LiteCraft/src/main/java/io/github/hydos/ginger/engine/math/matrixes/Matrix4f.java

799 lines
25 KiB
Java

/*
* Copyright (c) 2002-2008 LWJGL Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'LWJGL' nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package io.github.hydos.ginger.engine.math.matrixes;
import java.io.Serializable;
import java.nio.FloatBuffer;
import io.github.hydos.ginger.engine.math.vectors.Vector2f;
import io.github.hydos.ginger.engine.math.vectors.Vector3f;
import io.github.hydos.ginger.engine.math.vectors.Vector4f;
/** Holds a 4x4 float matrix.
*
* @author foo */
public class Matrix4f extends Matrix implements Serializable
{
private static final long serialVersionUID = 1L;
public float m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33;
/** Construct a new matrix, initialized to the identity. */
public Matrix4f()
{
super();
setIdentity();
}
public Matrix4f(final Matrix4f src)
{
super();
load(src);
}
/** Returns a string representation of this matrix */
@Override
public String toString()
{
StringBuilder buf = new StringBuilder();
buf.append(m00).append(' ').append(m10).append(' ').append(m20).append(' ').append(m30).append('\n');
buf.append(m01).append(' ').append(m11).append(' ').append(m21).append(' ').append(m31).append('\n');
buf.append(m02).append(' ').append(m12).append(' ').append(m22).append(' ').append(m32).append('\n');
buf.append(m03).append(' ').append(m13).append(' ').append(m23).append(' ').append(m33).append('\n');
return buf.toString();
}
/** Set this matrix to be the identity matrix.
*
* @return this */
@Override
public Matrix setIdentity()
{ return setIdentity(this); }
/** Set the given matrix to be the identity matrix.
*
* @param m The matrix to set to the identity
* @return m */
public static Matrix4f setIdentity(Matrix4f m)
{
m.m00 = 1.0f;
m.m01 = 0.0f;
m.m02 = 0.0f;
m.m03 = 0.0f;
m.m10 = 0.0f;
m.m11 = 1.0f;
m.m12 = 0.0f;
m.m13 = 0.0f;
m.m20 = 0.0f;
m.m21 = 0.0f;
m.m22 = 1.0f;
m.m23 = 0.0f;
m.m30 = 0.0f;
m.m31 = 0.0f;
m.m32 = 0.0f;
m.m33 = 1.0f;
return m;
}
/** Set this matrix to 0.
*
* @return this */
@Override
public Matrix setZero()
{ return setZero(this); }
/** Set the given matrix to 0.
*
* @param m The matrix to set to 0
* @return m */
public static Matrix4f setZero(Matrix4f m)
{
m.m00 = 0.0f;
m.m01 = 0.0f;
m.m02 = 0.0f;
m.m03 = 0.0f;
m.m10 = 0.0f;
m.m11 = 0.0f;
m.m12 = 0.0f;
m.m13 = 0.0f;
m.m20 = 0.0f;
m.m21 = 0.0f;
m.m22 = 0.0f;
m.m23 = 0.0f;
m.m30 = 0.0f;
m.m31 = 0.0f;
m.m32 = 0.0f;
m.m33 = 0.0f;
return m;
}
/** Load from another matrix4f
*
* @param src The source matrix
* @return this */
public Matrix4f load(Matrix4f src)
{ return load(src, this); }
/** Copy the source matrix to the destination matrix
*
* @param src The source matrix
* @param dest The destination matrix, or null of a new one is to be created
* @return The copied matrix */
public static Matrix4f load(Matrix4f src, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
dest.m00 = src.m00;
dest.m01 = src.m01;
dest.m02 = src.m02;
dest.m03 = src.m03;
dest.m10 = src.m10;
dest.m11 = src.m11;
dest.m12 = src.m12;
dest.m13 = src.m13;
dest.m20 = src.m20;
dest.m21 = src.m21;
dest.m22 = src.m22;
dest.m23 = src.m23;
dest.m30 = src.m30;
dest.m31 = src.m31;
dest.m32 = src.m32;
dest.m33 = src.m33;
return dest;
}
/** Load from a float buffer. The buffer stores the matrix in column major
* (OpenGL) order.
*
* @param buf A float buffer to read from
* @return this */
@Override
public Matrix load(FloatBuffer buf)
{
m00 = buf.get();
m01 = buf.get();
m02 = buf.get();
m03 = buf.get();
m10 = buf.get();
m11 = buf.get();
m12 = buf.get();
m13 = buf.get();
m20 = buf.get();
m21 = buf.get();
m22 = buf.get();
m23 = buf.get();
m30 = buf.get();
m31 = buf.get();
m32 = buf.get();
m33 = buf.get();
return this;
}
/** Load from a float buffer. The buffer stores the matrix in row major
* (maths) order.
*
* @param buf A float buffer to read from
* @return this */
@Override
public Matrix loadTranspose(FloatBuffer buf)
{
m00 = buf.get();
m10 = buf.get();
m20 = buf.get();
m30 = buf.get();
m01 = buf.get();
m11 = buf.get();
m21 = buf.get();
m31 = buf.get();
m02 = buf.get();
m12 = buf.get();
m22 = buf.get();
m32 = buf.get();
m03 = buf.get();
m13 = buf.get();
m23 = buf.get();
m33 = buf.get();
return this;
}
/** Store this matrix in a float buffer. The matrix is stored in column
* major (openGL) order.
*
* @param buf The buffer to store this matrix in */
@Override
public Matrix store(FloatBuffer buf)
{
buf.put(m00);
buf.put(m01);
buf.put(m02);
buf.put(m03);
buf.put(m10);
buf.put(m11);
buf.put(m12);
buf.put(m13);
buf.put(m20);
buf.put(m21);
buf.put(m22);
buf.put(m23);
buf.put(m30);
buf.put(m31);
buf.put(m32);
buf.put(m33);
return this;
}
/** Store this matrix in a float buffer. The matrix is stored in row
* major (maths) order.
*
* @param buf The buffer to store this matrix in */
@Override
public Matrix storeTranspose(FloatBuffer buf)
{
buf.put(m00);
buf.put(m10);
buf.put(m20);
buf.put(m30);
buf.put(m01);
buf.put(m11);
buf.put(m21);
buf.put(m31);
buf.put(m02);
buf.put(m12);
buf.put(m22);
buf.put(m32);
buf.put(m03);
buf.put(m13);
buf.put(m23);
buf.put(m33);
return this;
}
/** Store the rotation portion of this matrix in a float buffer. The matrix is stored in column
* major (openGL) order.
*
* @param buf The buffer to store this matrix in */
public Matrix store3f(FloatBuffer buf)
{
buf.put(m00);
buf.put(m01);
buf.put(m02);
buf.put(m10);
buf.put(m11);
buf.put(m12);
buf.put(m20);
buf.put(m21);
buf.put(m22);
return this;
}
/** Add two matrices together and place the result in a third matrix.
*
* @param left The left source matrix
* @param right The right source matrix
* @param dest The destination matrix, or null if a new one is to be created
* @return the destination matrix */
public static Matrix4f add(Matrix4f left, Matrix4f right, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
dest.m00 = left.m00 + right.m00;
dest.m01 = left.m01 + right.m01;
dest.m02 = left.m02 + right.m02;
dest.m03 = left.m03 + right.m03;
dest.m10 = left.m10 + right.m10;
dest.m11 = left.m11 + right.m11;
dest.m12 = left.m12 + right.m12;
dest.m13 = left.m13 + right.m13;
dest.m20 = left.m20 + right.m20;
dest.m21 = left.m21 + right.m21;
dest.m22 = left.m22 + right.m22;
dest.m23 = left.m23 + right.m23;
dest.m30 = left.m30 + right.m30;
dest.m31 = left.m31 + right.m31;
dest.m32 = left.m32 + right.m32;
dest.m33 = left.m33 + right.m33;
return dest;
}
/** Subtract the right matrix from the left and place the result in a third matrix.
*
* @param left The left source matrix
* @param right The right source matrix
* @param dest The destination matrix, or null if a new one is to be created
* @return the destination matrix */
public static Matrix4f sub(Matrix4f left, Matrix4f right, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
dest.m00 = left.m00 - right.m00;
dest.m01 = left.m01 - right.m01;
dest.m02 = left.m02 - right.m02;
dest.m03 = left.m03 - right.m03;
dest.m10 = left.m10 - right.m10;
dest.m11 = left.m11 - right.m11;
dest.m12 = left.m12 - right.m12;
dest.m13 = left.m13 - right.m13;
dest.m20 = left.m20 - right.m20;
dest.m21 = left.m21 - right.m21;
dest.m22 = left.m22 - right.m22;
dest.m23 = left.m23 - right.m23;
dest.m30 = left.m30 - right.m30;
dest.m31 = left.m31 - right.m31;
dest.m32 = left.m32 - right.m32;
dest.m33 = left.m33 - right.m33;
return dest;
}
/** Multiply the right matrix by the left and place the result in a third matrix.
*
* @param left The left source matrix
* @param right The right source matrix
* @param dest The destination matrix, or null if a new one is to be created
* @return the destination matrix */
public Matrix4f mul(Matrix4f left)
{ return Matrix4f.mul(left, left, this); }
public static Matrix4f mul(Matrix4f left, Matrix4f right, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
float m00 = left.m00 * right.m00 + left.m10 * right.m01 + left.m20 * right.m02 + left.m30 * right.m03;
float m01 = left.m01 * right.m00 + left.m11 * right.m01 + left.m21 * right.m02 + left.m31 * right.m03;
float m02 = left.m02 * right.m00 + left.m12 * right.m01 + left.m22 * right.m02 + left.m32 * right.m03;
float m03 = left.m03 * right.m00 + left.m13 * right.m01 + left.m23 * right.m02 + left.m33 * right.m03;
float m10 = left.m00 * right.m10 + left.m10 * right.m11 + left.m20 * right.m12 + left.m30 * right.m13;
float m11 = left.m01 * right.m10 + left.m11 * right.m11 + left.m21 * right.m12 + left.m31 * right.m13;
float m12 = left.m02 * right.m10 + left.m12 * right.m11 + left.m22 * right.m12 + left.m32 * right.m13;
float m13 = left.m03 * right.m10 + left.m13 * right.m11 + left.m23 * right.m12 + left.m33 * right.m13;
float m20 = left.m00 * right.m20 + left.m10 * right.m21 + left.m20 * right.m22 + left.m30 * right.m23;
float m21 = left.m01 * right.m20 + left.m11 * right.m21 + left.m21 * right.m22 + left.m31 * right.m23;
float m22 = left.m02 * right.m20 + left.m12 * right.m21 + left.m22 * right.m22 + left.m32 * right.m23;
float m23 = left.m03 * right.m20 + left.m13 * right.m21 + left.m23 * right.m22 + left.m33 * right.m23;
float m30 = left.m00 * right.m30 + left.m10 * right.m31 + left.m20 * right.m32 + left.m30 * right.m33;
float m31 = left.m01 * right.m30 + left.m11 * right.m31 + left.m21 * right.m32 + left.m31 * right.m33;
float m32 = left.m02 * right.m30 + left.m12 * right.m31 + left.m22 * right.m32 + left.m32 * right.m33;
float m33 = left.m03 * right.m30 + left.m13 * right.m31 + left.m23 * right.m32 + left.m33 * right.m33;
dest.m00 = m00;
dest.m01 = m01;
dest.m02 = m02;
dest.m03 = m03;
dest.m10 = m10;
dest.m11 = m11;
dest.m12 = m12;
dest.m13 = m13;
dest.m20 = m20;
dest.m21 = m21;
dest.m22 = m22;
dest.m23 = m23;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.m33 = m33;
return dest;
}
/** Transform a Vector by a matrix and return the result in a destination
* vector.
*
* @param left The left matrix
* @param right The right vector
* @param dest The destination vector, or null if a new one is to be created
* @return the destination vector */
public static Vector4f transform(Matrix4f left, Vector4f right, Vector4f dest)
{
if (dest == null)
dest = new Vector4f();
float x = left.m00 * right.x + left.m10 * right.y + left.m20 * right.z + left.m30 * right.w;
float y = left.m01 * right.x + left.m11 * right.y + left.m21 * right.z + left.m31 * right.w;
float z = left.m02 * right.x + left.m12 * right.y + left.m22 * right.z + left.m32 * right.w;
float w = left.m03 * right.x + left.m13 * right.y + left.m23 * right.z + left.m33 * right.w;
dest.x = x;
dest.y = y;
dest.z = z;
dest.w = w;
return dest;
}
/** Transpose this matrix
*
* @return this */
@Override
public Matrix transpose()
{ return transpose(this); }
/** Translate this matrix
*
* @param vec The vector to translate by
* @return this */
public Matrix4f translate(Vector2f vec)
{ return translate(vec, this); }
/** Translate this matrix
*
* @param vec The vector to translate by
* @return this */
public Matrix4f translate(Vector3f vec)
{ return translate(vec, this); }
/** Scales this matrix
*
* @param vec The vector to scale by
* @return this */
public Matrix4f scale(Vector3f vec)
{ return scale(vec, this, this); }
/** Scales the source matrix and put the result in the destination matrix
*
* @param vec The vector to scale by
* @param src The source matrix
* @param dest The destination matrix, or null if a new matrix is to be created
* @return The scaled matrix */
public static Matrix4f scale(Vector3f vec, Matrix4f src, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
dest.m00 = src.m00 * vec.x;
dest.m01 = src.m01 * vec.x;
dest.m02 = src.m02 * vec.x;
dest.m03 = src.m03 * vec.x;
dest.m10 = src.m10 * vec.y;
dest.m11 = src.m11 * vec.y;
dest.m12 = src.m12 * vec.y;
dest.m13 = src.m13 * vec.y;
dest.m20 = src.m20 * vec.z;
dest.m21 = src.m21 * vec.z;
dest.m22 = src.m22 * vec.z;
dest.m23 = src.m23 * vec.z;
return dest;
}
/** Rotates the matrix around the given axis the specified angle
*
* @param angle the angle, in radians.
* @param axis The vector representing the rotation axis. Must be normalized.
* @return this */
public Matrix4f rotate(float angle, Vector3f axis)
{ return rotate(angle, axis, this); }
/** Rotates the matrix around the given axis the specified angle
*
* @param angle the angle, in radians.
* @param axis The vector representing the rotation axis. Must be normalized.
* @param dest The matrix to put the result, or null if a new matrix is to be created
* @return The rotated matrix */
public Matrix4f rotate(float angle, Vector3f axis, Matrix4f dest)
{ return rotate(angle, axis, this, dest); }
/** Rotates the source matrix around the given axis the specified angle and
* put the result in the destination matrix.
*
* @param angle the angle, in radians.
* @param axis The vector representing the rotation axis. Must be normalized.
* @param src The matrix to rotate
* @param dest The matrix to put the result, or null if a new matrix is to be created
* @return The rotated matrix */
public static Matrix4f rotate(float angle, Vector3f axis, Matrix4f src, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
float c = (float) Math.cos(angle);
float s = (float) Math.sin(angle);
float oneminusc = 1.0f - c;
float xy = axis.x * axis.y;
float yz = axis.y * axis.z;
float xz = axis.x * axis.z;
float xs = axis.x * s;
float ys = axis.y * s;
float zs = axis.z * s;
float f00 = axis.x * axis.x * oneminusc + c;
float f01 = xy * oneminusc + zs;
float f02 = xz * oneminusc - ys;
// n[3] not used
float f10 = xy * oneminusc - zs;
float f11 = axis.y * axis.y * oneminusc + c;
float f12 = yz * oneminusc + xs;
// n[7] not used
float f20 = xz * oneminusc + ys;
float f21 = yz * oneminusc - xs;
float f22 = axis.z * axis.z * oneminusc + c;
float t00 = src.m00 * f00 + src.m10 * f01 + src.m20 * f02;
float t01 = src.m01 * f00 + src.m11 * f01 + src.m21 * f02;
float t02 = src.m02 * f00 + src.m12 * f01 + src.m22 * f02;
float t03 = src.m03 * f00 + src.m13 * f01 + src.m23 * f02;
float t10 = src.m00 * f10 + src.m10 * f11 + src.m20 * f12;
float t11 = src.m01 * f10 + src.m11 * f11 + src.m21 * f12;
float t12 = src.m02 * f10 + src.m12 * f11 + src.m22 * f12;
float t13 = src.m03 * f10 + src.m13 * f11 + src.m23 * f12;
dest.m20 = src.m00 * f20 + src.m10 * f21 + src.m20 * f22;
dest.m21 = src.m01 * f20 + src.m11 * f21 + src.m21 * f22;
dest.m22 = src.m02 * f20 + src.m12 * f21 + src.m22 * f22;
dest.m23 = src.m03 * f20 + src.m13 * f21 + src.m23 * f22;
dest.m00 = t00;
dest.m01 = t01;
dest.m02 = t02;
dest.m03 = t03;
dest.m10 = t10;
dest.m11 = t11;
dest.m12 = t12;
dest.m13 = t13;
return dest;
}
/** Translate this matrix and stash the result in another matrix
*
* @param vec The vector to translate by
* @param dest The destination matrix or null if a new matrix is to be created
* @return the translated matrix */
public Matrix4f translate(Vector3f vec, Matrix4f dest)
{ return translate(vec, this, dest); }
/** Translate the source matrix and stash the result in the destination matrix
*
* @param vec The vector to translate by
* @param src The source matrix
* @param dest The destination matrix or null if a new matrix is to be created
* @return The translated matrix */
public static Matrix4f translate(Vector3f vec, Matrix4f src, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
dest.m30 += src.m00 * vec.x + src.m10 * vec.y + src.m20 * vec.z;
dest.m31 += src.m01 * vec.x + src.m11 * vec.y + src.m21 * vec.z;
dest.m32 += src.m02 * vec.x + src.m12 * vec.y + src.m22 * vec.z;
dest.m33 += src.m03 * vec.x + src.m13 * vec.y + src.m23 * vec.z;
return dest;
}
/** Translate this matrix and stash the result in another matrix
*
* @param vec The vector to translate by
* @param dest The destination matrix or null if a new matrix is to be created
* @return the translated matrix */
public Matrix4f translate(Vector2f vec, Matrix4f dest)
{ return translate(vec, this, dest); }
/** Translate the source matrix and stash the result in the destination matrix
*
* @param vec The vector to translate by
* @param src The source matrix
* @param dest The destination matrix or null if a new matrix is to be created
* @return The translated matrix */
public static Matrix4f translate(Vector2f vec, Matrix4f src, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
dest.m30 += src.m00 * vec.x + src.m10 * vec.y;
dest.m31 += src.m01 * vec.x + src.m11 * vec.y;
dest.m32 += src.m02 * vec.x + src.m12 * vec.y;
dest.m33 += src.m03 * vec.x + src.m13 * vec.y;
return dest;
}
/** Transpose this matrix and place the result in another matrix
*
* @param dest The destination matrix or null if a new matrix is to be created
* @return the transposed matrix */
public Matrix4f transpose(Matrix4f dest)
{ return transpose(this, dest); }
/** Transpose the source matrix and place the result in the destination matrix
*
* @param src The source matrix
* @param dest The destination matrix or null if a new matrix is to be created
* @return the transposed matrix */
public static Matrix4f transpose(Matrix4f src, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
float m00 = src.m00;
float m01 = src.m10;
float m02 = src.m20;
float m03 = src.m30;
float m10 = src.m01;
float m11 = src.m11;
float m12 = src.m21;
float m13 = src.m31;
float m20 = src.m02;
float m21 = src.m12;
float m22 = src.m22;
float m23 = src.m32;
float m30 = src.m03;
float m31 = src.m13;
float m32 = src.m23;
float m33 = src.m33;
dest.m00 = m00;
dest.m01 = m01;
dest.m02 = m02;
dest.m03 = m03;
dest.m10 = m10;
dest.m11 = m11;
dest.m12 = m12;
dest.m13 = m13;
dest.m20 = m20;
dest.m21 = m21;
dest.m22 = m22;
dest.m23 = m23;
dest.m30 = m30;
dest.m31 = m31;
dest.m32 = m32;
dest.m33 = m33;
return dest;
}
/** @return the determinant of the matrix */
@Override
public float determinant()
{
float f = m00
* ((m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32)
- m13 * m22 * m31
- m11 * m23 * m32
- m12 * m21 * m33);
f -= m01
* ((m10 * m22 * m33 + m12 * m23 * m30 + m13 * m20 * m32)
- m13 * m22 * m30
- m10 * m23 * m32
- m12 * m20 * m33);
f += m02
* ((m10 * m21 * m33 + m11 * m23 * m30 + m13 * m20 * m31)
- m13 * m21 * m30
- m10 * m23 * m31
- m11 * m20 * m33);
f -= m03
* ((m10 * m21 * m32 + m11 * m22 * m30 + m12 * m20 * m31)
- m12 * m21 * m30
- m10 * m22 * m31
- m11 * m20 * m32);
return f;
}
/** Calculate the determinant of a 3x3 matrix
*
* @return result */
private static float determinant3x3(float t00, float t01, float t02,
float t10, float t11, float t12,
float t20, float t21, float t22)
{ return t00 * (t11 * t22 - t12 * t21)
+ t01 * (t12 * t20 - t10 * t22)
+ t02 * (t10 * t21 - t11 * t20); }
/** Invert this matrix
*
* @return this if successful, null otherwise */
@Override
public Matrix invert()
{ return invert(this, this); }
/** Invert the source matrix and put the result in the destination
*
* @param src The source matrix
* @param dest The destination matrix, or null if a new matrix is to be created
* @return The inverted matrix if successful, null otherwise */
public static Matrix4f invert(Matrix4f src, Matrix4f dest)
{
float determinant = src.determinant();
if (determinant != 0)
{
/*
* m00 m01 m02 m03
* m10 m11 m12 m13
* m20 m21 m22 m23
* m30 m31 m32 m33
*/
if (dest == null)
dest = new Matrix4f();
float determinant_inv = 1f / determinant;
// first row
float t00 = determinant3x3(src.m11, src.m12, src.m13, src.m21, src.m22, src.m23, src.m31, src.m32, src.m33);
float t01 = -determinant3x3(src.m10, src.m12, src.m13, src.m20, src.m22, src.m23, src.m30, src.m32, src.m33);
float t02 = determinant3x3(src.m10, src.m11, src.m13, src.m20, src.m21, src.m23, src.m30, src.m31, src.m33);
float t03 = -determinant3x3(src.m10, src.m11, src.m12, src.m20, src.m21, src.m22, src.m30, src.m31, src.m32);
// second row
float t10 = -determinant3x3(src.m01, src.m02, src.m03, src.m21, src.m22, src.m23, src.m31, src.m32, src.m33);
float t11 = determinant3x3(src.m00, src.m02, src.m03, src.m20, src.m22, src.m23, src.m30, src.m32, src.m33);
float t12 = -determinant3x3(src.m00, src.m01, src.m03, src.m20, src.m21, src.m23, src.m30, src.m31, src.m33);
float t13 = determinant3x3(src.m00, src.m01, src.m02, src.m20, src.m21, src.m22, src.m30, src.m31, src.m32);
// third row
float t20 = determinant3x3(src.m01, src.m02, src.m03, src.m11, src.m12, src.m13, src.m31, src.m32, src.m33);
float t21 = -determinant3x3(src.m00, src.m02, src.m03, src.m10, src.m12, src.m13, src.m30, src.m32, src.m33);
float t22 = determinant3x3(src.m00, src.m01, src.m03, src.m10, src.m11, src.m13, src.m30, src.m31, src.m33);
float t23 = -determinant3x3(src.m00, src.m01, src.m02, src.m10, src.m11, src.m12, src.m30, src.m31, src.m32);
// fourth row
float t30 = -determinant3x3(src.m01, src.m02, src.m03, src.m11, src.m12, src.m13, src.m21, src.m22, src.m23);
float t31 = determinant3x3(src.m00, src.m02, src.m03, src.m10, src.m12, src.m13, src.m20, src.m22, src.m23);
float t32 = -determinant3x3(src.m00, src.m01, src.m03, src.m10, src.m11, src.m13, src.m20, src.m21, src.m23);
float t33 = determinant3x3(src.m00, src.m01, src.m02, src.m10, src.m11, src.m12, src.m20, src.m21, src.m22);
// transpose and divide by the determinant
dest.m00 = t00 * determinant_inv;
dest.m11 = t11 * determinant_inv;
dest.m22 = t22 * determinant_inv;
dest.m33 = t33 * determinant_inv;
dest.m01 = t10 * determinant_inv;
dest.m10 = t01 * determinant_inv;
dest.m20 = t02 * determinant_inv;
dest.m02 = t20 * determinant_inv;
dest.m12 = t21 * determinant_inv;
dest.m21 = t12 * determinant_inv;
dest.m03 = t30 * determinant_inv;
dest.m30 = t03 * determinant_inv;
dest.m13 = t31 * determinant_inv;
dest.m31 = t13 * determinant_inv;
dest.m32 = t23 * determinant_inv;
dest.m23 = t32 * determinant_inv;
return dest;
}
else
return null;
}
/** Negate this matrix
*
* @return this */
@Override
public Matrix negate()
{ return negate(this); }
/** Negate this matrix and place the result in a destination matrix.
*
* @param dest The destination matrix, or null if a new matrix is to be created
* @return the negated matrix */
public Matrix4f negate(Matrix4f dest)
{ return negate(this, dest); }
/** Negate this matrix and place the result in a destination matrix.
*
* @param src The source matrix
* @param dest The destination matrix, or null if a new matrix is to be created
* @return The negated matrix */
public static Matrix4f negate(Matrix4f src, Matrix4f dest)
{
if (dest == null)
dest = new Matrix4f();
dest.m00 = -src.m00;
dest.m01 = -src.m01;
dest.m02 = -src.m02;
dest.m03 = -src.m03;
dest.m10 = -src.m10;
dest.m11 = -src.m11;
dest.m12 = -src.m12;
dest.m13 = -src.m13;
dest.m20 = -src.m20;
dest.m21 = -src.m21;
dest.m22 = -src.m22;
dest.m23 = -src.m23;
dest.m30 = -src.m30;
dest.m31 = -src.m31;
dest.m32 = -src.m32;
dest.m33 = -src.m33;
return dest;
}
}