cog/Frameworks/GME/gme/rf5c68.c

449 lines
11 KiB
C
Raw Normal View History

2013-09-28 03:24:46 +00:00
/*********************************************************/
/* ricoh RF5C68(or clone) PCM controller */
/*********************************************************/
#include <memory.h>
#include <stdlib.h>
//#include "sndintrf.h"
//#include "streams.h"
#include "rf5c68.h"
#include <math.h>
#undef NULL
2013-09-28 03:24:46 +00:00
#define NULL ((void *)0)
#define NUM_CHANNELS (8)
#define WRITES_PER_SAMPLE 12
typedef struct _pcm_channel pcm_channel;
struct _pcm_channel
{
UINT8 enable;
UINT8 env;
UINT8 pan;
UINT8 start;
UINT32 addr;
UINT16 step;
UINT16 loopst;
UINT8 Muted;
};
typedef struct _mem_stream mem_stream;
struct _mem_stream
{
UINT32 BaseAddr;
UINT32 EndAddr;
UINT32 CurAddr;
const UINT8* MemPnt;
};
typedef struct _rf5c68_state rf5c68_state;
struct _rf5c68_state
{
//sound_stream * stream;
pcm_channel chan[NUM_CHANNELS];
UINT8 cbank;
UINT8 wbank;
UINT8 enable;
UINT32 datasize;
UINT8* data;
//void (*sample_callback)(running_device* device,int channel);
mem_stream memstrm;
};
static void rf5c68_mem_stream_flush(rf5c68_state *chip);
/*INLINE rf5c68_state *get_safe_token(const device_config *device)
{
assert(device != NULL);
assert(device->token != NULL);
assert(device->type == SOUND);
assert(sound_get_type(device) == SOUND_RF5C68);
return (rf5c68_state *)device->token;
}*/
/************************************************/
/* RF5C68 stream update */
/************************************************/
static void memstream_sample_check(rf5c68_state *chip, UINT32 addr)
{
mem_stream* ms = &chip->memstrm;
if (addr >= ms->CurAddr)
{
if (addr - ms->CurAddr <= WRITES_PER_SAMPLE * 5)
{
ms->CurAddr -= WRITES_PER_SAMPLE * 2;
if (ms->CurAddr < ms->BaseAddr)
ms->CurAddr = ms->BaseAddr;
}
}
else
{
if (ms->CurAddr - addr <= WRITES_PER_SAMPLE * 4)
{
rf5c68_mem_stream_flush(chip);
}
}
return;
}
//static STREAM_UPDATE( rf5c68_update )
void rf5c68_update(void *_chip, stream_sample_t **outputs, int samples)
{
//rf5c68_state *chip = (rf5c68_state *)param;
rf5c68_state *chip = (rf5c68_state *) _chip;
mem_stream* ms = &chip->memstrm;
stream_sample_t *left = outputs[0];
stream_sample_t *right = outputs[1];
int i, j;
/* start with clean buffers */
memset(left, 0, samples * sizeof(*left));
memset(right, 0, samples * sizeof(*right));
/* bail if not enabled */
if (!chip->enable)
return;
/* loop over channels */
for (i = 0; i < NUM_CHANNELS; i++)
{
pcm_channel *chan = &chip->chan[i];
/* if this channel is active, accumulate samples */
if (chan->enable && ! chan->Muted)
{
int lv = (chan->pan & 0x0f) * chan->env;
int rv = ((chan->pan >> 4) & 0x0f) * chan->env;
/* loop over the sample buffer */
for (j = 0; j < samples; j++)
{
int sample;
/* trigger sample callback */
/*if(chip->sample_callback)
{
if(((chan->addr >> 11) & 0xfff) == 0xfff)
chip->sample_callback(chip->device,((chan->addr >> 11)/0x2000));
}*/
memstream_sample_check(chip, (chan->addr >> 11) & 0xffff);
/* fetch the sample and handle looping */
sample = chip->data[(chan->addr >> 11) & 0xffff];
if (sample == 0xff)
{
chan->addr = chan->loopst << 11;
sample = chip->data[(chan->addr >> 11) & 0xffff];
/* if we loop to a loop point, we're effectively dead */
if (sample == 0xff)
break;
}
chan->addr += chan->step;
/* add to the buffer */
if (sample & 0x80)
{
sample &= 0x7f;
left[j] += (sample * lv) >> 5;
right[j] += (sample * rv) >> 5;
}
else
{
left[j] -= (sample * lv) >> 5;
right[j] -= (sample * rv) >> 5;
}
}
}
}
if (samples && ms->CurAddr < ms->EndAddr)
{
i = WRITES_PER_SAMPLE * samples;
if (ms->CurAddr + i > ms->EndAddr)
i = ms->EndAddr - ms->CurAddr;
memcpy(chip->data + ms->CurAddr, ms->MemPnt + (ms->CurAddr - ms->BaseAddr), i);
ms->CurAddr += i;
}
// I think, this is completely useless
/* now clamp and shift the result (output is only 10 bits) */
/*for (j = 0; j < samples; j++)
{
stream_sample_t temp;
temp = left[j];
if (temp > 32767) temp = 32767;
else if (temp < -32768) temp = -32768;
left[j] = temp & ~0x3f;
temp = right[j];
if (temp > 32767) temp = 32767;
else if (temp < -32768) temp = -32768;
right[j] = temp & ~0x3f;
}*/
}
/************************************************/
/* RF5C68 start */
/************************************************/
//static DEVICE_START( rf5c68 )
void * device_start_rf5c68()
{
//const rf5c68_interface* intf = (const rf5c68_interface*)device->baseconfig().static_config();
/* allocate memory for the chip */
//rf5c68_state *chip = get_safe_token(device);
rf5c68_state *chip;
int chn;
chip = (rf5c68_state *) malloc(sizeof(rf5c68_state));
if (!chip) return chip;
chip->datasize = 0x10000;
chip->data = (UINT8*)malloc(chip->datasize);
/* allocate the stream */
//chip->stream = stream_create(device, 0, 2, device->clock / 384, chip, rf5c68_update);
/* set up callback */
/*if(intf != NULL)
chip->sample_callback = intf->sample_end_callback;
else
chip->sample_callback = NULL;*/
for (chn = 0; chn < NUM_CHANNELS; chn ++)
chip->chan[chn].Muted = 0x00;
return chip;
}
void device_stop_rf5c68(void *_chip)
{
rf5c68_state *chip = (rf5c68_state *) _chip;
free(chip->data); chip->data = NULL;
free(chip);
}
void device_reset_rf5c68(void *_chip)
{
rf5c68_state *chip = (rf5c68_state *) _chip;
int i;
pcm_channel* chan;
mem_stream* ms = &chip->memstrm;
// Clear the PCM memory.
memset(chip->data, 0x00, chip->datasize);
chip->enable = 0;
chip->cbank = 0;
chip->wbank = 0;
/* clear channel registers */
for (i = 0; i < NUM_CHANNELS; i ++)
{
chan = &chip->chan[i];
chan->enable = 0;
chan->env = 0;
chan->pan = 0;
chan->start = 0;
chan->addr = 0;
chan->step = 0;
chan->loopst = 0;
}
ms->BaseAddr = 0x0000;
ms->CurAddr = 0x0000;
ms->EndAddr = 0x0000;
ms->MemPnt = NULL;
}
/************************************************/
/* RF5C68 write register */
/************************************************/
//WRITE8_DEVICE_HANDLER( rf5c68_w )
void rf5c68_w(void *_chip, offs_t offset, UINT8 data)
{
//rf5c68_state *chip = get_safe_token(device);
rf5c68_state *chip = (rf5c68_state *) _chip;
pcm_channel *chan = &chip->chan[chip->cbank];
int i;
/* force the stream to update first */
//stream_update(chip->stream);
/* switch off the address */
switch (offset)
{
case 0x00: /* envelope */
chan->env = data;
break;
case 0x01: /* pan */
chan->pan = data;
break;
case 0x02: /* FDL */
chan->step = (chan->step & 0xff00) | (data & 0x00ff);
break;
case 0x03: /* FDH */
chan->step = (chan->step & 0x00ff) | ((data << 8) & 0xff00);
break;
case 0x04: /* LSL */
chan->loopst = (chan->loopst & 0xff00) | (data & 0x00ff);
break;
case 0x05: /* LSH */
chan->loopst = (chan->loopst & 0x00ff) | ((data << 8) & 0xff00);
break;
case 0x06: /* ST */
chan->start = data;
if (!chan->enable)
chan->addr = chan->start << (8 + 11);
break;
case 0x07: /* control reg */
chip->enable = (data >> 7) & 1;
if (data & 0x40)
chip->cbank = data & 7;
else
chip->wbank = data & 15;
break;
case 0x08: /* channel on/off reg */
for (i = 0; i < 8; i++)
{
chip->chan[i].enable = (~data >> i) & 1;
if (!chip->chan[i].enable)
chip->chan[i].addr = chip->chan[i].start << (8 + 11);
}
break;
}
}
/************************************************/
/* RF5C68 read memory */
/************************************************/
//READ8_DEVICE_HANDLER( rf5c68_mem_r )
UINT8 rf5c68_mem_r(void *_chip, offs_t offset)
{
//rf5c68_state *chip = get_safe_token(device);
rf5c68_state *chip = (rf5c68_state *) _chip;
return chip->data[chip->wbank * 0x1000 + offset];
}
/************************************************/
/* RF5C68 write memory */
/************************************************/
//WRITE8_DEVICE_HANDLER( rf5c68_mem_w )
void rf5c68_mem_w(void *_chip, offs_t offset, UINT8 data)
{
//rf5c68_state *chip = get_safe_token(device);
rf5c68_state *chip = (rf5c68_state *) _chip;
rf5c68_mem_stream_flush(chip);
chip->data[chip->wbank * 0x1000 | offset] = data;
}
static void rf5c68_mem_stream_flush(rf5c68_state *chip)
{
mem_stream* ms = &chip->memstrm;
if (ms->CurAddr >= ms->EndAddr)
return;
memcpy(chip->data + ms->CurAddr, ms->MemPnt + (ms->CurAddr - ms->BaseAddr), ms->EndAddr - ms->CurAddr);
ms->CurAddr = ms->EndAddr;
return;
}
void rf5c68_write_ram(void *_chip, offs_t DataStart, offs_t DataLength, const UINT8* RAMData)
{
rf5c68_state *chip = (rf5c68_state *) _chip;
mem_stream* ms = &chip->memstrm;
UINT16 BytCnt;
if (DataStart >= chip->datasize)
return;
if (DataStart + DataLength > chip->datasize)
DataLength = chip->datasize - DataStart;
//memcpy(chip->data + (chip->wbank * 0x1000 | DataStart), RAMData, DataLength);
rf5c68_mem_stream_flush(chip);
ms->BaseAddr = chip->wbank * 0x1000 | DataStart;
ms->CurAddr = ms->BaseAddr;
ms->EndAddr = ms->BaseAddr + DataLength;
ms->MemPnt = RAMData;
BytCnt = WRITES_PER_SAMPLE;
if (ms->CurAddr + BytCnt > ms->EndAddr)
BytCnt = ms->EndAddr - ms->CurAddr;
memcpy(chip->data + ms->CurAddr, ms->MemPnt + (ms->CurAddr - ms->BaseAddr), BytCnt);
ms->CurAddr += BytCnt;
return;
}
void rf5c68_set_mute_mask(void *_chip, UINT32 MuteMask)
{
rf5c68_state *chip = (rf5c68_state *) _chip;
unsigned char CurChn;
for (CurChn = 0; CurChn < NUM_CHANNELS; CurChn ++)
chip->chan[CurChn].Muted = (MuteMask >> CurChn) & 0x01;
return;
}
/**************************************************************************
* Generic get_info
**************************************************************************/
/*DEVICE_GET_INFO( rf5c68 )
{
switch (state)
{
// --- the following bits of info are returned as 64-bit signed integers ---
case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(rf5c68_state); break;
// --- the following bits of info are returned as pointers to data or functions ---
case DEVINFO_FCT_START: info->start = DEVICE_START_NAME( rf5c68 ); break;
case DEVINFO_FCT_STOP: // Nothing break;
case DEVINFO_FCT_RESET: // Nothing break;
// --- the following bits of info are returned as NULL-terminated strings ---
case DEVINFO_STR_NAME: strcpy(info->s, "RF5C68"); break;
case DEVINFO_STR_FAMILY: strcpy(info->s, "Ricoh PCM"); break;
case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break;
case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break;
case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright Nicola Salmoria and the MAME Team"); break;
}
}*/
/**************** end of file ****************/