211 lines
6.7 KiB
C
211 lines
6.7 KiB
C
|
/* (C) 2007 Jean-Marc Valin, CSIRO
|
||
|
*/
|
||
|
/*
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
|
||
|
- Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
|
||
|
- Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
|
||
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
||
|
contributors may be used to endorse or promote products derived from
|
||
|
this software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include "config.h"
|
||
|
#endif
|
||
|
|
||
|
#include "psy.h"
|
||
|
#include <math.h>
|
||
|
#include "os_support.h"
|
||
|
#include "arch.h"
|
||
|
#include "stack_alloc.h"
|
||
|
#include "mathops.h"
|
||
|
|
||
|
/* The Vorbis freq<->Bark mapping */
|
||
|
#define toBARK(n) (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n))
|
||
|
#define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f)
|
||
|
|
||
|
#ifndef STATIC_MODES
|
||
|
/* Psychoacoustic spreading function. The idea here is compute a first order
|
||
|
recursive filter. The filter coefficient is frequency dependent and
|
||
|
chosen such that we have a -10dB/Bark slope on the right side and a -25dB/Bark
|
||
|
slope on the left side. */
|
||
|
void psydecay_init(struct PsyDecay *decay, int len, celt_int32_t Fs)
|
||
|
{
|
||
|
int i;
|
||
|
celt_word16_t *decayR = (celt_word16_t*)celt_alloc(sizeof(celt_word16_t)*len);
|
||
|
decay->decayR = decayR;
|
||
|
if (decayR==NULL)
|
||
|
return;
|
||
|
for (i=0;i<len;i++)
|
||
|
{
|
||
|
float f;
|
||
|
float deriv;
|
||
|
/* Real frequency (in Hz) */
|
||
|
f = Fs*i*(1/(2.f*len));
|
||
|
/* This is the derivative of the Vorbis freq->Bark function (see above) */
|
||
|
deriv = (8.288e-8 * f)/(3.4225e-16 *f*f*f*f + 1) + .009694/(5.476e-7 *f*f + 1) + 1e-4;
|
||
|
/* Back to FFT bin units */
|
||
|
deriv *= Fs*(1/(2.f*len));
|
||
|
/* decay corresponding to -10dB/Bark */
|
||
|
decayR[i] = Q15ONE*pow(.1f, deriv);
|
||
|
/* decay corresponding to -25dB/Bark */
|
||
|
/*decay->decayL[i] = Q15ONE*pow(0.0031623f, deriv);*/
|
||
|
/*printf ("%f %f\n", decayL[i], decayR[i]);*/
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void psydecay_clear(struct PsyDecay *decay)
|
||
|
{
|
||
|
celt_free((celt_word16_t *)decay->decayR);
|
||
|
/*celt_free(decay->decayL);*/
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void spreading_func(const struct PsyDecay *d, celt_word32_t * restrict psd, int len)
|
||
|
{
|
||
|
int i;
|
||
|
celt_word32_t mem;
|
||
|
/* Compute right slope (-10 dB/Bark) */
|
||
|
mem=psd[0];
|
||
|
for (i=0;i<len;i++)
|
||
|
{
|
||
|
/* psd = (1-decay)*psd + decay*mem */
|
||
|
psd[i] = EPSILON + psd[i] + MULT16_32_Q15(d->decayR[i],mem-psd[i]);
|
||
|
mem = psd[i];
|
||
|
}
|
||
|
/* Compute left slope (-25 dB/Bark) */
|
||
|
mem=psd[len-1];
|
||
|
for (i=len-1;i>=0;i--)
|
||
|
{
|
||
|
/* Left side has around twice the slope as the right side, so we just
|
||
|
square the coef instead of storing two sets of decay coefs */
|
||
|
celt_word16_t decayL = MULT16_16_Q15(d->decayR[i], d->decayR[i]);
|
||
|
/* psd = (1-decay)*psd + decay*mem */
|
||
|
psd[i] = EPSILON + psd[i] + MULT16_32_Q15(decayL,mem-psd[i]);
|
||
|
mem = psd[i];
|
||
|
}
|
||
|
#if 0 /* Prints signal and mask energy per critical band */
|
||
|
for (i=0;i<25;i++)
|
||
|
{
|
||
|
int start,end;
|
||
|
int j;
|
||
|
celt_word32_t Esig=0, Emask=0;
|
||
|
start = (int)floor(fromBARK((float)i)*(2*len)/Fs);
|
||
|
if (start<0)
|
||
|
start = 0;
|
||
|
end = (int)ceil(fromBARK((float)(i+1))*(2*len)/Fs);
|
||
|
if (end<=start)
|
||
|
end = start+1;
|
||
|
if (end>len-1)
|
||
|
end = len-1;
|
||
|
for (j=start;j<end;j++)
|
||
|
{
|
||
|
Esig += psd[j];
|
||
|
Emask += mask[j];
|
||
|
}
|
||
|
printf ("%f %f ", Esig, Emask);
|
||
|
}
|
||
|
printf ("\n");
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Compute a marking threshold from the spectrum X. */
|
||
|
void compute_masking(const struct PsyDecay *decay, celt_word16_t *X, celt_mask_t * restrict mask, int len)
|
||
|
{
|
||
|
int i;
|
||
|
int N;
|
||
|
N=len>>1;
|
||
|
mask[0] = MULT16_16(X[0], X[0]);
|
||
|
for (i=1;i<N;i++)
|
||
|
mask[i] = ADD32(MULT16_16(X[i*2], X[i*2]), MULT16_16(X[i*2+1], X[i*2+1]));
|
||
|
/* TODO: Do tone masking */
|
||
|
/* Noise masking */
|
||
|
spreading_func(decay, mask, N);
|
||
|
}
|
||
|
|
||
|
#ifdef EXP_PSY /* Not needed for now, but will be useful in the future */
|
||
|
void compute_mdct_masking(const struct PsyDecay *decay, celt_word32_t *X, celt_word16_t *tonality, celt_word16_t *long_window, celt_mask_t *mask, int len)
|
||
|
{
|
||
|
int i;
|
||
|
VARDECL(float, psd);
|
||
|
SAVE_STACK;
|
||
|
ALLOC(psd, len, float);
|
||
|
for (i=0;i<len;i++)
|
||
|
psd[i] = X[i]*X[i]*tonality[i];
|
||
|
for (i=1;i<len-1;i++)
|
||
|
mask[i] = .5*psd[i] + .25*(psd[i-1]+psd[i+1]);
|
||
|
/*psd[0] = .5*mask[0]+.25*(mask[1]+mask[2]);*/
|
||
|
mask[0] = .5*psd[0]+.5*psd[1];
|
||
|
mask[len-1] = .5*(psd[len-1]+psd[len-2]);
|
||
|
/* TODO: Do tone masking */
|
||
|
/* Noise masking */
|
||
|
spreading_func(decay, mask, len);
|
||
|
RESTORE_STACK;
|
||
|
}
|
||
|
|
||
|
void compute_tonality(const CELTMode *m, celt_word16_t * restrict X, celt_word16_t * mem, int len, celt_word16_t *tonality, int mdct_size)
|
||
|
{
|
||
|
int i;
|
||
|
celt_word16_t norm_1;
|
||
|
celt_word16_t *mem2;
|
||
|
int N = len>>2;
|
||
|
|
||
|
mem2 = mem+2*N;
|
||
|
X[0] = 0;
|
||
|
X[1] = 0;
|
||
|
tonality[0] = 1;
|
||
|
for (i=1;i<N;i++)
|
||
|
{
|
||
|
celt_word16_t re, im, re2, im2;
|
||
|
re = X[2*i];
|
||
|
im = X[2*i+1];
|
||
|
/* Normalise spectrum */
|
||
|
norm_1 = celt_rsqrt(.01+MAC16_16(MULT16_16(re,re), im,im));
|
||
|
re = MULT16_16(re, norm_1);
|
||
|
im = MULT16_16(im, norm_1);
|
||
|
/* Phase derivative */
|
||
|
re2 = re*mem[2*i] + im*mem[2*i+1];
|
||
|
im2 = im*mem[2*i] - re*mem[2*i+1];
|
||
|
mem[2*i] = re;
|
||
|
mem[2*i+1] = im;
|
||
|
/* Phase second derivative */
|
||
|
re = re2*mem2[2*i] + im2*mem2[2*i+1];
|
||
|
im = im2*mem2[2*i] - re2*mem2[2*i+1];
|
||
|
mem2[2*i] = re2;
|
||
|
mem2[2*i+1] = im2;
|
||
|
/*printf ("%f ", re);*/
|
||
|
X[2*i] = re;
|
||
|
X[2*i+1] = im;
|
||
|
}
|
||
|
/*printf ("\n");*/
|
||
|
for (i=0;i<mdct_size;i++)
|
||
|
{
|
||
|
tonality[i] = 1.0-X[2*i]*X[2*i]*X[2*i];
|
||
|
if (tonality[i]>1)
|
||
|
tonality[i] = 1;
|
||
|
if (tonality[i]<.02)
|
||
|
tonality[i]=.02;
|
||
|
}
|
||
|
}
|
||
|
#endif
|