miscellaneous fixes for the buffered inout and output routines and their
associated UTF-8 handling: have unget_input() filter out invalid wide characters, put back the result of a word sequence instead of returning it directly, don't erroneously filter out keystrokes if they're neither extended keypad values nor ASCII characters, and add a few comment tweaks git-svn-id: svn://svn.savannah.gnu.org/nano/trunk/nano@2166 35c25a1d-7b9e-4130-9fde-d3aeb78583b8master
parent
eb711b034b
commit
95a0224820
|
@ -3590,9 +3590,9 @@ void do_output(int *kbinput, size_t kbinput_len)
|
|||
|
||||
if (key_len == -1)
|
||||
continue;
|
||||
/* Interpret the character as a single-byte sequence. */
|
||||
} else {
|
||||
#endif
|
||||
/* Interpret the character as a single-byte sequence. */
|
||||
key_len = 1;
|
||||
key[0] = (char)kbinput[i];
|
||||
#ifdef NANO_WIDE
|
||||
|
|
118
src/winio.c
118
src/winio.c
|
@ -130,12 +130,7 @@ void reset_kbinput(void)
|
|||
void get_buffer(WINDOW *win)
|
||||
{
|
||||
int input;
|
||||
size_t i = 0;
|
||||
|
||||
#ifdef NANO_WIDE
|
||||
size_t wide_key_buffer_len = 0;
|
||||
buffer *wide_key_buffer = NULL;
|
||||
#endif
|
||||
size_t i;
|
||||
|
||||
/* If the keystroke buffer isn't empty, get out. */
|
||||
if (key_buffer != NULL)
|
||||
|
@ -193,16 +188,20 @@ void get_buffer(WINDOW *win)
|
|||
|
||||
#ifdef NANO_WIDE
|
||||
if (!ISSET(NO_UTF8)) {
|
||||
buffer *clean_key_buffer = NULL;
|
||||
size_t clean_key_buffer_len = 0;
|
||||
|
||||
/* Change all incomplete or invalid multibyte keystrokes to -1,
|
||||
* and change all complete and valid multibyte keystrokes to
|
||||
* their wide character value. */
|
||||
* their wide character values. */
|
||||
for (i = 0; i < key_buffer_len; i++) {
|
||||
wchar_t wide_key;
|
||||
|
||||
if (!key_buffer[i].key_code) {
|
||||
key_buffer[i].key = mbtowc(&wide_key,
|
||||
(const char *)&key_buffer[i].key, 1);
|
||||
if (key_buffer[i].key != -1)
|
||||
if (mbtowc(&wide_key,
|
||||
(const char *)&key_buffer[i].key, 1) == -1)
|
||||
key_buffer[i].key = -1;
|
||||
else
|
||||
key_buffer[i].key = wide_key;
|
||||
}
|
||||
}
|
||||
|
@ -210,22 +209,22 @@ void get_buffer(WINDOW *win)
|
|||
/* Save all of the non-(-1) keystrokes in another buffer. */
|
||||
for (i = 0; i < key_buffer_len; i++) {
|
||||
if (key_buffer[i].key != -1) {
|
||||
wide_key_buffer_len++;
|
||||
wide_key_buffer = (buffer *)nrealloc(wide_key_buffer,
|
||||
wide_key_buffer_len * sizeof(buffer));
|
||||
clean_key_buffer_len++;
|
||||
clean_key_buffer = (buffer *)nrealloc(clean_key_buffer,
|
||||
clean_key_buffer_len * sizeof(buffer));
|
||||
|
||||
wide_key_buffer[wide_key_buffer_len - 1].key =
|
||||
clean_key_buffer[clean_key_buffer_len - 1].key =
|
||||
key_buffer[i].key;
|
||||
wide_key_buffer[wide_key_buffer_len - 1].key_code =
|
||||
clean_key_buffer[clean_key_buffer_len - 1].key_code =
|
||||
key_buffer[i].key_code;
|
||||
}
|
||||
}
|
||||
|
||||
/* Replace the default keystroke buffer with the non-(-1)
|
||||
* keystroke buffer. */
|
||||
key_buffer_len = wide_key_buffer_len;
|
||||
key_buffer_len = clean_key_buffer_len;
|
||||
free(key_buffer);
|
||||
key_buffer = wide_key_buffer;
|
||||
key_buffer = clean_key_buffer;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -253,37 +252,74 @@ int *buffer_to_keys(buffer *input, size_t input_len)
|
|||
* keystroke buffer. */
|
||||
void unget_input(buffer *input, size_t input_len)
|
||||
{
|
||||
size_t i;
|
||||
buffer *clean_input = NULL;
|
||||
size_t clean_input_len = 0;
|
||||
|
||||
#ifndef NANO_SMALL
|
||||
allow_pending_sigwinch(TRUE);
|
||||
allow_pending_sigwinch(FALSE);
|
||||
#endif
|
||||
|
||||
#ifdef NANO_WIDE
|
||||
if (!ISSET(NO_UTF8)) {
|
||||
/* Change all invalid wide character values to -1. */
|
||||
for (i = 0; i < input_len; i++) {
|
||||
char key[MB_LEN_MAX];
|
||||
|
||||
if (!input[i].key_code) {
|
||||
if (wctomb(key, input[i].key) == -1)
|
||||
input[i].key = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Save all of the non-(-1) wide characters in another
|
||||
* buffer. */
|
||||
for (i = 0; i < input_len; i++) {
|
||||
if (input[i].key != -1) {
|
||||
clean_input_len++;
|
||||
clean_input = (buffer *)nrealloc(clean_input,
|
||||
clean_input_len * sizeof(buffer));
|
||||
|
||||
clean_input[clean_input_len - 1].key = input[i].key;
|
||||
clean_input[clean_input_len - 1].key_code =
|
||||
input[i].key_code;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
#endif
|
||||
clean_input = input;
|
||||
clean_input_len = input_len;
|
||||
#ifdef NANO_WIDE
|
||||
}
|
||||
#endif
|
||||
|
||||
/* If input is empty, get out. */
|
||||
if (input_len == 0)
|
||||
if (clean_input_len == 0)
|
||||
return;
|
||||
|
||||
/* If adding input would put the default keystroke buffer beyond
|
||||
* maximum capacity, only add enough of input to put it at maximum
|
||||
* capacity. */
|
||||
if (key_buffer_len + input_len < key_buffer_len)
|
||||
input_len = (size_t)-1 - key_buffer_len;
|
||||
if (key_buffer_len + clean_input_len < key_buffer_len)
|
||||
clean_input_len = (size_t)-1 - key_buffer_len;
|
||||
|
||||
/* Add the length of input to the length of the default keystroke
|
||||
* buffer, and reallocate the default keystroke buffer so that it
|
||||
* has enough room for input. */
|
||||
key_buffer_len += input_len;
|
||||
key_buffer_len += clean_input_len;
|
||||
key_buffer = (buffer *)nrealloc(key_buffer, key_buffer_len *
|
||||
sizeof(buffer));
|
||||
|
||||
/* If the default keystroke buffer wasn't empty before, move its
|
||||
* beginning forward far enough so that we can add input to its
|
||||
* beginning. */
|
||||
if (key_buffer_len > input_len)
|
||||
memmove(key_buffer + input_len, key_buffer,
|
||||
(key_buffer_len - input_len) * sizeof(buffer));
|
||||
if (key_buffer_len > clean_input_len)
|
||||
memmove(key_buffer + clean_input_len, key_buffer,
|
||||
(key_buffer_len - clean_input_len) * sizeof(buffer));
|
||||
|
||||
/* Copy input to the beginning of the default keystroke buffer. */
|
||||
memcpy(key_buffer, input, input_len * sizeof(buffer));
|
||||
memcpy(key_buffer, clean_input, clean_input_len * sizeof(buffer));
|
||||
}
|
||||
|
||||
/* Put back the character stored in kbinput. If func_key is TRUE and
|
||||
|
@ -400,7 +436,6 @@ int parse_kbinput(WINDOW *win, bool *meta_key, bool *func_key
|
|||
static int word_digits = 0;
|
||||
buffer *kbinput;
|
||||
int retval = ERR;
|
||||
bool no_func_key = FALSE;
|
||||
|
||||
if (reset) {
|
||||
escapes = 0;
|
||||
|
@ -414,9 +449,9 @@ int parse_kbinput(WINDOW *win, bool *meta_key, bool *func_key
|
|||
/* Read in a character. */
|
||||
while ((kbinput = get_input(win, 1)) == NULL);
|
||||
|
||||
if (kbinput->key_code || is_byte_char(kbinput->key)) {
|
||||
/* If we got an extended keypad value or an ASCII character,
|
||||
* translate it. */
|
||||
if (kbinput->key_code || is_byte_char(kbinput->key)) {
|
||||
switch (kbinput->key) {
|
||||
case ERR:
|
||||
break;
|
||||
|
@ -608,31 +643,33 @@ int parse_kbinput(WINDOW *win, bool *meta_key, bool *func_key
|
|||
* first digit is in the '0' to '6' range and
|
||||
* it's the first digit, or it's in the '0' to
|
||||
* '9' range and it's not the first digit),
|
||||
* increment the word sequence counter,
|
||||
* interpret the digit, and save the
|
||||
* corresponding word value as the result. If
|
||||
* the word sequence's range is not limited to
|
||||
* 6XXXX, fall through. */
|
||||
* increment the word sequence counter and
|
||||
* interpret the digit. If the word sequence's
|
||||
* range is not limited to 6XXXX, fall
|
||||
* through. */
|
||||
if (('0' <= kbinput->key && kbinput->key <= '6'
|
||||
&& word_digits == 0) ||
|
||||
('0' <= kbinput->key && kbinput->key <= '9'
|
||||
&& word_digits > 0)) {
|
||||
int word_kbinput;
|
||||
|
||||
word_digits++;
|
||||
retval = get_word_kbinput(kbinput->key
|
||||
word_kbinput = get_word_kbinput(kbinput->key
|
||||
#ifndef NANO_SMALL
|
||||
, FALSE
|
||||
#endif
|
||||
);
|
||||
|
||||
if (retval != ERR) {
|
||||
if (word_kbinput != ERR) {
|
||||
/* If we've read in a complete word
|
||||
* sequence, reset the word sequence
|
||||
* counter and the escape counter, and
|
||||
* mark it so that it isn't interpreted
|
||||
* as an extended keypad value. */
|
||||
* counter and the escape counter,
|
||||
* and put back the corresponding word
|
||||
* value. */
|
||||
word_digits = 0;
|
||||
escapes = 0;
|
||||
no_func_key = TRUE;
|
||||
unget_kbinput(word_kbinput, FALSE,
|
||||
FALSE);
|
||||
}
|
||||
} else {
|
||||
/* Reset the escape counter. */
|
||||
|
@ -659,12 +696,15 @@ int parse_kbinput(WINDOW *win, bool *meta_key, bool *func_key
|
|||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If we have a result and it's an extended keypad value, set
|
||||
* func_key to TRUE. */
|
||||
if (retval != ERR)
|
||||
*func_key = !is_byte_char(retval);
|
||||
} else
|
||||
/* If we didn't get an extended keypad value or an ASCII
|
||||
* character, leave it as-is. */
|
||||
retval = kbinput->key;
|
||||
|
||||
#ifdef DEBUG
|
||||
fprintf(stderr, "parse_kbinput(): kbinput->key = %d, meta_key = %d, func_key = %d, escapes = %d, word_digits = %d, retval = %d\n", kbinput->key, (int)*meta_key, (int)*func_key, escapes, word_digits, retval);
|
||||
|
|
Loading…
Reference in New Issue