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Abstra
t. The edit distan
e between strings A and B is de�ned as the min-

imum number of edit operations needed in 
onverting A into B or vi
e versa.

The Levenshtein edit distan
e allows three types of operations: an insertion,

a deletion or a substitution of a 
hara
ter. The Damerau edit distan
e allows

the previous three plus in addition a transposition between two adja
ent 
hara
-

ters. To our best knowledge the best 
urrent pra
ti
al algorithms for 
omputing

these edit distan
es run in time O(dm) and O(�+ dm=wen), where d is the edit

distan
e between the two strings, m and n are their lengths (m � n), w is the


omputer word size and � is the size of the alphabet. In this paper we present an

algorithm that runs in time O(� + dd=wem). The stru
ture of the algorithm is

su
h, that in pra
ti
e it is mostly suitable for testing whether the edit distan
e

between two strings is within some pre-determined error threshold. We also

present some initial test results with thresholded edit distan
e 
omputation. In

them our algorithm works faster than the original algorithm of Myers.

Key words: Levenshtein edit distan
e, Damerau edit distan
e, bit-parallelism,

approximate string mat
hing

1 Introdu
tion

The desire to measure the similarity between two strings may arise in many appli-


ations, like for example 
omputational biology and spelling 
orre
tion. A 
ommon

way to a
hieve this is to 
ompute the edit distan
e between the strings. Throughout

the paper we will assume that A is a string of length m and B is a string of length n,

and that m � n. The edit distan
e ed(A;B) between strings A and B is de�ned as

the minimum number of edit operations needed in 
onverting A into B or vi
e versa.

In this paper we 
on
entrate on two typi
al edit distan
es: the Levenshtein edit dis-

tan
e [Lev66℄ and the Damerau edit distan
e [Dam64℄. The Levenshtein edit distan
e

allows three edit operations, whi
h are inserting, deleting or substituting a 
hara
ter

(Figures 1a, 1b and 1
). In addition to these three, the Damerau edit distan
e al-

lows also transposing two permanently adja
ent 
hara
ters (Figure 1d). When edit
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distan
e is used, strings A and B are deemed similar i� their edit distan
e is small

enough, that is i� ed(A;B) � k, where k is some pre-determined error threshold. A

related problem is that of approximate string mat
hing, whi
h is typi
ally de�ned as

follows: let pat be a string of length m and text a (mu
h longer) string of length n.

The task of approximate string mat
hing is then to �nd all su
h indi
es j, for whi
h

exists su
h h � 0 that ed(pat; text[j � h::j℄) � k.

The oldest, but most 
exible in terms of permitting di�erent edit operations

and/or edit operation 
osts, algorithms for 
omputing edit distan
e (for example

[WF74℄) are based on dynami
 programming and run in time O(mn). Ukkonen

[Ukk85a℄ has later proposed two O(dm) methods, and Myers [Mye86℄ an O(n + d

2

)

method. The latter is based on using a suÆx tree and is not viewed as being pra
ti-


al (e.g. [Ste94℄). With fairly little modi�
ations these methods 
an also be used in


omputing the Damerau edit distan
e without a�e
ting the asymptoti
 run times.

The methodology of using so-
alled \bit-parallelism" in developing fast and pra
-

ti
al algorithms has re
ently be
ome popular in the �eld of string mat
hing. Wu and

Manber [WM92℄ presented an O(ddm=wen) bit-parallel algorithm for Levenshtein edit

distan
e -based approximate string mat
hing, and in [Nav01℄ it was modi�ed to 
om-

pute both Levenshtein and Damerau edit distan
e. The run time remained the same.

Then Baeza-Yates and Navarro presented a method, whi
h enables an O(ddm=wen)

algorithm for the Levenshtein edit distan
e. Currently this algorithm has not been

extended for the Damerau edit distan
e. Finally Myers [Mye99℄ has presented an

O(dm=wen) algorithm for approximate string mat
hing under the Levenshtein edit

distan
e. In [Hyy01℄ the algorithm was extended for 
omputing the Damerau edit

distan
e.

In this paper we will present an initial study on 
ombining one of the O(dm)

edit distan
e algorithms of Ukkonen [Ukk85a℄ with the bit-parallel algorithm of My-

ers [Mye99℄ to obtain a faster algorithm. We begin by reviewing these underlying

algorithms in the next se
tion.

2 Preliminaries

In the following dis
ussion let A be a string of length m and B a string of length

n. We also use the notation A[u℄ to denote the uth 
hara
ter of A and the notation

A[u::v℄ to denote the substring of A, whi
h begins from its uth 
hara
ter and ends

at its vth 
hara
ter. The supers
ript R denotes the reverse string: for example if A

= \ABC", then A

R

= \CBA". For bit operations we use the following notation: '&'

denotes bitwise\and", 'j' denotes bitwise \or", '^' denotes bitwise \xor", '�' denotes

bit 
omplementation, and '<<' and '>>' denote shifting the bit-ve
tor left and right,

respe
tively, using zero �lling in both dire
tions. We refer to the ith bit of the bit

ve
tor V as V [i℄. Bit-positions are assumed to grow from right to left, and we use

supers
ript to denote bit-repetition. As en example let V = 1001110 be a bit ve
tor.

Then V [1℄ = V [5℄ = V [6℄ = 0, V [2℄ = V [3℄ = V [4℄ = V [7℄ = 1, and we 
ould also

write V = 10

2

1

3

0.
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A B D C A C A D C A C B

a) b) c) d) 

Figure 1: Four di�erent edit operations. Figure a) shows inserting 
hara
ter 'D'

between the last two 
hara
ters of the string \ABC", whi
h results in the string

\ABCD". Figure b) shows deleting the 
hara
ter \B", whi
h results in the string

\AC". Figure 
) shows substituting the 
hara
ter 'B' with the 
hara
ter 'D', whi
h

results in the string \ADC". Figure d) shows transposing the 
hara
ters 'B' and

'C', whi
h results in the string \ACB". Transposition is allowed only between su
h


hara
ters that were adja
ent already in the original string.

2.1 Dynami
 programming

Computing edit distan
e is a problem that seems to be most naturally solved with

dynami
 programming. The value ed(A;B) 
an be 
omputed by �lling an (m+ 1)�

(n + 1) dynami
 programming matrix D, in whi
h the 
ell D[i; j℄ 
ontains the value

ed(A[1::i℄; B[1::j℄). The following well-known Re
urren
e 1 gives the rule for �lling

D when the Levenshtein edit distan
e is used.

Re
urren
e 1

D[i; 0℄ = i; D[0; j℄ = j:

D[i; j℄ =

�

D[i� 1; j � 1℄, if A[i℄ = B[j℄:

1 + min(D[i� 1; j � 1℄; D[i� 1; j℄; D[i; j � 1℄), if A[i℄ 6= B[j℄:

The re
urren
e allows the 
ells with i > 0 and j > 0 to be �lled in any su
h order,

that the 
ell values D[i�1; j℄, D[i�1; j�1℄ and D[i; j�1℄ are known at the time the


ell D[i; j℄ is �lled. A 
ommon way is to use 
olumn-wise �lling, where ea
h 
olumn

is �lled from top to bottom (Figure 2). The Damerau edit distan
e 
an be 
omputed

otherwise identi
ally as the Levenshtein edit distan
e, but using Re
urren
e 2 [Hyy01℄

instead in �lling the dynami
 programming matrix.

Re
urren
e 2

D[i; 0℄ = i; D[0; j℄ = j:

D[i; j℄ =

8

>

>

<

>

>

:

D[i� 1; j � 1℄, if A[i℄ = B[j℄:

D[i� 1; j � 1℄, if A[i� 1::i℄ = B

R

[j � 1::j℄

and D[i� 1; j � 1℄ > D[i� 2; j � 2℄:

1 + min(D[i� 1; j � 1℄; D[i� 1; j℄; D[i; j � 1℄), otherwise:

As the basi
 dynami
 programming s
heme �lls (m + 1)(n + 1) 
ells and �lling ea
h


ell takes a 
onstant number of operations, the algorithm has a run time O(nm).

The following two properties hold in the dynami
 programming matrix [Ukk85a,

Ukk85b℄:

-The diagonal property:
D[i; j℄�D[i� 1; j � 1℄ = 0 or 1:

-The adja
en
y property: D[i; j℄�D[i; j � 1℄ = �1; 0; or 1, and

D[i; j℄D[i� 1; j℄ = �1; 0; or 1:

Even though these rules were initially presented with the Levenshtein edit distan
e,

they 
an easily be seen to apply also with the Damerau edit distan
e.
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Figure 2: An example of the 
olumn-wise �lling order for the dynami
 programming

table of strings \ATCAGCCT" and \TCTTGAAGGTCA".

2.2 Using bit-parallelism

Myers [Mye99℄ presented an O(dm=wen) algorithm for approximate string mat
hing

under the Levenshtein edit distan
e. Later in [Hyy01℄ the algorithm was slightly mod-

i�ed and extended for the Damerau edit distan
e. Originally these algorithms were

designed for approximate string mat
hing, but they 
an easily be modi�ed to 
ompute

edit distan
e. The algorithms pro
ess the jth 
olumn of the dynami
 programming

matrix in O(dm=we) time by using bit-parallelism. This is done by using delta en-


oding in the matrix: instead of expli
itly 
omputing the values D[i; j℄ for i = 1::m

and j = 1::n, the following length-m binary valued delta ve
tors are 
omputed for

j = 1::n:

-The verti
al positive delta ve
tor: V P

j

[i℄ = 1 i� D[i; j℄�D[i� 1; j℄ = 1:

-The verti
al negative delta ve
tor: V N

j

[i℄ = 1 i� D[i; j℄�D[i� 1; j℄ = �1:

-The horizontal positive delta ve
tor: HP

j

[i℄ = 1 i� D[i; j℄�D[i; j � 1℄ = 1:

-The horizontal negative delta ve
tor: HN

j

[i℄ = 1 i� D[i; j℄�D[i; j � 1℄ = �1:

When the values for these delta ve
tors are known for the (j � 1)th 
olumn, they


an be 
omputed for the jth 
olumn in an eÆ
ient manner when the following mat
h

ve
tor is available for ea
h 
hara
ter �.

-The mat
h ve
tor PM

�

: PM

�

[i℄ = 1 i� A[i℄ = �:

For simpli
ity we use the notion PM

j

= PM

B[j℄

for the rest of the paper. It is

straightforward to 
ompute the pattern mat
h ve
tors in O(� + m) time. In the

following we assume that these ve
tors have already been 
omputed and are readily

available.

The delta ve
tors enable the value ed(A;B[1::j℄) to be expli
itly 
al
ulated for

j = 1; 2; : : : ; n: ed(A;B[1::j℄) = ed(A;B[1::j�1℄)+1 i� HP

j

[m℄ = 1, ed(A;B[1::j℄) =

ed(A;B[1::j�1℄)�1 i�HN

j

[m℄ = 1, and ed(A;B[1::j℄) = ed(A;B[1::j�1℄) otherwise.

Thus after all n 
olumns are pro
essed, the value ed(A;B[1::n℄) = ed(A;B) is known.

Figures 3 and 4 show the algorithms based on [Hyy01℄ for 
omputing the jth 
olumn

when m � w, that is, when ea
h ve
tor 
an be represented by a single bit-ve
tor.

Both algorithms are modi�ed to 
ompute edit distan
e. The algorithm in Figure 3 is

for the Levenshtein edit distan
e, and the algorithm in Figure 4 is for the Damerau

edit distan
e. Both algorithms involve a 
onstant number of operations, and thus
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ompute the delta ve
tors for the jth 
olumn in O(1) time. In this paper we do not

separately dis
uss the 
ase m > w. As ea
h required operation for a length-m bit

ve
tor 
an be simulated in O(dm=we) time using dm=we length-w bit ve
tors, the

general runtime of the algorithms is O(dm=we) for ea
h 
olumn. This results in a

total time of O(dm=wen) over all n 
olumns in 
omputing ed(A;B).

Computing the jth 
olumn (Levenshtein distan
e)

1. D0

j

 (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

2. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

3. HN

j

 D0

j

& V P

j�1

4. If HP

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄ + 1

5. If HN

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄� 1

6. V P

j

 (HN

j

<< 1) j � (D0

j

j (HP

j

<< 1)) j 1

7. V N  D0

j

& (HP

j

<< 1)

Figure 3: Computation of the jth 
olumn using a modi�
ation of the D0

j

-based

version of the algorithm of Myers (for the 
ase m � w).

Computing the jth 
olumn (Damerau distan
e)

1. D0

j

 (((� D0

j�1

) & PM

j

) << 1) & PM

j�1

2. D0

j

 D0

j

j (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

3. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

4. HN

j

 D0

j

& V P

j�1

5. If HP

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄ + 1

6. If HN

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄ � 1

7. V P

j

 (HN

j

<< 1) j � (D0

j

j (HP

j

<< 1)) j 1

8. V N  D0

j

& (HP

j

<< 1)

Figure 4: Computation of the jth 
olumn using a modi�
ation of the D0

j

-based

version of the algorithm of Myers with transposition (for the 
ase m � w).

2.3 Filling only a ne
essary portion of the matrix

Ukkonen [Ukk85a℄ presented a method to try to 
ut down the area of the dynami


programming matrix that is �lled. By a q-diagonal we refer to the diagonal, whi
h


onsists of the 
ells D[i; j℄ for whi
h j � i = q. From the diagonal and adja
en
y

properties Ukkonen 
on
luded that if ed(A;B) � t and m � n, then it is suÆ
ient to

�ll only the 
ells in the diagonals �b(t� n+m)=2
;�b(t� n+m)=2
+ 1; : : : ; b(t+

n � m)=2
 of the dynami
 programming matrix. All the other 
ell values 
an be

assumed to have an in�nite value without a�e
ting 
orre
t 
omputation of the value

D[m;n℄ = ed(A;B). He used this rule by beginning with t = (n�m) + 1 and �lling
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the above-mentioned diagonal interval of the dynami
 programming matrix. If the

result is D[m;n℄ > t, t is doubled. Eventually D[m;n℄ � t, and in this 
ase it is

known that D[m;n℄ = ed(A;B). The run time of this pro
edure is dominated by the


omputation involving the last value of t. As this value is < 2 � ed(A;B) and with

ea
h value of t the 
omputation takes O(t�min(m;n)) time, the overall run time is

O(ed(A;B)�min(m;n)).

In addition Ukkonen proposed a dynami
 "
uto�" method to improve the pra
ti
al

performan
e of the diagonal restri
tion method. Assume that 
olumn-wise order is

used in �lling the 
ells D[i; j℄ inside the required diagonals �b(t� n+m)=2
;�b(t�

n+m)=2
+ 1; : : : ; b(t+ n�m)=2
. Let r

u

hold the diagonal number of the upmost

and r

l

the diagonal number of the lowest 
ell that was deemed to have to be �lled in

the jth 
olumn. Then due to the diagonal property we 
an try to shrink the diagonal

region by de
rementing r

u

as long as D[r

u

; j℄ > t and in
rementing r

l

as long as

D[r

l

; j℄ > t. Then at the (j+1)th 
olumn it is enough to �ll the 
ells in the diagonals

r

l

: : : r

u

. If r

l

> r

u

the diagonal region vanishes and it is known that ed(A;B) > t.

This method of "guessing" a starting limit t for the edit distan
e and then doubling

it if ne
essary is not really pra
ti
al for a
tual edit distan
e 
omputation. Even

though the asymptoti
 run time is good, it involves large 
onstant fa
tor whenever

ed(A;B) is large. But the method works well in pra
ti
e in thresholded edit distan
e


omputation, as then one 
an immediately set t = k and only a single pass is needed.

3 Our Method

In this se
tion we present a bit-parallel version of the diagonal restri
tion s
heme of

Ukkonen, whi
h was brie
y dis
ussed in Se
tion 2. In the following we 
on
entrate

on the 
ase where the 
omputer word size w is large enough to 
over the required

diagonal region. Let l

v

denote the length of the delta ve
tors. Then our assumption

means that w � l

v

= min(m; b(t � n +m)=2
 + b(t + n �m)=2
 + 1). Note that in

this 
ase ea
h of the pattern mat
h ve
tors PM

�

may have to be en
oded with more

than one bit ve
tor: If m > w, then PM

�


onsists of dm=we bit ve
tors.

3.1 Diagonal tiling

The basi
 idea is to mimi
 the diagonal restri
tion method of Ukkonen by tiling the

verti
al delta ve
tors diagonally instead of horizontally (Figure 5a). We a
hieve this

by modifying slightly the way the verti
al delta ve
tors V P

j

and V N

j

are used: Before

pro
essing the jth 
olumn the verti
al ve
tors V P

j�1

and V N

j�1

are shifted one step

up (to the right in terms of the bit ve
tor) (Figure 5b). When the verti
al ve
tors are

shifted up, their new lowest bit-values V P

j

[l

v

℄ and V N

j

[l

v

℄ are not expli
itly known.

This turns out not to be a problem. From the diagonal and adja
en
y properties we


an see that the only situation whi
h 
ould be troublesome is if we would in
orre
tly

have a value V N

j

[l

v

℄ = 1. This is impossible, be
ause it 
an happen only if D0

j

has

an \extra" set bit at position l

v

+1 and HP

j

[l

v

℄ = 1, and these two 
onditions 
annot

simultaneously be true.

In addition to the obvious way of �rst 
omputing V P

j

and V N

j

in normal fashion

and then shifting them up (to the right) when pro
essing the (j + 1)th 
olumn, we

propose also a se
ond option. It 
an be seen that essentially the same shifting e�e
t
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a) b) c) 

j -1 j j -1 j j -1 j

Figure 5: a) Horizontal tiling (left) and diagonal tiling (right). b) The �gure shows

how the diagonal step aligns the (j � 1)th 
olumn ve
tor one step above the jth


olumn ve
tor. 
) The digure depi
ts in gray the region of diagonals, whi
h are �lled

a

ording to Ukkonen's rule. The 
ells on the lower boundary are in darker tone.


an be a
hieved already when the ve
tors V P

j

and V N

j

are 
omputed by making the

following 
hanges on the last two lines of the algorithms in Figures 3 and 4:

-The diagonal zero delta ve
tor D0

j

is shifted one step to the right on the

se
ond last line.

-The left shifts of the horizontal delta ve
tors are removed.

-The OR-operation of V P

j

with 1 is removed.

This se
ond alternative uses less bit operations, but the 
hoi
e between the two may

depend on other pra
ti
al issues. For example if several bit ve
tors have to be used

in en
oding D0

j

, the 
olumn-wise top-to-bottom order may make it more diÆ
ult to

shift D0

j

up than shifting both V P

j

and V N

j

down.

We also modify the way some 
ell values are expli
itly maintained. We 
hoose

to 
al
ulate the values along the lower boundary of the �lled area of the dynami


programming matrix (Figure 5
). For two diagonally 
onse
utive 
ells D[i� 1; j � 1℄

and D[i; j℄ along the diagonal part of the boundary this means setting D[i; j℄ =

D[i�1; j�1℄ if D0

j

[l

v

℄ = 1, and D[i; j℄ = D[i�1; j�1℄+1 otherwise. The horizontal

part of the boundary is handled in similar fashion as in the original algorithm of Myers:

For horizontally 
onse
utive 
ells D[i; j � 1℄ and D[i; j℄ along the horizontal part of

the boundary we set D[i; j℄ = D[i; j � 1℄ + 1 if HP

j

[l

v

℄ = 1; D[i; j℄ = D[i; j � 1℄� 1

if HN

j

[l

v

℄ = 1, and D[i; j℄ = D[i; j � 1℄ otherwise. Here we assume that the ve
tor

length l

v

is appropriately de
remented as the diagonally shifted ve
tors would start

to protrude below the lower boundary.

Another ne
essary modi�
ation is in the way the pattern mat
h ve
tor PM

j

is

used. Sin
e we are gradually moving the delta ve
tors down, the mat
h ve
tor has to

be aligned 
orre
tly. This is easily a
hieved in O(1) time by shifting and OR-ing the


orresponding at most two mat
h ve
tors.

The last ne
essary modi�
ations 
on
ern the �rst line of the algorithm for the

Damerau edit distan
e in Figure 4. First of all the diagonal delta ve
tor D0

j

is

shifted down (left), whi
h is not ne
essary when the ve
tors are tiled diagonally.

Be
ause of similar reason the ve
tor PM

j�1

has to be shifted one step up (to the

right). This means that also the value PM

j�1

[l

v

+ 1℄ will have to be present in the

mat
h ve
tor PM

j�1

. We do not deal with this separately, but assume for now on

that l

v

+1 � w when dealing with the Damerau edit distan
e. Another option would

be to set the last bit separately, whi
h 
an be done in O(1) time.

Figures 6 and 7 show the algorithms for 
omputing the ve
tors at the jth 
olumn
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when diagonal tiling is used. We do not show separate versions for the di�erent 
ases

of updating the 
ell value at the lower boundary. It is done using one of the previously

mentioned ways of using D0

j

(diagonal stage) or HP

j

and HN

j

(horizontal stage).

When l

v

� w, ea
h 
olumn of the dynami
 programming matrix is 
omputed in

O(1) time, whi
h results in the total time being O(� + n) in
luding also time for

prepro
essing the pattern mat
h ve
tors. In the general 
ase, in whi
h l

v

> w, ea
h

length-l

v

ve
tor 
an be simulated by using dl

v

=we length-w ve
tors. This 
an be done

in O(dl

v

=we) time per operation, and therefore the algorithm has in general a run

time O(�+ dl

v

=wen), whi
h is O(�+ ed(A;B)�n) as l

v

= O(ed(A;B)). The slightly

more favourable time 
omplexity of O(� + ed(A;B)�m) in the general 
ase 
an be

a
hieved by simply reversing the roles of the strings A and B: We still have that

l

v

= O(ed(A;B)), but now there is m 
olumns instead of n. In this 
ase the 
ost of

prepro
essing the mat
h ve
tors is O(� + n), but the above 
omplexities hold sin
e

n = O(ed(A;B)�m) when n > m.

Computing the jth 
olumn in diagonal tiling (Levenshtein distan
e)

1. Build the 
orre
t mat
h ve
tor into PM

j

2. D0

j

 (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

3. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

4. HN

j

 D0

j

& V P

j�1

5. Update the appropriate 
ell value at the lower boundary.

6. V P

j

 HN

j

j � ((D0

j

>> 1) j HP

j

)

7. V N  (D0

j

>> 1) & HP

j

Figure 6: Computation of the jth 
olumn with the Levenshtein edit distan
e and

diagonal tiling (for the 
ase l

v

� w).

Computing the jth 
olumn in diagonal tiling (Damerau distan
e)

1. Build the 
orre
t mat
h ve
tor into PM

j

2. D0

j

 (� D0

j�1

) & (PM

j

<< 1) & (PM

j�1

>> 1)

3. D0

j

 D0

j

j (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

4. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

5. HN

j

 D0

j

& V P

j�1

6. Update the appropriate 
ell value at the lower boundary.

7. V P

j

 HN

j

j � ((D0

j

>> 1) j HP

j

)

8. V N  (D0

j

>> 1) & HP

j

Figure 7: Computation of the jth 
olumn with the Damerau edit distan
e and diag-

onal tiling (for the 
ase l

v

� w).

51



Pro
eedings of the Prague Stringology Conferen
e '02

4 Test Results

In this se
tion we present initial test results for our algorithm in the 
ase of 
omputing

the Levenshtein edit distan
e. We 
on
entrate only on the 
ase where one wants to


he
k whether the edit distan
e between two strings A and B is below some pre-

determined error-threshold k. This is be
ause the prin
iple of the algorithm makes it

in pra
ti
e most suitable for this type of use. Therefore all tested algorithms used a

s
heme similar to the 
uto� method brie
y dis
ussed in the end of Se
tion 2.3. As a

baseline we also show the runtime of using the O(dm=wen) bit-parallel algorithm of

Myers.

The test 
onsisted of repeatedly sele
ting two substrings in pseudo-random fashion

from the DNA-sequen
e of the baker's yeast, and then testing whether their Leven-

shtein edit distan
e is at most k. The 
omputer used in the tests was a 600Mhz

Pentium 3 with 256MB RAM and running Mi
rosoft Windows 2000. The 
ode was

programmed in C and 
ompiled with Mi
rosoft Visual C++ 6.0 with full optimization.

The tested algorithms were:

MYERS: The algorithm of Myers [Mye99℄ (Se
tion 2.2) modi�ed to 
ompute edit

distan
e. The run time of the algorithm does not depend on the number of

errors allowed. The underlying implementation is from the original author.

MYERS(
uto�): The algorithm of Myers using 
uto� modi�ed to 
ompute edit

distan
e. The underlying implementation (in
luding the 
uto�-me
hanism) is

from the original author.

UKKA(
uto�): The method of Ukkonen based on �lling only a restri
ted region

of diagonals in the dynami
 programming matrix and using the 
uto� method

(Se
tion 2.3).

UKKB(
uto�): . The method of Ukkonen [Ukk85a℄ based on 
omputing the values

in the dynami
 programming matrix in in
reasing order. That is, the method

�rst �lls in the 
ells that get a value 0, then the 
ells that get a value 1, and so

on until the 
ell D[m;n℄ gets a value.

OURS(
uto�): Our method of 
ombining the diagonal restri
tion s
heme of Ukko-

nen with the bit-parallel algorithm of Myers (Se
tion 3). We implemented a

similar 
uto� method as was used by Hyyr�o and Navarro with edit distan
e


omputation in their version of the ABNDM algorithm [HN02℄.

The results ase shown in Figure 8. We tested sequen
e pairs with lengths 100,

1000 and 10000, and error thresholds of 10%, 20% and 50% of the sequen
e length

(for example k = 100, 200 and 500 for the sequen
e length m = n = 1000). It 
an

be seen that in the 
ase of k = 10 and m = 100 UKKB(
uto�) is the fastest, but in

all other tested 
ases our method be
omes the fastest, being 8%-38% faster than the

original 
uto� method of Myers that is modi�ed to 
ompute edit distan
e. The good

performan
e of UKKB(
uto�) with a low value of k is not surprising as its expe
ted

run time has been shown to be O(m+ k

2

). [Mye86℄.
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m = n = 100 m = n = 1000 m = n = 10000

error limit (%) 10 20 50 10 20 50 10 20 50

UKKA(
uto�) 1,92 5,93 32,6 13,5 52,7 322 13,1 54,9 351

UKKB(
uto�) 1,23 3,02 14,9 6,17 22,9 139 5,57 22,4 146

MYERS(
uto�) 2,46 3,23 4,07 2,47 4,48 15,9 0,71 2,35 13,4

OURS(
uto�) 2,27 2,47 3,32 1,96 3,08 10,5 0,48 1,47 9,03

MYERS 4,24 17,0 14,5

Figure 8: The results (in se
onds) for thresholded edit distan
e 
omputation between

pairs of randomly 
hosen DNA-sequen
es from the genome of the baker's yeast. The

error threshold is shown as the per
entage of the pattern length (tested pattern pairs

had equal length). The number of pro
essed sequen
e pairs was 100000 for m = n =

100, 10000 for m = n = 1000, and 100 for m = n = 10000.

Con
lusions and further 
onsiderations

In this paper we dis
ussed how bit-parallelism and a diagonal restri
tion s
heme


an be 
ombined to a
hieve an algorithm for 
omputing edit distan
e, whi
h has an

asymtoti
 run time of O(� + dd=wem). In pra
ti
e the algorithm is mostly suitable

for 
he
king whether ed(A;B) � k, where k is a pre-determined error threshold.

In this task the initial tests showed our algorithm to be 
ompetitive against other

tested algorithms [Ukk85a, Mye99℄, whi
h have run times O(dm) and O(�+mn=w),

respe
tively.

During the preparation of this arti
le we noti
ed that there seems to be a la
k of


omprehensive experimental 
omparison of the relative performan
e between di�erent

algorithms for 
omputing edit distan
e. Thus we are planning to �ll this gap in the

near future by 
omposing a fairly 
omprehensive survey on algorithms for 
omput-

ing edit distan
e. The survey will also in
lude a more 
omprehensive test with our

algorithm.

We would also like to point out that the algorithm pseudo
odes we have shown

have not been optimized to remain more 
lear. Pra
ti
al implementations 
ould for

example avoid shifting the same variable twi
e and maintain only the needed delta

ve
tor values in the memory (the delta ve
tors in the jth 
olumn are only needed

when pro
essing the (j + 1)th 
olumn).
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