smol/src/utils.c

529 lines
14 KiB
C

/**************************************************************************
* utils.c -- This file is part of GNU nano. *
* *
* Copyright (C) 1999-2011, 2013-2021 Free Software Foundation, Inc. *
* Copyright (C) 2016, 2017, 2019 Benno Schulenberg *
* *
* GNU nano is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation, either version 3 of the License, *
* or (at your option) any later version. *
* *
* GNU nano is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
* See the GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see http://www.gnu.org/licenses/. *
* *
**************************************************************************/
#include "prototypes.h"
#include <errno.h>
#ifdef HAVE_PWD_H
#include <pwd.h>
#endif
#include <string.h>
#include <unistd.h>
#ifndef REG_STARTEND
#define REG_STARTEND (0)
#endif
/* Return the user's home directory. We use $HOME, and if that fails,
* we fall back on the home directory of the effective user ID. */
void get_homedir(void)
{
if (homedir == NULL) {
const char *homenv = getenv("HOME");
#ifdef HAVE_PWD_H
/* When HOME isn't set, or when we're root, get the home directory
* from the password file instead. */
if (homenv == NULL || geteuid() == ROOT_UID) {
const struct passwd *userage = getpwuid(geteuid());
if (userage != NULL)
homenv = userage->pw_dir;
}
#endif
/* Only set homedir if some home directory could be determined,
* otherwise keep homedir NULL. */
if (homenv != NULL && *homenv != '\0')
homedir = copy_of(homenv);
}
}
/* Return the filename part of the given path. */
const char *tail(const char *path)
{
const char *slash = strrchr(path, '/');
if (slash == NULL)
return path;
else
return slash + 1;
}
/* Return a copy of the two given strings, welded together. */
char *concatenate(const char *path, const char *name)
{
size_t pathlen = strlen(path);
char *joined = nmalloc(pathlen + strlen(name) + 1);
strcpy(joined, path);
strcpy(joined + pathlen, name);
return joined;
}
/* Return the number of digits that the given integer n takes up. */
int digits(ssize_t n)
{
if (n < 100000) {
if (n < 1000) {
if (n < 100)
return 2;
else
return 3;
} else {
if (n < 10000)
return 4;
else
return 5;
}
} else {
if (n < 10000000) {
if (n < 1000000)
return 6;
else
return 7;
} else {
if (n < 100000000)
return 8;
else
return 9;
}
}
}
/* Read an integer from the given string. If it parses okay,
* store it in *result and return TRUE; otherwise, return FALSE. */
bool parse_num(const char *string, ssize_t *result)
{
ssize_t value;
char *excess;
/* Clear the error number so that we can check it afterward. */
errno = 0;
value = (ssize_t)strtol(string, &excess, 10);
if (errno == ERANGE || *string == '\0' || *excess != '\0')
return FALSE;
*result = value;
return TRUE;
}
/* Read two numbers, separated by a comma, from str, and store them in
* *line and *column. Return FALSE on error, and TRUE otherwise. */
bool parse_line_column(const char *str, ssize_t *line, ssize_t *column)
{
bool retval;
char *firstpart;
const char *comma;
while (*str == ' ')
str++;
comma = strpbrk(str, "m,. /;");
if (comma == NULL)
return parse_num(str, line);
retval = parse_num(comma + 1, column);
if (comma == str)
return retval;
firstpart = copy_of(str);
firstpart[comma - str] = '\0';
retval = parse_num(firstpart, line) && retval;
free(firstpart);
return retval;
}
/* In the given string, recode each embedded NUL as a newline. */
void recode_NUL_to_LF(char *string, size_t length)
{
while (length > 0) {
if (*string == '\0')
*string = '\n';
length--;
string++;
}
}
/* In the given string, recode each embedded newline as a NUL. */
void recode_LF_to_NUL(char *string)
{
while (*string != '\0') {
if (*string == '\n')
*string = '\0';
string++;
}
}
#if !defined(ENABLE_TINY) || defined(ENABLE_TABCOMP) || defined(ENABLE_BROWSER)
/* Free the memory of the given array, which should contain len elements. */
void free_chararray(char **array, size_t len)
{
if (array == NULL)
return;
while (len > 0)
free(array[--len]);
free(array);
}
#endif
#ifdef ENABLE_SPELLER
/* Is the word starting at the given position in 'text' and of the given
* length a separate word? That is: is it not part of a longer word? */
bool is_separate_word(size_t position, size_t length, const char *text)
{
const char *before = text + step_left(text, position);
const char *after = text + position + length;
/* If the word starts at the beginning of the line OR the character before
* the word isn't a letter, and if the word ends at the end of the line OR
* the character after the word isn't a letter, we have a whole word. */
return ((position == 0 || !is_alpha_char(before)) &&
(*after == '\0' || !is_alpha_char(after)));
}
#endif /* ENABLE_SPELLER */
/* Return the position of the needle in the haystack, or NULL if not found.
* When searching backwards, we will find the last match that starts no later
* than the given start; otherwise, we find the first match starting no earlier
* than start. If we are doing a regexp search, and we find a match, we fill
* in the global variable regmatches with at most 9 subexpression matches. */
const char *strstrwrapper(const char *haystack, const char *needle,
const char *start)
{
if (ISSET(USE_REGEXP)) {
if (ISSET(BACKWARDS_SEARCH)) {
size_t last_find, ceiling, far_end;
size_t floor = 0, next_rung = 0;
/* The start of the search range, and the next start. */
if (regexec(&search_regexp, haystack, 1, regmatches, 0) != 0)
return NULL;
far_end = strlen(haystack);
ceiling = start - haystack;
last_find = regmatches[0].rm_so;
/* A result beyond the search range also means: no match. */
if (last_find > ceiling)
return NULL;
/* Move the start-of-range forward until there is no more match;
* then the last match found is the first match backwards. */
while (regmatches[0].rm_so <= ceiling) {
floor = next_rung;
last_find = regmatches[0].rm_so;
/* If this is the last possible match, don't try to advance. */
if (last_find == ceiling)
break;
next_rung = step_right(haystack, last_find);
regmatches[0].rm_so = next_rung;
regmatches[0].rm_eo = far_end;
if (regexec(&search_regexp, haystack, 1, regmatches,
REG_STARTEND) != 0)
break;
}
/* Find the last match again, to get possible submatches. */
regmatches[0].rm_so = floor;
regmatches[0].rm_eo = far_end;
if (regexec(&search_regexp, haystack, 10, regmatches,
REG_STARTEND) != 0)
return NULL;
return haystack + regmatches[0].rm_so;
}
/* Do a forward regex search from the starting point. */
regmatches[0].rm_so = start - haystack;
regmatches[0].rm_eo = strlen(haystack);
if (regexec(&search_regexp, haystack, 10, regmatches,
REG_STARTEND) != 0)
return NULL;
else
return haystack + regmatches[0].rm_so;
}
if (ISSET(CASE_SENSITIVE)) {
if (ISSET(BACKWARDS_SEARCH))
return revstrstr(haystack, needle, start);
else
return strstr(start, needle);
}
if (ISSET(BACKWARDS_SEARCH))
return mbrevstrcasestr(haystack, needle, start);
else
return mbstrcasestr(start, needle);
}
/* This is a wrapper for the malloc() function that properly handles
* things when we run out of memory. */
void *nmalloc(size_t howmuch)
{
void *r = malloc(howmuch);
if (howmuch == 0)
die("Allocating zero bytes. Please report a bug.\n");
if (r == NULL)
die(_("Nano is out of memory!\n"));
return r;
}
/* This is a wrapper for the realloc() function that properly handles
* things when we run out of memory. */
void *nrealloc(void *ptr, size_t howmuch)
{
void *r = realloc(ptr, howmuch);
if (howmuch == 0)
die("Allocating zero bytes. Please report a bug.\n");
if (r == NULL)
die(_("Nano is out of memory!\n"));
return r;
}
/* Return an appropriately reallocated dest string holding a copy of src.
* Usage: "dest = mallocstrcpy(dest, src);". */
char *mallocstrcpy(char *dest, const char *src)
{
size_t count = strlen(src) + 1;
dest = nrealloc(dest, count);
strncpy(dest, src, count);
return dest;
}
/* Return an allocated copy of the first count characters
* of the given string, and NUL-terminate the copy. */
char *measured_copy(const char *string, size_t count)
{
char *thecopy = nmalloc(count + 1);
memcpy(thecopy, string, count);
thecopy[count] = '\0';
return thecopy;
}
/* Return an allocated copy of the given string. */
char *copy_of(const char *string)
{
return measured_copy(string, strlen(string));
}
/* Free the string at dest and return the string at src. */
char *free_and_assign(char *dest, char *src)
{
free(dest);
return src;
}
/* When not softwrapping, nano scrolls the current line horizontally by
* chunks ("pages"). Return the column number of the first character
* displayed in the edit window when the cursor is at the given column. */
size_t get_page_start(size_t column)
{
if (column == 0 || column + 2 < editwincols || ISSET(SOFTWRAP))
return 0;
else if (editwincols > 8)
return column - 6 - (column - 6) % (editwincols - 8);
else
return column - (editwincols - 2);
}
/* Return the placewewant associated with current_x, i.e. the zero-based
* column position of the cursor. */
size_t xplustabs(void)
{
return wideness(openfile->current->data, openfile->current_x);
}
/* Return the index in text of the character that (when displayed) will
* not overshoot the given column. */
size_t actual_x(const char *text, size_t column)
{
const char *start = text;
/* From where we start walking through the text. */
size_t width = 0;
/* The current accumulated span, in columns. */
while (*text != '\0') {
int charlen = advance_over(text, &width);
if (width > column)
break;
text += charlen;
}
return (text - start);
}
/* A strnlen() with tabs and multicolumn characters factored in:
* how many columns wide are the first maxlen bytes of text? */
size_t wideness(const char *text, size_t maxlen)
{
size_t width = 0;
if (maxlen == 0)
return 0;
while (*text != '\0') {
size_t charlen = advance_over(text, &width);
if (maxlen <= charlen)
break;
maxlen -= charlen;
text += charlen;
}
return width;
}
/* Return the number of columns that the given text occupies. */
size_t breadth(const char *text)
{
size_t span = 0;
while (*text != '\0')
text += advance_over(text, &span);
return span;
}
/* Append a new magic line to the end of the buffer. */
void new_magicline(void)
{
openfile->filebot->next = make_new_node(openfile->filebot);
openfile->filebot->next->data = copy_of("");
openfile->filebot = openfile->filebot->next;
openfile->totsize++;
}
#if !defined(NANO_TINY) || defined(ENABLE_HELP)
/* Remove the magic line from the end of the buffer, if there is one and
* it isn't the only line in the file. */
void remove_magicline(void)
{
if (openfile->filebot->data[0] == '\0' &&
openfile->filebot != openfile->filetop) {
openfile->filebot = openfile->filebot->prev;
delete_node(openfile->filebot->next);
openfile->filebot->next = NULL;
openfile->totsize--;
}
}
#endif
#ifndef NANO_TINY
/* Return TRUE when the mark is before or at the cursor, and FALSE otherwise. */
bool mark_is_before_cursor(void)
{
return (openfile->mark->lineno < openfile->current->lineno ||
(openfile->mark == openfile->current &&
openfile->mark_x <= openfile->current_x));
}
/* Return in (top, top_x) and (bot, bot_x) the start and end "coordinates"
* of the marked region. */
void get_region(linestruct **top, size_t *top_x, linestruct **bot, size_t *bot_x)
{
if (mark_is_before_cursor()) {
*top = openfile->mark;
*top_x = openfile->mark_x;
*bot = openfile->current;
*bot_x = openfile->current_x;
} else {
*bot = openfile->mark;
*bot_x = openfile->mark_x;
*top = openfile->current;
*top_x = openfile->current_x;
}
}
/* Get the set of lines to work on -- either just the current line, or the
* first to last lines of the marked region. When the cursor (or mark) is
* at the start of the last line of the region, exclude that line. */
void get_range(linestruct **top, linestruct **bot)
{
if (!openfile->mark) {
*top = openfile->current;
*bot = openfile->current;
} else {
size_t top_x, bot_x;
get_region(top, &top_x, bot, &bot_x);
if (bot_x == 0 && *bot != *top && !also_the_last)
*bot = (*bot)->prev;
else
also_the_last = TRUE;
}
}
/* Return a pointer to the line that has the given line number. */
linestruct *line_from_number(ssize_t number)
{
linestruct *line = openfile->current;
if (line->lineno > number)
while (line->lineno != number)
line = line->prev;
else
while (line->lineno != number)
line = line->next;
return line;
}
#endif /* !NANO_TINY */
/* Count the number of characters from begin to end, and return it. */
size_t number_of_characters_in(const linestruct *begin, const linestruct *end)
{
const linestruct *line;
size_t count = 0;
/* Sum the number of characters (plus a newline) in each line. */
for (line = begin; line != end->next; line = line->next)
count += mbstrlen(line->data) + 1;
/* Do not count the final newline. */
return (count - 1);
}