM, 35(10):83-91, 1992.

04

