cog/Frameworks/libcelt_0061/celt-0.6.1/libcelt/psy.c

211 lines
6.7 KiB
C
Raw Normal View History

2021-05-18 07:38:39 +00:00
/* (C) 2007 Jean-Marc Valin, CSIRO
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "psy.h"
#include <math.h>
#include "os_support.h"
#include "arch.h"
#include "stack_alloc.h"
#include "mathops.h"
/* The Vorbis freq<->Bark mapping */
#define toBARK(n) (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n))
#define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f)
#ifndef STATIC_MODES
/* Psychoacoustic spreading function. The idea here is compute a first order
recursive filter. The filter coefficient is frequency dependent and
chosen such that we have a -10dB/Bark slope on the right side and a -25dB/Bark
slope on the left side. */
void psydecay_init(struct PsyDecay *decay, int len, celt_int32_t Fs)
{
int i;
celt_word16_t *decayR = (celt_word16_t*)celt_alloc(sizeof(celt_word16_t)*len);
decay->decayR = decayR;
if (decayR==NULL)
return;
for (i=0;i<len;i++)
{
float f;
float deriv;
/* Real frequency (in Hz) */
f = Fs*i*(1/(2.f*len));
/* This is the derivative of the Vorbis freq->Bark function (see above) */
deriv = (8.288e-8 * f)/(3.4225e-16 *f*f*f*f + 1) + .009694/(5.476e-7 *f*f + 1) + 1e-4;
/* Back to FFT bin units */
deriv *= Fs*(1/(2.f*len));
/* decay corresponding to -10dB/Bark */
decayR[i] = Q15ONE*pow(.1f, deriv);
/* decay corresponding to -25dB/Bark */
/*decay->decayL[i] = Q15ONE*pow(0.0031623f, deriv);*/
/*printf ("%f %f\n", decayL[i], decayR[i]);*/
}
}
void psydecay_clear(struct PsyDecay *decay)
{
celt_free((celt_word16_t *)decay->decayR);
/*celt_free(decay->decayL);*/
}
#endif
static void spreading_func(const struct PsyDecay *d, celt_word32_t * restrict psd, int len)
{
int i;
celt_word32_t mem;
/* Compute right slope (-10 dB/Bark) */
mem=psd[0];
for (i=0;i<len;i++)
{
/* psd = (1-decay)*psd + decay*mem */
psd[i] = EPSILON + psd[i] + MULT16_32_Q15(d->decayR[i],mem-psd[i]);
mem = psd[i];
}
/* Compute left slope (-25 dB/Bark) */
mem=psd[len-1];
for (i=len-1;i>=0;i--)
{
/* Left side has around twice the slope as the right side, so we just
square the coef instead of storing two sets of decay coefs */
celt_word16_t decayL = MULT16_16_Q15(d->decayR[i], d->decayR[i]);
/* psd = (1-decay)*psd + decay*mem */
psd[i] = EPSILON + psd[i] + MULT16_32_Q15(decayL,mem-psd[i]);
mem = psd[i];
}
#if 0 /* Prints signal and mask energy per critical band */
for (i=0;i<25;i++)
{
int start,end;
int j;
celt_word32_t Esig=0, Emask=0;
start = (int)floor(fromBARK((float)i)*(2*len)/Fs);
if (start<0)
start = 0;
end = (int)ceil(fromBARK((float)(i+1))*(2*len)/Fs);
if (end<=start)
end = start+1;
if (end>len-1)
end = len-1;
for (j=start;j<end;j++)
{
Esig += psd[j];
Emask += mask[j];
}
printf ("%f %f ", Esig, Emask);
}
printf ("\n");
#endif
}
/* Compute a marking threshold from the spectrum X. */
void compute_masking(const struct PsyDecay *decay, celt_word16_t *X, celt_mask_t * restrict mask, int len)
{
int i;
int N;
N=len>>1;
mask[0] = MULT16_16(X[0], X[0]);
for (i=1;i<N;i++)
mask[i] = ADD32(MULT16_16(X[i*2], X[i*2]), MULT16_16(X[i*2+1], X[i*2+1]));
/* TODO: Do tone masking */
/* Noise masking */
spreading_func(decay, mask, N);
}
#ifdef EXP_PSY /* Not needed for now, but will be useful in the future */
void compute_mdct_masking(const struct PsyDecay *decay, celt_word32_t *X, celt_word16_t *tonality, celt_word16_t *long_window, celt_mask_t *mask, int len)
{
int i;
VARDECL(float, psd);
SAVE_STACK;
ALLOC(psd, len, float);
for (i=0;i<len;i++)
psd[i] = X[i]*X[i]*tonality[i];
for (i=1;i<len-1;i++)
mask[i] = .5*psd[i] + .25*(psd[i-1]+psd[i+1]);
/*psd[0] = .5*mask[0]+.25*(mask[1]+mask[2]);*/
mask[0] = .5*psd[0]+.5*psd[1];
mask[len-1] = .5*(psd[len-1]+psd[len-2]);
/* TODO: Do tone masking */
/* Noise masking */
spreading_func(decay, mask, len);
RESTORE_STACK;
}
void compute_tonality(const CELTMode *m, celt_word16_t * restrict X, celt_word16_t * mem, int len, celt_word16_t *tonality, int mdct_size)
{
int i;
celt_word16_t norm_1;
celt_word16_t *mem2;
int N = len>>2;
mem2 = mem+2*N;
X[0] = 0;
X[1] = 0;
tonality[0] = 1;
for (i=1;i<N;i++)
{
celt_word16_t re, im, re2, im2;
re = X[2*i];
im = X[2*i+1];
/* Normalise spectrum */
norm_1 = celt_rsqrt(.01+MAC16_16(MULT16_16(re,re), im,im));
re = MULT16_16(re, norm_1);
im = MULT16_16(im, norm_1);
/* Phase derivative */
re2 = re*mem[2*i] + im*mem[2*i+1];
im2 = im*mem[2*i] - re*mem[2*i+1];
mem[2*i] = re;
mem[2*i+1] = im;
/* Phase second derivative */
re = re2*mem2[2*i] + im2*mem2[2*i+1];
im = im2*mem2[2*i] - re2*mem2[2*i+1];
mem2[2*i] = re2;
mem2[2*i+1] = im2;
/*printf ("%f ", re);*/
X[2*i] = re;
X[2*i+1] = im;
}
/*printf ("\n");*/
for (i=0;i<mdct_size;i++)
{
tonality[i] = 1.0-X[2*i]*X[2*i]*X[2*i];
if (tonality[i]>1)
tonality[i] = 1;
if (tonality[i]<.02)
tonality[i]=.02;
}
}
#endif