/* $Id$ */ /************************************************************************** * winio.c * * * * Copyright (C) 1999-2005 Chris Allegretta * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2, or (at your option) * * any later version. * * * * This program is distributed in the hope that it will be useful, but * * WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * * 02110-1301, USA. * * * **************************************************************************/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include "proto.h" static int *key_buffer = NULL; /* The default keystroke buffer, * containing all the keystrokes we have * at a given point. */ static size_t key_buffer_len = 0; /* The length of the default keystroke * buffer. */ static int statusblank = 0; /* The number of keystrokes left after * we call statusbar(), before we * actually blank the statusbar. */ static size_t statusbar_x = (size_t)-1; /* The cursor position in answer. */ static bool resetstatuspos = FALSE; /* Should we reset the cursor position * at the statusbar prompt? */ /* Control character compatibility: * * - NANO_BACKSPACE_KEY is Ctrl-H, which is Backspace under ASCII, ANSI, * VT100, and VT220. * - NANO_TAB_KEY is Ctrl-I, which is Tab under ASCII, ANSI, VT100, * VT220, and VT320. * - NANO_ENTER_KEY is Ctrl-M, which is Enter under ASCII, ANSI, VT100, * VT220, and VT320. * - NANO_XON_KEY is Ctrl-Q, which is XON under ASCII, ANSI, VT100, * VT220, and VT320. * - NANO_XOFF_KEY is Ctrl-S, which is XOFF under ASCII, ANSI, VT100, * VT220, and VT320. * - NANO_CONTROL_8 is Ctrl-8 (Ctrl-?), which is Delete under ASCII, * ANSI, VT100, and VT220, and which is Backspace under VT320. * * Note: VT220 and VT320 also generate Esc [ 3 ~ for Delete. By * default, xterm assumes it's running on a VT320 and generates Ctrl-8 * (Ctrl-?) for Backspace and Esc [ 3 ~ for Delete. This causes * problems for VT100-derived terminals such as the FreeBSD console, * which expect Ctrl-H for Backspace and Ctrl-8 (Ctrl-?) for Delete, and * on which the VT320 sequences are translated by the keypad to KEY_DC * and [nothing]. We work around this conflict via the REBIND_DELETE * flag: if it's not set, we assume VT320 compatibility, and if it is, * we assume VT100 compatibility. Thanks to Lee Nelson and Wouter van * Hemel for helping work this conflict out. * * Escape sequence compatibility: * * We support escape sequences for ANSI, VT100, VT220, VT320, the Linux * console, the FreeBSD console, the Mach console (a.k.a. the Hurd * console), xterm, rxvt, and Eterm. Among these, there are several * conflicts and omissions, outlined as follows: * * - Tab on ANSI == PageUp on FreeBSD console; the former is omitted. * (Ctrl-I is also Tab on ANSI, which we already support.) * - PageDown on FreeBSD console == Center (5) on numeric keypad with * NumLock off on Linux console; the latter is omitted. (The editing * keypad key is more important to have working than the numeric * keypad key, because the latter has no value when NumLock is off.) * - F1 on FreeBSD console == the mouse key on xterm/rxvt/Eterm; the * latter is omitted. (Mouse input will only work properly if the * extended keypad value KEY_MOUSE is generated on mouse events * instead of the escape sequence.) * - F9 on FreeBSD console == PageDown on Mach console; the former is * omitted. (The editing keypad is more important to have working * than the function keys, because the functions of the former are not * arbitrary and the functions of the latter are.) * - F10 on FreeBSD console == PageUp on Mach console; the former is * omitted. (Same as above.) * - F13 on FreeBSD console == End on Mach console; the former is * omitted. (Same as above.) * - F15 on FreeBSD console == Shift-Up on rxvt/Eterm; the former is * omitted. (The arrow keys, with or without modifiers, are more * important to have working than the function keys, because the * functions of the former are not arbitrary and the functions of the * latter are.) * - F16 on FreeBSD console == Shift-Down on rxvt/Eterm; the former is * omitted. (Same as above.) * * Note that Center (5) on the numeric keypad with NumLock off can also * be the Begin key. */ #ifndef NANO_SMALL /* Reset all the input routines that rely on character sequences. */ void reset_kbinput(void) { parse_kbinput(NULL, NULL, NULL, TRUE); get_byte_kbinput(0, TRUE); get_word_kbinput(0, TRUE); } #endif /* Read in a sequence of keystrokes from win and save them in the * default keystroke buffer. This should only be called when the * default keystroke buffer is empty. */ void get_buffer(WINDOW *win) { int input; /* If the keystroke buffer isn't empty, get out. */ if (key_buffer != NULL) return; /* Read in the first character using blocking input. */ #ifndef NANO_SMALL allow_pending_sigwinch(TRUE); #endif input = wgetch(win); /* If we get ERR when using blocking input, it means that the input * source that we were using is gone, so die gracefully. */ if (input == ERR) handle_hupterm(0); #ifndef NANO_SMALL allow_pending_sigwinch(FALSE); #endif /* Increment the length of the keystroke buffer, save the value of * the keystroke in key, and set key_code to TRUE if the keystroke * is an extended keypad value or FALSE if it isn't. */ key_buffer_len++; key_buffer = (int *)nmalloc(sizeof(int)); key_buffer[0] = input; /* Read in the remaining characters using non-blocking input. */ nodelay(win, TRUE); while (TRUE) { #ifndef NANO_SMALL allow_pending_sigwinch(TRUE); #endif input = wgetch(win); /* If there aren't any more characters, stop reading. */ if (input == ERR) break; /* Otherwise, increment the length of the keystroke buffer, save * the value of the keystroke in key, and set key_code to TRUE * if the keystroke is an extended keypad value or FALSE if it * isn't. */ key_buffer_len++; key_buffer = (int *)nrealloc(key_buffer, key_buffer_len * sizeof(int)); key_buffer[key_buffer_len - 1] = input; #ifndef NANO_SMALL allow_pending_sigwinch(FALSE); #endif } /* Switch back to non-blocking input. */ nodelay(win, FALSE); #ifdef DEBUG fprintf(stderr, "get_buffer(): key_buffer_len = %lu\n", (unsigned long)key_buffer_len); #endif } /* Return the length of the default keystroke buffer. */ size_t get_buffer_len(void) { return key_buffer_len; } /* Add the contents of the keystroke buffer input to the default * keystroke buffer. */ void unget_input(int *input, size_t input_len) { #ifndef NANO_SMALL allow_pending_sigwinch(TRUE); allow_pending_sigwinch(FALSE); #endif /* If input is empty, get out. */ if (input_len == 0) return; /* If adding input would put the default keystroke buffer beyond * maximum capacity, only add enough of input to put it at maximum * capacity. */ if (key_buffer_len + input_len < key_buffer_len) input_len = (size_t)-1 - key_buffer_len; /* Add the length of input to the length of the default keystroke * buffer, and reallocate the default keystroke buffer so that it * has enough room for input. */ key_buffer_len += input_len; key_buffer = (int *)nrealloc(key_buffer, key_buffer_len * sizeof(int)); /* If the default keystroke buffer wasn't empty before, move its * beginning forward far enough so that we can add input to its * beginning. */ if (key_buffer_len > input_len) memmove(key_buffer + input_len, key_buffer, (key_buffer_len - input_len) * sizeof(int)); /* Copy input to the beginning of the default keystroke buffer. */ memcpy(key_buffer, input, input_len * sizeof(int)); } /* Put back the character stored in kbinput, putting it in byte range * beforehand. If meta_key is TRUE, put back the Escape character after * putting back kbinput. If func_key is TRUE, put back the function key * (a value outside byte range) without putting it in byte range. */ void unget_kbinput(int kbinput, bool meta_key, bool func_key) { if (!func_key) kbinput = (char)kbinput; unget_input(&kbinput, 1); if (meta_key) { kbinput = NANO_CONTROL_3; unget_input(&kbinput, 1); } } /* Try to read input_len characters from the default keystroke buffer. * If the default keystroke buffer is empty and win isn't NULL, try to * read in more characters from win and add them to the default * keystroke buffer before doing anything else. If the default * keystroke buffer is empty and win is NULL, return NULL. */ int *get_input(WINDOW *win, size_t input_len) { int *input; #ifndef NANO_SMALL allow_pending_sigwinch(TRUE); allow_pending_sigwinch(FALSE); #endif if (key_buffer_len == 0) { if (win != NULL) get_buffer(win); if (key_buffer_len == 0) return NULL; } /* If input_len is greater than the length of the default keystroke * buffer, only read the number of characters in the default * keystroke buffer. */ if (input_len > key_buffer_len) input_len = key_buffer_len; /* Subtract input_len from the length of the default keystroke * buffer, and allocate the keystroke buffer input so that it * has enough room for input_len keystrokes. */ key_buffer_len -= input_len; input = (int *)nmalloc(input_len * sizeof(int)); /* Copy input_len characters from the beginning of the default * keystroke buffer into input. */ memcpy(input, key_buffer, input_len * sizeof(int)); /* If the default keystroke buffer is empty, mark it as such. */ if (key_buffer_len == 0) { free(key_buffer); key_buffer = NULL; /* If the default keystroke buffer isn't empty, move its * beginning forward far enough back so that the keystrokes in input * are no longer at its beginning. */ } else { memmove(key_buffer, key_buffer + input_len, key_buffer_len * sizeof(int)); key_buffer = (int *)nrealloc(key_buffer, key_buffer_len * sizeof(int)); } return input; } /* Read in a single character. If it's ignored, swallow it and go on. * Otherwise, try to translate it from ASCII, meta key sequences, escape * sequences, and/or extended keypad values. Set meta_key to TRUE when * we get a meta key sequence, and set func_key to TRUE when we get an * extended keypad value. Supported extended keypad values consist of * [arrow key], Ctrl-[arrow key], Shift-[arrow key], Enter, Backspace, * the editing keypad (Insert, Delete, Home, End, PageUp, and PageDown), * the function keypad (F1-F16), and the numeric keypad with NumLock * off. Assume nodelay(win) is FALSE. */ int get_kbinput(WINDOW *win, bool *meta_key, bool *func_key) { int kbinput; /* Read in a character and interpret it. Continue doing this until * we get a recognized value or sequence. */ while ((kbinput = parse_kbinput(win, meta_key, func_key #ifndef NANO_SMALL , FALSE #endif )) == ERR); return kbinput; } /* Translate ASCII characters, extended keypad values, and escape * sequences into their corresponding key values. Set meta_key to TRUE * when we get a meta key sequence, and set func_key to TRUE when we get * a function key. Assume nodelay(win) is FALSE. */ int parse_kbinput(WINDOW *win, bool *meta_key, bool *func_key #ifndef NANO_SMALL , bool reset #endif ) { static int escapes = 0, byte_digits = 0; int *kbinput, retval = ERR; #ifndef NANO_SMALL if (reset) { escapes = 0; byte_digits = 0; return ERR; } #endif *meta_key = FALSE; *func_key = FALSE; /* Read in a character. */ while ((kbinput = get_input(win, 1)) == NULL); switch (*kbinput) { case ERR: break; case NANO_CONTROL_3: /* Increment the escape counter. */ escapes++; switch (escapes) { case 1: /* One escape: wait for more input. */ case 2: /* Two escapes: wait for more input. */ break; default: /* More than two escapes: reset the escape counter * and wait for more input. */ escapes = 0; } break; #if !defined(NANO_SMALL) && defined(KEY_RESIZE) /* Since we don't change the default SIGWINCH handler when * NANO_SMALL is defined, KEY_RESIZE is never generated. Also, * Slang and SunOS 5.7-5.9 don't support KEY_RESIZE. */ case KEY_RESIZE: break; #endif #ifdef PDCURSES case KEY_SHIFT_L: case KEY_SHIFT_R: case KEY_CONTROL_L: case KEY_CONTROL_R: case KEY_ALT_L: case KEY_ALT_R: break; #endif default: switch (escapes) { case 0: switch (*kbinput) { case NANO_CONTROL_8: retval = ISSET(REBIND_DELETE) ? NANO_DELETE_KEY : NANO_BACKSPACE_KEY; break; case KEY_DOWN: retval = NANO_NEXTLINE_KEY; break; case KEY_UP: retval = NANO_PREVLINE_KEY; break; case KEY_LEFT: retval = NANO_BACK_KEY; break; case KEY_RIGHT: retval = NANO_FORWARD_KEY; break; #ifdef KEY_HOME /* HP-UX 10 and 11 don't support KEY_HOME. */ case KEY_HOME: retval = NANO_HOME_KEY; break; #endif case KEY_BACKSPACE: retval = NANO_BACKSPACE_KEY; break; case KEY_DC: retval = ISSET(REBIND_DELETE) ? NANO_BACKSPACE_KEY : NANO_DELETE_KEY; break; case KEY_IC: retval = NANO_INSERTFILE_KEY; break; case KEY_NPAGE: retval = NANO_NEXTPAGE_KEY; break; case KEY_PPAGE: retval = NANO_PREVPAGE_KEY; break; case KEY_ENTER: retval = NANO_ENTER_KEY; break; case KEY_A1: /* Home (7) on numeric keypad * with NumLock off. */ retval = NANO_HOME_KEY; break; case KEY_A3: /* PageUp (9) on numeric keypad * with NumLock off. */ retval = NANO_PREVPAGE_KEY; break; case KEY_B2: /* Center (5) on numeric keypad * with NumLock off. */ break; case KEY_C1: /* End (1) on numeric keypad * with NumLock off. */ retval = NANO_END_KEY; break; case KEY_C3: /* PageDown (4) on numeric * keypad with NumLock off. */ retval = NANO_NEXTPAGE_KEY; break; #ifdef KEY_BEG /* Slang doesn't support KEY_BEG. */ case KEY_BEG: /* Center (5) on numeric keypad * with NumLock off. */ break; #endif #ifdef KEY_END /* HP-UX 10 and 11 don't support KEY_END. */ case KEY_END: retval = NANO_END_KEY; break; #endif #ifdef KEY_SUSPEND /* Slang doesn't support KEY_SUSPEND. */ case KEY_SUSPEND: retval = NANO_SUSPEND_KEY; break; #endif #ifdef KEY_SLEFT /* Slang doesn't support KEY_SLEFT. */ case KEY_SLEFT: retval = NANO_BACK_KEY; break; #endif #ifdef KEY_SRIGHT /* Slang doesn't support KEY_SRIGHT. */ case KEY_SRIGHT: retval = NANO_FORWARD_KEY; break; #endif default: retval = *kbinput; break; } break; case 1: /* One escape followed by a non-escape: escape * sequence mode. Reset the escape counter. If * there aren't any other keys waiting, we have a * meta key sequence, so set meta_key to TRUE and * save the lowercase version of the non-escape * character as the result. If there are other keys * waiting, we have a true escape sequence, so * interpret it. */ escapes = 0; if (get_buffer_len() == 0) { *meta_key = TRUE; retval = tolower(*kbinput); } else { int *seq; size_t seq_len; bool ignore_seq; /* Put back the non-escape character, get the * complete escape sequence, translate the * sequence into its corresponding key value, * and save that as the result. */ unget_input(kbinput, 1); seq_len = get_buffer_len(); seq = get_input(NULL, seq_len); retval = get_escape_seq_kbinput(seq, seq_len, &ignore_seq); /* If the escape sequence is unrecognized and * not ignored, put back all of its characters * except for the initial escape. */ if (retval == ERR && !ignore_seq) unget_input(seq, seq_len); free(seq); } break; case 2: /* Two escapes followed by one or more decimal * digits: byte sequence mode. If the word * sequence's range is limited to 2XX (the first * digit is in the '0' to '2' range and it's the * first digit, or it's in the '0' to '9' range and * it's not the first digit), increment the byte * sequence counter and interpret the digit. If the * byte sequence's range is not limited to 2XX, fall * through. */ if (('0' <= *kbinput && *kbinput <= '6' && byte_digits == 0) || ('0' <= *kbinput && *kbinput <= '9' && byte_digits > 0)) { int byte; byte_digits++; byte = get_byte_kbinput(*kbinput #ifndef NANO_SMALL , FALSE #endif ); if (byte != ERR) { char *byte_mb; int byte_mb_len, *seq, i; /* If we've read in a complete byte * sequence, reset the byte sequence counter * and the escape counter, and put back the * corresponding byte value. */ byte_digits = 0; escapes = 0; /* Put back the multibyte equivalent of the * byte value. */ byte_mb = make_mbchar(byte, &byte_mb_len); seq = (int *)nmalloc(byte_mb_len * sizeof(int)); for (i = 0; i < byte_mb_len; i++) seq[i] = (unsigned char)byte_mb[i]; unget_input(seq, byte_mb_len); free(seq); free(byte_mb); } } else { /* Reset the escape counter. */ escapes = 0; if (byte_digits == 0) /* Two escapes followed by a non-decimal * digit or a decimal digit that would * create a byte sequence greater than 2XX, * and we're not in the middle of a byte * sequence: control character sequence * mode. Interpret the control sequence and * save the corresponding control character * as the result. */ retval = get_control_kbinput(*kbinput); else { /* If we're in the middle of a byte * sequence, reset the byte sequence counter * and save the character we got as the * result. */ byte_digits = 0; retval = *kbinput; } } break; } } /* If we have a result and it's an extended keypad value (i.e, a * value outside of byte range), set func_key to TRUE. */ if (retval != ERR) *func_key = !is_byte(retval); #ifdef DEBUG fprintf(stderr, "parse_kbinput(): kbinput = %d, meta_key = %d, func_key = %d, escapes = %d, byte_digits = %d, retval = %d\n", *kbinput, (int)*meta_key, (int)*func_key, escapes, byte_digits, retval); #endif /* Return the result. */ return retval; } /* Translate escape sequences, most of which correspond to extended * keypad values, into their corresponding key values. These sequences * are generated when the keypad doesn't support the needed keys. If * the escape sequence is recognized but we want to ignore it, return * ERR and set ignore_seq to TRUE; if it's unrecognized, return ERR and * set ignore_seq to FALSE. Assume that Escape has already been read * in. */ int get_escape_seq_kbinput(const int *seq, size_t seq_len, bool *ignore_seq) { int retval = ERR; *ignore_seq = FALSE; if (seq_len > 1) { switch (seq[0]) { case 'O': switch (seq[1]) { case '2': if (seq_len >= 3) { switch (seq[2]) { case 'P': /* Esc O 2 P == F13 on * xterm. */ retval = KEY_F(13); break; case 'Q': /* Esc O 2 Q == F14 on * xterm. */ retval = KEY_F(14); break; case 'R': /* Esc O 2 R == F15 on * xterm. */ retval = KEY_F(15); break; case 'S': /* Esc O 2 S == F16 on * xterm. */ retval = KEY_F(16); break; } } break; case 'A': /* Esc O A == Up on VT100/VT320/xterm. */ case 'B': /* Esc O B == Down on * VT100/VT320/xterm. */ case 'C': /* Esc O C == Right on * VT100/VT320/xterm. */ case 'D': /* Esc O D == Left on * VT100/VT320/xterm. */ retval = get_escape_seq_abcd(seq[1]); break; case 'E': /* Esc O E == Center (5) on numeric keypad * with NumLock off on xterm. */ *ignore_seq = TRUE; break; case 'F': /* Esc O F == End on xterm. */ retval = NANO_END_KEY; break; case 'H': /* Esc O H == Home on xterm. */ retval = NANO_HOME_KEY; break; case 'M': /* Esc O M == Enter on numeric keypad with * NumLock off on VT100/VT220/VT320/xterm/ * Eterm. */ retval = NANO_ENTER_KEY; break; case 'P': /* Esc O P == F1 on VT100/VT220/VT320/Mach * console. */ retval = KEY_F(1); break; case 'Q': /* Esc O Q == F2 on VT100/VT220/VT320/Mach * console. */ retval = KEY_F(2); break; case 'R': /* Esc O R == F3 on VT100/VT220/VT320/Mach * console. */ retval = KEY_F(3); break; case 'S': /* Esc O S == F4 on VT100/VT220/VT320/Mach * console. */ retval = KEY_F(4); break; case 'T': /* Esc O T == F5 on Mach console. */ retval = KEY_F(5); break; case 'U': /* Esc O U == F6 on Mach console. */ retval = KEY_F(6); break; case 'V': /* Esc O V == F7 on Mach console. */ retval = KEY_F(7); break; case 'W': /* Esc O W == F8 on Mach console. */ retval = KEY_F(8); break; case 'X': /* Esc O X == F9 on Mach console. */ retval = KEY_F(9); break; case 'Y': /* Esc O Y == F10 on Mach console. */ retval = KEY_F(10); break; case 'a': /* Esc O a == Ctrl-Up on rxvt. */ case 'b': /* Esc O b == Ctrl-Down on rxvt. */ case 'c': /* Esc O c == Ctrl-Right on rxvt. */ case 'd': /* Esc O d == Ctrl-Left on rxvt. */ retval = get_escape_seq_abcd(seq[1]); break; case 'j': /* Esc O j == '*' on numeric keypad with * NumLock off on VT100/VT220/VT320/xterm/ * rxvt. */ retval = '*'; break; case 'k': /* Esc O k == '+' on numeric keypad with * NumLock off on VT100/VT220/VT320/xterm/ * rxvt. */ retval = '+'; break; case 'l': /* Esc O l == ',' on numeric keypad with * NumLock off on VT100/VT220/VT320/xterm/ * rxvt. */ retval = '+'; break; case 'm': /* Esc O m == '-' on numeric keypad with * NumLock off on VT100/VT220/VT320/xterm/ * rxvt. */ retval = '-'; break; case 'n': /* Esc O n == Delete (.) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * xterm/rxvt. */ retval = NANO_DELETE_KEY; break; case 'o': /* Esc O o == '/' on numeric keypad with * NumLock off on VT100/VT220/VT320/xterm/ * rxvt. */ retval = '/'; break; case 'p': /* Esc O p == Insert (0) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_INSERTFILE_KEY; break; case 'q': /* Esc O q == End (1) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_END_KEY; break; case 'r': /* Esc O r == Down (2) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_NEXTLINE_KEY; break; case 's': /* Esc O s == PageDown (3) on numeric * keypad with NumLock off on VT100/VT220/ * VT320/rxvt. */ retval = NANO_NEXTPAGE_KEY; break; case 't': /* Esc O t == Left (4) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_BACK_KEY; break; case 'u': /* Esc O u == Center (5) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt/Eterm. */ *ignore_seq = TRUE; break; case 'v': /* Esc O v == Right (6) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_FORWARD_KEY; break; case 'w': /* Esc O w == Home (7) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_HOME_KEY; break; case 'x': /* Esc O x == Up (8) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_PREVLINE_KEY; break; case 'y': /* Esc O y == PageUp (9) on numeric keypad * with NumLock off on VT100/VT220/VT320/ * rxvt. */ retval = NANO_PREVPAGE_KEY; break; } break; case 'o': switch (seq[1]) { case 'a': /* Esc o a == Ctrl-Up on Eterm. */ case 'b': /* Esc o b == Ctrl-Down on Eterm. */ case 'c': /* Esc o c == Ctrl-Right on Eterm. */ case 'd': /* Esc o d == Ctrl-Left on Eterm. */ retval = get_escape_seq_abcd(seq[1]); break; } break; case '[': switch (seq[1]) { case '1': if (seq_len >= 3) { switch (seq[2]) { case '1': /* Esc [ 1 1 ~ == F1 on rxvt/ * Eterm. */ retval = KEY_F(1); break; case '2': /* Esc [ 1 2 ~ == F2 on rxvt/ * Eterm. */ retval = KEY_F(2); break; case '3': /* Esc [ 1 3 ~ == F3 on rxvt/ * Eterm. */ retval = KEY_F(3); break; case '4': /* Esc [ 1 4 ~ == F4 on rxvt/ * Eterm. */ retval = KEY_F(4); break; case '5': /* Esc [ 1 5 ~ == F5 on xterm/ * rxvt/Eterm. */ retval = KEY_F(5); break; case '7': /* Esc [ 1 7 ~ == F6 on * VT220/VT320/Linux console/ * xterm/rxvt/Eterm. */ retval = KEY_F(6); break; case '8': /* Esc [ 1 8 ~ == F7 on * VT220/VT320/Linux console/ * xterm/rxvt/Eterm. */ retval = KEY_F(7); break; case '9': /* Esc [ 1 9 ~ == F8 on * VT220/VT320/Linux console/ * xterm/rxvt/Eterm. */ retval = KEY_F(8); break; case ';': if (seq_len >= 4) { switch (seq[3]) { case '2': if (seq_len >= 5) { switch (seq[4]) { case 'A': /* Esc [ 1 ; 2 A == Shift-Up on * xterm. */ case 'B': /* Esc [ 1 ; 2 B == Shift-Down on * xterm. */ case 'C': /* Esc [ 1 ; 2 C == Shift-Right on * xterm. */ case 'D': /* Esc [ 1 ; 2 D == Shift-Left on * xterm. */ retval = get_escape_seq_abcd(seq[4]); break; } } break; case '5': if (seq_len >= 5) { switch (seq[4]) { case 'A': /* Esc [ 1 ; 5 A == Ctrl-Up on * xterm. */ case 'B': /* Esc [ 1 ; 5 B == Ctrl-Down on * xterm. */ case 'C': /* Esc [ 1 ; 5 C == Ctrl-Right on * xterm. */ case 'D': /* Esc [ 1 ; 5 D == Ctrl-Left on * xterm. */ retval = get_escape_seq_abcd(seq[4]); break; } } break; } } break; default: /* Esc [ 1 ~ == Home on * VT320/Linux console. */ retval = NANO_HOME_KEY; break; } } break; case '2': if (seq_len >= 3) { switch (seq[2]) { case '0': /* Esc [ 2 0 ~ == F9 on * VT220/VT320/Linux console/ * xterm/rxvt/Eterm. */ retval = KEY_F(9); break; case '1': /* Esc [ 2 1 ~ == F10 on * VT220/VT320/Linux console/ * xterm/rxvt/Eterm. */ retval = KEY_F(10); break; case '3': /* Esc [ 2 3 ~ == F11 on * VT220/VT320/Linux console/ * xterm/rxvt/Eterm. */ retval = KEY_F(11); break; case '4': /* Esc [ 2 4 ~ == F12 on * VT220/VT320/Linux console/ * xterm/rxvt/Eterm. */ retval = KEY_F(12); break; case '5': /* Esc [ 2 5 ~ == F13 on * VT220/VT320/Linux console/ * rxvt/Eterm. */ retval = KEY_F(13); break; case '6': /* Esc [ 2 6 ~ == F14 on * VT220/VT320/Linux console/ * rxvt/Eterm. */ retval = KEY_F(14); break; case '8': /* Esc [ 2 8 ~ == F15 on * VT220/VT320/Linux console/ * rxvt/Eterm. */ retval = KEY_F(15); break; case '9': /* Esc [ 2 9 ~ == F16 on * VT220/VT320/Linux console/ * rxvt/Eterm. */ retval = KEY_F(16); break; default: /* Esc [ 2 ~ == Insert on * VT220/VT320/Linux console/ * xterm. */ retval = NANO_INSERTFILE_KEY; break; } } break; case '3': /* Esc [ 3 ~ == Delete on VT220/VT320/ * Linux console/xterm. */ retval = NANO_DELETE_KEY; break; case '4': /* Esc [ 4 ~ == End on VT220/VT320/Linux * console/xterm. */ retval = NANO_END_KEY; break; case '5': /* Esc [ 5 ~ == PageUp on VT220/VT320/ * Linux console/xterm; Esc [ 5 ^ == * PageUp on Eterm. */ retval = NANO_PREVPAGE_KEY; break; case '6': /* Esc [ 6 ~ == PageDown on VT220/VT320/ * Linux console/xterm; Esc [ 6 ^ == * PageDown on Eterm. */ retval = NANO_NEXTPAGE_KEY; break; case '7': /* Esc [ 7 ~ == Home on rxvt. */ retval = NANO_HOME_KEY; break; case '8': /* Esc [ 8 ~ == End on rxvt. */ retval = NANO_END_KEY; break; case '9': /* Esc [ 9 == Delete on Mach console. */ retval = NANO_DELETE_KEY; break; case '@': /* Esc [ @ == Insert on Mach console. */ retval = NANO_INSERTFILE_KEY; break; case 'A': /* Esc [ A == Up on ANSI/VT220/Linux * console/FreeBSD console/Mach console/ * rxvt/Eterm. */ case 'B': /* Esc [ B == Down on ANSI/VT220/Linux * console/FreeBSD console/Mach console/ * rxvt/Eterm. */ case 'C': /* Esc [ C == Right on ANSI/VT220/Linux * console/FreeBSD console/Mach console/ * rxvt/Eterm. */ case 'D': /* Esc [ D == Left on ANSI/VT220/Linux * console/FreeBSD console/Mach console/ * rxvt/Eterm. */ retval = get_escape_seq_abcd(seq[1]); break; case 'E': /* Esc [ E == Center (5) on numeric keypad * with NumLock off on FreeBSD console. */ *ignore_seq = TRUE; break; case 'F': /* Esc [ F == End on FreeBSD * console/Eterm. */ retval = NANO_END_KEY; break; case 'G': /* Esc [ G == PageDown on FreeBSD * console. */ retval = NANO_NEXTPAGE_KEY; break; case 'H': /* Esc [ H == Home on ANSI/VT220/FreeBSD * console/Mach console/Eterm. */ retval = NANO_HOME_KEY; break; case 'I': /* Esc [ I == PageUp on FreeBSD * console. */ retval = NANO_PREVPAGE_KEY; break; case 'L': /* Esc [ L == Insert on ANSI/FreeBSD * console. */ retval = NANO_INSERTFILE_KEY; break; case 'M': /* Esc [ M == F1 on FreeBSD console. */ retval = KEY_F(1); break; case 'N': /* Esc [ N == F2 on FreeBSD console. */ retval = KEY_F(2); break; case 'O': if (seq_len >= 3) { switch (seq[2]) { case 'P': /* Esc [ O P == F1 on * xterm. */ retval = KEY_F(1); break; case 'Q': /* Esc [ O Q == F2 on * xterm. */ retval = KEY_F(2); break; case 'R': /* Esc [ O R == F3 on * xterm. */ retval = KEY_F(3); break; case 'S': /* Esc [ O S == F4 on * xterm. */ retval = KEY_F(4); break; } } else { /* Esc [ O == F3 on FreeBSD console. */ retval = KEY_F(3); } break; case 'P': /* Esc [ P == F4 on FreeBSD console. */ retval = KEY_F(4); break; case 'Q': /* Esc [ Q == F5 on FreeBSD console. */ retval = KEY_F(5); break; case 'R': /* Esc [ R == F6 on FreeBSD console. */ retval = KEY_F(6); break; case 'S': /* Esc [ S == F7 on FreeBSD console. */ retval = KEY_F(7); break; case 'T': /* Esc [ T == F8 on FreeBSD console. */ retval = KEY_F(8); break; case 'U': /* Esc [ U == PageDown on Mach console. */ retval = NANO_NEXTPAGE_KEY; break; case 'V': /* Esc [ V == PageUp on Mach console. */ retval = NANO_PREVPAGE_KEY; break; case 'W': /* Esc [ W == F11 on FreeBSD console. */ retval = KEY_F(11); break; case 'X': /* Esc [ X == F12 on FreeBSD console. */ retval = KEY_F(12); break; case 'Y': /* Esc [ Y == End on Mach console. */ retval = NANO_END_KEY; break; case 'Z': /* Esc [ Z == F14 on FreeBSD console. */ retval = KEY_F(14); break; case 'a': /* Esc [ a == Shift-Up on rxvt/Eterm. */ case 'b': /* Esc [ b == Shift-Down on rxvt/Eterm. */ case 'c': /* Esc [ c == Shift-Right on rxvt/ * Eterm. */ case 'd': /* Esc [ d == Shift-Left on rxvt/Eterm. */ retval = get_escape_seq_abcd(seq[1]); break; case '[': if (seq_len >= 3) { switch (seq[2]) { case 'A': /* Esc [ [ A == F1 on Linux * console. */ retval = KEY_F(1); break; case 'B': /* Esc [ [ B == F2 on Linux * console. */ retval = KEY_F(2); break; case 'C': /* Esc [ [ C == F3 on Linux * console. */ retval = KEY_F(3); break; case 'D': /* Esc [ [ D == F4 on Linux * console. */ retval = KEY_F(4); break; case 'E': /* Esc [ [ E == F5 on Linux * console. */ retval = KEY_F(5); break; } } break; } break; } } #ifdef DEBUG fprintf(stderr, "get_escape_seq_kbinput(): retval = %d, ignore_seq = %d\n", retval, (int)*ignore_seq); #endif return retval; } /* Return the equivalent arrow key value for the case-insensitive * letters A (up), B (down), C (right), and D (left). These are common * to many escape sequences. */ int get_escape_seq_abcd(int kbinput) { switch (tolower(kbinput)) { case 'a': return NANO_PREVLINE_KEY; case 'b': return NANO_NEXTLINE_KEY; case 'c': return NANO_FORWARD_KEY; case 'd': return NANO_BACK_KEY; default: return ERR; } } /* Translate a byte sequence: turn a three-digit decimal number from * 000 to 255 into its corresponding byte value. */ int get_byte_kbinput(int kbinput #ifndef NANO_SMALL , bool reset #endif ) { static int byte_digits = 0, byte = 0; int retval = ERR; #ifndef NANO_SMALL if (reset) { byte_digits = 0; byte = 0; return ERR; } #endif /* Increment the byte digit counter. */ byte_digits++; switch (byte_digits) { case 1: /* One digit: reset the byte sequence holder and add the * digit we got to the 100's position of the byte sequence * holder. */ byte = 0; if ('0' <= kbinput && kbinput <= '2') byte += (kbinput - '0') * 100; else /* If the character we got isn't a decimal digit, or if * it is and it would put the byte sequence out of byte * range, save it as the result. */ retval = kbinput; break; case 2: /* Two digits: add the digit we got to the 10's position of * the byte sequence holder. */ if (('0' <= kbinput && kbinput <= '5') || (byte < 200 && '6' <= kbinput && kbinput <= '9')) byte += (kbinput - '0') * 10; else /* If the character we got isn't a decimal digit, or if * it is and it would put the byte sequence out of byte * range, save it as the result. */ retval = kbinput; break; case 3: /* Three digits: add the digit we got to the 1's position of * the byte sequence holder, and save the corresponding word * value as the result. */ if (('0' <= kbinput && kbinput <= '5') || (byte < 250 && '6' <= kbinput && kbinput <= '9')) { byte += (kbinput - '0'); retval = byte; } else /* If the character we got isn't a decimal digit, or if * it is and it would put the word sequence out of word * range, save it as the result. */ retval = kbinput; break; default: /* More than three digits: save the character we got as the * result. */ retval = kbinput; break; } /* If we have a result, reset the byte digit counter and the byte * sequence holder. */ if (retval != ERR) { byte_digits = 0; byte = 0; } #ifdef DEBUG fprintf(stderr, "get_byte_kbinput(): kbinput = %d, byte_digits = %d, byte = %d, retval = %d\n", kbinput, byte_digits, byte, retval); #endif return retval; } /* Translate a word sequence: turn a four-digit hexadecimal number from * 0000 to ffff (case-insensitive) into its corresponding word value. */ int get_word_kbinput(int kbinput #ifndef NANO_SMALL , bool reset #endif ) { static int word_digits = 0, word = 0; int retval = ERR; #ifndef NANO_SMALL if (reset) { word_digits = 0; word = 0; return ERR; } #endif /* Increment the word digit counter. */ word_digits++; switch (word_digits) { case 1: /* One digit: reset the word sequence holder and add the * digit we got to the 4096's position of the word sequence * holder. */ word = 0; if ('0' <= kbinput && kbinput <= '9') word += (kbinput - '0') * 4096; else if ('a' <= tolower(kbinput) && tolower(kbinput) <= 'f') word += (tolower(kbinput) + 10 - 'a') * 4096; else /* If the character we got isn't a hexadecimal digit, or * if it is and it would put the word sequence out of * word range, save it as the result. */ retval = kbinput; break; case 2: /* Two digits: add the digit we got to the 256's position of * the word sequence holder. */ if ('0' <= kbinput && kbinput <= '9') word += (kbinput - '0') * 256; else if ('a' <= tolower(kbinput) && tolower(kbinput) <= 'f') word += (tolower(kbinput) + 10 - 'a') * 256; else /* If the character we got isn't a hexadecimal digit, or * if it is and it would put the word sequence out of * word range, save it as the result. */ retval = kbinput; break; case 3: /* Three digits: add the digit we got to the 16's position * of the word sequence holder. */ if ('0' <= kbinput && kbinput <= '9') word += (kbinput - '0') * 16; else if ('a' <= tolower(kbinput) && tolower(kbinput) <= 'f') word += (tolower(kbinput) + 10 - 'a') * 16; else /* If the character we got isn't a hexadecimal digit, or * if it is and it would put the word sequence out of * word range, save it as the result. */ retval = kbinput; break; case 4: /* Four digits: add the digit we got to the 1's position of * the word sequence holder, and save the corresponding word * value as the result. */ if ('0' <= kbinput && kbinput <= '9') { word += (kbinput - '0'); retval = word; } else if ('a' <= tolower(kbinput) && tolower(kbinput) <= 'f') { word += (tolower(kbinput) + 10 - 'a'); retval = word; } else /* If the character we got isn't a hexadecimal digit, or * if it is and it would put the word sequence out of * word range, save it as the result. */ retval = kbinput; break; default: /* More than four digits: save the character we got as the * result. */ retval = kbinput; break; } /* If we have a result, reset the word digit counter and the word * sequence holder. */ if (retval != ERR) { word_digits = 0; word = 0; } #ifdef DEBUG fprintf(stderr, "get_word_kbinput(): kbinput = %d, word_digits = %d, word = %d, retval = %d\n", kbinput, word_digits, word, retval); #endif return retval; } /* Translate a control character sequence: turn an ASCII non-control * character into its corresponding control character. */ int get_control_kbinput(int kbinput) { int retval; /* Ctrl-2 (Ctrl-Space, Ctrl-@, Ctrl-`) */ if (kbinput == '2' || kbinput == ' ' || kbinput == '@' || kbinput == '`') retval = NANO_CONTROL_SPACE; /* Ctrl-3 (Ctrl-[, Esc) to Ctrl-7 (Ctrl-_) */ else if ('3' <= kbinput && kbinput <= '7') retval = kbinput - 24; /* Ctrl-8 (Ctrl-?) */ else if (kbinput == '8' || kbinput == '?') retval = NANO_CONTROL_8; /* Ctrl-A to Ctrl-_ */ else if ('A' <= kbinput && kbinput <= '_') retval = kbinput - 64; /* Ctrl-a to Ctrl-~ */ else if ('a' <= kbinput && kbinput <= '~') retval = kbinput - 96; else retval = kbinput; #ifdef DEBUG fprintf(stderr, "get_control_kbinput(): kbinput = %d, retval = %d\n", kbinput, retval); #endif return retval; } /* Put the output-formatted characters in output back into the default * keystroke buffer, so that they can be parsed and displayed as output * again. */ void unparse_kbinput(char *output, size_t output_len) { int *input; size_t i; if (output_len == 0) return; input = (int *)nmalloc(output_len * sizeof(int)); for (i = 0; i < output_len; i++) input[i] = (int)output[i]; unget_input(input, output_len); free(input); } /* Read in a stream of characters verbatim, and return the length of the * string in kbinput_len. Assume nodelay(win) is FALSE. */ int *get_verbatim_kbinput(WINDOW *win, size_t *kbinput_len) { int *retval; /* Turn off flow control characters if necessary so that we can type * them in verbatim, and turn the keypad off so that we don't get * extended keypad values. */ if (ISSET(PRESERVE)) disable_flow_control(); keypad(win, FALSE); /* Read in a stream of characters and interpret it if possible. */ retval = parse_verbatim_kbinput(win, kbinput_len); /* Turn flow control characters back on if necessary and turn the * keypad back on now that we're done. */ if (ISSET(PRESERVE)) enable_flow_control(); keypad(win, TRUE); return retval; } /* Read in a stream of all available characters, and return the length * of the string in kbinput_len. Translate the first few characters of * the input into the corresponding word value if possible. After that, * leave the input as-is. */ int *parse_verbatim_kbinput(WINDOW *win, size_t *kbinput_len) { int *kbinput, word, *retval; /* Read in the first keystroke. */ while ((kbinput = get_input(win, 1)) == NULL); /* Check whether the first keystroke is a hexadecimal digit. */ word = get_word_kbinput(*kbinput #ifndef NANO_SMALL , FALSE #endif ); /* If the first keystroke isn't a hexadecimal digit, put back the * first keystroke. */ if (word != ERR) unget_input(kbinput, 1); /* Otherwise, read in keystrokes until we have a complete word * sequence, and put back the corresponding word value. */ else { char *word_mb; int word_mb_len, *seq, i; while (word == ERR) { while ((kbinput = get_input(win, 1)) == NULL); word = get_word_kbinput(*kbinput #ifndef NANO_SMALL , FALSE #endif ); } /* Put back the multibyte equivalent of the word value. */ word_mb = make_mbchar(word, &word_mb_len); seq = (int *)nmalloc(word_mb_len * sizeof(int)); for (i = 0; i < word_mb_len; i++) seq[i] = (unsigned char)word_mb[i]; unget_input(seq, word_mb_len); free(seq); free(word_mb); } /* Get the complete sequence, and save the characters in it as the * result. */ *kbinput_len = get_buffer_len(); retval = get_input(NULL, *kbinput_len); return retval; } #ifndef DISABLE_MOUSE /* Check for a mouse event, and if one's taken place, save the * coordinates where it took place in mouse_x and mouse_y. After that, * assuming allow_shortcuts is FALSE, if the shortcut list on the * bottom two lines of the screen is visible and the mouse event took * place on it, figure out which shortcut was clicked and put back the * equivalent keystroke(s). Return FALSE if no keystrokes were * put back, or TRUE if at least one was. Assume that KEY_MOUSE has * already been read in. */ bool get_mouseinput(int *mouse_x, int *mouse_y, bool allow_shortcuts) { MEVENT mevent; *mouse_x = -1; *mouse_y = -1; /* First, get the actual mouse event. */ if (getmouse(&mevent) == ERR) return FALSE; /* Save the screen coordinates where the mouse event took place. */ *mouse_x = mevent.x; *mouse_y = mevent.y; /* If we're allowing shortcuts, the current shortcut list is being * displayed on the last two lines of the screen, and the mouse * event took place inside it, we need to figure out which shortcut * was clicked and put back the equivalent keystroke(s) for it. */ if (allow_shortcuts && !ISSET(NO_HELP) && wenclose(bottomwin, *mouse_y, *mouse_x)) { int i, j; size_t currslen; /* The number of shortcuts in the current shortcut list. */ const shortcut *s = currshortcut; /* The actual shortcut we clicked on, starting at the first * one in the current shortcut list. */ /* Get the shortcut lists' length. */ if (currshortcut == main_list) currslen = MAIN_VISIBLE; else { currslen = length_of_list(currshortcut); /* We don't show any more shortcuts than the main list * does. */ if (currslen > MAIN_VISIBLE) currslen = MAIN_VISIBLE; } /* Calculate the width of each shortcut in the list (it's the * same for all of them). */ if (currslen < 2) i = COLS / 6; else i = COLS / ((currslen / 2) + (currslen % 2)); /* Calculate the y-coordinate relative to the beginning of * bottomwin. */ j = *mouse_y - ((2 - no_more_space()) + 1) - editwinrows; /* If we're on the statusbar, beyond the end of the shortcut * list, or beyond the end of a shortcut on the right side of * the screen, don't do anything. */ if (j < 0 || (*mouse_x / i) >= currslen) return FALSE; j = (*mouse_x / i) * 2 + j; if (j >= currslen) return FALSE; /* Go through the shortcut list to determine which shortcut was * clicked. */ for (; j > 0; j--) s = s->next; /* And put back the equivalent key. Assume that each shortcut * has, at the very least, an equivalent control key, an * equivalent primary meta key sequence, or both. */ if (s->ctrlval != NANO_NO_KEY) { unget_kbinput(s->ctrlval, FALSE, FALSE); return TRUE; } else if (s->metaval != NANO_NO_KEY) { unget_kbinput(s->metaval, TRUE, FALSE); return TRUE; } } return FALSE; } #endif /* !DISABLE_MOUSE */ const shortcut *get_shortcut(const shortcut *s_list, int *kbinput, bool *meta_key, bool *func_key) { const shortcut *s = s_list; size_t slen = length_of_list(s_list); #ifdef DEBUG fprintf(stderr, "get_shortcut(): kbinput = %d, meta_key = %d, func_key = %d\n", *kbinput, (int)*meta_key, (int)*func_key); #endif /* Check for shortcuts. */ for (; slen > 0; slen--) { /* We've found a shortcut if: * * 1. The key exists. * 2. The key is a control key in the shortcut list. * 3. meta_key is TRUE and the key is the primary or * miscellaneous meta sequence in the shortcut list. * 4. func_key is TRUE and the key is a function key in the * shortcut list. */ if (*kbinput != NANO_NO_KEY && (*kbinput == s->ctrlval || (*meta_key == TRUE && (*kbinput == s->metaval || *kbinput == s->miscval)) || (*func_key == TRUE && *kbinput == s->funcval))) { break; } s = s->next; } /* Translate the shortcut to either its control key or its meta key * equivalent. Assume that the shortcut has an equivalent control * key, an equivalent primary meta key sequence, or both. */ if (slen > 0) { if (s->ctrlval != NANO_NO_KEY) { *meta_key = FALSE; *func_key = FALSE; *kbinput = s->ctrlval; return s; } else if (s->metaval != NANO_NO_KEY) { *meta_key = TRUE; *func_key = FALSE; *kbinput = s->metaval; return s; } } return NULL; } #ifndef NANO_SMALL const toggle *get_toggle(int kbinput, bool meta_key) { const toggle *t = toggles; #ifdef DEBUG fprintf(stderr, "get_toggle(): kbinput = %d, meta_key = %d\n", kbinput, (int)meta_key); #endif /* Check for toggles. */ for (; t != NULL; t = t->next) { /* We've found a toggle if meta_key is TRUE and the key is in * the meta key toggle list. */ if (meta_key && kbinput == t->val) break; } return t; } #endif /* !NANO_SMALL */ int do_statusbar_input(bool *meta_key, bool *func_key, bool *s_or_t, bool *ran_func, bool *finished, bool allow_funcs) { int input; /* The character we read in. */ static int *kbinput = NULL; /* The input buffer. */ static size_t kbinput_len = 0; /* The length of the input buffer. */ const shortcut *s; bool have_shortcut; *s_or_t = FALSE; *ran_func = FALSE; *finished = FALSE; /* Read in a character. */ input = get_kbinput(bottomwin, meta_key, func_key); #ifndef DISABLE_MOUSE /* If we got a mouse click and it was on a shortcut, read in the * shortcut character. */ if (allow_funcs && *func_key == TRUE && input == KEY_MOUSE) { if (do_mouse()) input = get_kbinput(bottomwin, meta_key, func_key); else input = ERR; } #endif /* Check for a shortcut in the current list. */ s = get_shortcut(currshortcut, &input, meta_key, func_key); /* If we got a shortcut from the current list, or a "universal" * statusbar prompt shortcut, set have_shortcut to TRUE. */ have_shortcut = (s != NULL || input == NANO_REFRESH_KEY || input == NANO_HOME_KEY || input == NANO_END_KEY || input == NANO_FORWARD_KEY || input == NANO_BACK_KEY || input == NANO_BACKSPACE_KEY || input == NANO_DELETE_KEY || input == NANO_CUT_KEY || #ifndef NANO_SMALL input == NANO_NEXTWORD_KEY || #endif (*meta_key == TRUE && ( #ifndef NANO_SMALL input == NANO_PREVWORD_KEY || #endif input == NANO_VERBATIM_KEY))); /* Set s_or_t to TRUE if we got a shortcut. */ *s_or_t = have_shortcut; if (allow_funcs) { /* If we got a character, and it isn't a shortcut or toggle, * it's a normal text character. Display the warning if we're * in view mode, or add the character to the input buffer if * we're not. */ if (input != ERR && *s_or_t == FALSE) { /* If we're using restricted mode, the filename isn't blank, * and we're at the "Write File" prompt, disable text * input. */ if (!ISSET(RESTRICTED) || filename[0] == '\0' || currshortcut != writefile_list) { kbinput_len++; kbinput = (int *)nrealloc(kbinput, kbinput_len * sizeof(int)); kbinput[kbinput_len - 1] = input; } } /* If we got a shortcut, or if there aren't any other characters * waiting after the one we read in, we need to display all the * characters in the input buffer if it isn't empty. */ if (*s_or_t == TRUE || get_buffer_len() == 0) { if (kbinput != NULL) { /* Display all the characters in the input buffer at * once, filtering out control characters. */ char *output = charalloc(kbinput_len + 1); size_t i; bool got_enter; /* Whether we got the Enter key. */ for (i = 0; i < kbinput_len; i++) output[i] = (char)kbinput[i]; output[i] = '\0'; do_statusbar_output(output, kbinput_len, &got_enter, FALSE); free(output); /* Empty the input buffer. */ kbinput_len = 0; free(kbinput); kbinput = NULL; } } if (have_shortcut) { switch (input) { /* Handle the "universal" statusbar prompt shortcuts. */ case NANO_REFRESH_KEY: total_refresh(); break; case NANO_HOME_KEY: do_statusbar_home(); break; case NANO_END_KEY: do_statusbar_end(); break; case NANO_FORWARD_KEY: do_statusbar_right(); break; case NANO_BACK_KEY: do_statusbar_left(); break; case NANO_BACKSPACE_KEY: /* If we're using restricted mode, the filename * isn't blank, and we're at the "Write File" * prompt, disable Backspace. */ if (!ISSET(RESTRICTED) || filename[0] == '\0' || currshortcut != writefile_list) do_statusbar_backspace(); break; case NANO_DELETE_KEY: /* If we're using restricted mode, the filename * isn't blank, and we're at the "Write File" * prompt, disable Delete. */ if (!ISSET(RESTRICTED) || filename[0] == '\0' || currshortcut != writefile_list) do_statusbar_delete(); break; case NANO_CUT_KEY: /* If we're using restricted mode, the filename * isn't blank, and we're at the "Write File" * prompt, disable Cut. */ if (!ISSET(RESTRICTED) || filename[0] == '\0' || currshortcut != writefile_list) do_statusbar_cut_text(); break; #ifndef NANO_SMALL case NANO_NEXTWORD_KEY: do_statusbar_next_word(); break; case NANO_PREVWORD_KEY: if (*meta_key == TRUE) do_statusbar_prev_word(); break; #endif case NANO_VERBATIM_KEY: if (*meta_key == TRUE) { /* If we're using restricted mode, the filename * isn't blank, and we're at the "Write File" * prompt, disable verbatim input. */ if (!ISSET(RESTRICTED) || filename[0] == '\0' || currshortcut != writefile_list) { bool got_enter; /* Whether we got the Enter key. */ do_statusbar_verbatim_input(&got_enter); /* If we got the Enter key, set input to the * key value for Enter, and set finished to * TRUE to indicate that we're done. */ if (got_enter) { input = NANO_ENTER_KEY; *finished = TRUE; } } break; } /* Handle the normal statusbar prompt shortcuts, setting * ran_func to TRUE if we try to run their associated * functions and setting finished to TRUE to indicate * that we're done after trying to run their associated * functions. */ default: if (s->func != NULL) { *ran_func = TRUE; if (!ISSET(VIEW_MODE) || s->viewok) s->func(); } *finished = TRUE; } } } return input; } #ifndef DISABLE_MOUSE bool do_statusbar_mouse(void) { /* FIXME: If we clicked on a location in the statusbar, the cursor * should move to the location we clicked on. This functionality * should be in this function. */ int mouse_x, mouse_y; return get_mouseinput(&mouse_x, &mouse_y, TRUE); } #endif void do_statusbar_home(void) { #ifndef NANO_SMALL if (ISSET(SMART_HOME)) { size_t statusbar_x_save = statusbar_x; statusbar_x = indent_length(answer); if (statusbar_x == statusbar_x_save || statusbar_x == strlen(answer)) statusbar_x = 0; } else #endif statusbar_x = 0; } void do_statusbar_end(void) { statusbar_x = strlen(answer); } void do_statusbar_right(void) { if (statusbar_x < strlen(answer)) statusbar_x = move_mbright(answer, statusbar_x); } void do_statusbar_left(void) { if (statusbar_x > 0) statusbar_x = move_mbleft(answer, statusbar_x); } void do_statusbar_backspace(void) { if (statusbar_x > 0) { do_statusbar_left(); do_statusbar_delete(); } } void do_statusbar_delete(void) { if (answer[statusbar_x] != '\0') { int char_buf_len = parse_mbchar(answer + statusbar_x, NULL, NULL, NULL); size_t line_len = strlen(answer + statusbar_x); assert(statusbar_x < strlen(answer)); charmove(answer + statusbar_x, answer + statusbar_x + char_buf_len, strlen(answer) - statusbar_x - char_buf_len + 1); null_at(&answer, statusbar_x + line_len - char_buf_len); } } void do_statusbar_cut_text(void) { assert(answer != NULL); #ifndef NANO_SMALL if (ISSET(CUT_TO_END)) null_at(&answer, statusbar_x); else { #endif null_at(&answer, 0); statusbar_x = 0; #ifndef NANO_SMALL } #endif } #ifndef NANO_SMALL void do_statusbar_next_word(void) { char *char_mb; int char_mb_len; assert(answer != NULL); char_mb = charalloc(mb_cur_max()); /* Move forward until we find the character after the last letter of * the current word. */ while (answer[statusbar_x] != '\0') { char_mb_len = parse_mbchar(answer + statusbar_x, char_mb, NULL, NULL); /* If we've found it, stop moving forward through the current * line. */ if (!is_alnum_mbchar(char_mb)) break; statusbar_x += char_mb_len; } /* Move forward until we find the first letter of the next word. */ if (answer[statusbar_x] != '\0') statusbar_x += char_mb_len; while (answer[statusbar_x] != '\0') { char_mb_len = parse_mbchar(answer + statusbar_x, char_mb, NULL, NULL); /* If we've found it, stop moving forward through the current * line. */ if (is_alnum_mbchar(char_mb)) break; statusbar_x += char_mb_len; } free(char_mb); } void do_statusbar_prev_word(void) { char *char_mb; int char_mb_len; bool begin_line = FALSE; assert(answer != NULL); char_mb = charalloc(mb_cur_max()); /* Move backward until we find the character before the first letter * of the current word. */ while (!begin_line) { char_mb_len = parse_mbchar(answer + statusbar_x, char_mb, NULL, NULL); /* If we've found it, stop moving backward through the current * line. */ if (!is_alnum_mbchar(char_mb)) break; if (statusbar_x == 0) begin_line = TRUE; else statusbar_x = move_mbleft(answer, statusbar_x); } /* Move backward until we find the last letter of the previous * word. */ if (statusbar_x == 0) begin_line = TRUE; else statusbar_x = move_mbleft(answer, statusbar_x); while (!begin_line) { char_mb_len = parse_mbchar(answer + statusbar_x, char_mb, NULL, NULL); /* If we've found it, stop moving backward through the current * line. */ if (is_alnum_mbchar(char_mb)) break; if (statusbar_x == 0) begin_line = TRUE; else statusbar_x = move_mbleft(answer, statusbar_x); } /* If we've found it, move backward until we find the character * before the first letter of the previous word. */ if (!begin_line) { if (statusbar_x == 0) begin_line = TRUE; else statusbar_x = move_mbleft(answer, statusbar_x); while (!begin_line) { char_mb_len = parse_mbchar(answer + statusbar_x, char_mb, NULL, NULL); /* If we've found it, stop moving backward through the * current line. */ if (!is_alnum_mbchar(char_mb)) break; if (statusbar_x == 0) begin_line = TRUE; else statusbar_x = move_mbleft(answer, statusbar_x); } /* If we've found it, move forward to the first letter of the * previous word. */ if (!begin_line) statusbar_x += char_mb_len; } free(char_mb); } #endif void do_statusbar_verbatim_input(bool *got_enter) { int *kbinput; size_t kbinput_len, i; char *output; *got_enter = FALSE; /* Read in all the verbatim characters. */ kbinput = get_verbatim_kbinput(bottomwin, &kbinput_len); /* Display all the verbatim characters at once, not filtering out * control characters. */ output = charalloc(kbinput_len + 1); for (i = 0; i < kbinput_len; i++) output[i] = (char)kbinput[i]; output[i] = '\0'; do_statusbar_output(output, kbinput_len, got_enter, TRUE); free(output); } void do_statusbar_output(char *output, size_t output_len, bool *got_enter, bool allow_cntrls) { size_t answer_len, i = 0; char *char_buf = charalloc(mb_cur_max()); int char_buf_len; assert(answer != NULL); answer_len = strlen(answer); *got_enter = FALSE; while (i < output_len) { /* If allow_cntrls is FALSE, filter out nulls and newlines, * since they're control characters. */ if (allow_cntrls) { /* Null to newline, if needed. */ if (output[i] == '\0') output[i] = '\n'; /* Newline to Enter, if needed. */ else if (output[i] == '\n') { /* Set got_enter to TRUE to indicate that we got the * Enter key, put back the rest of the characters in * output so that they can be parsed and output again, * and get out. */ *got_enter = TRUE; unparse_kbinput(output + i, output_len - i); return; } } /* Interpret the next multibyte character. If it's an invalid * multibyte character, interpret it as though it's a byte * character. */ char_buf_len = parse_mbchar(output + i, char_buf, NULL, NULL); i += char_buf_len; /* If allow_cntrls is FALSE, filter out a control character. */ if (!allow_cntrls && is_cntrl_mbchar(output + i - char_buf_len)) continue; /* More dangerousness fun =) */ answer = charealloc(answer, answer_len + (char_buf_len * 2)); assert(statusbar_x <= answer_len); charmove(&answer[statusbar_x + char_buf_len], &answer[statusbar_x], answer_len - statusbar_x + char_buf_len); charcpy(&answer[statusbar_x], char_buf, char_buf_len); answer_len += char_buf_len; do_statusbar_right(); } free(char_buf); } /* Return the placewewant associated with current_x, i.e, the zero-based * column position of the cursor. The value will be no smaller than * current_x. */ size_t xplustabs(void) { return strnlenpt(current->data, current_x); } /* actual_x() gives the index in str of the character displayed at * column xplus. That is, actual_x() is the largest value such that * strnlenpt(str, actual_x(str, xplus)) <= xplus. */ size_t actual_x(const char *str, size_t xplus) { size_t i = 0; /* The position in str, returned. */ size_t length = 0; /* The screen display width to str[i]. */ assert(str != NULL); while (*str != '\0') { int str_len = parse_mbchar(str, NULL, NULL, &length); if (length > xplus) break; i += str_len; str += str_len; } return i; } /* A strlen() with tabs factored in, similar to xplustabs(). How many * columns wide are the first size characters of str? */ size_t strnlenpt(const char *str, size_t size) { size_t length = 0; /* The screen display width to str[i]. */ if (size == 0) return 0; assert(str != NULL); while (*str != '\0') { int str_len = parse_mbchar(str, NULL, NULL, &length); str += str_len; if (size <= str_len) break; size -= str_len; } return length; } /* How many columns wide is buf? */ size_t strlenpt(const char *buf) { return strnlenpt(buf, (size_t)-1); } void blank_titlebar(void) { mvwaddstr(topwin, 0, 0, hblank); } void blank_topbar(void) { if (!ISSET(MORE_SPACE)) mvwaddstr(topwin, 1, 0, hblank); } void blank_edit(void) { int i; for (i = 0; i < editwinrows; i++) mvwaddstr(edit, i, 0, hblank); } void blank_statusbar(void) { mvwaddstr(bottomwin, 0, 0, hblank); } void blank_bottombars(void) { if (!ISSET(NO_HELP)) { mvwaddstr(bottomwin, 1, 0, hblank); mvwaddstr(bottomwin, 2, 0, hblank); } } void check_statusblank(void) { if (statusblank > 1) statusblank--; else if (statusblank == 1 && !ISSET(CONSTUPDATE)) { statusblank = 0; blank_statusbar(); wnoutrefresh(bottomwin); reset_cursor(); wrefresh(edit); } } /* Convert buf into a string that can be displayed on screen. The * caller wants to display buf starting with column start_col, and * extending for at most len columns. start_col is zero-based. len is * one-based, so len == 0 means you get "" returned. The returned * string is dynamically allocated, and should be freed. If dollars is * TRUE, the caller might put "$" at the beginning or end of the line if * it's too long. */ char *display_string(const char *buf, size_t start_col, size_t len, bool dollars) { size_t start_index; /* Index in buf of the first character shown. */ size_t column; /* Screen column that start_index corresponds to. */ size_t alloc_len; /* The length of memory allocated for converted. */ char *converted; /* The string we return. */ size_t index; /* Current position in converted. */ char *buf_mb = charalloc(mb_cur_max()); int buf_mb_len; bool bad_char; /* If dollars is TRUE, make room for the "$" at the end of the * line. */ if (dollars && len > 0 && strlenpt(buf) > start_col + len) len--; if (len == 0) return mallocstrcpy(NULL, ""); start_index = actual_x(buf, start_col); column = strnlenpt(buf, start_index); assert(column <= start_col); /* Allocate enough space for the entire line. It should contain * (len + 2) multibyte characters at most. */ alloc_len = mb_cur_max() * (len + 2); converted = charalloc(alloc_len + 1); index = 0; if (column < start_col || (dollars && column > 0 && buf[start_index] != '\t')) { /* We don't display all of buf[start_index] since it starts to * the left of the screen. */ buf_mb_len = parse_mbchar(buf + start_index, buf_mb, NULL, NULL); if (is_cntrl_mbchar(buf_mb)) { if (column < start_col) { char *ctrl_buf_mb = charalloc(mb_cur_max()); int ctrl_buf_mb_len, i; ctrl_buf_mb = control_mbrep(buf_mb, ctrl_buf_mb, &ctrl_buf_mb_len); for (i = 0; i < ctrl_buf_mb_len; i++) converted[index++] = ctrl_buf_mb[i]; start_col += mbwidth(ctrl_buf_mb); free(ctrl_buf_mb); start_index += buf_mb_len; } } #ifdef NANO_WIDE else if (mbwidth(buf_mb) > 1) { converted[index++] = ' '; start_col++; start_index += buf_mb_len; } #endif } while (index < alloc_len - 1 && buf[start_index] != '\0') { buf_mb_len = parse_mbchar(buf + start_index, buf_mb, &bad_char, NULL); if (*buf_mb == '\t') { #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) if (ISSET(WHITESPACE_DISPLAY)) { int i; for (i = 0; i < whitespace_len[0]; i++) converted[index++] = whitespace[i]; } else #endif converted[index++] = ' '; start_col++; while (start_col % tabsize != 0) { converted[index++] = ' '; start_col++; } /* If buf contains a control character, interpret it. If it * contains an invalid multibyte control character, interpret * that character as though it's a normal control character. */ } else if (is_cntrl_mbchar(buf_mb)) { char *ctrl_buf_mb = charalloc(mb_cur_max()); int ctrl_buf_mb_len, i; converted[index++] = '^'; start_col++; ctrl_buf_mb = control_mbrep(buf_mb, ctrl_buf_mb, &ctrl_buf_mb_len); for (i = 0; i < ctrl_buf_mb_len; i++) converted[index++] = ctrl_buf_mb[i]; start_col += mbwidth(ctrl_buf_mb); free(ctrl_buf_mb); } else if (*buf_mb == ' ') { #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) if (ISSET(WHITESPACE_DISPLAY)) { int i; for (i = whitespace_len[0]; i < whitespace_len[0] + whitespace_len[1]; i++) converted[index++] = whitespace[i]; } else #endif converted[index++] = ' '; start_col++; } else { int i; #ifdef NANO_WIDE /* If buf contains an invalid multibyte non-control * character, interpret that character as though it's a * normal non-control character. */ if (!ISSET(NO_UTF8) && bad_char) { char *bad_buf_mb; int bad_buf_mb_len; bad_buf_mb = make_mbchar((unsigned char)*buf_mb, &bad_buf_mb_len); for (i = 0; i < bad_buf_mb_len; i++) converted[index++] = bad_buf_mb[i]; start_col += mbwidth(bad_buf_mb); free(bad_buf_mb); } else { #endif for (i = 0; i < buf_mb_len; i++) converted[index++] = buf[start_index + i]; start_col += mbwidth(buf_mb); #ifdef NANO_WIDE } #endif } start_index += buf_mb_len; } if (index < alloc_len - 1) converted[index] = '\0'; /* Make sure converted takes up no more than len columns. */ index = actual_x(converted, len); null_at(&converted, index); return converted; } /* Repaint the statusbar when getting a character in nanogetstr(). buf * should be no longer than max(0, COLS - 4). * * Note that we must turn on A_REVERSE here, since do_help() turns it * off! */ void nanoget_repaint(const char *buf, const char *inputbuf, size_t x) { size_t x_real = strnlenpt(inputbuf, x); int wid = COLS - strlenpt(buf) - 2; assert(x <= strlen(inputbuf)); wattron(bottomwin, A_REVERSE); blank_statusbar(); mvwaddstr(bottomwin, 0, 0, buf); waddch(bottomwin, ':'); if (COLS > 1) waddch(bottomwin, x_real < wid ? ' ' : '$'); if (COLS > 2) { size_t page_start = x_real - x_real % wid; char *expanded = display_string(inputbuf, page_start, wid, FALSE); assert(wid > 0); assert(strlenpt(expanded) <= wid); waddstr(bottomwin, expanded); free(expanded); wmove(bottomwin, 0, COLS - wid + x_real - page_start); } else wmove(bottomwin, 0, COLS - 1); wattroff(bottomwin, A_REVERSE); } /* Get the input from the keyboard; this should only be called from * statusq(). */ int nanogetstr(bool allow_tabs, const char *buf, const char *curranswer, #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) filestruct **history_list, #endif const shortcut *s #ifndef DISABLE_TABCOMP , bool *list #endif ) { int kbinput; bool meta_key, func_key, s_or_t, ran_func, finished; size_t curranswer_len; #ifndef DISABLE_TABCOMP bool tabbed = FALSE; /* Whether we've pressed Tab. */ #endif #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) #ifndef DISABLE_TABCOMP int last_kbinput = ERR; /* The key we pressed before the current key. */ size_t complete_len = 0; /* The length of the original string that we're trying to * tab complete, if any. */ #endif char *history = NULL; /* The current history string. */ char *magichistory = NULL; /* The temporary string typed at the bottom of the history, if * any. */ #endif answer = mallocstrcpy(answer, curranswer); curranswer_len = strlen(answer); /* Only put statusbar_x at the end of the string if it's * uninitialized, if it would be past the end of curranswer, or if * resetstatuspos is TRUE. Otherwise, leave it alone. This is so * the cursor position stays at the same place if a prompt-changing * toggle is pressed. */ if (statusbar_x == (size_t)-1 || statusbar_x > curranswer_len || resetstatuspos) statusbar_x = curranswer_len; currshortcut = s; nanoget_repaint(buf, answer, statusbar_x); /* Refresh the edit window and the statusbar before getting * input. */ wnoutrefresh(edit); wrefresh(bottomwin); /* If we're using restricted mode, we aren't allowed to change the * name of a file once it has one because that would allow writing * to files not specified on the command line. In this case, * disable all keys that would change the text if the filename isn't * blank and we're at the "Write File" prompt. */ while ((kbinput = do_statusbar_input(&meta_key, &func_key, &s_or_t, &ran_func, &finished, TRUE)) != NANO_CANCEL_KEY && kbinput != NANO_ENTER_KEY) { assert(statusbar_x <= strlen(answer)); #ifndef DISABLE_TABCOMP if (kbinput != NANO_TAB_KEY) tabbed = FALSE; #endif switch (kbinput) { case NANO_TAB_KEY: #ifndef DISABLE_TABCOMP #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) if (history_list != NULL) { if (last_kbinput != NANO_TAB_KEY) complete_len = strlen(answer); if (complete_len > 0) { answer = mallocstrcpy(answer, get_history_completion(history_list, answer, complete_len)); statusbar_x = strlen(answer); } } else #endif if (allow_tabs) answer = input_tab(answer, &statusbar_x, &tabbed, list); #endif break; case NANO_PREVLINE_KEY: #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) if (history_list != NULL) { /* If we're scrolling up at the bottom of the * history list, answer isn't blank, and * magichistory isn't set, save answer in * magichistory. */ if ((*history_list)->next == NULL && answer[0] != '\0' && magichistory == NULL) magichistory = mallocstrcpy(NULL, answer); /* Get the older search from the history list and * save it in answer. If there is no older search, * don't do anything. */ if ((history = get_history_older(history_list)) != NULL) { answer = mallocstrcpy(answer, history); statusbar_x = strlen(answer); } /* This key has a shortcut list entry when it's used * to move to an older search, which means that * finished has been set to TRUE. Set it back to * FALSE here, so that we aren't kicked out of the * statusbar prompt. */ finished = FALSE; } #endif /* !NANO_SMALL && ENABLE_NANORC */ break; case NANO_NEXTLINE_KEY: #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) if (history_list != NULL) { /* Get the newer search from the history list and * save it in answer. If there is no newer search, * don't do anything. */ if ((history = get_history_newer(history_list)) != NULL) { answer = mallocstrcpy(answer, history); statusbar_x = strlen(answer); } /* If, after scrolling down, we're at the bottom of * the history list, answer is blank, and * magichistory is set, save magichistory in * answer. */ if ((*history_list)->next == NULL && answer[0] == '\0' && magichistory != NULL) { answer = mallocstrcpy(answer, magichistory); statusbar_x = strlen(answer); } } #endif /* !NANO_SMALL && ENABLE_NANORC */ break; } /* If we have a shortcut with an associated function, break out * if we're finished after running or trying to run the * function. */ if (finished) break; #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) && !defined(DISABLE_TABCOMP) last_kbinput = kbinput; #endif nanoget_repaint(buf, answer, statusbar_x); wrefresh(bottomwin); } #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) /* Free magichistory if we need to. */ if (magichistory != NULL) free(magichistory); #endif /* We finished putting in an answer or ran a normal shortcut's * associated function, so reset statusbar_x. */ if (kbinput == NANO_CANCEL_KEY || kbinput == NANO_ENTER_KEY || ran_func) statusbar_x = (size_t)-1; return kbinput; } /* Ask a question on the statusbar. Answer will be stored in answer * global. Returns -1 on aborted enter, -2 on a blank string, and 0 * otherwise, the valid shortcut key caught. curranswer is any editable * text that we want to put up by default. * * The allow_tabs parameter indicates whether we should allow tabs to be * interpreted. */ int statusq(bool allow_tabs, const shortcut *s, const char *curranswer, #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) filestruct **history_list, #endif const char *msg, ...) { va_list ap; char *foo = charalloc(((COLS - 4) * mb_cur_max()) + 1); int retval; #ifndef DISABLE_TABCOMP bool list = FALSE; #endif bottombars(s); va_start(ap, msg); vsnprintf(foo, (COLS - 4) * mb_cur_max(), msg, ap); va_end(ap); null_at(&foo, actual_x(foo, COLS - 4)); retval = nanogetstr(allow_tabs, foo, curranswer, #ifndef NANO_SMALL history_list, #endif s #ifndef DISABLE_TABCOMP , &list #endif ); free(foo); resetstatuspos = FALSE; switch (retval) { case NANO_CANCEL_KEY: retval = -1; resetstatuspos = TRUE; break; case NANO_ENTER_KEY: retval = (answer[0] == '\0') ? -2 : 0; resetstatuspos = TRUE; break; } blank_statusbar(); #ifdef DEBUG fprintf(stderr, "answer = \"%s\"\n", answer); #endif #ifndef DISABLE_TABCOMP /* If we've done tab completion, there might be a list of * filename matches on the edit window at this point. Make sure * that they're cleared off. */ if (list) edit_refresh(); #endif return retval; } void statusq_abort(void) { resetstatuspos = TRUE; } void titlebar(const char *path) { int space; /* The space we have available for display. */ size_t verlen = strlenpt(VERMSG) + 1; /* The length of the version message in columns. */ const char *prefix; /* "File:", "Dir:", or "New Buffer". Goes before filename. */ size_t prefixlen; /* The length of the prefix in columns, plus one. */ const char *state; /* "Modified", "View", or spaces the length of "Modified". * Tells the state of this buffer. */ size_t statelen = 0; /* The length of the state in columns, plus one. */ char *exppath = NULL; /* The file name, expanded for display. */ bool newfie = FALSE; /* Do we say "New Buffer"? */ bool dots = FALSE; /* Do we put an ellipsis before the path? */ assert(path != NULL || filename != NULL); assert(COLS >= 0); wattron(topwin, A_REVERSE); blank_titlebar(); if (COLS <= 5 || COLS - 5 < verlen) space = 0; else { space = COLS - 5 - verlen; /* Reserve 2/3 of the screen plus one column for after the * version message. */ if (space < COLS - (COLS / 3) + 1) space = COLS - (COLS / 3) + 1; } if (COLS > 4) { /* The version message should only take up 1/3 of the screen * minus one column. */ mvwaddnstr(topwin, 0, 2, VERMSG, (COLS / 3) - 3); waddstr(topwin, " "); } if (ISSET(MODIFIED)) state = _("Modified"); else if (ISSET(VIEW_MODE)) state = _("View"); else { if (space > 0) statelen = strnlenpt(_("Modified"), space - 1) + 1; state = &hblank[COLS - statelen]; } statelen = strnlenpt(state, COLS); /* We need a space before state. */ if ((ISSET(MODIFIED) || ISSET(VIEW_MODE)) && statelen < COLS) statelen++; assert(space >= 0); if (space == 0 || statelen >= space) goto the_end; #ifndef DISABLE_BROWSER if (path != NULL) prefix = _("DIR:"); else #endif if (filename[0] == '\0') { prefix = _("New Buffer"); newfie = TRUE; } else prefix = _("File:"); assert(statelen < space); prefixlen = strnlenpt(prefix, space - statelen); /* If newfie is FALSE, we need a space after prefix. */ if (!newfie && prefixlen + statelen < space) prefixlen++; if (path == NULL) path = filename; if (space >= prefixlen + statelen) space -= prefixlen + statelen; else space = 0; /* space is now the room we have for the file name. */ if (!newfie) { size_t lenpt = strlenpt(path), start_col; dots = (lenpt > space); if (dots) { start_col = lenpt - space + 3; space -= 3; } else start_col = 0; exppath = display_string(path, start_col, space, FALSE); } if (!dots) { size_t exppathlen = newfie ? 0 : strlenpt(exppath); /* The length of the expanded filename. */ /* There is room for the whole filename, so we center it. */ waddnstr(topwin, hblank, (space - exppathlen) / 3); waddnstr(topwin, prefix, actual_x(prefix, prefixlen)); if (!newfie) { assert(strlenpt(prefix) + 1 == prefixlen); waddch(topwin, ' '); waddstr(topwin, exppath); } } else { /* We will say something like "File: ...ename". */ waddnstr(topwin, prefix, actual_x(prefix, prefixlen)); if (space <= -3 || newfie) goto the_end; waddch(topwin, ' '); waddnstr(topwin, "...", space + 3); if (space <= 0) goto the_end; waddstr(topwin, exppath); } the_end: free(exppath); if (COLS <= 1 || statelen >= COLS - 1) mvwaddnstr(topwin, 0, 0, state, actual_x(state, COLS)); else { assert(COLS - statelen - 2 >= 0); mvwaddch(topwin, 0, COLS - statelen - 2, ' '); mvwaddnstr(topwin, 0, COLS - statelen - 1, state, actual_x(state, statelen)); } wattroff(topwin, A_REVERSE); wnoutrefresh(topwin); reset_cursor(); wrefresh(edit); } /* If modified is not already set, set it and update titlebar. */ void set_modified(void) { if (!ISSET(MODIFIED)) { SET(MODIFIED); titlebar(NULL); } } void statusbar(const char *msg, ...) { va_list ap; va_start(ap, msg); /* Curses mode is turned off. If we use wmove() now, it will muck * up the terminal settings. So we just use vfprintf(). */ if (curses_ended) { vfprintf(stderr, msg, ap); va_end(ap); return; } /* Blank out the line. */ blank_statusbar(); if (COLS >= 4) { char *bar, *foo; size_t start_x = 0, foo_len; #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) bool old_whitespace = ISSET(WHITESPACE_DISPLAY); UNSET(WHITESPACE_DISPLAY); #endif bar = charalloc(mb_cur_max() * (COLS - 3)); vsnprintf(bar, mb_cur_max() * (COLS - 3), msg, ap); va_end(ap); foo = display_string(bar, 0, COLS - 4, FALSE); #if !defined(NANO_SMALL) && defined(ENABLE_NANORC) if (old_whitespace) SET(WHITESPACE_DISPLAY); #endif free(bar); foo_len = strlenpt(foo); start_x = (COLS - foo_len - 4) / 2; wmove(bottomwin, 0, start_x); wattron(bottomwin, A_REVERSE); waddstr(bottomwin, "[ "); waddstr(bottomwin, foo); free(foo); waddstr(bottomwin, " ]"); wattroff(bottomwin, A_REVERSE); wnoutrefresh(bottomwin); reset_cursor(); wrefresh(edit); /* Leave the cursor at its position in the edit window, not * in the statusbar. */ } SET(DISABLE_CURPOS); statusblank = 26; } void bottombars(const shortcut *s) { size_t i, colwidth, slen; if (ISSET(NO_HELP)) return; if (s == main_list) { slen = MAIN_VISIBLE; assert(slen <= length_of_list(s)); } else { slen = length_of_list(s); /* Don't show any more shortcuts than the main list does. */ if (slen > MAIN_VISIBLE) slen = MAIN_VISIBLE; } /* There will be this many characters per column. We need at least * 3 to display anything properly. */ colwidth = COLS / ((slen / 2) + (slen % 2)); blank_bottombars(); for (i = 0; i < slen; i++, s = s->next) { const char *keystr; char foo[4] = ""; /* Yucky sentinel values that we can't handle a better way. */ if (s->ctrlval == NANO_CONTROL_SPACE) strcpy(foo, "^ "); else if (s->ctrlval == NANO_CONTROL_8) strcpy(foo, "^?"); /* Normal values. Assume that the shortcut has an equivalent * control key, meta key sequence, or both. */ else if (s->ctrlval != NANO_NO_KEY) sprintf(foo, "^%c", s->ctrlval + 64); else if (s->metaval != NANO_NO_KEY) sprintf(foo, "M-%c", toupper(s->metaval)); keystr = foo; wmove(bottomwin, 1 + i % 2, (i / 2) * colwidth); onekey(keystr, s->desc, colwidth); } wnoutrefresh(bottomwin); reset_cursor(); wrefresh(edit); } /* Write a shortcut key to the help area at the bottom of the window. * keystroke is e.g. "^G" and desc is e.g. "Get Help". We are careful * to write at most len characters, even if len is very small and * keystroke and desc are long. Note that waddnstr(,,(size_t)-1) adds * the whole string! We do not bother padding the entry with blanks. */ void onekey(const char *keystroke, const char *desc, size_t len) { size_t keystroke_len = strlenpt(keystroke) + 1; assert(keystroke != NULL && desc != NULL); wattron(bottomwin, A_REVERSE); waddnstr(bottomwin, keystroke, actual_x(keystroke, len)); wattroff(bottomwin, A_REVERSE); if (len > keystroke_len) len -= keystroke_len; else len = 0; if (len > 0) { waddch(bottomwin, ' '); waddnstr(bottomwin, desc, actual_x(desc, len)); } } /* And so start the display update routines. */ #ifndef NDEBUG int check_linenumbers(const filestruct *fileptr) { int check_line = 0; const filestruct *filetmp; for (filetmp = edittop; filetmp != fileptr; filetmp = filetmp->next) check_line++; return check_line; } #endif /* nano scrolls horizontally within a line in chunks. This function * returns the column number of the first character displayed in the * window when the cursor is at the given column. Note that * 0 <= column - get_page_start(column) < COLS. */ size_t get_page_start(size_t column) { assert(COLS > 0); if (column == 0 || column < COLS - 1) return 0; else if (COLS > 9) return column - 7 - (column - 7) % (COLS - 8); else if (COLS > 2) return column - (COLS - 2); else return column - (COLS - 1); /* The parentheses are necessary to avoid overflow. */ } /* Resets current_y, based on the position of current, and puts the * cursor in the edit window at (current_y, current_x). */ void reset_cursor(void) { /* If we haven't opened any files yet, put the cursor in the top * left corner of the edit window and get out. */ if (edittop == NULL || current == NULL) { wmove(edit, 0, 0); return; } current_y = current->lineno - edittop->lineno; if (current_y < editwinrows) { size_t x = xplustabs(); wmove(edit, current_y, x - get_page_start(x)); } } /* edit_add() takes care of the job of actually painting a line into the * edit window. fileptr is the line to be painted, at row yval of the * window. converted is the actual string to be written to the window, * with tabs and control characters replaced by strings of regular * characters. start is the column number of the first character of * this page. That is, the first character of converted corresponds to * character number actual_x(fileptr->data, start) of the line. */ void edit_add(const filestruct *fileptr, const char *converted, int yval, size_t start) { #if !defined(NANO_SMALL) || defined(ENABLE_COLOR) size_t startpos = actual_x(fileptr->data, start); /* The position in fileptr->data of the leftmost character * that displays at least partially on the window. */ size_t endpos = actual_x(fileptr->data, start + COLS - 1) + 1; /* The position in fileptr->data of the first character that is * completely off the window to the right. * * Note that endpos might be beyond the null terminator of the * string. */ #endif assert(fileptr != NULL && converted != NULL); assert(strlenpt(converted) <= COLS); /* Just paint the string in any case (we'll add color or reverse on * just the text that needs it). */ mvwaddstr(edit, yval, 0, converted); #ifdef ENABLE_COLOR if (colorstrings != NULL && !ISSET(NO_COLOR_SYNTAX)) { const colortype *tmpcolor = colorstrings; for (; tmpcolor != NULL; tmpcolor = tmpcolor->next) { int x_start; /* Starting column for mvwaddnstr. Zero-based. */ int paintlen; /* Number of chars to paint on this line. There are COLS * characters on a whole line. */ size_t index; /* Index in converted where we paint. */ regmatch_t startmatch; /* match position for start_regexp */ regmatch_t endmatch; /* match position for end_regexp */ if (tmpcolor->bright) wattron(edit, A_BOLD); wattron(edit, COLOR_PAIR(tmpcolor->pairnum)); /* Two notes about regexec(). Return value 0 means there is * a match. Also, rm_eo is the first non-matching character * after the match. */ /* First case, tmpcolor is a single-line expression. */ if (tmpcolor->end == NULL) { size_t k = 0; /* We increment k by rm_eo, to move past the end of the * last match. Even though two matches may overlap, we * want to ignore them, so that we can highlight * C-strings correctly. */ while (k < endpos) { /* Note the fifth parameter to regexec(). It says * not to match the beginning-of-line character * unless k is 0. If regexec() returns REG_NOMATCH, * there are no more matches in the line. */ if (regexec(&tmpcolor->start, &fileptr->data[k], 1, &startmatch, (k == 0) ? 0 : REG_NOTBOL) == REG_NOMATCH) break; /* Translate the match to the beginning of the * line. */ startmatch.rm_so += k; startmatch.rm_eo += k; if (startmatch.rm_so == startmatch.rm_eo) { startmatch.rm_eo++; statusbar( _("Refusing zero-length regex match")); } else if (startmatch.rm_so < endpos && startmatch.rm_eo > startpos) { if (startmatch.rm_so <= startpos) x_start = 0; else x_start = strnlenpt(fileptr->data, startmatch.rm_so) - start; index = actual_x(converted, x_start); paintlen = actual_x(converted + index, strnlenpt(fileptr->data, startmatch.rm_eo) - start - x_start); assert(0 <= x_start && 0 <= paintlen); mvwaddnstr(edit, yval, x_start, converted + index, paintlen); } k = startmatch.rm_eo; } } else { /* This is a multi-line regexp. There are two steps. * First, we have to see if the beginning of the line is * colored by a start on an earlier line, and an end on * this line or later. * * We find the first line before fileptr matching the * start. If every match on that line is followed by an * end, then go to step two. Otherwise, find the next * line after start_line matching the end. If that line * is not before fileptr, then paint the beginning of * this line. */ const filestruct *start_line = fileptr->prev; /* The first line before fileptr matching start. */ regoff_t start_col; /* Where it starts in that line. */ const filestruct *end_line; while (start_line != NULL && regexec(&tmpcolor->start, start_line->data, 1, &startmatch, 0) == REG_NOMATCH) { /* If there is an end on this line, there is no need * to look for starts on earlier lines. */ if (regexec(tmpcolor->end, start_line->data, 0, NULL, 0) == 0) goto step_two; start_line = start_line->prev; } /* No start found, so skip to the next step. */ if (start_line == NULL) goto step_two; /* Now start_line is the first line before fileptr * containing a start match. Is there a start on this * line not followed by an end on this line? */ start_col = 0; while (TRUE) { start_col += startmatch.rm_so; startmatch.rm_eo -= startmatch.rm_so; if (regexec(tmpcolor->end, start_line->data + start_col + startmatch.rm_eo, 0, NULL, (start_col + startmatch.rm_eo == 0) ? 0 : REG_NOTBOL) == REG_NOMATCH) /* No end found after this start. */ break; start_col++; if (regexec(&tmpcolor->start, start_line->data + start_col, 1, &startmatch, REG_NOTBOL) == REG_NOMATCH) /* No later start on this line. */ goto step_two; } /* Indeed, there is a start not followed on this line by * an end. */ /* We have already checked that there is no end before * fileptr and after the start. Is there an end after * the start at all? We don't paint unterminated * starts. */ end_line = fileptr; while (end_line != NULL && regexec(tmpcolor->end, end_line->data, 1, &endmatch, 0) == REG_NOMATCH) end_line = end_line->next; /* No end found, or it is too early. */ if (end_line == NULL || (end_line == fileptr && endmatch.rm_eo <= startpos)) goto step_two; /* Now paint the start of fileptr. */ if (end_line != fileptr) /* If the start of fileptr is on a different line * from the end, paintlen is -1, meaning that * everything on the line gets painted. */ paintlen = -1; else /* Otherwise, paintlen is the expanded location of * the end of the match minus the expanded location * of the beginning of the page. */ paintlen = actual_x(converted, strnlenpt(fileptr->data, endmatch.rm_eo) - start); mvwaddnstr(edit, yval, 0, converted, paintlen); step_two: /* Second step, we look for starts on this line. */ start_col = 0; while (start_col < endpos) { if (regexec(&tmpcolor->start, fileptr->data + start_col, 1, &startmatch, (start_col == 0) ? 0 : REG_NOTBOL) == REG_NOMATCH || start_col + startmatch.rm_so >= endpos) /* No more starts on this line. */ break; /* Translate the match to be relative to the * beginning of the line. */ startmatch.rm_so += start_col; startmatch.rm_eo += start_col; if (startmatch.rm_so <= startpos) x_start = 0; else x_start = strnlenpt(fileptr->data, startmatch.rm_so) - start; index = actual_x(converted, x_start); if (regexec(tmpcolor->end, fileptr->data + startmatch.rm_eo, 1, &endmatch, (startmatch.rm_eo == 0) ? 0 : REG_NOTBOL) == 0) { /* Translate the end match to be relative to the * beginning of the line. */ endmatch.rm_so += startmatch.rm_eo; endmatch.rm_eo += startmatch.rm_eo; /* There is an end on this line. But does it * appear on this page, and is the match more * than zero characters long? */ if (endmatch.rm_eo > startpos && endmatch.rm_eo > startmatch.rm_so) { paintlen = actual_x(converted + index, strnlenpt(fileptr->data, endmatch.rm_eo) - start - x_start); assert(0 <= x_start && x_start < COLS); mvwaddnstr(edit, yval, x_start, converted + index, paintlen); } } else { /* There is no end on this line. But we haven't * yet looked for one on later lines. */ end_line = fileptr->next; while (end_line != NULL && regexec(tmpcolor->end, end_line->data, 0, NULL, 0) == REG_NOMATCH) end_line = end_line->next; if (end_line != NULL) { assert(0 <= x_start && x_start < COLS); mvwaddnstr(edit, yval, x_start, converted + index, -1); /* We painted to the end of the line, so * don't bother checking any more starts. */ break; } } start_col = startmatch.rm_so + 1; } } wattroff(edit, A_BOLD); wattroff(edit, COLOR_PAIR(tmpcolor->pairnum)); } } #endif /* ENABLE_COLOR */ #ifndef NANO_SMALL if (ISSET(MARK_ISSET) && (fileptr->lineno <= mark_beginbuf->lineno || fileptr->lineno <= current->lineno) && (fileptr->lineno >= mark_beginbuf->lineno || fileptr->lineno >= current->lineno)) { /* fileptr is at least partially selected. */ const filestruct *top; /* Either current or mark_beginbuf, whichever is first. */ size_t top_x; /* current_x or mark_beginx, corresponding to top. */ const filestruct *bot; size_t bot_x; int x_start; /* Starting column for mvwaddnstr. Zero-based. */ int paintlen; /* Number of chars to paint on this line. There are COLS * characters on a whole line. */ size_t index; /* Index in converted where we paint. */ mark_order(&top, &top_x, &bot, &bot_x, NULL); if (top->lineno < fileptr->lineno || top_x < startpos) top_x = startpos; if (bot->lineno > fileptr->lineno || bot_x > endpos) bot_x = endpos; /* The selected bit of fileptr is on this page. */ if (top_x < endpos && bot_x > startpos) { assert(startpos <= top_x); /* x_start is the expanded location of the beginning of the * mark minus the beginning of the page. */ x_start = strnlenpt(fileptr->data, top_x) - start; if (bot_x >= endpos) /* If the end of the mark is off the page, paintlen is * -1, meaning that everything on the line gets * painted. */ paintlen = -1; else /* Otherwise, paintlen is the expanded location of the * end of the mark minus the expanded location of the * beginning of the mark. */ paintlen = strnlenpt(fileptr->data, bot_x) - (x_start + start); /* If x_start is before the beginning of the page, shift * paintlen x_start characters to compensate, and put * x_start at the beginning of the page. */ if (x_start < 0) { paintlen += x_start; x_start = 0; } assert(x_start >= 0 && x_start <= strlen(converted)); index = actual_x(converted, x_start); if (paintlen > 0) paintlen = actual_x(converted + index, paintlen); wattron(edit, A_REVERSE); mvwaddnstr(edit, yval, x_start, converted + index, paintlen); wattroff(edit, A_REVERSE); } } #endif /* !NANO_SMALL */ } /* Just update one line in the edit buffer. This is basically a wrapper * for edit_add(). * * If fileptr != current, then index is considered 0. The line will be * displayed starting with fileptr->data[index]. Likely args are * current_x or 0. */ void update_line(const filestruct *fileptr, size_t index) { int line; /* The line in the edit window that we want to update. */ char *converted; /* fileptr->data converted to have tabs and control characters * expanded. */ size_t page_start; assert(fileptr != NULL); line = fileptr->lineno - edittop->lineno; /* We assume the line numbers are valid. Is that really true? */ assert(line < 0 || line == check_linenumbers(fileptr)); if (line < 0 || line >= editwinrows) return; /* First, blank out the line. */ mvwaddstr(edit, line, 0, hblank); /* Next, convert variables that index the line to their equivalent * positions in the expanded line. */ index = (fileptr == current) ? strnlenpt(fileptr->data, index) : 0; page_start = get_page_start(index); /* Expand the line, replacing tabs with spaces, and control * characters with their displayed forms. */ converted = display_string(fileptr->data, page_start, COLS, TRUE); /* Paint the line. */ edit_add(fileptr, converted, line, page_start); free(converted); if (page_start > 0) mvwaddch(edit, line, 0, '$'); if (strlenpt(fileptr->data) > page_start + COLS) mvwaddch(edit, line, COLS - 1, '$'); } /* Return a nonzero value if we need an update after moving * horizontally. We need one if the mark is on or if old_pww and * placewewant are on different pages. */ int need_horizontal_update(size_t old_pww) { return #ifndef NANO_SMALL ISSET(MARK_ISSET) || #endif get_page_start(old_pww) != get_page_start(placewewant); } /* Return a nonzero value if we need an update after moving vertically. * We need one if the mark is on or if old_pww and placewewant * are on different pages. */ int need_vertical_update(size_t old_pww) { return #ifndef NANO_SMALL ISSET(MARK_ISSET) || #endif get_page_start(old_pww) != get_page_start(placewewant); } /* Scroll the edit window in the given direction and the given number * of lines, and draw new lines on the blank lines left after the * scrolling. direction is the direction to scroll, either UP or DOWN, * and nlines is the number of lines to scroll. Don't redraw the old * topmost or bottommost line (where we assume current is) before * scrolling or draw the new topmost or bottommost line after scrolling * (where we assume current will be), since we don't know where we are * on the page or whether we'll stay there. */ void edit_scroll(updown direction, int nlines) { filestruct *foo; int i, scroll_rows = 0; /* Scrolling less than one line or more than editwinrows lines is * redundant, so don't allow it. */ if (nlines < 1 || nlines > editwinrows) return; /* Move the top line of the edit window up or down (depending on the * value of direction) nlines lines. If there are fewer lines of * text than that left, move it to the top or bottom line of the * file (depending on the value of direction). Keep track of * how many lines we moved in scroll_rows. */ for (i = nlines; i > 0; i--) { if (direction == UP) { if (edittop->prev == NULL) break; edittop = edittop->prev; scroll_rows--; } else { if (edittop->next == NULL) break; edittop = edittop->next; scroll_rows++; } } /* Scroll the text on the screen up or down scroll_rows lines, * depending on the value of direction. */ scrollok(edit, TRUE); wscrl(edit, scroll_rows); scrollok(edit, FALSE); foo = edittop; if (direction != UP) { int slines = editwinrows - nlines; for (; slines > 0 && foo != NULL; slines--) foo = foo->next; } /* And draw new lines on the blank top or bottom lines of the edit * window, depending on the value of direction. Don't draw the new * topmost or new bottommost line. */ while (scroll_rows != 0 && foo != NULL) { if (foo->next != NULL) update_line(foo, 0); if (direction == UP) scroll_rows++; else scroll_rows--; foo = foo->next; } } /* Update any lines between old_current and current that need to be * updated. */ void edit_redraw(const filestruct *old_current, size_t old_pww) { int do_refresh = need_vertical_update(0) || need_vertical_update(old_pww); const filestruct *foo; /* If either old_current or current is offscreen, refresh the screen * and get out. */ if (old_current->lineno < edittop->lineno || old_current->lineno >= edittop->lineno + editwinrows || current->lineno < edittop->lineno || current->lineno >= edittop->lineno + editwinrows) { edit_refresh(); return; } /* Update old_current and current if we're not on the first page * and/or we're not on the same page as before. If the mark is on, * update all the lines between old_current and current too. */ foo = old_current; while (foo != current) { if (do_refresh) update_line(foo, 0); #ifndef NANO_SMALL if (!ISSET(MARK_ISSET)) #endif break; if (foo->lineno > current->lineno) foo = foo->prev; else foo = foo->next; } if (do_refresh) update_line(current, current_x); } /* Refresh the screen without changing the position of lines. */ void edit_refresh(void) { if (current->lineno < edittop->lineno || current->lineno >= edittop->lineno + editwinrows) /* Note that edit_update() changes edittop so that it's in range * of current. Thus, when it then calls edit_refresh(), there * is no danger of getting an infinite loop. */ edit_update( #ifndef NANO_SMALL ISSET(SMOOTHSCROLL) ? NONE : #endif CENTER); else { int nlines = 0; const filestruct *foo = edittop; #ifdef DEBUG fprintf(stderr, "edit_refresh(): edittop->lineno = %d\n", edittop->lineno); #endif while (nlines < editwinrows) { update_line(foo, foo == current ? current_x : 0); nlines++; if (foo->next == NULL) break; foo = foo->next; } while (nlines < editwinrows) { mvwaddstr(edit, nlines, 0, hblank); nlines++; } reset_cursor(); wrefresh(edit); } } /* A nice generic routine to update the edit buffer. We keep current in * the same place and move edittop to put it in range of current. */ void edit_update(topmidnone location) { filestruct *foo = current; if (location != TOP) { /* If location is CENTER, we move edittop up (editwinrows / 2) * lines. This puts current at the center of the screen. If * location is NONE, we move edittop up current_y lines if * current_y is in range of the screen, 0 lines if current_y is * less than 0, or (editwinrows - 1) lines if current_y is * greater than (editwinrows - 1). This puts current at the * same place on the screen as before, or at the top or bottom * of the screen if edittop is beyond either. */ int goal; if (location == CENTER) goal = editwinrows / 2; else { goal = current_y; /* Limit goal to (editwinrows - 1) lines maximum. */ if (goal > editwinrows - 1) goal = editwinrows - 1; } for (; goal > 0 && foo->prev != NULL; goal--) foo = foo->prev; } edittop = foo; edit_refresh(); } /* Ask a simple yes/no question, specified in msg, on the statusbar. * Return 1 for Y, 0 for N, 2 for All (if all is TRUE when passed in) * and -1 for abort (^C). */ int do_yesno(bool all, const char *msg) { int ok = -2, width = 16; const char *yesstr; /* String of yes characters accepted. */ const char *nostr; /* Same for no. */ const char *allstr; /* And all, surprise! */ /* yesstr, nostr, and allstr are strings of any length. Each string * consists of all single-byte characters accepted as valid * characters for that value. The first value will be the one * displayed in the shortcuts. Translators: if possible, specify * both the shortcuts for your language and English. For example, * in French: "OoYy" for "Oui". */ yesstr = _("Yy"); nostr = _("Nn"); allstr = _("Aa"); if (!ISSET(NO_HELP)) { char shortstr[3]; /* Temp string for Y, N, A. */ if (COLS < 32) width = COLS / 2; /* Write the bottom of the screen. */ blank_bottombars(); sprintf(shortstr, " %c", yesstr[0]); wmove(bottomwin, 1, 0); onekey(shortstr, _("Yes"), width); if (all) { wmove(bottomwin, 1, width); shortstr[1] = allstr[0]; onekey(shortstr, _("All"), width); } wmove(bottomwin, 2, 0); shortstr[1] = nostr[0]; onekey(shortstr, _("No"), width); wmove(bottomwin, 2, 16); onekey("^C", _("Cancel"), width); } wattron(bottomwin, A_REVERSE); blank_statusbar(); mvwaddnstr(bottomwin, 0, 0, msg, COLS - 1); wattroff(bottomwin, A_REVERSE); wrefresh(bottomwin); do { int kbinput; bool meta_key, func_key; #ifndef DISABLE_MOUSE int mouse_x, mouse_y; #endif kbinput = get_kbinput(edit, &meta_key, &func_key); if (kbinput == NANO_CANCEL_KEY) ok = -1; #ifndef DISABLE_MOUSE else if (kbinput == KEY_MOUSE) { get_mouseinput(&mouse_x, &mouse_y, FALSE); if (mouse_x != -1 && mouse_y != -1 && !ISSET(NO_HELP) && wenclose(bottomwin, mouse_y, mouse_x) && mouse_x < (width * 2) && mouse_y >= editwinrows + 3) { int x = mouse_x / width; /* Did we click in the first column of shortcuts, or * the second? */ int y = mouse_y - editwinrows - 3; /* Did we click in the first row of shortcuts? */ assert(0 <= x && x <= 1 && 0 <= y && y <= 1); /* x = 0 means they clicked Yes or No. * y = 0 means Yes or All. */ ok = -2 * x * y + x - y + 1; if (ok == 2 && !all) ok = -2; } } #endif /* Look for the kbinput in the yes, no and (optionally) all * strings. */ else if (strchr(yesstr, kbinput) != NULL) ok = 1; else if (strchr(nostr, kbinput) != NULL) ok = 0; else if (all && strchr(allstr, kbinput) != NULL) ok = 2; } while (ok == -2); return ok; } void total_update(void) { clearok(edit, TRUE); wrefresh(edit); } void total_refresh(void) { total_update(); titlebar(NULL); edit_refresh(); bottombars(currshortcut); } void display_main_list(void) { bottombars(main_list); } /* If constant is FALSE, the user typed Ctrl-C, so we unconditionally * display the cursor position. Otherwise, we display it only if the * character position changed and DISABLE_CURPOS is not set. * * If constant is TRUE and DISABLE_CURPOS is set, we unset it and update * old_i and old_totsize. That way, we leave the current statusbar * alone, but next time we will display. */ void do_cursorpos(bool constant) { char c; filestruct *f; size_t i = 0; static size_t old_i = 0, old_totsize = (size_t)-1; assert(current != NULL && fileage != NULL && totlines != 0); if (old_totsize == (size_t)-1) old_totsize = totsize; c = current->data[current_x]; f = current->next; current->data[current_x] = '\0'; current->next = NULL; get_totals(fileage, current, NULL, &i); current->data[current_x] = c; current->next = f; /* Check whether totsize is correct. Else there is a bug * somewhere. */ assert(current != filebot || i == totsize); if (constant && ISSET(DISABLE_CURPOS)) { UNSET(DISABLE_CURPOS); old_i = i; old_totsize = totsize; return; } /* If constant is FALSE, display the position on the statusbar * unconditionally; otherwise, only display the position when the * character values have changed. */ if (!constant || old_i != i || old_totsize != totsize) { size_t xpt = xplustabs() + 1; size_t cur_len = strlenpt(current->data) + 1; int linepct = 100 * current->lineno / totlines; int colpct = 100 * xpt / cur_len; int bytepct = (totsize == 0) ? 0 : 100 * i / totsize; statusbar( _("line %ld/%ld (%d%%), col %lu/%lu (%d%%), char %lu/%ld (%d%%)"), current->lineno, totlines, linepct, (unsigned long)xpt, (unsigned long)cur_len, colpct, (unsigned long)i, (unsigned long)totsize, bytepct); UNSET(DISABLE_CURPOS); } old_i = i; old_totsize = totsize; } void do_cursorpos_void(void) { do_cursorpos(FALSE); } #ifndef DISABLE_HELP /* Calculate the next line of help_text, starting at ptr. */ size_t help_line_len(const char *ptr) { int help_cols = (COLS > 24) ? COLS - 8 : 24; /* Try to break the line at (COLS - 8) columns if we have more than * 24 columns, and at 24 columns otherwise. */ size_t retval = break_line(ptr, help_cols, TRUE); size_t retval_save = retval; /* Get the length of the entire line up to a null or a newline. */ while (*(ptr + retval) != '\0' && *(ptr + retval) != '\n') retval += move_mbright(ptr + retval, 0); /* If the entire line doesn't go more than 8 columns beyond where we * tried to break it, we should display it as-is. Otherwise, we * should display it only up to the break. */ if (strnlenpt(ptr, retval) > help_cols + 8) retval = retval_save; return retval; } /* Our dynamic, shortcut-list-compliant help function. */ void do_help(void) { int line = 0; /* The line number in help_text of the first displayed help * line. This variable is zero-based. */ bool no_more = FALSE; /* no_more means the end of the help text is shown, so don't go * down any more. */ int kbinput = ERR; bool meta_key, func_key; bool old_no_help = ISSET(NO_HELP); #ifndef DISABLE_MOUSE const shortcut *oldshortcut = currshortcut; /* We will set currshortcut to allow clicking on the help * screen's shortcut list. */ #endif curs_set(0); blank_edit(); wattroff(bottomwin, A_REVERSE); blank_statusbar(); /* Set help_text as the string to display. */ help_init(); assert(help_text != NULL); #ifndef DISABLE_MOUSE /* Set currshortcut to allow clicking on the help screen's shortcut * list, AFTER help_init(). */ currshortcut = help_list; #endif if (ISSET(NO_HELP)) { /* Make sure that the help screen's shortcut list will actually * be displayed. */ UNSET(NO_HELP); window_init(); } bottombars(help_list); do { int i; int old_line = line; /* We redisplay the help only if it moved. */ const char *ptr = help_text; switch (kbinput) { #ifndef DISABLE_MOUSE case KEY_MOUSE: { int mouse_x, mouse_y; get_mouseinput(&mouse_x, &mouse_y, TRUE); } break; #endif case NANO_PREVPAGE_KEY: case NANO_PREVPAGE_FKEY: if (line > 0) { line -= editwinrows - 2; if (line < 0) line = 0; } break; case NANO_NEXTPAGE_KEY: case NANO_NEXTPAGE_FKEY: if (!no_more) line += editwinrows - 2; break; case NANO_PREVLINE_KEY: if (line > 0) line--; break; case NANO_NEXTLINE_KEY: if (!no_more) line++; break; } if (kbinput == NANO_REFRESH_KEY) total_update(); else { if (line == old_line && kbinput != ERR) goto skip_redisplay; blank_edit(); } /* Calculate where in the text we should be, based on the * page. */ for (i = 0; i < line; i++) { ptr += help_line_len(ptr); if (*ptr == '\n') ptr++; } for (i = 0; i < editwinrows && *ptr != '\0'; i++) { size_t j = help_line_len(ptr); mvwaddnstr(edit, i, 0, ptr, j); ptr += j; if (*ptr == '\n') ptr++; } no_more = (*ptr == '\0'); skip_redisplay: kbinput = get_kbinput(edit, &meta_key, &func_key); } while (kbinput != NANO_EXIT_KEY && kbinput != NANO_EXIT_FKEY); #ifndef DISABLE_MOUSE currshortcut = oldshortcut; #endif if (old_no_help) { blank_bottombars(); wrefresh(bottomwin); SET(NO_HELP); window_init(); } else bottombars(currshortcut); curs_set(1); edit_refresh(); /* The help_init() at the beginning allocated help_text. Since * help_text has now been written to the screen, we don't need it * anymore. */ free(help_text); help_text = NULL; } #endif /* !DISABLE_HELP */ /* Highlight the current word being replaced or spell checked. We * expect word to have tabs and control characters expanded. */ void do_replace_highlight(bool highlight_flag, const char *word) { size_t y = xplustabs(); size_t word_len = strlenpt(word); y = get_page_start(y) + COLS - y; /* Now y is the number of columns that we can display on this * line. */ assert(y > 0); if (word_len > y) y--; reset_cursor(); if (highlight_flag) wattron(edit, A_REVERSE); #ifdef HAVE_REGEX_H /* This is so we can show zero-length regexes. */ if (word_len == 0) waddstr(edit, " "); else #endif waddnstr(edit, word, actual_x(word, y)); if (word_len > y) waddch(edit, '$'); if (highlight_flag) wattroff(edit, A_REVERSE); } #ifdef DEBUG /* Dump the passed-in file structure to stderr. */ void dump_buffer(const filestruct *inptr) { if (inptr == fileage) fprintf(stderr, "Dumping file buffer to stderr...\n"); else if (inptr == cutbuffer) fprintf(stderr, "Dumping cutbuffer to stderr...\n"); else fprintf(stderr, "Dumping a buffer to stderr...\n"); while (inptr != NULL) { fprintf(stderr, "(%d) %s\n", inptr->lineno, inptr->data); inptr = inptr->next; } } /* Dump the file structure to stderr in reverse. */ void dump_buffer_reverse(void) { const filestruct *fileptr = filebot; while (fileptr != NULL) { fprintf(stderr, "(%d) %s\n", fileptr->lineno, fileptr->data); fileptr = fileptr->prev; } } #endif /* DEBUG */ #ifdef NANO_EXTRA #define CREDIT_LEN 53 #define XLCREDIT_LEN 8 /* Easter egg: Display credits. Assume nodelay(edit) is FALSE. */ void do_credits(void) { int crpos = 0, xlpos = 0; const char *credits[CREDIT_LEN] = { NULL, /* "The nano text editor" */ NULL, /* "version" */ VERSION, "", NULL, /* "Brought to you by:" */ "Chris Allegretta", "Jordi Mallach", "Adam Rogoyski", "Rob Siemborski", "Rocco Corsi", "David Lawrence Ramsey", "David Benbennick", "Ken Tyler", "Sven Guckes", "Florian König", "Pauli Virtanen", "Daniele Medri", "Clement Laforet", "Tedi Heriyanto", "Bill Soudan", "Christian Weisgerber", "Erik Andersen", "Big Gaute", "Joshua Jensen", "Ryan Krebs", "Albert Chin", "", NULL, /* "Special thanks to:" */ "Plattsburgh State University", "Benet Laboratories", "Amy Allegretta", "Linda Young", "Jeremy Robichaud", "Richard Kolb II", NULL, /* "The Free Software Foundation" */ "Linus Torvalds", NULL, /* "For ncurses:" */ "Thomas Dickey", "Pavel Curtis", "Zeyd Ben-Halim", "Eric S. Raymond", NULL, /* "and anyone else we forgot..." */ NULL, /* "Thank you for using nano!" */ "", "", "", "", "(c) 1999-2005 Chris Allegretta", "", "", "", "", "http://www.nano-editor.org/" }; const char *xlcredits[XLCREDIT_LEN] = { N_("The nano text editor"), N_("version"), N_("Brought to you by:"), N_("Special thanks to:"), N_("The Free Software Foundation"), N_("For ncurses:"), N_("and anyone else we forgot..."), N_("Thank you for using nano!") }; curs_set(0); nodelay(edit, TRUE); scrollok(edit, TRUE); blank_titlebar(); blank_topbar(); blank_edit(); blank_statusbar(); blank_bottombars(); wrefresh(topwin); wrefresh(edit); wrefresh(bottomwin); for (crpos = 0; crpos < CREDIT_LEN + editwinrows / 2; crpos++) { if (wgetch(edit) != ERR) break; if (crpos < CREDIT_LEN) { char *what; size_t start_x; /* Make sure every credit is a valid multibyte string, since * we can't dynamically set the credits to their multibyte * equivalents when we need to. Sigh... */ if (credits[crpos] == NULL) { assert(0 <= xlpos && xlpos < XLCREDIT_LEN); what = mallocstrcpy(NULL, _(xlcredits[xlpos])); xlpos++; } else what = make_mbstring(credits[crpos]); start_x = COLS / 2 - strlenpt(what) / 2 - 1; mvwaddstr(edit, editwinrows - 1 - (editwinrows % 2), start_x, what); free(what); } napms(700); scroll(edit); wrefresh(edit); if (wgetch(edit) != ERR) break; napms(700); scroll(edit); wrefresh(edit); } scrollok(edit, FALSE); nodelay(edit, FALSE); curs_set(1); total_refresh(); } #endif