cog/Frameworks/File_Extractor/File_Extractor/unrar/unpack.cpp

1066 lines
24 KiB
C++
Raw Normal View History

#include "rar.hpp"
#include "coder.cpp"
#include "suballoc.cpp"
#include "model.cpp"
#ifndef SFX_MODULE
#include "unpack15.cpp"
#include "unpack20.cpp"
#endif
Unpack::Unpack(ComprDataIO *DataIO)
: VMCode( DataIO ), Filters( DataIO ), PrgStack( DataIO ), OldFilterLengths( DataIO ), ErrHandler( *DataIO )
{
PPM.SubAlloc.ErrHandler = DataIO;
LastStackFilter = NULL;
UnpIO=DataIO;
Window=NULL;
ExternalWindow=false;
UnpAllBuf=false;
UnpSomeRead=false;
}
Unpack::~Unpack()
{
if (Window!=NULL && !ExternalWindow)
rarfree( Window );
InitFilters();
}
void Unpack::Init(byte *Window)
{
if (Window==NULL)
{
Unpack::Window = (byte*) rarmalloc( MAXWINSIZE );
if (Unpack::Window==NULL)
ErrHandler.MemoryError();
}
else
{
Unpack::Window=Window;
ExternalWindow=true;
}
UnpInitData(false);
BitInput::handle_mem_error( ErrHandler );
Inp.handle_mem_error( ErrHandler );
// Only check BitInput, as VM's memory isn't allocated yet
VM.BitInput::handle_mem_error( ErrHandler );
#ifndef SFX_MODULE
// RAR 1.5 decompression initialization
OldUnpInitData(false);
InitHuff();
#endif
}
void Unpack::DoUnpack(int Method,bool Solid)
{
switch(Method)
{
#ifndef SFX_MODULE
case 15: // rar 1.5 compression
Unpack15(Solid);
break;
case 20: // rar 2.x compression
case 26: // files larger than 2GB
Unpack20(Solid);
break;
#endif
case 29: // rar 3.x compression
case 36: // alternative hash
Unpack29(Solid);
break;
}
}
inline void Unpack::InsertOldDist(unsigned int Distance)
{
OldDist[3]=OldDist[2];
OldDist[2]=OldDist[1];
OldDist[1]=OldDist[0];
OldDist[0]=Distance;
}
inline void Unpack::InsertLastMatch(unsigned int Length,unsigned int Distance)
{
LastDist=Distance;
LastLength=Length;
}
// These optimizations give 22% speedup on x86, 44% speedup on PowerPC
void Unpack::CopyString(unsigned int Length,unsigned int Distance)
{
unsigned UnpPtr = this->UnpPtr; // cache in register
byte* const Window = this->Window; // cache in register
unsigned int DestPtr=UnpPtr-Distance;
if (UnpPtr<MAXWINSIZE-260 && DestPtr<MAXWINSIZE-260)
{
this->UnpPtr += Length;
if ( Distance < Length ) // can't use memcpy when source and dest overlap
{
// Length always >= 1
do
{
Window[UnpPtr++]=Window[DestPtr++];
}
while (--Length>0)
;
}
else
{
memcpy( &Window[UnpPtr], &Window[DestPtr], Length );
}
}
else
{
while (Length--)
{
Window[UnpPtr]=Window[DestPtr++ & MAXWINMASK];
UnpPtr=(UnpPtr+1) & MAXWINMASK;
}
this->UnpPtr = UnpPtr;
}
}
int Unpack::DecodeNumber(struct Decode *Dec)
{
unsigned int Bits;
unsigned int BitField=getbits() & 0xfffe;
if (BitField<Dec->DecodeLen[8])
if (BitField<Dec->DecodeLen[4])
if (BitField<Dec->DecodeLen[2])
if (BitField<Dec->DecodeLen[1])
Bits=1;
else
Bits=2;
else
if (BitField<Dec->DecodeLen[3])
Bits=3;
else
Bits=4;
else
if (BitField<Dec->DecodeLen[6])
if (BitField<Dec->DecodeLen[5])
Bits=5;
else
Bits=6;
else
if (BitField<Dec->DecodeLen[7])
Bits=7;
else
Bits=8;
else
if (BitField<Dec->DecodeLen[12])
if (BitField<Dec->DecodeLen[10])
if (BitField<Dec->DecodeLen[9])
Bits=9;
else
Bits=10;
else
if (BitField<Dec->DecodeLen[11])
Bits=11;
else
Bits=12;
else
if (BitField<Dec->DecodeLen[14])
if (BitField<Dec->DecodeLen[13])
Bits=13;
else
Bits=14;
else
Bits=15;
unsigned int N=Dec->DecodePos[Bits]+((BitField-Dec->DecodeLen[Bits-1])>>(16-Bits));
if (N>=Dec->MaxNum)
N=0;
// do after reading values, to allow better instruction scheduling
addbits(Bits);
return(Dec->DecodeNum[N]);
}
const
static unsigned char LDecode[]={0,1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,80,96,112,128,160,192,224};
const
static unsigned char LBits[]= {0,0,0,0,0,0,0,0,1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5};
static int DDecode[DC];
static byte DBits[DC];
const
static int DBitLengthCounts[]= {4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,14,0,12};
const
static unsigned char SDDecode[]={0,4,8,16,32,64,128,192};
const
static unsigned char SDBits[]= {2,2,3, 4, 5, 6, 6, 6};
void Unpack::init_tables()
{
if (DDecode[1]==0)
{
int Dist=0,BitLength=0,Slot=0;
for (int I=0;I<sizeof(DBitLengthCounts)/sizeof(DBitLengthCounts[0]);I++,BitLength++)
for (int J=0;J<DBitLengthCounts[I];J++,Slot++,Dist+=(1<<BitLength))
{
DDecode[Slot]=Dist;
DBits[Slot]=BitLength;
}
}
}
void Unpack::Unpack29(bool Solid)
{
// tables moved outside function
unsigned int Bits;
FileExtracted=true;
if (!Suspended)
{
UnpInitData(Solid);
if (!UnpReadBuf())
return;
if ((!Solid || !TablesRead) && !ReadTables())
return;
}
while (true)
{
UnpPtr&=MAXWINMASK;
if (InAddr>ReadBorder)
{
if (!UnpReadBuf())
break;
}
if (((WrPtr-UnpPtr) & MAXWINMASK)<260 && WrPtr!=UnpPtr)
{
UnpWriteBuf();
if (WrittenFileSize>DestUnpSize)
return;
if (Suspended)
{
FileExtracted=false;
return;
}
}
if (UnpBlockType==BLOCK_PPM)
{
int Ch=PPM.DecodeChar();
if (Ch==-1)
{
PPM.CleanUp();
// turn off PPM compression mode in case of error, so UnRAR will
// call PPM.DecodeInit in case it needs to turn it on back later.
UnpBlockType=BLOCK_LZ;
break;
}
if (Ch==PPMEscChar)
{
int NextCh=PPM.DecodeChar();
if (NextCh==0)
{
if (!ReadTables())
break;
continue;
}
if (NextCh==2 || NextCh==-1)
break;
if (NextCh==3)
{
if (!ReadVMCodePPM())
break;
continue;
}
if (NextCh==4)
{
unsigned int Distance=0,Length;
Length = 0; // avoids warning
bool Failed=false;
for (int I=0;I<4 && !Failed;I++)
{
int Ch=PPM.DecodeChar();
if (Ch==-1)
Failed=true;
else
if (I==3)
Length=(byte)Ch;
else
Distance=(Distance<<8)+(byte)Ch;
}
if (Failed)
break;
#ifdef _MSC_VER
// avoid a warning about uninitialized 'Length' variable
#pragma warning( disable : 4701 )
#endif
CopyString(Length+32,Distance+2);
continue;
}
if (NextCh==5)
{
int Length=PPM.DecodeChar();
if (Length==-1)
break;
CopyString(Length+4,1);
continue;
}
}
Window[UnpPtr++]=Ch;
continue;
}
int Number=DecodeNumber((struct Decode *)&LD);
if (Number<256)
{
Window[UnpPtr++]=(byte)Number;
continue;
}
if (Number>=271)
{
int Length=LDecode[Number-=271]+3;
if ((Bits=LBits[Number])>0)
{
Length+=getbits()>>(16-Bits);
addbits(Bits);
}
int DistNumber=DecodeNumber((struct Decode *)&DD);
unsigned int Distance=DDecode[DistNumber]+1;
if ((Bits=DBits[DistNumber])>0)
{
if (DistNumber>9)
{
if (Bits>4)
{
Distance+=((getbits()>>(20-Bits))<<4);
addbits(Bits-4);
}
if (LowDistRepCount>0)
{
LowDistRepCount--;
Distance+=PrevLowDist;
}
else
{
int LowDist=DecodeNumber((struct Decode *)&LDD);
if (LowDist==16)
{
LowDistRepCount=LOW_DIST_REP_COUNT-1;
Distance+=PrevLowDist;
}
else
{
Distance+=LowDist;
PrevLowDist=LowDist;
}
}
}
else
{
Distance+=getbits()>>(16-Bits);
addbits(Bits);
}
}
if (Distance>=0x2000)
{
Length++;
if (Distance>=0x40000L)
Length++;
}
InsertOldDist(Distance);
InsertLastMatch(Length,Distance);
CopyString(Length,Distance);
continue;
}
if (Number==256)
{
if (!ReadEndOfBlock())
break;
continue;
}
if (Number==257)
{
if (!ReadVMCode())
break;
continue;
}
if (Number==258)
{
if (LastLength!=0)
CopyString(LastLength,LastDist);
continue;
}
if (Number<263)
{
int DistNum=Number-259;
unsigned int Distance=OldDist[DistNum];
for (int I=DistNum;I>0;I--)
OldDist[I]=OldDist[I-1];
OldDist[0]=Distance;
int LengthNumber=DecodeNumber((struct Decode *)&RD);
int Length=LDecode[LengthNumber]+2;
if ((Bits=LBits[LengthNumber])>0)
{
Length+=getbits()>>(16-Bits);
addbits(Bits);
}
InsertLastMatch(Length,Distance);
CopyString(Length,Distance);
continue;
}
if (Number<272)
{
unsigned int Distance=SDDecode[Number-=263]+1;
if ((Bits=SDBits[Number])>0)
{
Distance+=getbits()>>(16-Bits);
addbits(Bits);
}
InsertOldDist(Distance);
InsertLastMatch(2,Distance);
CopyString(2,Distance);
continue;
}
}
UnpWriteBuf();
}
bool Unpack::ReadEndOfBlock()
{
unsigned int BitField=getbits();
bool NewTable,NewFile=false;
if (BitField & 0x8000)
{
NewTable=true;
addbits(1);
}
else
{
NewFile=true;
NewTable=(BitField & 0x4000);
addbits(2);
}
TablesRead=!NewTable;
2013-10-04 19:55:02 +00:00
return !(NewFile || (NewTable && !ReadTables()));
}
bool Unpack::ReadVMCode()
{
unsigned int FirstByte=getbits()>>8;
addbits(8);
int Length=(FirstByte & 7)+1;
if (Length==7)
{
Length=(getbits()>>8)+7;
addbits(8);
}
else
if (Length==8)
{
Length=getbits();
addbits(16);
}
VMCode.Alloc( Length );
for (int I=0;I<Length;I++)
{
if (InAddr>=ReadTop-1 && !UnpReadBuf() && I<Length-1)
return(false);
VMCode[I]=getbits()>>8;
addbits(8);
}
return(AddVMCode(FirstByte,&VMCode[0],Length));
}
bool Unpack::ReadVMCodePPM()
{
unsigned int FirstByte=PPM.DecodeChar();
if ((int)FirstByte==-1)
return(false);
int Length=(FirstByte & 7)+1;
if (Length==7)
{
int B1=PPM.DecodeChar();
if (B1==-1)
return(false);
Length=B1+7;
}
else
if (Length==8)
{
int B1=PPM.DecodeChar();
if (B1==-1)
return(false);
int B2=PPM.DecodeChar();
if (B2==-1)
return(false);
Length=B1*256+B2;
}
VMCode.Alloc( Length );
for (int I=0;I<Length;I++)
{
int Ch=PPM.DecodeChar();
if (Ch==-1)
return(false);
VMCode[I]=Ch;
}
return(AddVMCode(FirstByte,&VMCode[0],Length));
}
bool Unpack::AddVMCode(unsigned int FirstByte,byte *Code,int CodeSize)
{
// TODO: auto clear object to free bit input on normal return?
Inp.InitBitInput();
memcpy(Inp.InBuf,Code,Min(BitInput::MAX_SIZE,CodeSize));
VMCode.Reset();
VM.Init();
VM.handle_mem_error( ErrHandler );
uint FiltPos;
if (FirstByte & 0x80)
{
FiltPos=RarVM::ReadData(Inp);
if (FiltPos==0)
InitFilters();
else
FiltPos--;
}
else
FiltPos=LastFilter; // use the same filter as last time
if (FiltPos>Filters.Size() || FiltPos>OldFilterLengths.Size())
return(false);
LastFilter=FiltPos;
bool NewFilter=(FiltPos==Filters.Size());
delete LastStackFilter;
LastStackFilter = NULL;
UnpackFilter *StackFilter=new UnpackFilter(&ErrHandler);
LastStackFilter = StackFilter;
if ( !StackFilter )
ErrHandler.MemoryError();
UnpackFilter *Filter;
if (NewFilter) // new filter code, never used before since VM reset
{
// too many different filters, corrupt archive
if (FiltPos>1024)
return(false);
Filters.Add(1);
Filters[Filters.Size()-1]=Filter=new UnpackFilter(&ErrHandler);
if ( !Filter )
ErrHandler.MemoryError();
StackFilter->ParentFilter=Filters.Size()-1;
OldFilterLengths.Add(1);
Filter->ExecCount=0;
}
else // filter was used in the past
{
Filter=Filters[FiltPos];
StackFilter->ParentFilter=FiltPos;
Filter->ExecCount++;
}
int EmptyCount=0;
{
for (int I=0;I<PrgStack.Size();I++)
{
PrgStack[I-EmptyCount]=PrgStack[I];
if (PrgStack[I]==NULL)
EmptyCount++;
if (EmptyCount>0)
PrgStack[I]=NULL;
}
}
if (EmptyCount==0)
{
PrgStack.Add(1);
EmptyCount=1;
}
int StackPos=PrgStack.Size()-EmptyCount;
PrgStack[StackPos]=StackFilter;
LastStackFilter = NULL;
StackFilter->ExecCount=Filter->ExecCount;
uint BlockStart=RarVM::ReadData(Inp);
if (FirstByte & 0x40)
BlockStart+=258;
StackFilter->BlockStart=(BlockStart+UnpPtr)&MAXWINMASK;
if (FirstByte & 0x20)
StackFilter->BlockLength=RarVM::ReadData(Inp);
else
StackFilter->BlockLength=FiltPos<OldFilterLengths.Size() ? OldFilterLengths[FiltPos]:0;
StackFilter->NextWindow=WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MAXWINMASK)<=BlockStart;
// DebugLog("\nNextWindow: UnpPtr=%08x WrPtr=%08x BlockStart=%08x",UnpPtr,WrPtr,BlockStart);
OldFilterLengths[FiltPos]=StackFilter->BlockLength;
memset(StackFilter->Prg.InitR,0,sizeof(StackFilter->Prg.InitR));
StackFilter->Prg.InitR[3]=VM_GLOBALMEMADDR;
StackFilter->Prg.InitR[4]=StackFilter->BlockLength;
StackFilter->Prg.InitR[5]=StackFilter->ExecCount;
if (FirstByte & 0x10) // set registers to optional parameters if any
{
unsigned int InitMask=Inp.fgetbits()>>9;
Inp.faddbits(7);
for (int I=0;I<7;I++)
if (InitMask & (1<<I))
StackFilter->Prg.InitR[I]=RarVM::ReadData(Inp);
}
if (NewFilter)
{
uint VMCodeSize=RarVM::ReadData(Inp);
if (VMCodeSize>=0x10000 || VMCodeSize==0)
return(false);
VMCode.Alloc( VMCodeSize );
for (int I=0;I<VMCodeSize;I++)
{
if (Inp.Overflow(3))
return(false);
VMCode[I]=Inp.fgetbits()>>8;
Inp.faddbits(8);
}
VM.Prepare(&VMCode[0],VMCodeSize,&Filter->Prg);
VMCode.Reset();
}
StackFilter->Prg.AltCmd=&Filter->Prg.Cmd[0];
StackFilter->Prg.CmdCount=Filter->Prg.CmdCount;
int StaticDataSize=Filter->Prg.StaticData.Size();
if (StaticDataSize>0 && StaticDataSize<VM_GLOBALMEMSIZE)
{
// read statically defined data contained in DB commands
StackFilter->Prg.StaticData.Add(StaticDataSize);
memcpy(&StackFilter->Prg.StaticData[0],&Filter->Prg.StaticData[0],StaticDataSize);
}
if (StackFilter->Prg.GlobalData.Size()<VM_FIXEDGLOBALSIZE)
{
StackFilter->Prg.GlobalData.Reset();
StackFilter->Prg.GlobalData.Add(VM_FIXEDGLOBALSIZE);
}
byte *GlobalData=&StackFilter->Prg.GlobalData[0];
for (int I=0;I<7;I++)
VM.SetLowEndianValue((uint *)&GlobalData[I*4],StackFilter->Prg.InitR[I]);
VM.SetLowEndianValue((uint *)&GlobalData[0x1c],StackFilter->BlockLength);
VM.SetLowEndianValue((uint *)&GlobalData[0x20],0);
VM.SetLowEndianValue((uint *)&GlobalData[0x2c],StackFilter->ExecCount);
memset(&GlobalData[0x30],0,16);
if (FirstByte & 8) // put data block passed as parameter if any
{
if (Inp.Overflow(3))
return(false);
uint DataSize=RarVM::ReadData(Inp);
if (DataSize>VM_GLOBALMEMSIZE-VM_FIXEDGLOBALSIZE)
return(false);
unsigned int CurSize=StackFilter->Prg.GlobalData.Size();
if (CurSize<DataSize+VM_FIXEDGLOBALSIZE)
StackFilter->Prg.GlobalData.Add(DataSize+VM_FIXEDGLOBALSIZE-CurSize);
byte *GlobalData=&StackFilter->Prg.GlobalData[VM_FIXEDGLOBALSIZE];
for (int I=0;I<DataSize;I++)
{
if (Inp.Overflow(3))
return(false);
GlobalData[I]=Inp.fgetbits()>>8;
Inp.faddbits(8);
}
}
Inp.InitBitInput();
return(true);
}
bool Unpack::UnpReadBuf()
{
int DataSize=ReadTop-InAddr;
if (DataSize<0)
return(false);
if (InAddr>BitInput::MAX_SIZE/2)
{
if (DataSize>0)
memmove(InBuf,InBuf+InAddr,DataSize);
InAddr=0;
ReadTop=DataSize;
}
else
DataSize=ReadTop;
int ReadCode=UnpIO->UnpRead(InBuf+DataSize,(BitInput::MAX_SIZE-DataSize)&~0xf);
if (ReadCode>0)
ReadTop+=ReadCode;
ReadBorder=ReadTop-30;
return(ReadCode!=-1);
}
void Unpack::UnpWriteBuf()
{
unsigned int WrittenBorder=WrPtr;
unsigned int WriteSize=(UnpPtr-WrittenBorder)&MAXWINMASK;
for (int I=0;I<PrgStack.Size();I++)
{
UnpackFilter *flt=PrgStack[I];
if (flt==NULL)
continue;
if (flt->NextWindow)
{
flt->NextWindow=false;
continue;
}
unsigned int BlockStart=flt->BlockStart;
unsigned int BlockLength=flt->BlockLength;
if (((BlockStart-WrittenBorder)&MAXWINMASK)<WriteSize)
{
if (WrittenBorder!=BlockStart)
{
UnpWriteArea(WrittenBorder,BlockStart);
WrittenBorder=BlockStart;
WriteSize=(UnpPtr-WrittenBorder)&MAXWINMASK;
}
if (BlockLength<=WriteSize)
{
unsigned int BlockEnd=(BlockStart+BlockLength)&MAXWINMASK;
if (BlockStart<BlockEnd || BlockEnd==0)
VM.SetMemory(0,Window+BlockStart,BlockLength);
else
{
unsigned int FirstPartLength=MAXWINSIZE-BlockStart;
VM.SetMemory(0,Window+BlockStart,FirstPartLength);
VM.SetMemory(FirstPartLength,Window,BlockEnd);
}
VM_PreparedProgram *ParentPrg=&Filters[flt->ParentFilter]->Prg;
VM_PreparedProgram *Prg=&flt->Prg;
if (ParentPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// copy global data from previous script execution if any
Prg->GlobalData.Alloc(ParentPrg->GlobalData.Size());
memcpy(&Prg->GlobalData[VM_FIXEDGLOBALSIZE],&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],ParentPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
ExecuteCode(Prg);
if (Prg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// save global data for next script execution
if (ParentPrg->GlobalData.Size()<Prg->GlobalData.Size())
ParentPrg->GlobalData.Alloc(Prg->GlobalData.Size());
memcpy(&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],&Prg->GlobalData[VM_FIXEDGLOBALSIZE],Prg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
else
ParentPrg->GlobalData.Reset();
byte *FilteredData=Prg->FilteredData;
unsigned int FilteredDataSize=Prg->FilteredDataSize;
delete PrgStack[I];
PrgStack[I]=NULL;
while (I+1<PrgStack.Size())
{
UnpackFilter *NextFilter=PrgStack[I+1];
if (NextFilter==NULL || NextFilter->BlockStart!=BlockStart ||
NextFilter->BlockLength!=FilteredDataSize || NextFilter->NextWindow)
break;
// apply several filters to same data block
VM.SetMemory(0,FilteredData,FilteredDataSize);
VM_PreparedProgram *ParentPrg=&Filters[NextFilter->ParentFilter]->Prg;
VM_PreparedProgram *NextPrg=&NextFilter->Prg;
if (ParentPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// copy global data from previous script execution if any
NextPrg->GlobalData.Alloc(ParentPrg->GlobalData.Size());
memcpy(&NextPrg->GlobalData[VM_FIXEDGLOBALSIZE],&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],ParentPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
ExecuteCode(NextPrg);
if (NextPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// save global data for next script execution
if (ParentPrg->GlobalData.Size()<NextPrg->GlobalData.Size())
ParentPrg->GlobalData.Alloc(NextPrg->GlobalData.Size());
memcpy(&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],&NextPrg->GlobalData[VM_FIXEDGLOBALSIZE],NextPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
else
ParentPrg->GlobalData.Reset();
FilteredData=NextPrg->FilteredData;
FilteredDataSize=NextPrg->FilteredDataSize;
I++;
delete PrgStack[I];
PrgStack[I]=NULL;
}
UnpIO->UnpWrite(FilteredData,FilteredDataSize);
UnpSomeRead=true;
WrittenFileSize+=FilteredDataSize;
WrittenBorder=BlockEnd;
WriteSize=(UnpPtr-WrittenBorder)&MAXWINMASK;
}
else
{
for (int J=I;J<PrgStack.Size();J++)
{
UnpackFilter *flt=PrgStack[J];
if (flt!=NULL && flt->NextWindow)
flt->NextWindow=false;
}
WrPtr=WrittenBorder;
return;
}
}
}
UnpWriteArea(WrittenBorder,UnpPtr);
WrPtr=UnpPtr;
}
void Unpack::ExecuteCode(VM_PreparedProgram *Prg)
{
if (Prg->GlobalData.Size()>0)
{
Prg->InitR[6]=int64to32(WrittenFileSize);
VM.SetLowEndianValue((uint *)&Prg->GlobalData[0x24],int64to32(WrittenFileSize));
VM.SetLowEndianValue((uint *)&Prg->GlobalData[0x28],int64to32(WrittenFileSize>>31>>1));
VM.Execute(Prg);
}
}
void Unpack::UnpWriteArea(unsigned int StartPtr,unsigned int EndPtr)
{
if (EndPtr!=StartPtr)
UnpSomeRead=true;
if (EndPtr<StartPtr)
{
UnpWriteData(&Window[StartPtr],-StartPtr & MAXWINMASK);
UnpWriteData(Window,EndPtr);
UnpAllBuf=true;
}
else
UnpWriteData(&Window[StartPtr],EndPtr-StartPtr);
}
void Unpack::UnpWriteData(byte *Data,int Size)
{
if (WrittenFileSize>=DestUnpSize)
return;
int WriteSize=Size;
Int64 LeftToWrite=DestUnpSize-WrittenFileSize;
if (WriteSize>LeftToWrite)
WriteSize=int64to32(LeftToWrite);
UnpIO->UnpWrite(Data,WriteSize);
WrittenFileSize+=Size;
}
bool Unpack::ReadTables()
{
byte BitLength[BC];
unsigned char Table[HUFF_TABLE_SIZE];
if (InAddr>ReadTop-25)
if (!UnpReadBuf())
return(false);
faddbits((8-InBit)&7);
unsigned int BitField=fgetbits();
if (BitField & 0x8000)
{
UnpBlockType=BLOCK_PPM;
return(PPM.DecodeInit(this,PPMEscChar));
}
UnpBlockType=BLOCK_LZ;
PrevLowDist=0;
LowDistRepCount=0;
if (!(BitField & 0x4000))
memset(UnpOldTable,0,sizeof(UnpOldTable));
faddbits(2);
{
for (int I=0;I<BC;I++)
{
int Length=(byte)(fgetbits() >> 12);
faddbits(4);
if (Length==15)
{
int ZeroCount=(byte)(fgetbits() >> 12);
faddbits(4);
if (ZeroCount==0)
BitLength[I]=15;
else
{
ZeroCount+=2;
while (ZeroCount-- > 0 && I<sizeof(BitLength)/sizeof(BitLength[0]))
BitLength[I++]=0;
I--;
}
}
else
BitLength[I]=Length;
}
}
MakeDecodeTables(BitLength,(struct Decode *)&BD,BC);
const int TableSize=HUFF_TABLE_SIZE;
for (int I=0;I<TableSize;)
{
if (InAddr>ReadTop-5)
if (!UnpReadBuf())
return(false);
int Number=DecodeNumber((struct Decode *)&BD);
if (Number<16)
{
Table[I]=(Number+UnpOldTable[I]) & 0xf;
I++;
}
else
if (Number<18)
{
int N;
if (Number==16)
{
N=(fgetbits() >> 13)+3;
faddbits(3);
}
else
{
N=(fgetbits() >> 9)+11;
faddbits(7);
}
while (N-- > 0 && I<TableSize)
{
Table[I]=Table[I-1];
I++;
}
}
else
{
int N;
if (Number==18)
{
N=(fgetbits() >> 13)+3;
faddbits(3);
}
else
{
N=(fgetbits() >> 9)+11;
faddbits(7);
}
while (N-- > 0 && I<TableSize)
Table[I++]=0;
}
}
TablesRead=true;
if (InAddr>ReadTop)
return(false);
MakeDecodeTables(&Table[0],(struct Decode *)&LD,NC);
MakeDecodeTables(&Table[NC],(struct Decode *)&DD,DC);
MakeDecodeTables(&Table[NC+DC],(struct Decode *)&LDD,LDC);
MakeDecodeTables(&Table[NC+DC+LDC],(struct Decode *)&RD,RC);
memcpy(UnpOldTable,Table,sizeof(UnpOldTable));
return(true);
}
void Unpack::UnpInitData(int Solid)
{
if (!Solid)
{
TablesRead=false;
memset(OldDist,0,sizeof(OldDist));
OldDistPtr=0;
LastDist=LastLength=0;
// memset(Window,0,MAXWINSIZE);
memset(UnpOldTable,0,sizeof(UnpOldTable));
memset(&LD,0,sizeof(LD));
memset(&DD,0,sizeof(DD));
memset(&LDD,0,sizeof(LDD));
memset(&RD,0,sizeof(RD));
memset(&BD,0,sizeof(BD));
UnpPtr=WrPtr=0;
PPMEscChar=2;
UnpBlockType=BLOCK_LZ;
InitFilters();
}
InitBitInput();
WrittenFileSize=0;
ReadTop=0;
ReadBorder=0;
#ifndef SFX_MODULE
UnpInitData20(Solid);
#endif
}
void Unpack::InitFilters()
{
delete LastStackFilter;
LastStackFilter = NULL;
OldFilterLengths.Reset();
LastFilter=0;
{
for (int I=0;I<Filters.Size();I++)
delete Filters[I];
}
Filters.Reset();
for (int I=0;I<PrgStack.Size();I++)
delete PrgStack[I];
PrgStack.Reset();
}
void Unpack::MakeDecodeTables(unsigned char *LenTab,struct Decode *Dec,int Size)
{
int LenCount[16],TmpPos[16],I;
long M,N;
memset(LenCount,0,sizeof(LenCount));
memset(Dec->DecodeNum,0,Size*sizeof(*Dec->DecodeNum));
for (I=0;I<Size;I++)
LenCount[LenTab[I] & 0xF]++;
LenCount[0]=0;
for (TmpPos[0]=Dec->DecodePos[0]=Dec->DecodeLen[0]=0,N=0,I=1;I<16;I++)
{
N=2*(N+LenCount[I]);
M=N<<(15-I);
if (M>0xFFFF)
M=0xFFFF;
Dec->DecodeLen[I]=(unsigned int)M;
TmpPos[I]=Dec->DecodePos[I]=Dec->DecodePos[I-1]+LenCount[I-1];
}
for (I=0;I<Size;I++)
if (LenTab[I]!=0)
Dec->DecodeNum[TmpPos[LenTab[I] & 0xF]++]=I;
Dec->MaxNum=Size;
}