smol/src/winio.c

3592 lines
105 KiB
C

/* $Id$ */
/**************************************************************************
* winio.c *
* *
* Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, *
* 2008, 2009, 2010, 2011, 2013, 2014 Free Software Foundation, Inc. *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3, or (at your option) *
* any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *
* 02110-1301, USA. *
* *
**************************************************************************/
#include "proto.h"
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <ctype.h>
static int *key_buffer = NULL;
/* The keystroke buffer, containing all the keystrokes we
* haven't handled yet at a given point. */
static size_t key_buffer_len = 0;
/* The length of the keystroke buffer. */
static int statusblank = 0;
/* The number of keystrokes left after we call statusbar(),
* before we actually blank the statusbar. */
static bool disable_cursorpos = FALSE;
/* Should we temporarily disable constant cursor position
* display? */
/* Control character compatibility:
*
* - NANO_BACKSPACE_KEY is Ctrl-H, which is Backspace under ASCII, ANSI,
* VT100, and VT220.
* - NANO_TAB_KEY is Ctrl-I, which is Tab under ASCII, ANSI, VT100,
* VT220, and VT320.
* - NANO_ENTER_KEY is Ctrl-M, which is Enter under ASCII, ANSI, VT100,
* VT220, and VT320.
* - NANO_XON_KEY is Ctrl-Q, which is XON under ASCII, ANSI, VT100,
* VT220, and VT320.
* - NANO_XOFF_KEY is Ctrl-S, which is XOFF under ASCII, ANSI, VT100,
* VT220, and VT320.
* - NANO_CONTROL_8 is Ctrl-8 (Ctrl-?), which is Delete under ASCII,
* ANSI, VT100, and VT220, and which is Backspace under VT320.
*
* Note: VT220 and VT320 also generate Esc [ 3 ~ for Delete. By
* default, xterm assumes it's running on a VT320 and generates Ctrl-8
* (Ctrl-?) for Backspace and Esc [ 3 ~ for Delete. This causes
* problems for VT100-derived terminals such as the FreeBSD console,
* which expect Ctrl-H for Backspace and Ctrl-8 (Ctrl-?) for Delete, and
* on which the VT320 sequences are translated by the keypad to KEY_DC
* and [nothing]. We work around this conflict via the REBIND_DELETE
* flag: if it's not set, we assume VT320 compatibility, and if it is,
* we assume VT100 compatibility. Thanks to Lee Nelson and Wouter van
* Hemel for helping work this conflict out.
*
* Escape sequence compatibility:
*
* We support escape sequences for ANSI, VT100, VT220, VT320, the Linux
* console, the FreeBSD console, the Mach console, xterm, rxvt, Eterm,
* and Terminal. Among these, there are several conflicts and
* omissions, outlined as follows:
*
* - Tab on ANSI == PageUp on FreeBSD console; the former is omitted.
* (Ctrl-I is also Tab on ANSI, which we already support.)
* - PageDown on FreeBSD console == Center (5) on numeric keypad with
* NumLock off on Linux console; the latter is omitted. (The editing
* keypad key is more important to have working than the numeric
* keypad key, because the latter has no value when NumLock is off.)
* - F1 on FreeBSD console == the mouse key on xterm/rxvt/Eterm; the
* latter is omitted. (Mouse input will only work properly if the
* extended keypad value KEY_MOUSE is generated on mouse events
* instead of the escape sequence.)
* - F9 on FreeBSD console == PageDown on Mach console; the former is
* omitted. (The editing keypad is more important to have working
* than the function keys, because the functions of the former are not
* arbitrary and the functions of the latter are.)
* - F10 on FreeBSD console == PageUp on Mach console; the former is
* omitted. (Same as above.)
* - F13 on FreeBSD console == End on Mach console; the former is
* omitted. (Same as above.)
* - F15 on FreeBSD console == Shift-Up on rxvt/Eterm; the former is
* omitted. (The arrow keys, with or without modifiers, are more
* important to have working than the function keys, because the
* functions of the former are not arbitrary and the functions of the
* latter are.)
* - F16 on FreeBSD console == Shift-Down on rxvt/Eterm; the former is
* omitted. (Same as above.) */
/* Read in a sequence of keystrokes from win and save them in the
* keystroke buffer. This should only be called when the keystroke
* buffer is empty. */
void get_key_buffer(WINDOW *win)
{
int input;
size_t errcount;
/* If the keystroke buffer isn't empty, get out. */
if (key_buffer != NULL)
return;
#ifndef NANO_TINY
allow_pending_sigwinch(TRUE);
#endif
/* Just before reading in the first character, display any pending
* screen updates. */
doupdate();
/* Read in the first character using whatever mode we're in. */
errcount = 0;
if (nodelay_mode) {
if ((input = wgetch(win)) == ERR)
return;
} else
while ((input = wgetch(win)) == ERR) {
errcount++;
/* If we've failed to get a character MAX_BUF_SIZE times in a
* row, assume that the input source we were using is gone and
* die gracefully. We could check if errno is set to EIO
* ("Input/output error") and die gracefully in that case, but
* it's not always set properly. Argh. */
if (errcount == MAX_BUF_SIZE)
handle_hupterm(0);
}
#ifndef NANO_TINY
allow_pending_sigwinch(FALSE);
#endif
/* Increment the length of the keystroke buffer, and save the value
* of the keystroke at the end of it. */
key_buffer_len++;
key_buffer = (int *)nmalloc(sizeof(int));
key_buffer[0] = input;
/* Read in the remaining characters using non-blocking input. */
nodelay(win, TRUE);
while (TRUE) {
#ifndef NANO_TINY
allow_pending_sigwinch(TRUE);
#endif
input = wgetch(win);
/* If there aren't any more characters, stop reading. */
if (input == ERR)
break;
/* Otherwise, increment the length of the keystroke buffer, and
* save the value of the keystroke at the end of it. */
key_buffer_len++;
key_buffer = (int *)nrealloc(key_buffer, key_buffer_len *
sizeof(int));
key_buffer[key_buffer_len - 1] = input;
#ifndef NANO_TINY
allow_pending_sigwinch(FALSE);
#endif
}
/* Switch back to waiting mode for input. */
nodelay(win, FALSE);
#ifdef DEBUG
fprintf(stderr, "get_key_buffer(): key_buffer_len = %lu\n", (unsigned long)key_buffer_len);
#endif
}
/* Return the length of the keystroke buffer. */
size_t get_key_buffer_len(void)
{
return key_buffer_len;
}
/* Add the keystrokes in input to the keystroke buffer. */
void unget_input(int *input, size_t input_len)
{
#ifndef NANO_TINY
allow_pending_sigwinch(TRUE);
allow_pending_sigwinch(FALSE);
#endif
/* If input is empty, get out. */
if (input_len == 0)
return;
/* If adding input would put the keystroke buffer beyond maximum
* capacity, only add enough of input to put it at maximum
* capacity. */
if (key_buffer_len + input_len < key_buffer_len)
input_len = (size_t)-1 - key_buffer_len;
/* Add the length of input to the length of the keystroke buffer,
* and reallocate the keystroke buffer so that it has enough room
* for input. */
key_buffer_len += input_len;
key_buffer = (int *)nrealloc(key_buffer, key_buffer_len *
sizeof(int));
/* If the keystroke buffer wasn't empty before, move its beginning
* forward far enough so that we can add input to its beginning. */
if (key_buffer_len > input_len)
memmove(key_buffer + input_len, key_buffer,
(key_buffer_len - input_len) * sizeof(int));
/* Copy input to the beginning of the keystroke buffer. */
memcpy(key_buffer, input, input_len * sizeof(int));
}
/* Put back the character stored in kbinput, putting it in byte range
* beforehand. If metakey is TRUE, put back the Escape character after
* putting back kbinput. If funckey is TRUE, put back the function key
* (a value outside byte range) without putting it in byte range. */
void unget_kbinput(int kbinput, bool metakey, bool funckey)
{
if (!funckey)
kbinput = (char)kbinput;
unget_input(&kbinput, 1);
if (metakey) {
kbinput = NANO_CONTROL_3;
unget_input(&kbinput, 1);
}
}
/* Try to read input_len characters from the keystroke buffer. If the
* keystroke buffer is empty and win isn't NULL, try to read in more
* characters from win and add them to the keystroke buffer before doing
* anything else. If the keystroke buffer is empty and win is NULL,
* return NULL. */
int *get_input(WINDOW *win, size_t input_len)
{
int *input;
#ifndef NANO_TINY
allow_pending_sigwinch(TRUE);
allow_pending_sigwinch(FALSE);
#endif
if (key_buffer_len == 0) {
if (win != NULL) {
get_key_buffer(win);
if (key_buffer_len == 0)
return NULL;
} else
return NULL;
}
/* If input_len is greater than the length of the keystroke buffer,
* only read the number of characters in the keystroke buffer. */
if (input_len > key_buffer_len)
input_len = key_buffer_len;
/* Subtract input_len from the length of the keystroke buffer, and
* allocate input so that it has enough room for input_len
* keystrokes. */
key_buffer_len -= input_len;
input = (int *)nmalloc(input_len * sizeof(int));
/* Copy input_len keystrokes from the beginning of the keystroke
* buffer into input. */
memcpy(input, key_buffer, input_len * sizeof(int));
/* If the keystroke buffer is empty, mark it as such. */
if (key_buffer_len == 0) {
free(key_buffer);
key_buffer = NULL;
/* If the keystroke buffer isn't empty, move its beginning forward
* far enough so that the keystrokes in input are no longer at its
* beginning. */
} else {
memmove(key_buffer, key_buffer + input_len, key_buffer_len *
sizeof(int));
key_buffer = (int *)nrealloc(key_buffer, key_buffer_len *
sizeof(int));
}
return input;
}
/* Read in a single character. If it's ignored, swallow it and go on.
* Otherwise, try to translate it from ASCII, meta key sequences, escape
* sequences, and/or extended keypad values. Supported extended keypad
* values consist of
* [arrow key], Ctrl-[arrow key], Shift-[arrow key], Enter, Backspace,
* the editing keypad (Insert, Delete, Home, End, PageUp, and PageDown),
* the function keypad (F1-F16), and the numeric keypad with NumLock
* off. */
int get_kbinput(WINDOW *win)
{
int kbinput;
/* Read in a character and interpret it. Continue doing this until
* we get a recognized value or sequence. */
while ((kbinput = parse_kbinput(win)) == ERR)
;
/* If we read from the edit window, blank the statusbar if we need
* to. */
if (win == edit)
check_statusblank();
return kbinput;
}
/* Translate ASCII characters, extended keypad values, and escape
* sequences into their corresponding key values. Set meta_key to TRUE
* when we get a meta key sequence, and set func_key to TRUE when we get
* a function key. */
int parse_kbinput(WINDOW *win)
{
static int escapes = 0, byte_digits = 0;
int *kbinput, retval = ERR;
meta_key = FALSE;
func_key = FALSE;
/* Read in a character. */
if (nodelay_mode) {
kbinput = get_input(win, 1);
if (kbinput == 0)
return 0;
} else
while ((kbinput = get_input(win, 1)) == NULL)
;
switch (*kbinput) {
case ERR:
break;
case NANO_CONTROL_3:
/* Increment the escape counter. */
escapes++;
switch (escapes) {
case 1:
/* One escape: wait for more input. */
case 2:
/* Two escapes: wait for more input. */
case 3:
/* Three escapes: wait for more input. */
break;
default:
/* More than three escapes: limit the escape counter
* to no more than two, and wait for more input. */
escapes %= 3;
}
break;
default:
switch (escapes) {
case 0:
/* One non-escape: normal input mode. Save the
* non-escape character as the result. */
retval = *kbinput;
break;
case 1:
/* Reset the escape counter. */
escapes = 0;
if (get_key_buffer_len() == 0) {
/* One escape followed by a non-escape, and
* there aren't any other keystrokes waiting:
* meta key sequence mode. Set meta_key to
* TRUE, and save the lowercase version of the
* non-escape character as the result. */
meta_key = TRUE;
retval = tolower(*kbinput);
} else
/* One escape followed by a non-escape, and
* there are other keystrokes waiting: escape
* sequence mode. Interpret the escape
* sequence. */
retval = parse_escape_seq_kbinput(win,
*kbinput);
break;
case 2:
if (get_key_buffer_len() == 0) {
if (('0' <= *kbinput && *kbinput <= '2' &&
byte_digits == 0) || ('0' <= *kbinput &&
*kbinput <= '9' && byte_digits > 0)) {
/* Two escapes followed by one or more
* decimal digits, and there aren't any
* other keystrokes waiting: byte sequence
* mode. If the byte sequence's range is
* limited to 2XX (the first digit is in the
* '0' to '2' range and it's the first
* digit, or it's in the '0' to '9' range
* and it's not the first digit), increment
* the byte sequence counter and interpret
* the digit. If the byte sequence's range
* is not limited to 2XX, fall through. */
int byte;
byte_digits++;
byte = get_byte_kbinput(*kbinput);
if (byte != ERR) {
char *byte_mb;
int byte_mb_len, *seq, i;
/* If we've read in a complete byte
* sequence, reset the escape counter
* and the byte sequence counter, and
* put back the corresponding byte
* value. */
escapes = 0;
byte_digits = 0;
/* Put back the multibyte equivalent of
* the byte value. */
byte_mb = make_mbchar((long)byte,
&byte_mb_len);
seq = (int *)nmalloc(byte_mb_len *
sizeof(int));
for (i = 0; i < byte_mb_len; i++)
seq[i] = (unsigned char)byte_mb[i];
unget_input(seq, byte_mb_len);
free(byte_mb);
free(seq);
}
} else {
/* Reset the escape counter. */
escapes = 0;
if (byte_digits == 0)
/* Two escapes followed by a non-decimal
* digit or a decimal digit that would
* create a byte sequence greater than
* 2XX, we're not in the middle of a
* byte sequence, and there aren't any
* other keystrokes waiting: control
* character sequence mode. Interpret
* the control sequence and save the
* corresponding control character as
* the result. */
retval = get_control_kbinput(*kbinput);
else {
/* If we're in the middle of a byte
* sequence, reset the byte sequence
* counter and save the character we got
* as the result. */
byte_digits = 0;
retval = *kbinput;
}
}
} else {
/* Two escapes followed by a non-escape, and
* there are other keystrokes waiting: combined
* meta and escape sequence mode. Reset the
* escape counter, set meta_key to TRUE, and
* interpret the escape sequence. */
escapes = 0;
meta_key = TRUE;
retval = parse_escape_seq_kbinput(win,
*kbinput);
}
break;
case 3:
/* Reset the escape counter. */
escapes = 0;
if (get_key_buffer_len() == 0)
/* Three escapes followed by a non-escape, and
* there aren't any other keystrokes waiting:
* normal input mode. Save the non-escape
* character as the result. */
retval = *kbinput;
else
/* Three escapes followed by a non-escape, and
* there are other keystrokes waiting: combined
* control character and escape sequence mode.
* Interpret the escape sequence, and interpret
* the result as a control sequence. */
retval = get_control_kbinput(
parse_escape_seq_kbinput(win,
*kbinput));
break;
}
}
if (retval != ERR) {
switch (retval) {
case NANO_CONTROL_8:
retval = ISSET(REBIND_DELETE) ? sc_seq_or(do_delete, 0) :
sc_seq_or(do_backspace, 0);
break;
case KEY_DOWN:
#ifdef KEY_SDOWN
/* ncurses and Slang don't support KEY_SDOWN. */
case KEY_SDOWN:
#endif
retval = sc_seq_or(do_down_void, *kbinput);
break;
case KEY_UP:
#ifdef KEY_SUP
/* ncurses and Slang don't support KEY_SUP. */
case KEY_SUP:
#endif
retval = sc_seq_or(do_up_void, *kbinput);
break;
case KEY_LEFT:
#ifdef KEY_SLEFT
/* Slang doesn't support KEY_SLEFT. */
case KEY_SLEFT:
#endif
retval = sc_seq_or(do_left, *kbinput);
break;
case KEY_RIGHT:
#ifdef KEY_SRIGHT
/* Slang doesn't support KEY_SRIGHT. */
case KEY_SRIGHT:
#endif
retval = sc_seq_or(do_right, *kbinput);
break;
#ifdef KEY_SHOME
/* HP-UX 10-11 and Slang don't support KEY_SHOME. */
case KEY_SHOME:
#endif
case KEY_A1: /* Home (7) on numeric keypad with
* NumLock off. */
retval = sc_seq_or(do_home, *kbinput);
break;
case KEY_BACKSPACE:
retval = sc_seq_or(do_backspace, *kbinput);
break;
#ifdef KEY_SDC
/* Slang doesn't support KEY_SDC. */
case KEY_SDC:
if (ISSET(REBIND_DELETE))
retval = sc_seq_or(do_delete, *kbinput);
else
retval = sc_seq_or(do_backspace, *kbinput);
break;
#endif
#ifdef KEY_SIC
/* Slang doesn't support KEY_SIC. */
case KEY_SIC:
retval = sc_seq_or(do_insertfile_void, *kbinput);
break;
#endif
case KEY_C3: /* PageDown (4) on numeric keypad with
* NumLock off. */
retval = sc_seq_or(do_page_down, *kbinput);
break;
case KEY_A3: /* PageUp (9) on numeric keypad with
* NumLock off. */
retval = sc_seq_or(do_page_up, *kbinput);
break;
case KEY_ENTER:
retval = sc_seq_or(do_enter_void, *kbinput);
break;
case KEY_B2: /* Center (5) on numeric keypad with
* NumLock off. */
retval = ERR;
break;
case KEY_C1: /* End (1) on numeric keypad with
* NumLock off. */
#ifdef KEY_SEND
/* HP-UX 10-11 and Slang don't support KEY_SEND. */
case KEY_SEND:
#endif
retval = sc_seq_or(do_end, *kbinput);
break;
#ifdef KEY_BEG
/* Slang doesn't support KEY_BEG. */
case KEY_BEG: /* Center (5) on numeric keypad with
* NumLock off. */
retval = ERR;
break;
#endif
#ifdef KEY_CANCEL
/* Slang doesn't support KEY_CANCEL. */
case KEY_CANCEL:
#ifdef KEY_SCANCEL
/* Slang doesn't support KEY_SCANCEL. */
case KEY_SCANCEL:
#endif
retval = first_sc_for(currmenu, do_cancel)->seq;
break;
#endif
#ifdef KEY_SBEG
/* Slang doesn't support KEY_SBEG. */
case KEY_SBEG: /* Center (5) on numeric keypad with
* NumLock off. */
retval = ERR;
break;
#endif
#ifdef KEY_SSUSPEND
/* Slang doesn't support KEY_SSUSPEND. */
case KEY_SSUSPEND:
retval = sc_seq_or(do_suspend_void, 0);
break;
#endif
#ifdef KEY_SUSPEND
/* Slang doesn't support KEY_SUSPEND. */
case KEY_SUSPEND:
retval = sc_seq_or(do_suspend_void, 0);
break;
#endif
#ifdef PDCURSES
case KEY_SHIFT_L:
case KEY_SHIFT_R:
case KEY_CONTROL_L:
case KEY_CONTROL_R:
case KEY_ALT_L:
case KEY_ALT_R:
retval = ERR;
break;
#endif
#if !defined(NANO_TINY) && defined(KEY_RESIZE)
/* Since we don't change the default SIGWINCH handler when
* NANO_TINY is defined, KEY_RESIZE is never generated.
* Also, Slang and SunOS 5.7-5.9 don't support
* KEY_RESIZE. */
case KEY_RESIZE:
retval = ERR;
break;
#endif
case CONTROL_LEFT:
#ifndef NANO_TINY
retval = sc_seq_or(do_prev_word_void, 0);
#endif
break;
case CONTROL_RIGHT:
#ifndef NANO_TINY
retval = sc_seq_or(do_next_word_void, 0);
#endif
break;
}
/* If our result is an extended keypad value (i.e. a value
* outside of byte range), set func_key to TRUE. */
if (retval != ERR)
func_key = !is_byte(retval);
}
#ifdef DEBUG
fprintf(stderr, "parse_kbinput(): kbinput = %d, meta_key = %s, func_key = %s, escapes = %d, byte_digits = %d, retval = %d\n", *kbinput, meta_key ? "TRUE" : "FALSE", func_key ? "TRUE" : "FALSE", escapes, byte_digits, retval);
#endif
free(kbinput);
/* Return the result. */
return retval;
}
/* Translate escape sequences, most of which correspond to extended
* keypad values, into their corresponding key values. These sequences
* are generated when the keypad doesn't support the needed keys.
* Assume that Escape has already been read in. */
int get_escape_seq_kbinput(const int *seq, size_t seq_len)
{
int retval = ERR;
if (seq_len > 1) {
switch (seq[0]) {
case 'O':
switch (seq[1]) {
case '1':
if (seq_len >= 3) {
switch (seq[2]) {
case ';':
if (seq_len >= 4) {
switch (seq[3]) {
case '2':
if (seq_len >= 5) {
switch (seq[4]) {
case 'A': /* Esc O 1 ; 2 A == Shift-Up on
* Terminal. */
case 'B': /* Esc O 1 ; 2 B == Shift-Down on
* Terminal. */
case 'C': /* Esc O 1 ; 2 C == Shift-Right on
* Terminal. */
case 'D': /* Esc O 1 ; 2 D == Shift-Left on
* Terminal. */
retval = get_escape_seq_abcd(seq[4]);
break;
case 'P': /* Esc O 1 ; 2 P == F13 on
* Terminal. */
retval = KEY_F(13);
break;
case 'Q': /* Esc O 1 ; 2 Q == F14 on
* Terminal. */
retval = KEY_F(14);
break;
case 'R': /* Esc O 1 ; 2 R == F15 on
* Terminal. */
retval = KEY_F(15);
break;
case 'S': /* Esc O 1 ; 2 S == F16 on
* Terminal. */
retval = KEY_F(16);
break;
}
}
break;
case '5':
if (seq_len >= 5) {
switch (seq[4]) {
case 'A': /* Esc O 1 ; 5 A == Ctrl-Up on
* Terminal. */
case 'B': /* Esc O 1 ; 5 B == Ctrl-Down on
* Terminal. */
retval = get_escape_seq_abcd(seq[4]);
break;
case 'C': /* Esc O 1 ; 5 C == Ctrl-Right on
* Terminal. */
retval = CONTROL_RIGHT;
break;
case 'D': /* Esc O 1 ; 5 D == Ctrl-Left on
* Terminal. */
retval = CONTROL_LEFT;
break;
}
}
break;
}
}
break;
}
}
break;
case '2':
if (seq_len >= 3) {
switch (seq[2]) {
case 'P': /* Esc O 2 P == F13 on
* xterm. */
retval = KEY_F(13);
break;
case 'Q': /* Esc O 2 Q == F14 on
* xterm. */
retval = KEY_F(14);
break;
case 'R': /* Esc O 2 R == F15 on
* xterm. */
retval = KEY_F(15);
break;
case 'S': /* Esc O 2 S == F16 on
* xterm. */
retval = KEY_F(16);
break;
}
}
break;
case 'A': /* Esc O A == Up on VT100/VT320/xterm. */
case 'B': /* Esc O B == Down on
* VT100/VT320/xterm. */
case 'C': /* Esc O C == Right on
* VT100/VT320/xterm. */
case 'D': /* Esc O D == Left on
* VT100/VT320/xterm. */
retval = get_escape_seq_abcd(seq[1]);
break;
case 'E': /* Esc O E == Center (5) on numeric keypad
* with NumLock off on xterm. */
retval = KEY_B2;
break;
case 'F': /* Esc O F == End on xterm/Terminal. */
retval = sc_seq_or(do_end, 0);
break;
case 'H': /* Esc O H == Home on xterm/Terminal. */
retval = sc_seq_or(do_home, 0);
break;
case 'M': /* Esc O M == Enter on numeric keypad with
* NumLock off on VT100/VT220/VT320/xterm/
* rxvt/Eterm. */
retval = sc_seq_or(do_home, 0);
break;
case 'P': /* Esc O P == F1 on VT100/VT220/VT320/Mach
* console. */
retval = KEY_F(1);
break;
case 'Q': /* Esc O Q == F2 on VT100/VT220/VT320/Mach
* console. */
retval = KEY_F(2);
break;
case 'R': /* Esc O R == F3 on VT100/VT220/VT320/Mach
* console. */
retval = KEY_F(3);
break;
case 'S': /* Esc O S == F4 on VT100/VT220/VT320/Mach
* console. */
retval = KEY_F(4);
break;
case 'T': /* Esc O T == F5 on Mach console. */
retval = KEY_F(5);
break;
case 'U': /* Esc O U == F6 on Mach console. */
retval = KEY_F(6);
break;
case 'V': /* Esc O V == F7 on Mach console. */
retval = KEY_F(7);
break;
case 'W': /* Esc O W == F8 on Mach console. */
retval = KEY_F(8);
break;
case 'X': /* Esc O X == F9 on Mach console. */
retval = KEY_F(9);
break;
case 'Y': /* Esc O Y == F10 on Mach console. */
retval = KEY_F(10);
break;
case 'a': /* Esc O a == Ctrl-Up on rxvt. */
case 'b': /* Esc O b == Ctrl-Down on rxvt. */
retval = get_escape_seq_abcd(seq[1]);
break;
case 'c': /* Esc O c == Ctrl-Right on rxvt. */
retval = CONTROL_RIGHT;
break;
case 'd': /* Esc O d == Ctrl-Left on rxvt. */
retval = CONTROL_LEFT;
break;
case 'j': /* Esc O j == '*' on numeric keypad with
* NumLock off on VT100/VT220/VT320/xterm/
* rxvt/Eterm/Terminal. */
retval = '*';
break;
case 'k': /* Esc O k == '+' on numeric keypad with
* NumLock off on VT100/VT220/VT320/xterm/
* rxvt/Eterm/Terminal. */
retval = '+';
break;
case 'l': /* Esc O l == ',' on numeric keypad with
* NumLock off on VT100/VT220/VT320/xterm/
* rxvt/Eterm/Terminal. */
retval = ',';
break;
case 'm': /* Esc O m == '-' on numeric keypad with
* NumLock off on VT100/VT220/VT320/xterm/
* rxvt/Eterm/Terminal. */
retval = '-';
break;
case 'n': /* Esc O n == Delete (.) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* xterm/rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_delete, 0);
break;
case 'o': /* Esc O o == '/' on numeric keypad with
* NumLock off on VT100/VT220/VT320/xterm/
* rxvt/Eterm/Terminal. */
retval = '/';
break;
case 'p': /* Esc O p == Insert (0) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_insertfile_void, 0);
break;
case 'q': /* Esc O q == End (1) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_end, 0);
break;
case 'r': /* Esc O r == Down (2) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_down_void, 0);
break;
case 's': /* Esc O s == PageDown (3) on numeric
* keypad with NumLock off on VT100/VT220/
* VT320/rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_page_down, 0);
break;
case 't': /* Esc O t == Left (4) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_left, 0);
break;
case 'u': /* Esc O u == Center (5) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm. */
retval = KEY_B2;
break;
case 'v': /* Esc O v == Right (6) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_right, 0);
break;
case 'w': /* Esc O w == Home (7) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_home, 0);
break;
case 'x': /* Esc O x == Up (8) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_up_void, 0);
break;
case 'y': /* Esc O y == PageUp (9) on numeric keypad
* with NumLock off on VT100/VT220/VT320/
* rxvt/Eterm/Terminal. */
retval = sc_seq_or(do_page_up, 0);
break;
}
break;
case 'o':
switch (seq[1]) {
case 'a': /* Esc o a == Ctrl-Up on Eterm. */
case 'b': /* Esc o b == Ctrl-Down on Eterm. */
retval = get_escape_seq_abcd(seq[1]);
break;
case 'c': /* Esc o c == Ctrl-Right on Eterm. */
retval = CONTROL_RIGHT;
break;
case 'd': /* Esc o d == Ctrl-Left on Eterm. */
retval = CONTROL_LEFT;
break;
}
break;
case '[':
switch (seq[1]) {
case '1':
if (seq_len >= 3) {
switch (seq[2]) {
case '1': /* Esc [ 1 1 ~ == F1 on rxvt/
* Eterm. */
retval = KEY_F(1);
break;
case '2': /* Esc [ 1 2 ~ == F2 on rxvt/
* Eterm. */
retval = KEY_F(2);
break;
case '3': /* Esc [ 1 3 ~ == F3 on rxvt/
* Eterm. */
retval = KEY_F(3);
break;
case '4': /* Esc [ 1 4 ~ == F4 on rxvt/
* Eterm. */
retval = KEY_F(4);
break;
case '5': /* Esc [ 1 5 ~ == F5 on xterm/
* rxvt/Eterm. */
retval = KEY_F(5);
break;
case '7': /* Esc [ 1 7 ~ == F6 on
* VT220/VT320/Linux console/
* xterm/rxvt/Eterm. */
retval = KEY_F(6);
break;
case '8': /* Esc [ 1 8 ~ == F7 on
* VT220/VT320/Linux console/
* xterm/rxvt/Eterm. */
retval = KEY_F(7);
break;
case '9': /* Esc [ 1 9 ~ == F8 on
* VT220/VT320/Linux console/
* xterm/rxvt/Eterm. */
retval = KEY_F(8);
break;
case ';':
if (seq_len >= 4) {
switch (seq[3]) {
case '2':
if (seq_len >= 5) {
switch (seq[4]) {
case 'A': /* Esc [ 1 ; 2 A == Shift-Up on
* xterm. */
case 'B': /* Esc [ 1 ; 2 B == Shift-Down on
* xterm. */
case 'C': /* Esc [ 1 ; 2 C == Shift-Right on
* xterm. */
case 'D': /* Esc [ 1 ; 2 D == Shift-Left on
* xterm. */
retval = get_escape_seq_abcd(seq[4]);
break;
}
}
break;
case '5':
if (seq_len >= 5) {
switch (seq[4]) {
case 'A': /* Esc [ 1 ; 5 A == Ctrl-Up on
* xterm. */
case 'B': /* Esc [ 1 ; 5 B == Ctrl-Down on
* xterm. */
retval = get_escape_seq_abcd(seq[4]);
break;
case 'C': /* Esc [ 1 ; 5 C == Ctrl-Right on
* xterm. */
retval = CONTROL_RIGHT;
break;
case 'D': /* Esc [ 1 ; 5 D == Ctrl-Left on
* xterm. */
retval = CONTROL_LEFT;
break;
}
}
break;
}
}
break;
default: /* Esc [ 1 ~ == Home on
* VT320/Linux console. */
retval = sc_seq_or(do_home, 0);
break;
}
}
break;
case '2':
if (seq_len >= 3) {
switch (seq[2]) {
case '0': /* Esc [ 2 0 ~ == F9 on
* VT220/VT320/Linux console/
* xterm/rxvt/Eterm. */
retval = KEY_F(9);
break;
case '1': /* Esc [ 2 1 ~ == F10 on
* VT220/VT320/Linux console/
* xterm/rxvt/Eterm. */
retval = KEY_F(10);
break;
case '3': /* Esc [ 2 3 ~ == F11 on
* VT220/VT320/Linux console/
* xterm/rxvt/Eterm. */
retval = KEY_F(11);
break;
case '4': /* Esc [ 2 4 ~ == F12 on
* VT220/VT320/Linux console/
* xterm/rxvt/Eterm. */
retval = KEY_F(12);
break;
case '5': /* Esc [ 2 5 ~ == F13 on
* VT220/VT320/Linux console/
* rxvt/Eterm. */
retval = KEY_F(13);
break;
case '6': /* Esc [ 2 6 ~ == F14 on
* VT220/VT320/Linux console/
* rxvt/Eterm. */
retval = KEY_F(14);
break;
case '8': /* Esc [ 2 8 ~ == F15 on
* VT220/VT320/Linux console/
* rxvt/Eterm. */
retval = KEY_F(15);
break;
case '9': /* Esc [ 2 9 ~ == F16 on
* VT220/VT320/Linux console/
* rxvt/Eterm. */
retval = KEY_F(16);
break;
default: /* Esc [ 2 ~ == Insert on
* VT220/VT320/Linux console/
* xterm/Terminal. */
retval = sc_seq_or(do_insertfile_void, 0);
break;
}
}
break;
case '3': /* Esc [ 3 ~ == Delete on VT220/VT320/
* Linux console/xterm/Terminal. */
retval = sc_seq_or(do_delete, 0);
break;
case '4': /* Esc [ 4 ~ == End on VT220/VT320/Linux
* console/xterm. */
retval = sc_seq_or(do_end, 0);
break;
case '5': /* Esc [ 5 ~ == PageUp on VT220/VT320/
* Linux console/xterm/Terminal;
* Esc [ 5 ^ == PageUp on Eterm. */
retval = sc_seq_or(do_page_up, 0);
break;
case '6': /* Esc [ 6 ~ == PageDown on VT220/VT320/
* Linux console/xterm/Terminal;
* Esc [ 6 ^ == PageDown on Eterm. */
retval = sc_seq_or(do_page_down, 0);
break;
case '7': /* Esc [ 7 ~ == Home on rxvt. */
retval = sc_seq_or(do_home, 0);
break;
case '8': /* Esc [ 8 ~ == End on rxvt. */
retval = sc_seq_or(do_end, 0);
break;
case '9': /* Esc [ 9 == Delete on Mach console. */
retval = sc_seq_or(do_delete, 0);
break;
case '@': /* Esc [ @ == Insert on Mach console. */
retval = sc_seq_or(do_insertfile_void, 0);
break;
case 'A': /* Esc [ A == Up on ANSI/VT220/Linux
* console/FreeBSD console/Mach console/
* rxvt/Eterm/Terminal. */
case 'B': /* Esc [ B == Down on ANSI/VT220/Linux
* console/FreeBSD console/Mach console/
* rxvt/Eterm/Terminal. */
case 'C': /* Esc [ C == Right on ANSI/VT220/Linux
* console/FreeBSD console/Mach console/
* rxvt/Eterm/Terminal. */
case 'D': /* Esc [ D == Left on ANSI/VT220/Linux
* console/FreeBSD console/Mach console/
* rxvt/Eterm/Terminal. */
retval = get_escape_seq_abcd(seq[1]);
break;
case 'E': /* Esc [ E == Center (5) on numeric keypad
* with NumLock off on FreeBSD console/
* Terminal. */
retval = KEY_B2;
break;
case 'F': /* Esc [ F == End on FreeBSD
* console/Eterm. */
retval = sc_seq_or(do_end, 0);
break;
case 'G': /* Esc [ G == PageDown on FreeBSD
* console. */
retval = sc_seq_or(do_page_down, 0);
break;
case 'H': /* Esc [ H == Home on ANSI/VT220/FreeBSD
* console/Mach console/Eterm. */
retval = sc_seq_or(do_home, 0);
break;
case 'I': /* Esc [ I == PageUp on FreeBSD
* console. */
retval = sc_seq_or(do_page_up, 0);
break;
case 'L': /* Esc [ L == Insert on ANSI/FreeBSD
* console. */
retval = sc_seq_or(do_insertfile_void, 0);
break;
case 'M': /* Esc [ M == F1 on FreeBSD console. */
retval = KEY_F(1);
break;
case 'N': /* Esc [ N == F2 on FreeBSD console. */
retval = KEY_F(2);
break;
case 'O':
if (seq_len >= 3) {
switch (seq[2]) {
case 'P': /* Esc [ O P == F1 on
* xterm. */
retval = KEY_F(1);
break;
case 'Q': /* Esc [ O Q == F2 on
* xterm. */
retval = KEY_F(2);
break;
case 'R': /* Esc [ O R == F3 on
* xterm. */
retval = KEY_F(3);
break;
case 'S': /* Esc [ O S == F4 on
* xterm. */
retval = KEY_F(4);
break;
}
} else
/* Esc [ O == F3 on FreeBSD console. */
retval = KEY_F(3);
break;
case 'P': /* Esc [ P == F4 on FreeBSD console. */
retval = KEY_F(4);
break;
case 'Q': /* Esc [ Q == F5 on FreeBSD console. */
retval = KEY_F(5);
break;
case 'R': /* Esc [ R == F6 on FreeBSD console. */
retval = KEY_F(6);
break;
case 'S': /* Esc [ S == F7 on FreeBSD console. */
retval = KEY_F(7);
break;
case 'T': /* Esc [ T == F8 on FreeBSD console. */
retval = KEY_F(8);
break;
case 'U': /* Esc [ U == PageDown on Mach console. */
retval = sc_seq_or(do_page_down, 0);
break;
case 'V': /* Esc [ V == PageUp on Mach console. */
retval = sc_seq_or(do_page_up, 0);
break;
case 'W': /* Esc [ W == F11 on FreeBSD console. */
retval = KEY_F(11);
break;
case 'X': /* Esc [ X == F12 on FreeBSD console. */
retval = KEY_F(12);
break;
case 'Y': /* Esc [ Y == End on Mach console. */
retval = sc_seq_or(do_end, 0);
break;
case 'Z': /* Esc [ Z == F14 on FreeBSD console. */
retval = KEY_F(14);
break;
case 'a': /* Esc [ a == Shift-Up on rxvt/Eterm. */
case 'b': /* Esc [ b == Shift-Down on rxvt/Eterm. */
case 'c': /* Esc [ c == Shift-Right on rxvt/
* Eterm. */
case 'd': /* Esc [ d == Shift-Left on rxvt/Eterm. */
retval = get_escape_seq_abcd(seq[1]);
break;
case '[':
if (seq_len >= 3) {
switch (seq[2]) {
case 'A': /* Esc [ [ A == F1 on Linux
* console. */
retval = KEY_F(1);
break;
case 'B': /* Esc [ [ B == F2 on Linux
* console. */
retval = KEY_F(2);
break;
case 'C': /* Esc [ [ C == F3 on Linux
* console. */
retval = KEY_F(3);
break;
case 'D': /* Esc [ [ D == F4 on Linux
* console. */
retval = KEY_F(4);
break;
case 'E': /* Esc [ [ E == F5 on Linux
* console. */
retval = KEY_F(5);
break;
}
}
break;
}
break;
}
}
#ifdef DEBUG
fprintf(stderr, "get_escape_seq_kbinput(): retval = %d\n", retval);
#endif
return retval;
}
/* Return the equivalent arrow key value for the case-insensitive
* letters A (up), B (down), C (right), and D (left). These are common
* to many escape sequences. */
int get_escape_seq_abcd(int kbinput)
{
switch (tolower(kbinput)) {
case 'a':
return sc_seq_or(do_up_void, 0);
case 'b':
return sc_seq_or(do_down_void, 0);
case 'c':
return sc_seq_or(do_right, 0);
case 'd':
return sc_seq_or(do_left, 0);
default:
return ERR;
}
}
/* Interpret the escape sequence in the keystroke buffer, the first
* character of which is kbinput. Assume that the keystroke buffer
* isn't empty, and that the initial escape has already been read in. */
int parse_escape_seq_kbinput(WINDOW *win, int kbinput)
{
int retval, *seq;
size_t seq_len;
/* Put back the non-escape character, get the complete escape
* sequence, translate the sequence into its corresponding key
* value, and save that as the result. */
unget_input(&kbinput, 1);
seq_len = get_key_buffer_len();
seq = get_input(NULL, seq_len);
retval = get_escape_seq_kbinput(seq, seq_len);
free(seq);
/* If we got an unrecognized escape sequence, throw it out. */
if (retval == ERR) {
if (win == edit) {
statusbar(_("Unknown Command"));
beep();
}
}
#ifdef DEBUG
fprintf(stderr, "parse_escape_seq_kbinput(): kbinput = %d, seq_len = %lu, retval = %d\n", kbinput, (unsigned long)seq_len, retval);
#endif
return retval;
}
/* Translate a byte sequence: turn a three-digit decimal number (from
* 000 to 255) into its corresponding byte value. */
int get_byte_kbinput(int kbinput)
{
static int byte_digits = 0, byte = 0;
int retval = ERR;
/* Increment the byte digit counter. */
byte_digits++;
switch (byte_digits) {
case 1:
/* First digit: This must be from zero to two. Put it in
* the 100's position of the byte sequence holder. */
if ('0' <= kbinput && kbinput <= '2')
byte = (kbinput - '0') * 100;
else
/* This isn't the start of a byte sequence. Return this
* character as the result. */
retval = kbinput;
break;
case 2:
/* Second digit: This must be from zero to five if the first
* was two, and may be any decimal value if the first was
* zero or one. Put it in the 10's position of the byte
* sequence holder. */
if (('0' <= kbinput && kbinput <= '5') || (byte < 200 &&
'6' <= kbinput && kbinput <= '9'))
byte += (kbinput - '0') * 10;
else
/* This isn't the second digit of a byte sequence.
* Return this character as the result. */
retval = kbinput;
break;
case 3:
/* Third digit: This must be from zero to five if the first
* was two and the second was five, and may be any decimal
* value otherwise. Put it in the 1's position of the byte
* sequence holder. */
if (('0' <= kbinput && kbinput <= '5') || (byte < 250 &&
'6' <= kbinput && kbinput <= '9')) {
byte += kbinput - '0';
/* The byte sequence is complete. */
retval = byte;
} else
/* This isn't the third digit of a byte sequence.
* Return this character as the result. */
retval = kbinput;
break;
default:
/* If there are more than three digits, return this
* character as the result. (Maybe we should produce an
* error instead?) */
retval = kbinput;
break;
}
/* If we have a result, reset the byte digit counter and the byte
* sequence holder. */
if (retval != ERR) {
byte_digits = 0;
byte = 0;
}
#ifdef DEBUG
fprintf(stderr, "get_byte_kbinput(): kbinput = %d, byte_digits = %d, byte = %d, retval = %d\n", kbinput, byte_digits, byte, retval);
#endif
return retval;
}
#ifdef ENABLE_UTF8
/* If the character in kbinput is a valid hexadecimal digit, multiply it
* by factor and add the result to uni. */
long add_unicode_digit(int kbinput, long factor, long *uni)
{
long retval = ERR;
if ('0' <= kbinput && kbinput <= '9')
*uni += (kbinput - '0') * factor;
else if ('a' <= tolower(kbinput) && tolower(kbinput) <= 'f')
*uni += (tolower(kbinput) - 'a' + 10) * factor;
else
/* If this character isn't a valid hexadecimal value, save it as
* the result. */
retval = kbinput;
return retval;
}
/* Translate a Unicode sequence: turn a six-digit hexadecimal number
* (from 000000 to 10FFFF, case-insensitive) into its corresponding
* multibyte value. */
long get_unicode_kbinput(int kbinput)
{
static int uni_digits = 0;
static long uni = 0;
long retval = ERR;
/* Increment the Unicode digit counter. */
uni_digits++;
switch (uni_digits) {
case 1:
/* First digit: This must be zero or one. Put it in the
* 0x100000's position of the Unicode sequence holder. */
if ('0' <= kbinput && kbinput <= '1')
uni = (kbinput - '0') * 0x100000;
else
/* This isn't the first digit of a Unicode sequence.
* Return this character as the result. */
retval = kbinput;
break;
case 2:
/* Second digit: This must be zero if the first was one, and
* may be any hexadecimal value if the first was zero. Put
* it in the 0x10000's position of the Unicode sequence
* holder. */
if (uni == 0 || '0' == kbinput)
retval = add_unicode_digit(kbinput, 0x10000, &uni);
else
/* This isn't the second digit of a Unicode sequence.
* Return this character as the result. */
retval = kbinput;
break;
case 3:
/* Third digit: This may be any hexadecimal value. Put it
* in the 0x1000's position of the Unicode sequence
* holder. */
retval = add_unicode_digit(kbinput, 0x1000, &uni);
break;
case 4:
/* Fourth digit: This may be any hexadecimal value. Put it
* in the 0x100's position of the Unicode sequence
* holder. */
retval = add_unicode_digit(kbinput, 0x100, &uni);
break;
case 5:
/* Fifth digit: This may be any hexadecimal value. Put it
* in the 0x10's position of the Unicode sequence holder. */
retval = add_unicode_digit(kbinput, 0x10, &uni);
break;
case 6:
/* Sixth digit: This may be any hexadecimal value. Put it
* in the 0x1's position of the Unicode sequence holder. */
retval = add_unicode_digit(kbinput, 0x1, &uni);
/* If this character is a valid hexadecimal value, then the
* Unicode sequence is complete. */
if (retval == ERR)
retval = uni;
break;
default:
/* If there are more than six digits, return this character
* as the result. (Maybe we should produce an error
* instead?) */
retval = kbinput;
break;
}
/* If we have a result, reset the Unicode digit counter and the
* Unicode sequence holder. */
if (retval != ERR) {
uni_digits = 0;
uni = 0;
}
#ifdef DEBUG
fprintf(stderr, "get_unicode_kbinput(): kbinput = %d, uni_digits = %d, uni = %ld, retval = %ld\n", kbinput, uni_digits, uni, retval);
#endif
return retval;
}
#endif /* ENABLE_UTF8 */
/* Translate a control character sequence: turn an ASCII non-control
* character into its corresponding control character. */
int get_control_kbinput(int kbinput)
{
int retval;
/* Ctrl-Space (Ctrl-2, Ctrl-@, Ctrl-`) */
if (kbinput == ' ' || kbinput == '2')
retval = NANO_CONTROL_SPACE;
/* Ctrl-/ (Ctrl-7, Ctrl-_) */
else if (kbinput == '/')
retval = NANO_CONTROL_7;
/* Ctrl-3 (Ctrl-[, Esc) to Ctrl-7 (Ctrl-/, Ctrl-_) */
else if ('3' <= kbinput && kbinput <= '7')
retval = kbinput - 24;
/* Ctrl-8 (Ctrl-?) */
else if (kbinput == '8' || kbinput == '?')
retval = NANO_CONTROL_8;
/* Ctrl-@ (Ctrl-Space, Ctrl-2, Ctrl-`) to Ctrl-_ (Ctrl-/, Ctrl-7) */
else if ('@' <= kbinput && kbinput <= '_')
retval = kbinput - '@';
/* Ctrl-` (Ctrl-2, Ctrl-Space, Ctrl-@) to Ctrl-~ (Ctrl-6, Ctrl-^) */
else if ('`' <= kbinput && kbinput <= '~')
retval = kbinput - '`';
else
retval = kbinput;
#ifdef DEBUG
fprintf(stderr, "get_control_kbinput(): kbinput = %d, retval = %d\n", kbinput, retval);
#endif
return retval;
}
/* Put the output-formatted characters in output back into the keystroke
* buffer, so that they can be parsed and displayed as output again. */
void unparse_kbinput(char *output, size_t output_len)
{
int *input;
size_t i;
if (output_len == 0)
return;
input = (int *)nmalloc(output_len * sizeof(int));
for (i = 0; i < output_len; i++)
input[i] = (int)output[i];
unget_input(input, output_len);
free(input);
}
/* Read in a stream of characters verbatim, and return the length of the
* string in kbinput_len. Assume nodelay(win) is FALSE. */
int *get_verbatim_kbinput(WINDOW *win, size_t *kbinput_len)
{
int *retval;
/* Turn off flow control characters if necessary so that we can type
* them in verbatim, and turn the keypad off if necessary so that we
* don't get extended keypad values. */
if (ISSET(PRESERVE))
disable_flow_control();
if (!ISSET(REBIND_KEYPAD))
keypad(win, FALSE);
/* Read in a stream of characters and interpret it if possible. */
retval = parse_verbatim_kbinput(win, kbinput_len);
/* Turn flow control characters back on if necessary and turn the
* keypad back on if necessary now that we're done. */
if (ISSET(PRESERVE))
enable_flow_control();
if (!ISSET(REBIND_KEYPAD))
keypad(win, TRUE);
return retval;
}
/* Read in a stream of all available characters, and return the length
* of the string in kbinput_len. Translate the first few characters of
* the input into the corresponding multibyte value if possible. After
* that, leave the input as-is. */
int *parse_verbatim_kbinput(WINDOW *win, size_t *kbinput_len)
{
int *kbinput, *retval;
/* Read in the first keystroke. */
while ((kbinput = get_input(win, 1)) == NULL)
;
#ifdef ENABLE_UTF8
if (using_utf8()) {
/* Check whether the first keystroke is a valid hexadecimal
* digit. */
long uni = get_unicode_kbinput(*kbinput);
/* If the first keystroke isn't a valid hexadecimal digit, put
* back the first keystroke. */
if (uni != ERR)
unget_input(kbinput, 1);
/* Otherwise, read in keystrokes until we have a complete
* Unicode sequence, and put back the corresponding Unicode
* value. */
else {
char *uni_mb;
int uni_mb_len, *seq, i;
if (win == edit)
/* TRANSLATORS: This is displayed during the input of a
* six-digit hexadecimal Unicode character code. */
statusbar(_("Unicode Input"));
while (uni == ERR) {
while ((kbinput = get_input(win, 1)) == NULL)
;
uni = get_unicode_kbinput(*kbinput);
}
/* Put back the multibyte equivalent of the Unicode
* value. */
uni_mb = make_mbchar(uni, &uni_mb_len);
seq = (int *)nmalloc(uni_mb_len * sizeof(int));
for (i = 0; i < uni_mb_len; i++)
seq[i] = (unsigned char)uni_mb[i];
unget_input(seq, uni_mb_len);
free(seq);
free(uni_mb);
}
} else
#endif /* ENABLE_UTF8 */
/* Put back the first keystroke. */
unget_input(kbinput, 1);
free(kbinput);
/* Get the complete sequence, and save the characters in it as the
* result. */
*kbinput_len = get_key_buffer_len();
retval = get_input(NULL, *kbinput_len);
return retval;
}
#ifndef DISABLE_MOUSE
/* Handle any mouse event that may have occurred. We currently handle
* releases/clicks of the first mouse button. If allow_shortcuts is
* TRUE, releasing/clicking on a visible shortcut will put back the
* keystroke associated with that shortcut. If NCURSES_MOUSE_VERSION is
* at least 2, we also currently handle presses of the fourth mouse
* button (upward rolls of the mouse wheel) by putting back the
* keystrokes to move up, and presses of the fifth mouse button
* (downward rolls of the mouse wheel) by putting back the keystrokes to
* move down. We also store the coordinates of a mouse event that needs
* to be handled in mouse_x and mouse_y, relative to the entire screen.
* Return -1 on error, 0 if the mouse event needs to be handled, 1 if
* it's been handled by putting back keystrokes that need to be handled.
* or 2 if it's been ignored. Assume that KEY_MOUSE has already been
* read in. */
int get_mouseinput(int *mouse_x, int *mouse_y, bool allow_shortcuts)
{
MEVENT mevent;
bool in_bottomwin;
subnfunc *f;
*mouse_x = -1;
*mouse_y = -1;
/* First, get the actual mouse event. */
if (getmouse(&mevent) == ERR)
return -1;
/* Save the screen coordinates where the mouse event took place. */
*mouse_x = mevent.x;
*mouse_y = mevent.y;
in_bottomwin = wenclose(bottomwin, *mouse_y, *mouse_x);
/* Handle releases/clicks of the first mouse button. */
if (mevent.bstate & (BUTTON1_RELEASED | BUTTON1_CLICKED)) {
/* If we're allowing shortcuts, the current shortcut list is
* being displayed on the last two lines of the screen, and the
* first mouse button was released on/clicked inside it, we need
* to figure out which shortcut was released on/clicked and put
* back the equivalent keystroke(s) for it. */
if (allow_shortcuts && !ISSET(NO_HELP) && in_bottomwin) {
int i;
/* The width of all the shortcuts, except for the last
* two, in the shortcut list in bottomwin. */
int j;
/* The calculated index number of the clicked item. */
size_t currslen;
/* The number of shortcuts in the current shortcut
* list. */
/* Translate the mouse event coordinates so that they're
* relative to bottomwin. */
wmouse_trafo(bottomwin, mouse_y, mouse_x, FALSE);
/* Handle releases/clicks of the first mouse button on the
* statusbar elsewhere. */
if (*mouse_y == 0) {
/* Restore the untranslated mouse event coordinates, so
* that they're relative to the entire screen again. */
*mouse_x = mevent.x;
*mouse_y = mevent.y;
return 0;
}
/* Get the shortcut lists' length. */
if (currmenu == MMAIN)
currslen = MAIN_VISIBLE;
else {
currslen = length_of_list(currmenu);
/* We don't show any more shortcuts than the main list
* does. */
if (currslen > MAIN_VISIBLE)
currslen = MAIN_VISIBLE;
}
/* Calculate the width of all of the shortcuts in the list
* except for the last two, which are longer by (COLS % i)
* columns so as to not waste space. */
if (currslen < 2)
i = COLS / (MAIN_VISIBLE / 2);
else
i = COLS / ((currslen / 2) + (currslen % 2));
/* Calculate the one-based index in the shortcut list. */
j = (*mouse_x / i) * 2 + *mouse_y;
/* Adjust the index if we hit the last two wider ones. */
if ((j > currslen) && (*mouse_x % i < COLS % i))
j -= 2;
#ifdef DEBUG
fprintf(stderr, "Calculated %i as index in shortcut list, currmenu = %x.\n", j, currmenu);
#endif
/* Ignore releases/clicks of the first mouse button beyond
* the last shortcut. */
if (j > currslen)
return 2;
/* Go through the list of functions to determine which
* shortcut in the current menu we released/clicked on. */
for (f = allfuncs; f != NULL; f = f->next) {
if ((f->menus & currmenu) == 0)
continue;
#ifndef DISABLE_HELP
if (!f->help || strlen(f->help) == 0)
continue;
#endif
if (first_sc_for(currmenu, f->scfunc) == NULL)
continue;
/* Tick off an actually shown shortcut. */
j -= 1;
if (j == 0)
break;
}
#ifdef DEBUG
fprintf(stderr, "Stopped on func %ld present in menus %x\n", (long)f->scfunc, f->menus);
#endif
/* And put the corresponding key into the keyboard buffer. */
if (f != NULL) {
const sc *s = first_sc_for(currmenu, f->scfunc);
unget_kbinput(s->seq, s->type == META, s->type == FKEY);
}
return 1;
} else
/* Handle releases/clicks of the first mouse button that
* aren't on the current shortcut list elsewhere. */
return 0;
}
#if NCURSES_MOUSE_VERSION >= 2
/* Handle presses of the fourth mouse button (upward rolls of the
* mouse wheel) and presses of the fifth mouse button (downward
* rolls of the mouse wheel) . */
else if (mevent.bstate & (BUTTON4_PRESSED | BUTTON5_PRESSED)) {
bool in_edit = wenclose(edit, *mouse_y, *mouse_x);
if (in_bottomwin)
/* Translate the mouse event coordinates so that they're
* relative to bottomwin. */
wmouse_trafo(bottomwin, mouse_y, mouse_x, FALSE);
if (in_edit || (in_bottomwin && *mouse_y == 0)) {
int i;
/* One upward roll of the mouse wheel is equivalent to
* moving up three lines, and one downward roll of the mouse
* wheel is equivalent to moving down three lines. */
for (i = 0; i < 3; i++)
unget_kbinput((mevent.bstate & BUTTON4_PRESSED) ?
sc_seq_or(do_up_void, 0) : sc_seq_or(do_down_void, 0),
FALSE, FALSE);
return 1;
} else
/* Ignore presses of the fourth mouse button and presses of
* the fifth mouse buttons that aren't on the edit window or
* the statusbar. */
return 2;
}
#endif
/* Ignore all other mouse events. */
return 2;
}
#endif /* !DISABLE_MOUSE */
/* Return the shortcut that corresponds to the values of kbinput (the
* key itself) and meta_key (whether the key is a meta sequence). The
* returned shortcut will be the first in the list that corresponds to
* the given sequence. */
const sc *get_shortcut(int *kbinput)
{
sc *s;
#ifdef DEBUG
fprintf(stderr, "get_shortcut(): kbinput = %d, meta_key = %s -- ", *kbinput, meta_key ? "TRUE" : "FALSE");
#endif
for (s = sclist; s != NULL; s = s->next) {
if ((currmenu & s->menu) && *kbinput == s->seq
&& meta_key == (s->type == META)) {
#ifdef DEBUG
fprintf (stderr, "matched seq \"%s\", and btw meta was %d (menu is %x from %x)\n",
s->keystr, meta_key, currmenu, s->menu);
#endif
return s;
}
}
#ifdef DEBUG
fprintf (stderr, "matched nothing, btw meta was %d\n", meta_key);
#endif
return NULL;
}
/* Move to (x, y) in win, and display a line of n spaces with the
* current attributes. */
void blank_line(WINDOW *win, int y, int x, int n)
{
wmove(win, y, x);
for (; n > 0; n--)
waddch(win, ' ');
}
/* Blank the first line of the top portion of the window. */
void blank_titlebar(void)
{
blank_line(topwin, 0, 0, COLS);
}
/* If the MORE_SPACE flag isn't set, blank the second line of the top
* portion of the window. */
void blank_topbar(void)
{
if (!ISSET(MORE_SPACE))
blank_line(topwin, 1, 0, COLS);
}
/* Blank all the lines of the middle portion of the window, i.e. the
* edit window. */
void blank_edit(void)
{
int i;
for (i = 0; i < editwinrows; i++)
blank_line(edit, i, 0, COLS);
}
/* Blank the first line of the bottom portion of the window. */
void blank_statusbar(void)
{
blank_line(bottomwin, 0, 0, COLS);
}
/* If the NO_HELP flag isn't set, blank the last two lines of the bottom
* portion of the window. */
void blank_bottombars(void)
{
if (!ISSET(NO_HELP)) {
blank_line(bottomwin, 1, 0, COLS);
blank_line(bottomwin, 2, 0, COLS);
}
}
/* Check if the number of keystrokes needed to blank the statusbar has
* been pressed. If so, blank the statusbar, unless constant cursor
* position display is on. */
void check_statusblank(void)
{
if (statusblank > 0) {
statusblank--;
if (statusblank == 0 && !ISSET(CONST_UPDATE)) {
blank_statusbar();
wnoutrefresh(bottomwin);
reset_cursor();
wnoutrefresh(edit);
}
}
}
/* Convert buf into a string that can be displayed on screen. The
* caller wants to display buf starting with column start_col, and
* extending for at most len columns. start_col is zero-based. len is
* one-based, so len == 0 means you get "" returned. The returned
* string is dynamically allocated, and should be freed. If dollars is
* TRUE, the caller might put "$" at the beginning or end of the line if
* it's too long. */
char *display_string(const char *buf, size_t start_col, size_t len, bool
dollars)
{
size_t start_index;
/* Index in buf of the first character shown. */
size_t column;
/* Screen column that start_index corresponds to. */
size_t alloc_len;
/* The length of memory allocated for converted. */
char *converted;
/* The string we return. */
size_t index;
/* Current position in converted. */
char *buf_mb;
int buf_mb_len;
/* If dollars is TRUE, make room for the "$" at the end of the
* line. */
if (dollars && len > 0 && strlenpt(buf) > start_col + len)
len--;
if (len == 0)
return mallocstrcpy(NULL, "");
buf_mb = charalloc(mb_cur_max());
start_index = actual_x(buf, start_col);
column = strnlenpt(buf, start_index);
assert(column <= start_col);
/* Make sure there's enough room for the initial character, whether
* it's a multibyte control character, a non-control multibyte
* character, a tab character, or a null terminator. Rationale:
*
* multibyte control character followed by a null terminator:
* 1 byte ('^') + mb_cur_max() bytes + 1 byte ('\0')
* multibyte non-control character followed by a null terminator:
* mb_cur_max() bytes + 1 byte ('\0')
* tab character followed by a null terminator:
* mb_cur_max() bytes + (tabsize - 1) bytes + 1 byte ('\0')
*
* Since tabsize has a minimum value of 1, it can substitute for 1
* byte above. */
alloc_len = (mb_cur_max() + tabsize + 1) * MAX_BUF_SIZE;
converted = charalloc(alloc_len);
index = 0;
if (buf[start_index] != '\0' && buf[start_index] != '\t' &&
(column < start_col || (dollars && column > 0))) {
/* We don't display all of buf[start_index] since it starts to
* the left of the screen. */
buf_mb_len = parse_mbchar(buf + start_index, buf_mb, NULL);
if (is_cntrl_mbchar(buf_mb)) {
if (column < start_col) {
char *ctrl_buf_mb = charalloc(mb_cur_max());
int ctrl_buf_mb_len, i;
ctrl_buf_mb = control_mbrep(buf_mb, ctrl_buf_mb,
&ctrl_buf_mb_len);
for (i = 0; i < ctrl_buf_mb_len; i++)
converted[index++] = ctrl_buf_mb[i];
start_col += mbwidth(ctrl_buf_mb);
free(ctrl_buf_mb);
start_index += buf_mb_len;
}
}
#ifdef ENABLE_UTF8
else if (using_utf8() && mbwidth(buf_mb) == 2) {
if (column >= start_col) {
converted[index++] = ' ';
start_col++;
}
converted[index++] = ' ';
start_col++;
start_index += buf_mb_len;
}
#endif
}
while (buf[start_index] != '\0') {
buf_mb_len = parse_mbchar(buf + start_index, buf_mb, NULL);
/* Make sure there's enough room for the next character, whether
* it's a multibyte control character, a non-control multibyte
* character, a tab character, or a null terminator. */
if (index + mb_cur_max() + tabsize + 1 >= alloc_len - 1) {
alloc_len += (mb_cur_max() + tabsize + 1) * MAX_BUF_SIZE;
converted = charealloc(converted, alloc_len);
}
/* If buf contains a tab character, interpret it. */
if (*buf_mb == '\t') {
#if !defined(NANO_TINY) && !defined(DISABLE_NANORC)
if (ISSET(WHITESPACE_DISPLAY)) {
int i;
for (i = 0; i < whitespace_len[0]; i++)
converted[index++] = whitespace[i];
} else
#endif
converted[index++] = ' ';
start_col++;
while (start_col % tabsize != 0) {
converted[index++] = ' ';
start_col++;
}
/* If buf contains a control character, interpret it. If buf
* contains an invalid multibyte control character, display it
* as such. */
} else if (is_cntrl_mbchar(buf_mb)) {
char *ctrl_buf_mb = charalloc(mb_cur_max());
int ctrl_buf_mb_len, i;
converted[index++] = '^';
start_col++;
ctrl_buf_mb = control_mbrep(buf_mb, ctrl_buf_mb,
&ctrl_buf_mb_len);
for (i = 0; i < ctrl_buf_mb_len; i++)
converted[index++] = ctrl_buf_mb[i];
start_col += mbwidth(ctrl_buf_mb);
free(ctrl_buf_mb);
/* If buf contains a space character, interpret it. */
} else if (*buf_mb == ' ') {
#if !defined(NANO_TINY) && !defined(DISABLE_NANORC)
if (ISSET(WHITESPACE_DISPLAY)) {
int i;
for (i = whitespace_len[0]; i < whitespace_len[0] +
whitespace_len[1]; i++)
converted[index++] = whitespace[i];
} else
#endif
converted[index++] = ' ';
start_col++;
/* If buf contains a non-control character, interpret it. If
* buf contains an invalid multibyte non-control character,
* display it as such. */
} else {
char *nctrl_buf_mb = charalloc(mb_cur_max());
int nctrl_buf_mb_len, i;
nctrl_buf_mb = mbrep(buf_mb, nctrl_buf_mb,
&nctrl_buf_mb_len);
for (i = 0; i < nctrl_buf_mb_len; i++)
converted[index++] = nctrl_buf_mb[i];
start_col += mbwidth(nctrl_buf_mb);
free(nctrl_buf_mb);
}
start_index += buf_mb_len;
}
free(buf_mb);
assert(alloc_len >= index + 1);
/* Null-terminate converted. */
converted[index] = '\0';
/* Make sure converted takes up no more than len columns. */
index = actual_x(converted, len);
null_at(&converted, index);
return converted;
}
/* If path is NULL, we're in normal editing mode, so display the current
* version of nano, the current filename, and whether the current file
* has been modified on the titlebar. If path isn't NULL, we're in the
* file browser, and path contains the directory to start the file
* browser in, so display the current version of nano and the contents
* of path on the titlebar. */
void titlebar(const char *path)
{
int space = COLS;
/* The space we have available for display. */
size_t verlen = strlenpt(PACKAGE_STRING) + 1;
/* The length of the version message in columns, plus one for
* padding. */
const char *prefix;
/* "DIR:", "File:", or "New Buffer". Goes before filename. */
size_t prefixlen;
/* The length of the prefix in columns, plus one for padding. */
const char *state;
/* "Modified", "View", or "". Shows the state of this
* buffer. */
size_t statelen = 0;
/* The length of the state in columns, or the length of
* "Modified" if the state is blank and we're not in the file
* browser. */
char *exppath = NULL;
/* The filename, expanded for display. */
bool newfie = FALSE;
/* Do we say "New Buffer"? */
bool dots = FALSE;
/* Do we put an ellipsis before the path? */
assert(path != NULL || openfile->filename != NULL);
if (interface_color_pair[TITLE_BAR].bright)
wattron(topwin, A_BOLD);
wattron(topwin, interface_color_pair[TITLE_BAR].pairnum);
blank_titlebar();
/* space has to be at least 4: two spaces before the version message,
* at least one character of the version message, and one space
* after the version message. */
if (space < 4)
space = 0;
else {
/* Limit verlen to 1/3 the length of the screen in columns,
* minus three columns for spaces. */
if (verlen > (COLS / 3) - 3)
verlen = (COLS / 3) - 3;
}
if (space >= 4) {
/* Add a space after the version message, and account for both
* it and the two spaces before it. */
mvwaddnstr(topwin, 0, 2, PACKAGE_STRING,
actual_x(PACKAGE_STRING, verlen));
verlen += 3;
/* Account for the full length of the version message. */
space -= verlen;
}
#ifndef DISABLE_BROWSER
/* Don't display the state if we're in the file browser. */
if (path != NULL)
state = "";
else
#endif
state = openfile->modified ? _("Modified") : ISSET(VIEW_MODE) ?
_("View") : "";
statelen = strlenpt((*state == '\0' && path == NULL) ?
_("Modified") : state);
/* If possible, add a space before state. */
if (space > 0 && statelen < space)
statelen++;
else
goto the_end;
#ifndef DISABLE_BROWSER
/* path should be a directory if we're in the file browser. */
if (path != NULL)
prefix = _("DIR:");
else
#endif
if (openfile->filename[0] == '\0') {
prefix = _("New Buffer");
newfie = TRUE;
} else
prefix = _("File:");
prefixlen = strnlenpt(prefix, space - statelen) + 1;
/* If newfie is FALSE, add a space after prefix. */
if (!newfie && prefixlen + statelen < space)
prefixlen++;
/* If we're not in the file browser, set path to the current
* filename. */
if (path == NULL)
path = openfile->filename;
/* Account for the full lengths of the prefix and the state. */
if (space >= prefixlen + statelen)
space -= prefixlen + statelen;
else
space = 0;
/* space is now the room we have for the filename. */
if (!newfie) {
size_t lenpt = strlenpt(path), start_col;
/* Don't set dots to TRUE if we have fewer than eight columns
* (i.e. one column for padding, plus seven columns for a
* filename). */
dots = (space >= 8 && lenpt >= space);
if (dots) {
start_col = lenpt - space + 3;
space -= 3;
} else
start_col = 0;
exppath = display_string(path, start_col, space, FALSE);
}
/* If dots is TRUE, we will display something like "File:
* ...ename". */
if (dots) {
mvwaddnstr(topwin, 0, verlen - 1, prefix, actual_x(prefix,
prefixlen));
if (space <= -3 || newfie)
goto the_end;
waddch(topwin, ' ');
waddnstr(topwin, "...", space + 3);
if (space <= 0)
goto the_end;
waddstr(topwin, exppath);
} else {
size_t exppathlen = newfie ? 0 : strlenpt(exppath);
/* The length of the expanded filename. */
/* There is room for the whole filename, so we center it. */
mvwaddnstr(topwin, 0, verlen + ((space - exppathlen) / 3),
prefix, actual_x(prefix, prefixlen));
if (!newfie) {
waddch(topwin, ' ');
waddstr(topwin, exppath);
}
}
the_end:
free(exppath);
if (state[0] != '\0') {
if (statelen >= COLS - 1)
mvwaddnstr(topwin, 0, 0, state, actual_x(state, COLS));
else {
assert(COLS - statelen - 1 >= 0);
mvwaddnstr(topwin, 0, COLS - statelen - 1, state,
actual_x(state, statelen));
}
}
wattroff(topwin, A_BOLD);
wattroff(topwin, interface_color_pair[TITLE_BAR].pairnum);
wnoutrefresh(topwin);
reset_cursor();
wnoutrefresh(edit);
}
/* Mark the current file as modified if it isn't already, and then
* update the titlebar to display the file's new status. */
void set_modified(void)
{
if (!openfile->modified) {
openfile->modified = TRUE;
titlebar(NULL);
#ifndef NANO_TINY
if (ISSET(LOCKING)) {
if (openfile->filename[0] == '\0')
return;
else if (openfile->lock_filename == NULL) {
/* TRANSLATORS: Try to keep this at most 76 characters. */
statusbar(_("Warning: Modifying a file which is not locked, check directory permission?"));
} else {
write_lockfile(openfile->lock_filename,
get_full_path(openfile->filename), TRUE);
}
}
#endif
}
}
/* Display a message on the statusbar, and set disable_cursorpos to
* TRUE, so that the message won't be immediately overwritten if
* constant cursor position display is on. */
void statusbar(const char *msg, ...)
{
va_list ap;
char *bar, *foo;
size_t start_x;
#if !defined(NANO_TINY) && !defined(DISABLE_NANORC)
bool old_whitespace;
#endif
va_start(ap, msg);
/* Curses mode is turned off. If we use wmove() now, it will muck
* up the terminal settings. So we just use vfprintf(). */
if (isendwin()) {
vfprintf(stderr, msg, ap);
va_end(ap);
return;
}
blank_statusbar();
#if !defined(NANO_TINY) && !defined(DISABLE_NANORC)
old_whitespace = ISSET(WHITESPACE_DISPLAY);
UNSET(WHITESPACE_DISPLAY);
#endif
bar = charalloc(mb_cur_max() * (COLS - 3));
vsnprintf(bar, mb_cur_max() * (COLS - 3), msg, ap);
va_end(ap);
foo = display_string(bar, 0, COLS - 4, FALSE);
free(bar);
#if !defined(NANO_TINY) && !defined(DISABLE_NANORC)
if (old_whitespace)
SET(WHITESPACE_DISPLAY);
#endif
start_x = (COLS - strlenpt(foo) - 4) / 2;
wmove(bottomwin, 0, start_x);
if (interface_color_pair[STATUS_BAR].bright)
wattron(bottomwin, A_BOLD);
wattron(bottomwin, interface_color_pair[STATUS_BAR].pairnum);
waddstr(bottomwin, "[ ");
waddstr(bottomwin, foo);
free(foo);
waddstr(bottomwin, " ]");
wattroff(bottomwin, A_BOLD);
wattroff(bottomwin, interface_color_pair[STATUS_BAR].pairnum);
wnoutrefresh(bottomwin);
reset_cursor();
wnoutrefresh(edit);
/* Leave the cursor at its position in the edit window, not in
* the statusbar. */
disable_cursorpos = TRUE;
/* If we're doing quick statusbar blanking, and constant cursor
* position display is off, blank the statusbar after only one
* keystroke. Otherwise, blank it after twenty-six keystrokes, as
* Pico does. */
statusblank =
#ifndef NANO_TINY
ISSET(QUICK_BLANK) && !ISSET(CONST_UPDATE) ? 1 :
#endif
26;
}
/* Display the shortcut list in s on the last two rows of the bottom
* portion of the window. */
void bottombars(int menu)
{
size_t i, colwidth, slen;
subnfunc *f;
const sc *s;
if (ISSET(NO_HELP))
return;
if (menu == MMAIN) {
slen = MAIN_VISIBLE;
assert(slen <= length_of_list(menu));
} else {
slen = length_of_list(menu);
/* Don't show any more shortcuts than the main list does. */
if (slen > MAIN_VISIBLE)
slen = MAIN_VISIBLE;
}
/* There will be this many characters per column, except for the
* last two, which will be longer by (COLS % colwidth) columns so as
* to not waste space. We need at least three columns to display
* anything properly. */
colwidth = COLS / ((slen / 2) + (slen % 2));
blank_bottombars();
#ifdef DEBUG
fprintf(stderr, "In bottombars, and slen == \"%d\"\n", (int) slen);
#endif
for (f = allfuncs, i = 0; i < slen && f != NULL; f = f->next) {
#ifdef DEBUG
fprintf(stderr, "Checking menu items....");
#endif
if ((f->menus & menu) == 0)
continue;
#ifdef DEBUG
fprintf(stderr, "found one! f->menus = %x, desc = \"%s\"\n", f->menus, f->desc);
#endif
s = first_sc_for(menu, f->scfunc);
if (s == NULL) {
#ifdef DEBUG
fprintf(stderr, "Whoops, guess not, no shortcut key found for func!\n");
#endif
continue;
}
wmove(bottomwin, 1 + i % 2, (i / 2) * colwidth);
#ifdef DEBUG
fprintf(stderr, "Calling onekey with keystr \"%s\" and desc \"%s\"\n", s->keystr, f->desc);
#endif
onekey(s->keystr, _(f->desc), colwidth + (COLS % colwidth));
i++;
}
wnoutrefresh(bottomwin);
reset_cursor();
wnoutrefresh(edit);
}
/* Write a shortcut key to the help area at the bottom of the window.
* keystroke is e.g. "^G" and desc is e.g. "Get Help". We are careful
* to write at most len characters, even if len is very small and
* keystroke and desc are long. Note that waddnstr(,,(size_t)-1) adds
* the whole string! We do not bother padding the entry with blanks. */
void onekey(const char *keystroke, const char *desc, size_t len)
{
size_t keystroke_len = strlenpt(keystroke) + 1;
assert(keystroke != NULL && desc != NULL);
if (interface_color_pair[KEY_COMBO].bright)
wattron(bottomwin, A_BOLD);
wattron(bottomwin, interface_color_pair[KEY_COMBO].pairnum);
waddnstr(bottomwin, keystroke, actual_x(keystroke, len));
wattroff(bottomwin, A_BOLD);
wattroff(bottomwin, interface_color_pair[KEY_COMBO].pairnum);
if (len > keystroke_len)
len -= keystroke_len;
else
len = 0;
if (len > 0) {
waddch(bottomwin, ' ');
if (interface_color_pair[FUNCTION_TAG].bright)
wattron(bottomwin, A_BOLD);
wattron(bottomwin, interface_color_pair[FUNCTION_TAG].pairnum);
waddnstr(bottomwin, desc, actual_x(desc, len));
wattroff(bottomwin, A_BOLD);
wattroff(bottomwin, interface_color_pair[FUNCTION_TAG].pairnum);
}
}
/* Reset current_y, based on the position of current, and put the cursor
* in the edit window at (current_y, current_x). */
void reset_cursor(void)
{
size_t xpt;
/* If we haven't opened any files yet, put the cursor in the top
* left corner of the edit window and get out. */
if (openfile == NULL) {
wmove(edit, 0, 0);
return;
}
xpt = xplustabs();
#ifndef NANO_TINY
if (ISSET(SOFTWRAP)) {
filestruct *tmp;
openfile->current_y = 0;
for (tmp = openfile->edittop; tmp && tmp != openfile->current; tmp = tmp->next)
openfile->current_y += (strlenpt(tmp->data) / COLS) + 1;
openfile->current_y += xplustabs() / COLS;
if (openfile->current_y < editwinrows)
wmove(edit, openfile->current_y, xpt % COLS);
} else
#endif
{
openfile->current_y = openfile->current->lineno -
openfile->edittop->lineno;
if (openfile->current_y < editwinrows)
wmove(edit, openfile->current_y, xpt - get_page_start(xpt));
}
}
/* edit_draw() takes care of the job of actually painting a line into
* the edit window. fileptr is the line to be painted, at row line of
* the window. converted is the actual string to be written to the
* window, with tabs and control characters replaced by strings of
* regular characters. start is the column number of the first
* character of this page. That is, the first character of converted
* corresponds to character number actual_x(fileptr->data, start) of the
* line. */
void edit_draw(filestruct *fileptr, const char *converted, int
line, size_t start)
{
#if !defined(NANO_TINY) || !defined(DISABLE_COLOR)
size_t startpos = actual_x(fileptr->data, start);
/* The position in fileptr->data of the leftmost character
* that displays at least partially on the window. */
size_t endpos = actual_x(fileptr->data, start + COLS - 1) + 1;
/* The position in fileptr->data of the first character that is
* completely off the window to the right.
*
* Note that endpos might be beyond the null terminator of the
* string. */
#endif
assert(openfile != NULL && fileptr != NULL && converted != NULL);
assert(strlenpt(converted) <= COLS);
/* First simply paint the line -- then we'll add colors or the
* marking highlight on just the pieces that need it. */
mvwaddstr(edit, line, 0, converted);
#ifndef USE_SLANG
/* Tell ncurses to really redraw the line without trying to optimize
* for what it thinks is already there, because it gets it wrong in
* the case of a wide character in column zero. See bug #31743. */
wredrawln(edit, line, 1);
#endif
#ifndef DISABLE_COLOR
/* If color syntaxes are available and turned on, we need to display
* them. */
if (openfile->colorstrings != NULL && !ISSET(NO_COLOR_SYNTAX)) {
const colortype *tmpcolor = openfile->colorstrings;
/* Set up multi-line color data for this line if it's not yet
* calculated. */
if (fileptr->multidata == NULL && openfile->syntax
&& openfile->syntax->nmultis > 0) {
int i;
fileptr->multidata = (short *)nmalloc(openfile->syntax->nmultis * sizeof(short));
for (i = 0; i < openfile->syntax->nmultis; i++)
/* Assume this applies until we know otherwise. */
fileptr->multidata[i] = -1;
}
for (; tmpcolor != NULL; tmpcolor = tmpcolor->next) {
int x_start;
/* Starting column for mvwaddnstr. Zero-based. */
int paintlen;
/* Number of chars to paint on this line. There are
* COLS characters on a whole line. */
size_t index;
/* Index in converted where we paint. */
regmatch_t startmatch;
/* Match position for start_regex. */
regmatch_t endmatch;
/* Match position for end_regex. */
if (tmpcolor->bright)
wattron(edit, A_BOLD);
wattron(edit, COLOR_PAIR(tmpcolor->pairnum));
/* Two notes about regexec(). A return value of zero means
* that there is a match. Also, rm_eo is the first
* non-matching character after the match. */
/* First case, tmpcolor is a single-line expression. */
if (tmpcolor->end == NULL) {
size_t k = 0;
/* We increment k by rm_eo, to move past the end of the
* last match. Even though two matches may overlap, we
* want to ignore them, so that we can highlight e.g. C
* strings correctly. */
while (k < endpos) {
/* Note the fifth parameter to regexec(). It says
* not to match the beginning-of-line character
* unless k is zero. If regexec() returns
* REG_NOMATCH, there are no more matches in the
* line. */
if (regexec(tmpcolor->start, &fileptr->data[k], 1,
&startmatch, (k == 0) ? 0 : REG_NOTBOL) ==
REG_NOMATCH)
break;
/* Translate the match to the beginning of the
* line. */
startmatch.rm_so += k;
startmatch.rm_eo += k;
/* Skip over a zero-length regex match. */
if (startmatch.rm_so == startmatch.rm_eo)
startmatch.rm_eo++;
else if (startmatch.rm_so < endpos &&
startmatch.rm_eo > startpos) {
x_start = (startmatch.rm_so <= startpos) ? 0 :
strnlenpt(fileptr->data,
startmatch.rm_so) - start;
index = actual_x(converted, x_start);
paintlen = actual_x(converted + index,
strnlenpt(fileptr->data,
startmatch.rm_eo) - start - x_start);
assert(0 <= x_start && 0 <= paintlen);
mvwaddnstr(edit, line, x_start, converted +
index, paintlen);
}
k = startmatch.rm_eo;
}
} else if (fileptr->multidata != NULL && fileptr->multidata[tmpcolor->id] != CNONE) {
/* This is a multi-line regex. There are two steps.
* First, we have to see if the beginning of the line is
* colored by a start on an earlier line, and an end on
* this line or later.
*
* We find the first line before fileptr matching the
* start. If every match on that line is followed by an
* end, then go to step two. Otherwise, find the next
* line after start_line matching the end. If that line
* is not before fileptr, then paint the beginning of
* this line. */
const filestruct *start_line = fileptr->prev;
/* The first line before fileptr matching start. */
regoff_t start_col;
/* Where it starts in that line. */
const filestruct *end_line;
short md = fileptr->multidata[tmpcolor->id];
if (md == -1)
/* Assume this until we know otherwise. */
fileptr->multidata[tmpcolor->id] = CNONE;
else if (md == CNONE)
goto end_of_loop;
else if (md == CWHOLELINE) {
mvwaddnstr(edit, line, 0, converted, -1);
goto end_of_loop;
} else if (md == CBEGINBEFORE) {
regexec(tmpcolor->end, fileptr->data, 1, &endmatch, 0);
paintlen = actual_x(converted, strnlenpt(fileptr->data,
endmatch.rm_eo) - start);
mvwaddnstr(edit, line, 0, converted, paintlen);
goto end_of_loop;
}
while (start_line != NULL && regexec(tmpcolor->start,
start_line->data, 1, &startmatch, 0) ==
REG_NOMATCH) {
/* If there is an end on this line, there is no need
* to look for starts on earlier lines. */
if (regexec(tmpcolor->end, start_line->data, 0,
NULL, 0) == 0)
goto step_two;
start_line = start_line->prev;
}
/* Skip over a zero-length regex match. */
if (startmatch.rm_so == startmatch.rm_eo)
startmatch.rm_eo++;
else {
/* No start found, so skip to the next step. */
if (start_line == NULL)
goto step_two;
/* Now start_line is the first line before fileptr
* containing a start match. Is there a start on
* this line not followed by an end on this line? */
start_col = 0;
while (TRUE) {
start_col += startmatch.rm_so;
startmatch.rm_eo -= startmatch.rm_so;
if (regexec(tmpcolor->end, start_line->data +
start_col + startmatch.rm_eo, 0, NULL,
(start_col + startmatch.rm_eo == 0) ?
0 : REG_NOTBOL) == REG_NOMATCH)
/* No end found after this start. */
break;
start_col++;
if (regexec(tmpcolor->start, start_line->data +
start_col, 1, &startmatch,
REG_NOTBOL) == REG_NOMATCH)
/* No later start on this line. */
goto step_two;
}
/* Indeed, there is a start not followed on this
* line by an end. */
/* We have already checked that there is no end
* before fileptr and after the start. Is there an
* end after the start at all? We don't paint
* unterminated starts. */
end_line = fileptr;
while (end_line != NULL && regexec(tmpcolor->end,
end_line->data, 1, &endmatch, 0) == REG_NOMATCH)
end_line = end_line->next;
/* No end found, or it is too early. */
if (end_line == NULL || (end_line == fileptr &&
endmatch.rm_eo <= startpos))
goto step_two;
/* Now paint the start of fileptr. If the start of
* fileptr is on a different line from the end,
* paintlen is -1, meaning that everything on the
* line gets painted. Otherwise, paintlen is the
* expanded location of the end of the match minus
* the expanded location of the beginning of the
* page. */
if (end_line != fileptr) {
paintlen = -1;
fileptr->multidata[tmpcolor->id] = CWHOLELINE;
} else {
paintlen = actual_x(converted,
strnlenpt(fileptr->data,
endmatch.rm_eo) - start);
fileptr->multidata[tmpcolor->id] = CBEGINBEFORE;
}
mvwaddnstr(edit, line, 0, converted, paintlen);
step_two:
/* Second step, we look for starts on this line. */
start_col = 0;
while (start_col < endpos) {
if (regexec(tmpcolor->start, fileptr->data +
start_col, 1, &startmatch, (start_col ==
0) ? 0 : REG_NOTBOL) == REG_NOMATCH ||
start_col + startmatch.rm_so >= endpos)
/* No more starts on this line. */
break;
/* Translate the match to be relative to the
* beginning of the line. */
startmatch.rm_so += start_col;
startmatch.rm_eo += start_col;
x_start = (startmatch.rm_so <= startpos) ? 0 :
strnlenpt(fileptr->data,
startmatch.rm_so) - start;
index = actual_x(converted, x_start);
if (regexec(tmpcolor->end, fileptr->data +
startmatch.rm_eo, 1, &endmatch,
(startmatch.rm_eo == 0) ? 0 :
REG_NOTBOL) == 0) {
/* Translate the end match to be relative to
* the beginning of the line. */
endmatch.rm_so += startmatch.rm_eo;
endmatch.rm_eo += startmatch.rm_eo;
/* There is an end on this line. But does
* it appear on this page, and is the match
* more than zero characters long? */
if (endmatch.rm_eo > startpos &&
endmatch.rm_eo > startmatch.rm_so) {
paintlen = actual_x(converted + index,
strnlenpt(fileptr->data,
endmatch.rm_eo) - start -
x_start);
assert(0 <= x_start && x_start < COLS);
mvwaddnstr(edit, line, x_start,
converted + index, paintlen);
if (paintlen > 0)
fileptr->multidata[tmpcolor->id] = CSTARTENDHERE;
}
} else {
/* There is no end on this line. But we
* haven't yet looked for one on later
* lines. */
end_line = fileptr->next;
while (end_line != NULL &&
regexec(tmpcolor->end, end_line->data,
0, NULL, 0) == REG_NOMATCH)
end_line = end_line->next;
if (end_line != NULL) {
assert(0 <= x_start && x_start < COLS);
mvwaddnstr(edit, line, x_start,
converted + index, -1);
/* We painted to the end of the line, so
* don't bother checking any more
* starts. */
fileptr->multidata[tmpcolor->id] = CENDAFTER;
break;
}
}
start_col = startmatch.rm_so + 1;
}
}
}
end_of_loop:
wattroff(edit, A_BOLD);
wattroff(edit, COLOR_PAIR(tmpcolor->pairnum));
}
}
#endif /* !DISABLE_COLOR */
#ifndef NANO_TINY
/* If the mark is on, we need to display it. */
if (openfile->mark_set && (fileptr->lineno <=
openfile->mark_begin->lineno || fileptr->lineno <=
openfile->current->lineno) && (fileptr->lineno >=
openfile->mark_begin->lineno || fileptr->lineno >=
openfile->current->lineno)) {
/* fileptr is at least partially selected. */
const filestruct *top;
/* Either current or mark_begin, whichever is first. */
size_t top_x;
/* current_x or mark_begin_x, corresponding to top. */
const filestruct *bot;
size_t bot_x;
int x_start;
/* Starting column for mvwaddnstr(). Zero-based. */
int paintlen;
/* Number of characters to paint on this line. There are
* COLS characters on a whole line. */
size_t index;
/* Index in converted where we paint. */
mark_order(&top, &top_x, &bot, &bot_x, NULL);
if (top->lineno < fileptr->lineno || top_x < startpos)
top_x = startpos;
if (bot->lineno > fileptr->lineno || bot_x > endpos)
bot_x = endpos;
/* The selected bit of fileptr is on this page. */
if (top_x < endpos && bot_x > startpos) {
assert(startpos <= top_x);
/* x_start is the expanded location of the beginning of the
* mark minus the beginning of the page. */
x_start = strnlenpt(fileptr->data, top_x) - start;
/* If the end of the mark is off the page, paintlen is -1,
* meaning that everything on the line gets painted.
* Otherwise, paintlen is the expanded location of the end
* of the mark minus the expanded location of the beginning
* of the mark. */
if (bot_x >= endpos)
paintlen = -1;
else
paintlen = strnlenpt(fileptr->data, bot_x) - (x_start +
start);
/* If x_start is before the beginning of the page, shift
* paintlen x_start characters to compensate, and put
* x_start at the beginning of the page. */
if (x_start < 0) {
paintlen += x_start;
x_start = 0;
}
assert(x_start >= 0 && x_start <= strlen(converted));
index = actual_x(converted, x_start);
if (paintlen > 0)
paintlen = actual_x(converted + index, paintlen);
wattron(edit, hilite_attribute);
mvwaddnstr(edit, line, x_start, converted + index,
paintlen);
wattroff(edit, hilite_attribute);
}
}
#endif /* !NANO_TINY */
}
/* Just update one line in the edit buffer. This is basically a wrapper
* for edit_draw(). The line will be displayed starting with
* fileptr->data[index]. Likely arguments are current_x or zero.
* Returns: Number of additional lines consumed (needed for SOFTWRAP). */
int update_line(filestruct *fileptr, size_t index)
{
int line = 0;
/* The line in the edit window that we want to update. */
int extralinesused = 0;
char *converted;
/* fileptr->data converted to have tabs and control characters
* expanded. */
size_t page_start;
assert(fileptr != NULL);
#ifndef NANO_TINY
if (ISSET(SOFTWRAP)) {
filestruct *tmp;
for (tmp = openfile->edittop; tmp && tmp != fileptr; tmp = tmp->next)
line += (strlenpt(tmp->data) / COLS) + 1;
} else
#endif
line = fileptr->lineno - openfile->edittop->lineno;
if (line < 0 || line >= editwinrows)
return 1;
/* First, blank out the line. */
blank_line(edit, line, 0, COLS);
/* Next, convert variables that index the line to their equivalent
* positions in the expanded line. */
#ifndef NANO_TINY
if (ISSET(SOFTWRAP))
index = 0;
else
#endif
index = strnlenpt(fileptr->data, index);
page_start = get_page_start(index);
/* Expand the line, replacing tabs with spaces, and control
* characters with their displayed forms. */
#ifdef NANO_TINY
converted = display_string(fileptr->data, page_start, COLS, TRUE);
#else
converted = display_string(fileptr->data, page_start, COLS, !ISSET(SOFTWRAP));
#ifdef DEBUG
if (ISSET(SOFTWRAP) && strlen(converted) >= COLS - 2)
fprintf(stderr, "update_line(): converted(1) line = %s\n", converted);
#endif
#endif /* !NANO_TINY */
/* Paint the line. */
edit_draw(fileptr, converted, line, page_start);
free(converted);
#ifndef NANO_TINY
if (!ISSET(SOFTWRAP)) {
#endif
if (page_start > 0)
mvwaddch(edit, line, 0, '$');
if (strlenpt(fileptr->data) > page_start + COLS)
mvwaddch(edit, line, COLS - 1, '$');
#ifndef NANO_TINY
} else {
size_t full_length = strlenpt(fileptr->data);
for (index += COLS; index <= full_length && line < editwinrows; index += COLS) {
line++;
#ifdef DEBUG
fprintf(stderr, "update_line(): softwrap code, moving to %d index %lu\n", line, (unsigned long)index);
#endif
blank_line(edit, line, 0, COLS);
/* Expand the line, replacing tabs with spaces, and control
* characters with their displayed forms. */
converted = display_string(fileptr->data, index, COLS, !ISSET(SOFTWRAP));
#ifdef DEBUG
if (ISSET(SOFTWRAP) && strlen(converted) >= COLS - 2)
fprintf(stderr, "update_line(): converted(2) line = %s\n", converted);
#endif
/* Paint the line. */
edit_draw(fileptr, converted, line, index);
free(converted);
extralinesused++;
}
}
#endif /* !NANO_TINY */
return extralinesused;
}
/* Return TRUE if we need an update after moving horizontally, and FALSE
* otherwise. We need one if the mark is on or if pww_save and
* placewewant are on different pages. */
bool need_horizontal_update(size_t pww_save)
{
return
#ifndef NANO_TINY
openfile->mark_set ||
#endif
get_page_start(pww_save) !=
get_page_start(openfile->placewewant);
}
/* Return TRUE if we need an update after moving vertically, and FALSE
* otherwise. We need one if the mark is on or if pww_save and
* placewewant are on different pages. */
bool need_vertical_update(size_t pww_save)
{
return
#ifndef NANO_TINY
openfile->mark_set ||
#endif
get_page_start(pww_save) !=
get_page_start(openfile->placewewant);
}
/* When edittop changes, try and figure out how many lines
* we really have to work with (i.e. set maxrows). */
void compute_maxrows(void)
{
int n;
filestruct *foo = openfile->edittop;
if (!ISSET(SOFTWRAP)) {
maxrows = editwinrows;
return;
}
maxrows = 0;
for (n = 0; n < editwinrows && foo; n++) {
maxrows++;
n += strlenpt(foo->data) / COLS;
foo = foo->next;
}
if (n < editwinrows)
maxrows += editwinrows - n;
#ifdef DEBUG
fprintf(stderr, "compute_maxrows(): maxrows = %d\n", maxrows);
#endif
}
/* Scroll the edit window in the given direction and the given number
* of lines, and draw new lines on the blank lines left after the
* scrolling. direction is the direction to scroll, either UPWARD or
* DOWNWARD, and nlines is the number of lines to scroll. We change
* edittop, and assume that current and current_x are up to date. We
* also assume that scrollok(edit) is FALSE. */
void edit_scroll(scroll_dir direction, ssize_t nlines)
{
ssize_t i;
filestruct *foo;
bool do_redraw = FALSE;
/* Don't bother scrolling less than one line. */
if (nlines < 1)
return;
if (need_vertical_update(0))
do_redraw = TRUE;
/* Part 1: nlines is the number of lines we're going to scroll the
* text of the edit window. */
/* Move the top line of the edit window up or down (depending on the
* value of direction) nlines lines, or as many lines as we can if
* there are fewer than nlines lines available. */
for (i = nlines; i > 0; i--) {
if (direction == UPWARD) {
if (openfile->edittop == openfile->fileage)
break;
openfile->edittop = openfile->edittop->prev;
} else {
if (openfile->edittop == openfile->filebot)
break;
openfile->edittop = openfile->edittop->next;
}
#ifndef NANO_TINY
/* Don't over-scroll on long lines. */
if (ISSET(SOFTWRAP) && direction == UPWARD) {
ssize_t len = strlenpt(openfile->edittop->data) / COLS;
i -= len;
if (len > 0)
do_redraw = TRUE;
}
#endif
}
/* Limit nlines to the number of lines we could scroll. */
nlines -= i;
/* Don't bother scrolling zero lines or more than the number of
* lines in the edit window minus one; in both cases, get out, and
* call edit_refresh() beforehand if we need to. */
if (nlines == 0 || do_redraw || nlines >= editwinrows) {
if (do_redraw || nlines >= editwinrows)
edit_refresh_needed = TRUE;
return;
}
/* Scroll the text of the edit window up or down nlines lines,
* depending on the value of direction. */
scrollok(edit, TRUE);
wscrl(edit, (direction == UPWARD) ? -nlines : nlines);
scrollok(edit, FALSE);
/* Part 2: nlines is the number of lines in the scrolled region of
* the edit window that we need to draw. */
/* If the top or bottom line of the file is now visible in the edit
* window, we need to draw the entire edit window. */
if ((direction == UPWARD && openfile->edittop ==
openfile->fileage) || (direction == DOWNWARD &&
openfile->edittop->lineno + editwinrows - 1 >=
openfile->filebot->lineno))
nlines = editwinrows;
/* If the scrolled region contains only one line, and the line
* before it is visible in the edit window, we need to draw it too.
* If the scrolled region contains more than one line, and the lines
* before and after the scrolled region are visible in the edit
* window, we need to draw them too. */
nlines += (nlines == 1) ? 1 : 2;
if (nlines > editwinrows)
nlines = editwinrows;
/* If we scrolled up, we're on the line before the scrolled
* region. */
foo = openfile->edittop;
/* If we scrolled down, move down to the line before the scrolled
* region. */
if (direction == DOWNWARD) {
for (i = editwinrows - nlines; i > 0 && foo != NULL; i--)
foo = foo->next;
}
/* Draw new lines on any blank lines before or inside the scrolled
* region. If we scrolled down and we're on the top line, or if we
* scrolled up and we're on the bottom line, the line won't be
* blank, so we don't need to draw it unless the mark is on or we're
* not on the first page. */
for (i = nlines; i > 0 && foo != NULL; i--) {
if ((i == nlines && direction == DOWNWARD) || (i == 1 &&
direction == UPWARD)) {
if (do_redraw)
update_line(foo, (foo == openfile->current) ?
openfile->current_x : 0);
} else
update_line(foo, (foo == openfile->current) ?
openfile->current_x : 0);
foo = foo->next;
}
compute_maxrows();
}
/* Update any lines between old_current and current that need to be
* updated. Use this if we've moved without changing any text. */
void edit_redraw(filestruct *old_current, size_t pww_save)
{
bool do_redraw = need_vertical_update(0) ||
need_vertical_update(pww_save);
filestruct *foo = NULL;
/* If either old_current or current is offscreen, scroll the edit
* window until it's onscreen and get out. */
if (old_current->lineno < openfile->edittop->lineno ||
old_current->lineno >= openfile->edittop->lineno +
maxrows || openfile->current->lineno <
openfile->edittop->lineno || openfile->current->lineno >=
openfile->edittop->lineno + maxrows) {
#ifdef DEBUG
fprintf(stderr, "edit_redraw(): line %ld was offscreen, oldcurrent = %ld edittop = %ld",
(long)openfile->current->lineno, (long)old_current->lineno, (long)openfile->edittop->lineno);
#endif
#ifndef NANO_TINY
/* If the mark is on, update all the lines between old_current
* and either the old first line or old last line (depending on
* whether we've scrolled up or down) of the edit window. */
if (openfile->mark_set) {
ssize_t old_lineno;
filestruct *old_edittop = openfile->edittop;
if (old_edittop->lineno < openfile->edittop->lineno)
old_lineno = old_edittop->lineno;
else
old_lineno = (old_edittop->lineno + maxrows <=
openfile->filebot->lineno) ?
old_edittop->lineno + editwinrows :
openfile->filebot->lineno;
foo = old_current;
while (foo->lineno != old_lineno) {
update_line(foo, 0);
foo = (foo->lineno > old_lineno) ? foo->prev :
foo->next;
}
}
#endif /* !NANO_TINY */
/* Make sure the current line is on the screen. */
edit_update((ISSET(SMOOTH_SCROLL) && !focusing) ? NONE : CENTER);
/* Update old_current if we're not on the same page as
* before. */
if (do_redraw)
update_line(old_current, 0);
#ifndef NANO_TINY
/* If the mark is on, update all the lines between the old first
* line or old last line of the edit window (depending on
* whether we've scrolled up or down) and current. */
if (openfile->mark_set) {
while (foo->lineno != openfile->current->lineno) {
update_line(foo, 0);
foo = (foo->lineno > openfile->current->lineno) ?
foo->prev : foo->next;
}
}
#endif /* !NANO_TINY */
return;
}
/* Update old_current and current if we're not on the same page as
* before. If the mark is on, update all the lines between
* old_current and current too. */
foo = old_current;
while (foo != openfile->current) {
if (do_redraw)
update_line(foo, 0);
#ifndef NANO_TINY
if (!openfile->mark_set)
#endif
break;
#ifndef NANO_TINY
foo = (foo->lineno > openfile->current->lineno) ? foo->prev :
foo->next;
#endif
}
if (do_redraw)
update_line(openfile->current, openfile->current_x);
}
/* Refresh the screen without changing the position of lines. Use this
* if we've moved and changed text. */
void edit_refresh(void)
{
filestruct *foo;
int nlines;
/* Figure out what maxrows should really be. */
compute_maxrows();
if (openfile->current->lineno < openfile->edittop->lineno ||
openfile->current->lineno >= openfile->edittop->lineno +
maxrows) {
#ifdef DEBUG
fprintf(stderr, "edit_refresh(): line = %ld, edittop %ld + maxrows %d\n",
(long)openfile->current->lineno, (long)openfile->edittop->lineno, maxrows);
#endif
/* Make sure the current line is on the screen. */
edit_update(ISSET(SMOOTH_SCROLL) ? NONE : CENTER);
}
foo = openfile->edittop;
#ifdef DEBUG
fprintf(stderr, "edit_refresh(): edittop->lineno = %ld\n", (long)openfile->edittop->lineno);
#endif
for (nlines = 0; nlines < editwinrows && foo != NULL; nlines++) {
nlines += update_line(foo, (foo == openfile->current) ?
openfile->current_x : 0);
foo = foo->next;
}
for (; nlines < editwinrows; nlines++)
blank_line(edit, nlines, 0, COLS);
reset_cursor();
wnoutrefresh(edit);
}
/* Move edittop to put it in range of current, keeping current in the
* same place. location determines how we move it: if it's CENTER, we
* center current, and if it's NONE, we put current current_y lines
* below edittop. */
void edit_update(update_type location)
{
filestruct *foo = openfile->current;
int goal;
/* If location is CENTER, we move edittop up (editwinrows / 2)
* lines. This puts current at the center of the screen. If
* location is NONE, we move edittop up current_y lines if current_y
* is in range of the screen, 0 lines if current_y is less than 0,
* or (editwinrows - 1) lines if current_y is greater than
* (editwinrows - 1). This puts current at the same place on the
* screen as before, or at the top or bottom of the screen if
* edittop is beyond either. */
if (location == CENTER)
goal = editwinrows / 2;
else {
goal = openfile->current_y;
/* Limit goal to (editwinrows - 1) lines maximum. */
if (goal > editwinrows - 1)
goal = editwinrows - 1;
}
for (; goal > 0 && foo->prev != NULL; goal--) {
foo = foo->prev;
#ifndef NANO_TINY
if (ISSET(SOFTWRAP) && foo)
goal -= strlenpt(foo->data) / COLS;
#endif
}
openfile->edittop = foo;
#ifdef DEBUG
fprintf(stderr, "edit_update(): setting edittop to lineno %ld\n", (long)openfile->edittop->lineno);
#endif
compute_maxrows();
edit_refresh_needed = TRUE;
}
/* Unconditionally redraw the entire screen. */
void total_redraw(void)
{
#ifdef USE_SLANG
/* Slang curses emulation brain damage, part 4: Slang doesn't define
* curscr. */
SLsmg_touch_screen();
SLsmg_refresh();
#else
wrefresh(curscr);
#endif
}
/* Unconditionally redraw the entire screen, and then refresh it using
* the current file. */
void total_refresh(void)
{
total_redraw();
titlebar(NULL);
edit_refresh();
bottombars(currmenu);
}
/* Display the main shortcut list on the last two rows of the bottom
* portion of the window. */
void display_main_list(void)
{
#ifndef DISABLE_COLOR
if (openfile->syntax
&& (openfile->syntax->formatter || openfile->syntax->linter))
set_lint_or_format_shortcuts();
else
set_spell_shortcuts();
#endif
bottombars(MMAIN);
}
/* If constant is TRUE, we display the current cursor position only if
* disable_cursorpos is FALSE. Otherwise, we display it
* unconditionally and set disable_cursorpos to FALSE. If constant is
* TRUE and disable_cursorpos is TRUE, we also set disable_cursorpos to
* FALSE, so that we leave the current statusbar alone this time, and
* display the current cursor position next time. */
void do_cursorpos(bool constant)
{
filestruct *f;
char c;
size_t i, cur_xpt = xplustabs() + 1;
size_t cur_lenpt = strlenpt(openfile->current->data) + 1;
int linepct, colpct, charpct;
assert(openfile->fileage != NULL && openfile->current != NULL);
f = openfile->current->next;
c = openfile->current->data[openfile->current_x];
openfile->current->next = NULL;
openfile->current->data[openfile->current_x] = '\0';
i = get_totsize(openfile->fileage, openfile->current);
openfile->current->data[openfile->current_x] = c;
openfile->current->next = f;
if (constant && disable_cursorpos) {
disable_cursorpos = FALSE;
return;
}
/* Display the current cursor position on the statusbar, and set
* disable_cursorpos to FALSE. */
linepct = 100 * openfile->current->lineno /
openfile->filebot->lineno;
colpct = 100 * cur_xpt / cur_lenpt;
charpct = (openfile->totsize == 0) ? 0 : 100 * i /
openfile->totsize;
statusbar(
_("line %ld/%ld (%d%%), col %lu/%lu (%d%%), char %lu/%lu (%d%%)"),
(long)openfile->current->lineno,
(long)openfile->filebot->lineno, linepct,
(unsigned long)cur_xpt, (unsigned long)cur_lenpt, colpct,
(unsigned long)i, (unsigned long)openfile->totsize, charpct);
disable_cursorpos = FALSE;
}
/* Unconditionally display the current cursor position. */
void do_cursorpos_void(void)
{
do_cursorpos(FALSE);
}
void enable_nodelay(void)
{
nodelay_mode = TRUE;
nodelay(edit, TRUE);
}
void disable_nodelay(void)
{
nodelay_mode = FALSE;
nodelay(edit, FALSE);
}
/* Highlight the current word being replaced or spell checked. We
* expect word to have tabs and control characters expanded. */
void do_replace_highlight(bool highlight, const char *word)
{
size_t y = xplustabs(), word_len = strlenpt(word);
y = get_page_start(y) + COLS - y;
/* Now y is the number of columns that we can display on this
* line. */
assert(y > 0);
if (word_len > y)
y--;
reset_cursor();
wnoutrefresh(edit);
if (highlight)
wattron(edit, hilite_attribute);
/* This is so we can show zero-length matches. */
if (word_len == 0)
waddch(edit, ' ');
else
waddnstr(edit, word, actual_x(word, y));
if (word_len > y)
waddch(edit, '$');
if (highlight)
wattroff(edit, hilite_attribute);
}
#ifndef DISABLE_EXTRA
#define CREDIT_LEN 54
#define XLCREDIT_LEN 9
/* Easter egg: Display credits. Assume nodelay(edit) and scrollok(edit)
* are FALSE. */
void do_credits(void)
{
bool old_more_space = ISSET(MORE_SPACE);
bool old_no_help = ISSET(NO_HELP);
int kbinput = ERR, crpos = 0, xlpos = 0;
const char *credits[CREDIT_LEN] = {
NULL, /* "The nano text editor" */
NULL, /* "version" */
VERSION,
"",
NULL, /* "Brought to you by:" */
"Chris Allegretta",
"Jordi Mallach",
"Adam Rogoyski",
"Rob Siemborski",
"Rocco Corsi",
"David Lawrence Ramsey",
"David Benbennick",
"Mark Majeres",
"Mike Frysinger",
"Benno Schulenberg",
"Ken Tyler",
"Sven Guckes",
"Bill Soudan",
"Christian Weisgerber",
"Erik Andersen",
"Big Gaute",
"Joshua Jensen",
"Ryan Krebs",
"Albert Chin",
"",
NULL, /* "Special thanks to:" */
"Monique, Brielle & Joseph",
"Plattsburgh State University",
"Benet Laboratories",
"Amy Allegretta",
"Linda Young",
"Jeremy Robichaud",
"Richard Kolb II",
NULL, /* "The Free Software Foundation" */
"Linus Torvalds",
NULL, /* "the many translators and the TP" */
NULL, /* "For ncurses:" */
"Thomas Dickey",
"Pavel Curtis",
"Zeyd Ben-Halim",
"Eric S. Raymond",
NULL, /* "and anyone else we forgot..." */
NULL, /* "Thank you for using nano!" */
"",
"",
"",
"",
"(C) 1999 - 2015",
"Free Software Foundation, Inc.",
"",
"",
"",
"",
"http://www.nano-editor.org/"
};
const char *xlcredits[XLCREDIT_LEN] = {
N_("The nano text editor"),
N_("version"),
N_("Brought to you by:"),
N_("Special thanks to:"),
N_("The Free Software Foundation"),
N_("the many translators and the TP"),
N_("For ncurses:"),
N_("and anyone else we forgot..."),
N_("Thank you for using nano!")
};
if (!old_more_space || !old_no_help) {
SET(MORE_SPACE);
SET(NO_HELP);
window_init();
}
curs_set(0);
nodelay(edit, TRUE);
blank_titlebar();
blank_topbar();
blank_edit();
blank_statusbar();
blank_bottombars();
wrefresh(topwin);
wrefresh(edit);
wrefresh(bottomwin);
napms(700);
for (crpos = 0; crpos < CREDIT_LEN + editwinrows / 2; crpos++) {
if ((kbinput = wgetch(edit)) != ERR)
break;
if (crpos < CREDIT_LEN) {
const char *what;
size_t start_x;
if (credits[crpos] == NULL) {
assert(0 <= xlpos && xlpos < XLCREDIT_LEN);
what = _(xlcredits[xlpos]);
xlpos++;
} else
what = credits[crpos];
start_x = COLS / 2 - strlenpt(what) / 2 - 1;
mvwaddstr(edit, editwinrows - 1 - (editwinrows % 2),
start_x, what);
}
wrefresh(edit);
if ((kbinput = wgetch(edit)) != ERR)
break;
napms(700);
scrollok(edit, TRUE);
wscrl(edit, 1);
scrollok(edit, FALSE);
wrefresh(edit);
if ((kbinput = wgetch(edit)) != ERR)
break;
napms(700);
scrollok(edit, TRUE);
wscrl(edit, 1);
scrollok(edit, FALSE);
wrefresh(edit);
}
if (kbinput != ERR)
ungetch(kbinput);
if (!old_more_space || !old_no_help) {
UNSET(MORE_SPACE);
UNSET(NO_HELP);
window_init();
}
curs_set(1);
nodelay(edit, FALSE);
total_refresh();
}
#endif /* !DISABLE_EXTRA */