bearssl-rs/bearssl-sys/bundled/src/ghash_pclmul.c

390 lines
10 KiB
C

/*
* Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define BR_ENABLE_INTRINSICS 1
#include "inner.h"
/*
* This is the GHASH implementation that leverages the pclmulqdq opcode
* (from the AES-NI instructions).
*/
#if BR_AES_X86NI
/*
* Test CPU support for PCLMULQDQ.
*/
static inline int
pclmul_supported(void)
{
/*
* Bit mask for features in ECX:
* 1 PCLMULQDQ support
*/
return br_cpuid(0, 0, 0x00000002, 0);
}
/* see bearssl_hash.h */
br_ghash
br_ghash_pclmul_get(void)
{
return pclmul_supported() ? &br_ghash_pclmul : 0;
}
BR_TARGETS_X86_UP
/*
* GHASH is defined over elements of GF(2^128) with "full little-endian"
* representation: leftmost byte is least significant, and, within each
* byte, leftmost _bit_ is least significant. The natural ordering in
* x86 is "mixed little-endian": bytes are ordered from least to most
* significant, but bits within a byte are in most-to-least significant
* order. Going to full little-endian representation would require
* reversing bits within each byte, which is doable but expensive.
*
* Instead, we go to full big-endian representation, by swapping bytes
* around, which is done with a single _mm_shuffle_epi8() opcode (it
* comes with SSSE3; all CPU that offer pclmulqdq also have SSSE3). We
* can use a full big-endian representation because in a carryless
* multiplication, we have a nice bit reversal property:
*
* rev_128(x) * rev_128(y) = rev_255(x * y)
*
* So by using full big-endian, we still get the right result, except
* that it is right-shifted by 1 bit. The left-shift is relatively
* inexpensive, and it can be mutualised.
*
*
* Since SSE2 opcodes do not have facilities for shitfting full 128-bit
* values with bit precision, we have to break down values into 64-bit
* chunks. We number chunks from 0 to 3 in left to right order.
*/
/*
* Byte-swap a complete 128-bit value. This normally uses
* _mm_shuffle_epi8(), which gets translated to pshufb (an SSSE3 opcode).
* However, this crashes old Clang versions, so, for Clang before 3.8,
* we use an alternate (and less efficient) version.
*/
#if BR_CLANG && !BR_CLANG_3_8
#define BYTESWAP_DECL
#define BYTESWAP_PREP (void)0
#define BYTESWAP(x) do { \
__m128i byteswap1, byteswap2; \
byteswap1 = (x); \
byteswap2 = _mm_srli_epi16(byteswap1, 8); \
byteswap1 = _mm_slli_epi16(byteswap1, 8); \
byteswap1 = _mm_or_si128(byteswap1, byteswap2); \
byteswap1 = _mm_shufflelo_epi16(byteswap1, 0x1B); \
byteswap1 = _mm_shufflehi_epi16(byteswap1, 0x1B); \
(x) = _mm_shuffle_epi32(byteswap1, 0x4E); \
} while (0)
#else
#define BYTESWAP_DECL __m128i byteswap_index;
#define BYTESWAP_PREP do { \
byteswap_index = _mm_set_epi8( \
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); \
} while (0)
#define BYTESWAP(x) do { \
(x) = _mm_shuffle_epi8((x), byteswap_index); \
} while (0)
#endif
/*
* Call pclmulqdq. Clang appears to have trouble with the intrinsic, so,
* for that compiler, we use inline assembly. Inline assembly is
* potentially a bit slower because the compiler does not understand
* what the opcode does, and thus cannot optimize instruction
* scheduling.
*
* We use a target of "sse2" only, so that Clang may still handle the
* '__m128i' type and allocate SSE2 registers.
*/
#if BR_CLANG
BR_TARGET("sse2")
static inline __m128i
pclmulqdq00(__m128i x, __m128i y)
{
__asm__ ("pclmulqdq $0x00, %1, %0" : "+x" (x) : "x" (y));
return x;
}
BR_TARGET("sse2")
static inline __m128i
pclmulqdq11(__m128i x, __m128i y)
{
__asm__ ("pclmulqdq $0x11, %1, %0" : "+x" (x) : "x" (y));
return x;
}
#else
#define pclmulqdq00(x, y) _mm_clmulepi64_si128(x, y, 0x00)
#define pclmulqdq11(x, y) _mm_clmulepi64_si128(x, y, 0x11)
#endif
/*
* From a 128-bit value kw, compute kx as the XOR of the two 64-bit
* halves of kw (into the right half of kx; left half is unspecified).
*/
#define BK(kw, kx) do { \
kx = _mm_xor_si128(kw, _mm_shuffle_epi32(kw, 0x0E)); \
} while (0)
/*
* Combine two 64-bit values (k0:k1) into a 128-bit (kw) value and
* the XOR of the two values (kx).
*/
#define PBK(k0, k1, kw, kx) do { \
kw = _mm_unpacklo_epi64(k1, k0); \
kx = _mm_xor_si128(k0, k1); \
} while (0)
/*
* Left-shift by 1 bit a 256-bit value (in four 64-bit words).
*/
#define SL_256(x0, x1, x2, x3) do { \
x0 = _mm_or_si128( \
_mm_slli_epi64(x0, 1), \
_mm_srli_epi64(x1, 63)); \
x1 = _mm_or_si128( \
_mm_slli_epi64(x1, 1), \
_mm_srli_epi64(x2, 63)); \
x2 = _mm_or_si128( \
_mm_slli_epi64(x2, 1), \
_mm_srli_epi64(x3, 63)); \
x3 = _mm_slli_epi64(x3, 1); \
} while (0)
/*
* Perform reduction in GF(2^128). The 256-bit value is in x0..x3;
* result is written in x0..x1.
*/
#define REDUCE_F128(x0, x1, x2, x3) do { \
x1 = _mm_xor_si128( \
x1, \
_mm_xor_si128( \
_mm_xor_si128( \
x3, \
_mm_srli_epi64(x3, 1)), \
_mm_xor_si128( \
_mm_srli_epi64(x3, 2), \
_mm_srli_epi64(x3, 7)))); \
x2 = _mm_xor_si128( \
_mm_xor_si128( \
x2, \
_mm_slli_epi64(x3, 63)), \
_mm_xor_si128( \
_mm_slli_epi64(x3, 62), \
_mm_slli_epi64(x3, 57))); \
x0 = _mm_xor_si128( \
x0, \
_mm_xor_si128( \
_mm_xor_si128( \
x2, \
_mm_srli_epi64(x2, 1)), \
_mm_xor_si128( \
_mm_srli_epi64(x2, 2), \
_mm_srli_epi64(x2, 7)))); \
x1 = _mm_xor_si128( \
_mm_xor_si128( \
x1, \
_mm_slli_epi64(x2, 63)), \
_mm_xor_si128( \
_mm_slli_epi64(x2, 62), \
_mm_slli_epi64(x2, 57))); \
} while (0)
/*
* Square value kw into (dw,dx).
*/
#define SQUARE_F128(kw, dw, dx) do { \
__m128i z0, z1, z2, z3; \
z1 = pclmulqdq11(kw, kw); \
z3 = pclmulqdq00(kw, kw); \
z0 = _mm_shuffle_epi32(z1, 0x0E); \
z2 = _mm_shuffle_epi32(z3, 0x0E); \
SL_256(z0, z1, z2, z3); \
REDUCE_F128(z0, z1, z2, z3); \
PBK(z0, z1, dw, dx); \
} while (0)
/* see bearssl_hash.h */
BR_TARGET("ssse3,pclmul")
void
br_ghash_pclmul(void *y, const void *h, const void *data, size_t len)
{
const unsigned char *buf1, *buf2;
unsigned char tmp[64];
size_t num4, num1;
__m128i yw, h1w, h1x;
BYTESWAP_DECL
/*
* We split data into two chunks. First chunk starts at buf1
* and contains num4 blocks of 64-byte values. Second chunk
* starts at buf2 and contains num1 blocks of 16-byte values.
* We want the first chunk to be as large as possible.
*/
buf1 = data;
num4 = len >> 6;
len &= 63;
buf2 = buf1 + (num4 << 6);
num1 = (len + 15) >> 4;
if ((len & 15) != 0) {
memcpy(tmp, buf2, len);
memset(tmp + len, 0, (num1 << 4) - len);
buf2 = tmp;
}
/*
* Preparatory step for endian conversions.
*/
BYTESWAP_PREP;
/*
* Load y and h.
*/
yw = _mm_loadu_si128(y);
h1w = _mm_loadu_si128(h);
BYTESWAP(yw);
BYTESWAP(h1w);
BK(h1w, h1x);
if (num4 > 0) {
__m128i h2w, h2x, h3w, h3x, h4w, h4x;
__m128i t0, t1, t2, t3;
/*
* Compute h2 = h^2.
*/
SQUARE_F128(h1w, h2w, h2x);
/*
* Compute h3 = h^3 = h*(h^2).
*/
t1 = pclmulqdq11(h1w, h2w);
t3 = pclmulqdq00(h1w, h2w);
t2 = _mm_xor_si128(pclmulqdq00(h1x, h2x),
_mm_xor_si128(t1, t3));
t0 = _mm_shuffle_epi32(t1, 0x0E);
t1 = _mm_xor_si128(t1, _mm_shuffle_epi32(t2, 0x0E));
t2 = _mm_xor_si128(t2, _mm_shuffle_epi32(t3, 0x0E));
SL_256(t0, t1, t2, t3);
REDUCE_F128(t0, t1, t2, t3);
PBK(t0, t1, h3w, h3x);
/*
* Compute h4 = h^4 = (h^2)^2.
*/
SQUARE_F128(h2w, h4w, h4x);
while (num4 -- > 0) {
__m128i aw0, aw1, aw2, aw3;
__m128i ax0, ax1, ax2, ax3;
aw0 = _mm_loadu_si128((void *)(buf1 + 0));
aw1 = _mm_loadu_si128((void *)(buf1 + 16));
aw2 = _mm_loadu_si128((void *)(buf1 + 32));
aw3 = _mm_loadu_si128((void *)(buf1 + 48));
BYTESWAP(aw0);
BYTESWAP(aw1);
BYTESWAP(aw2);
BYTESWAP(aw3);
buf1 += 64;
aw0 = _mm_xor_si128(aw0, yw);
BK(aw1, ax1);
BK(aw2, ax2);
BK(aw3, ax3);
BK(aw0, ax0);
t1 = _mm_xor_si128(
_mm_xor_si128(
pclmulqdq11(aw0, h4w),
pclmulqdq11(aw1, h3w)),
_mm_xor_si128(
pclmulqdq11(aw2, h2w),
pclmulqdq11(aw3, h1w)));
t3 = _mm_xor_si128(
_mm_xor_si128(
pclmulqdq00(aw0, h4w),
pclmulqdq00(aw1, h3w)),
_mm_xor_si128(
pclmulqdq00(aw2, h2w),
pclmulqdq00(aw3, h1w)));
t2 = _mm_xor_si128(
_mm_xor_si128(
pclmulqdq00(ax0, h4x),
pclmulqdq00(ax1, h3x)),
_mm_xor_si128(
pclmulqdq00(ax2, h2x),
pclmulqdq00(ax3, h1x)));
t2 = _mm_xor_si128(t2, _mm_xor_si128(t1, t3));
t0 = _mm_shuffle_epi32(t1, 0x0E);
t1 = _mm_xor_si128(t1, _mm_shuffle_epi32(t2, 0x0E));
t2 = _mm_xor_si128(t2, _mm_shuffle_epi32(t3, 0x0E));
SL_256(t0, t1, t2, t3);
REDUCE_F128(t0, t1, t2, t3);
yw = _mm_unpacklo_epi64(t1, t0);
}
}
while (num1 -- > 0) {
__m128i aw, ax;
__m128i t0, t1, t2, t3;
aw = _mm_loadu_si128((void *)buf2);
BYTESWAP(aw);
buf2 += 16;
aw = _mm_xor_si128(aw, yw);
BK(aw, ax);
t1 = pclmulqdq11(aw, h1w);
t3 = pclmulqdq00(aw, h1w);
t2 = pclmulqdq00(ax, h1x);
t2 = _mm_xor_si128(t2, _mm_xor_si128(t1, t3));
t0 = _mm_shuffle_epi32(t1, 0x0E);
t1 = _mm_xor_si128(t1, _mm_shuffle_epi32(t2, 0x0E));
t2 = _mm_xor_si128(t2, _mm_shuffle_epi32(t3, 0x0E));
SL_256(t0, t1, t2, t3);
REDUCE_F128(t0, t1, t2, t3);
yw = _mm_unpacklo_epi64(t1, t0);
}
BYTESWAP(yw);
_mm_storeu_si128(y, yw);
}
BR_TARGETS_X86_DOWN
#else
/* see bearssl_hash.h */
br_ghash
br_ghash_pclmul_get(void)
{
return 0;
}
#endif