cog/Frameworks/GME/gme/Z80_Cpu_run.h

1702 lines
39 KiB
C
Raw Normal View History

2013-09-28 03:24:46 +00:00
// $package. http://www.slack.net/~ant/
// Last validated with zexall 2009.12.05.
// Doesn't implement the R register or immediate interrupt after EI.
// Address wrap-around isn't completely correct, but is prevented from crashing emulator.
// 16-bit memory accesses are made directly to mapped memory, instead of using macro.
#if 0
/* Define these macros in the source file before #including this file.
- Parameters might be expressions, so they are best evaluated only once,
though they NEVER have side-effects, so multiple evaluation is OK.
- Output parameters might be a multiple-assignment expression like "a=x",
so they must NOT be parenthesized.
- Except where noted, time() and related functions will NOT work
correctly inside a macro. TIME() is always correct, and between FLUSH_TIME() and
CACHE_TIME() the normal time changing functions can be used.
- Macros "returning" void may use a {} statement block. */
// 0 <= addr <= 0xFFFF + 0x100
// Optional; default uses whatever was set with map_mem()
int READ_CODE( addr_t );
// 0 <= addr <= 0xFFFF + 0x100
// Optional; default uses whatever was set with map_mem()
int READ_MEM( addr_t );
void WRITE_MEM( addr_t, int data );
// 0 <= port <= 0xFFFF (apparently upper 8 bits are output by hardware)
void OUT_PORT( int port, int data );
int IN_PORT int port );
// Reference to Z80_Cpu object used for emulation
#define CPU cpu
// The following can be used within macros:
// Current time
time_t TIME();
// Allows use of time functions
void FLUSH_TIME();
// Must be used before end of macro if FLUSH_TIME() was used earlier
void CACHE_TIME();
// Configuration (optional; commented behavior if defined)
// Optimizes as if map_mem( 0, 0x10000, FLAT_MEM, FLAT_MEM ) is always in effect
#define FLAT_MEM my_mem_array
// If RST 7 ($FF) is encountered and PC = IDLE_ADDR, stops execution
#define IDLE_ADDR 0x1234
// Expanded just before beginning of code, to help debugger
#define CPU_BEGIN void my_run_cpu() {
#endif
/* Copyright (C) 2006-2008 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#ifdef CPU_BEGIN
CPU_BEGIN
#endif
#define R CPU.r
// flags, named with hex value for clarity
int const S80 = 0x80;
int const Z40 = 0x40;
int const F20 = 0x20;
int const H10 = 0x10;
int const F08 = 0x08;
int const V04 = 0x04;
int const P04 = 0x04;
int const N02 = 0x02;
int const C01 = 0x01;
#define SZ28P( n ) CPU.szpc [n]
#define SZ28PC( n ) CPU.szpc [n]
#define SZ28C( n ) (CPU.szpc [n] & ~P04)
#define SZ28( n ) SZ28C( n )
#define SET_R( n ) (void) (R.r = n)
#define GET_R() (R.r)
// Time
#define TIME() (s_time + s.base)
#define FLUSH_TIME() {s.time = s_time;}
#define CACHE_TIME() {s_time = s.time;}
// Memory
#define RW_MEM( addr, rw ) RW_PAGE( addr, rw ) [RW_OFFSET( addr )]
#ifndef READ_CODE
#define READ_CODE( addr ) RW_MEM( addr, read )
#endif
#ifdef FLAT_MEM
#define RW_PAGE( addr, rw ) FLAT_MEM
#define RW_OFFSET( addr ) (addr)
#define INSTR( off, addr ) READ_CODE( addr )
#else
#define RW_PAGE( addr, rw ) s.rw [(unsigned) (addr) >> Z80_Cpu::page_bits]
#define RW_OFFSET( addr ) Z80_CPU_OFFSET( addr )
#define INSTR( off, addr ) instr [off]
#endif
#ifndef READ_MEM
#define READ_MEM( addr ) RW_MEM( addr, read )
#endif
#ifndef WRITE_MEM
#define WRITE_MEM( addr, data ) (RW_MEM( addr, write ) = data)
#endif
#define READ_WORD( addr ) GET_LE16( &RW_MEM( addr, read ) )
#define WRITE_WORD( addr, data ) SET_LE16( &RW_MEM( addr, write ), data )
// Truncation
#define BYTE( n ) ((BOOST::uint8_t ) (n)) /* (unsigned) n & 0xFF */
#define SBYTE( n ) ((BOOST::int8_t ) (n)) /* (BYTE( n ) ^ 0x80) - 0x80 */
#define WORD( n ) ((BOOST::uint16_t) (n)) /* (unsigned) n & 0xFFFF */
// Misc
#define CASE5( a, b, c, d, e ) case 0x##a:case 0x##b:case 0x##c:case 0x##d:case 0x##e
#define CASE6( a, b, c, d, e, f ) CASE5( a, b, c, d, e ): case 0x##f
#define CASE7( a, b, c, d, e, f, g ) CASE6( a, b, c, d, e, f ): case 0x##g
#define CASE8( a, b, c, d, e, f, g, h ) CASE7( a, b, c, d, e, f, g ): case 0x##h
#if BLARGG_BIG_ENDIAN
#define R8( n, offset ) ((r.r8_ - offset) [n])
#elif BLARGG_LITTLE_ENDIAN
#define R8( n, offset ) ((r.r8_ - offset) [(n) ^ 1])
#else
#error "Byte order of CPU must be known"
#endif
#define R16( n, shift, offset ) (r.r16_ [((unsigned) (n) >> shift) - (offset >> shift)])
#define EX( x, y ) \
{\
int temp = x;\
x = y;\
y = temp;\
}
#define EXX( name ) \
EX( R.alt.name, r.name )
bool warning = false;
{
Z80_Cpu::cpu_state_t s;
#ifdef FLAT_MEM
s.base = CPU.cpu_state_.base;
#else
s = CPU.cpu_state_;
#endif
CPU.cpu_state = &s;
union r_t {
Z80_Cpu::regs_t b;
Z80_Cpu::pairs_t w;
byte r8_ [8]; // indexed
BOOST::uint16_t r16_ [4];
} r;
r.b = R.b;
Z80_Cpu::time_t s_time = CPU.cpu_state_.time;
int pc = R.pc;
int sp = R.sp;
int ix = R.ix; // TODO: keep in memory for direct access?
int iy = R.iy;
int flags = R.b.flags;
//goto loop; // confuses optimizer
s_time += 7;
pc -= 2;
call_not_taken:
s_time -= 7;
jp_not_taken:
pc += 2;
loop:
check( (unsigned) pc < 0x10000 + 1 ); // +1 so emulator can catch wrap-around
check( (unsigned) sp < 0x10000 );
check( (unsigned) flags < 0x100 );
check( (unsigned) ix < 0x10000 );
check( (unsigned) iy < 0x10000 );
byte const* instr = RW_PAGE( pc, read );
int opcode;
if ( RW_OFFSET( ~0 ) == ~0 )
{
opcode = instr [RW_OFFSET( pc )];
pc++;
instr += RW_OFFSET( pc );
}
else
{
instr += RW_OFFSET( pc );
opcode = *instr++;
pc++;
}
static byte const clock_table [256 * 2] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
4,10, 7, 6, 4, 4, 7, 4, 4,11, 7, 6, 4, 4, 7, 4, // 0
8,10, 7, 6, 4, 4, 7, 4,12,11, 7, 6, 4, 4, 7, 4, // 1
7,10,16, 6, 4, 4, 7, 4, 7,11,16, 6, 4, 4, 7, 4, // 2
7,10,13, 6,11,11,10, 4, 7,11,13, 6, 4, 4, 7, 4, // 3
4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4, // 4
4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4, // 5
4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4, // 6
7, 7, 7, 7, 7, 7, 4, 7, 4, 4, 4, 4, 4, 4, 7, 4, // 7
4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4, // 8
4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4, // 9
4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4, // A
4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4, // B
11,10,10,10,17,11, 7,11,11,10,10, 8,17,17, 7,11, // C
11,10,10,11,17,11, 7,11,11, 4,10,11,17, 8, 7,11, // D
11,10,10,19,17,11, 7,11,11, 4,10, 4,17, 8, 7,11, // E
11,10,10, 4,17,11, 7,11,11, 6,10, 4,17, 8, 7,11, // F
// high four bits are $ED time - 8, low four bits are $DD/$FD time - 8
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x06,0x0C,0x02,0x00,0x00,0x03,0x00,0x00,0x07,0x0C,0x02,0x00,0x00,0x03,0x00,
0x00,0x00,0x00,0x00,0x0F,0x0F,0x0B,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,
0x40,0x40,0x70,0xC0,0x00,0x60,0x0B,0x10,0x40,0x40,0x70,0xC0,0x00,0x60,0x0B,0x10,
0x40,0x40,0x70,0xC0,0x00,0x60,0x0B,0x10,0x40,0x40,0x70,0xC0,0x00,0x60,0x0B,0x10,
0x40,0x40,0x70,0xC0,0x00,0x60,0x0B,0xA0,0x40,0x40,0x70,0xC0,0x00,0x60,0x0B,0xA0,
0x4B,0x4B,0x7B,0xCB,0x0B,0x6B,0x00,0x0B,0x40,0x40,0x70,0xC0,0x00,0x60,0x0B,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0B,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0B,0x00,
0x80,0x80,0x80,0x80,0x00,0x00,0x0B,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x0B,0x00,
0xD0,0xD0,0xD0,0xD0,0x00,0x00,0x0B,0x00,0xD0,0xD0,0xD0,0xD0,0x00,0x00,0x0B,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0F,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x06,0x00,0x0F,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00,
};
if ( s_time >= 0 )
goto out_of_time;
s_time += clock_table [opcode];
#ifdef Z80_CPU_LOG_H
//log_opcode( opcode, READ_CODE( pc ) );
z80_cpu_log( "log.txt", pc - 1, opcode, READ_CODE( pc ),
READ_CODE( pc + 1 ), READ_CODE( pc + 2 ) );
z80_log_regs( r.b.a, r.w.bc, r.w.de, r.w.hl, sp, ix, iy );
#endif
#define GET_ADDR() GET_LE16( &INSTR( 0, pc ) )
int data;
data = INSTR( 0, pc );
switch ( opcode )
{
// Common
case 0x00: // NOP
CASE7( 40, 49, 52, 5B, 64, 6D, 7F ): // LD B,B etc.
goto loop;
case 0x08:{// EX AF,AF'
EXX( b.a );
EX( R.alt.b.flags, flags );
goto loop;
}
case 0xD3: // OUT (imm),A
pc++;
OUT_PORT( (data + r.b.a * 0x100), r.b.a );
goto loop;
case 0x2E: // LD L,imm
pc++;
r.b.l = data;
goto loop;
case 0x3E: // LD A,imm
pc++;
r.b.a = data;
goto loop;
case 0x3A:{// LD A,(addr)
int addr = GET_ADDR();
pc += 2;
r.b.a = READ_MEM( addr );
goto loop;
}
// Conditional
#define ZERO (flags & Z40)
#define CARRY (flags & C01)
#define EVEN (flags & P04)
#define MINUS (flags & S80)
// JR
// TODO: more efficient way to handle negative branch that wraps PC around
#define JR_( cond, clocks ) {\
pc++;\
if ( !(cond) )\
goto loop;\
int offset = SBYTE( data );\
pc = WORD( pc + offset );\
s_time += clocks;\
goto loop;\
}
#define JR( cond ) JR_( cond, 5 )
case 0x20: JR( !ZERO ) // JR NZ,disp
case 0x28: JR( ZERO ) // JR Z,disp
case 0x30: JR( !CARRY ) // JR NC,disp
case 0x38: JR( CARRY ) // JR C,disp
case 0x18: JR_( true,0) // JR disp
case 0x10:{// DJNZ disp
int temp = r.b.b - 1;
r.b.b = temp;
JR( temp )
}
// JP
#define JP( cond ) \
if ( !(cond) )\
goto jp_not_taken;\
pc = GET_ADDR();\
goto loop;
case 0xC2: JP( !ZERO ) // JP NZ,addr
case 0xCA: JP( ZERO ) // JP Z,addr
case 0xD2: JP( !CARRY ) // JP NC,addr
case 0xDA: JP( CARRY ) // JP C,addr
case 0xE2: JP( !EVEN ) // JP PO,addr
case 0xEA: JP( EVEN ) // JP PE,addr
case 0xF2: JP( !MINUS ) // JP P,addr
case 0xFA: JP( MINUS ) // JP M,addr
case 0xC3: // JP addr
pc = GET_ADDR();
goto loop;
case 0xE9: // JP HL
pc = r.w.hl;
goto loop;
// RET
#define RET( cond ) \
if ( cond )\
goto ret_taken;\
s_time -= 6;\
goto loop;
case 0xC0: RET( !ZERO ) // RET NZ
case 0xC8: RET( ZERO ) // RET Z
case 0xD0: RET( !CARRY ) // RET NC
case 0xD8: RET( CARRY ) // RET C
case 0xE0: RET( !EVEN ) // RET PO
case 0xE8: RET( EVEN ) // RET PE
case 0xF0: RET( !MINUS ) // RET P
case 0xF8: RET( MINUS ) // RET M
case 0xC9: // RET
ret_taken:
pc = READ_WORD( sp );
sp = WORD( sp + 2 );
goto loop;
// CALL
#define CALL( cond ) \
if ( cond )\
goto call_taken;\
goto call_not_taken;
case 0xC4: CALL( !ZERO ) // CALL NZ,addr
case 0xCC: CALL( ZERO ) // CALL Z,addr
case 0xD4: CALL( !CARRY ) // CALL NC,addr
case 0xDC: CALL( CARRY ) // CALL C,addr
case 0xE4: CALL( !EVEN ) // CALL PO,addr
case 0xEC: CALL( EVEN ) // CALL PE,addr
case 0xF4: CALL( !MINUS ) // CALL P,addr
case 0xFC: CALL( MINUS ) // CALL M,addr
case 0xCD:{// CALL addr
call_taken:
int addr = pc + 2;
pc = GET_ADDR();
sp = WORD( sp - 2 );
WRITE_WORD( sp, addr );
goto loop;
}
case 0xFF: // RST
#ifdef IDLE_ADDR
if ( pc == IDLE_ADDR + 1 )
goto hit_idle_addr;
#else
if ( pc > 0x10000 )
{
pc = WORD( pc - 1 );
s_time -= 11;
goto loop;
}
#endif
CASE7( C7, CF, D7, DF, E7, EF, F7 ):
data = pc;
pc = opcode & 0x38;
#ifdef RST_BASE
pc += RST_BASE;
#endif
goto push_data;
// PUSH/POP
case 0xF5: // PUSH AF
data = r.b.a * 0x100u + flags;
goto push_data;
case 0xC5: // PUSH BC
case 0xD5: // PUSH DE
case 0xE5: // PUSH HL
data = R16( opcode, 4, 0xC5 );
push_data:
sp = WORD( sp - 2 );
WRITE_WORD( sp, data );
goto loop;
case 0xF1: // POP AF
flags = READ_MEM( sp );
r.b.a = READ_MEM( (sp + 1) );
sp = WORD( sp + 2 );
goto loop;
case 0xC1: // POP BC
case 0xD1: // POP DE
case 0xE1: // POP HL
R16( opcode, 4, 0xC1 ) = READ_WORD( sp );
sp = WORD( sp + 2 );
goto loop;
// ADC/ADD/SBC/SUB
case 0x96: // SUB (HL)
case 0x86: // ADD (HL)
flags &= ~C01;
case 0x9E: // SBC (HL)
case 0x8E: // ADC (HL)
data = READ_MEM( r.w.hl );
goto adc_data;
case 0xD6: // SUB A,imm
case 0xC6: // ADD imm
flags &= ~C01;
case 0xDE: // SBC A,imm
case 0xCE: // ADC imm
pc++;
goto adc_data;
CASE7( 90, 91, 92, 93, 94, 95, 97 ): // SUB r
CASE7( 80, 81, 82, 83, 84, 85, 87 ): // ADD r
flags &= ~C01;
CASE7( 98, 99, 9A, 9B, 9C, 9D, 9F ): // SBC r
CASE7( 88, 89, 8A, 8B, 8C, 8D, 8F ): // ADC r
data = R8( opcode & 7, 0 );
adc_data: {
int result = data + (flags & C01);
data ^= r.b.a;
flags = opcode >> 3 & N02; // bit 4 is set in subtract opcodes
if ( flags )
result = -result;
result += r.b.a;
data ^= result;
flags +=(data & H10) +
((data + 0x80) >> 6 & V04) +
SZ28C( result & 0x1FF );
r.b.a = result;
goto loop;
}
// CP
case 0xBE: // CP (HL)
data = READ_MEM( r.w.hl );
goto cp_data;
case 0xFE: // CP imm
pc++;
goto cp_data;
CASE7( B8, B9, BA, BB, BC, BD, BF ): // CP r
data = R8( opcode, 0xB8 );
cp_data: {
int result = r.b.a - data;
flags = N02 + (data & (F20 | F08)) + (result >> 8 & C01);
data ^= r.b.a;
flags +=(((result ^ r.b.a) & data) >> 5 & V04) +
(((data & H10) ^ result) & (S80 | H10));
if ( BYTE( result ) )
goto loop;
flags += Z40;
goto loop;
}
// ADD HL,r.w
case 0x39: // ADD HL,SP
data = sp;
goto add_hl_data;
case 0x09: // ADD HL,BC
case 0x19: // ADD HL,DE
case 0x29: // ADD HL,HL
data = R16( opcode, 4, 0x09 );
add_hl_data: {
int sum = r.w.hl + data;
data ^= r.w.hl;
r.w.hl = sum;
flags = (flags & (S80 | Z40 | V04)) +
(sum >> 16) +
(sum >> 8 & (F20 | F08)) +
((data ^ sum) >> 8 & H10);
goto loop;
}
case 0x27:{// DAA
int a = r.b.a;
if ( a > 0x99 )
flags |= C01;
int adjust = 0x60 * (flags & C01);
if ( flags & H10 || (a & 0x0F) > 9 )
adjust += 0x06;
if ( flags & N02 )
adjust = -adjust;
a += adjust;
flags = (flags & (C01 | N02)) +
((r.b.a ^ a) & H10) +
SZ28P( BYTE( a ) );
r.b.a = a;
goto loop;
}
// INC/DEC
case 0x34: // INC (HL)
data = READ_MEM( r.w.hl ) + 1;
WRITE_MEM( r.w.hl, data );
goto inc_set_flags;
CASE7( 04, 0C, 14, 1C, 24, 2C, 3C ): // INC r
data = ++R8( opcode >> 3, 0 );
inc_set_flags:
flags = (flags & C01) +
(((data & 0x0F) - 1) & H10) +
SZ28( BYTE( data ) );
if ( data != 0x80 )
goto loop;
flags += V04;
goto loop;
case 0x35: // DEC (HL)
data = READ_MEM( r.w.hl ) - 1;
WRITE_MEM( r.w.hl, data );
goto dec_set_flags;
CASE7( 05, 0D, 15, 1D, 25, 2D, 3D ): // DEC r
data = --R8( opcode >> 3, 0 );
dec_set_flags:
flags = (flags & C01) + N02 +
(((data & 0x0F) + 1) & H10) +
SZ28( BYTE( data ) );
if ( data != 0x7F )
goto loop;
flags += V04;
goto loop;
case 0x03: // INC BC
case 0x13: // INC DE
case 0x23: // INC HL
R16( opcode, 4, 0x03 )++;
goto loop;
case 0x33: // INC SP
sp = WORD( sp + 1 );
goto loop;
case 0x0B: // DEC BC
case 0x1B: // DEC DE
case 0x2B: // DEC HL
R16( opcode, 4, 0x0B )--;
goto loop;
case 0x3B: // DEC SP
sp = WORD( sp - 1 );
goto loop;
// AND
case 0xA6: // AND (HL)
data = READ_MEM( r.w.hl );
goto and_data;
case 0xE6: // AND imm
pc++;
goto and_data;
CASE7( A0, A1, A2, A3, A4, A5, A7 ): // AND r
data = R8( opcode, 0xA0 );
and_data:
r.b.a &= data;
flags = SZ28P( r.b.a ) + H10;
goto loop;
// OR
case 0xB6: // OR (HL)
data = READ_MEM( r.w.hl );
goto or_data;
case 0xF6: // OR imm
pc++;
goto or_data;
CASE7( B0, B1, B2, B3, B4, B5, B7 ): // OR r
data = R8( opcode, 0xB0 );
or_data:
r.b.a |= data;
flags = SZ28P( r.b.a );
goto loop;
// XOR
case 0xAE: // XOR (HL)
data = READ_MEM( r.w.hl );
goto xor_data;
case 0xEE: // XOR imm
pc++;
goto xor_data;
CASE7( A8, A9, AA, AB, AC, AD, AF ): // XOR r
data = R8( opcode, 0xA8 );
xor_data:
r.b.a ^= data;
flags = SZ28P( r.b.a );
goto loop;
// LD
CASE7( 70, 71, 72, 73, 74, 75, 77 ): // LD (HL),r
WRITE_MEM( r.w.hl, R8( opcode, 0x70 ) );
goto loop;
CASE6( 41, 42, 43, 44, 45, 47 ): // LD B,r
CASE6( 48, 4A, 4B, 4C, 4D, 4F ): // LD C,r
CASE6( 50, 51, 53, 54, 55, 57 ): // LD D,r
CASE6( 58, 59, 5A, 5C, 5D, 5F ): // LD E,r
CASE6( 60, 61, 62, 63, 65, 67 ): // LD H,r
CASE6( 68, 69, 6A, 6B, 6C, 6F ): // LD L,r
CASE6( 78, 79, 7A, 7B, 7C, 7D ): // LD A,r
R8( opcode >> 3 & 7, 0 ) = R8( opcode & 7, 0 );
goto loop;
CASE5( 06, 0E, 16, 1E, 26 ): // LD r,imm
R8( opcode >> 3, 0 ) = data;
pc++;
goto loop;
case 0x36: // LD (HL),imm
pc++;
WRITE_MEM( r.w.hl, data );
goto loop;
CASE7( 46, 4E, 56, 5E, 66, 6E, 7E ): // LD r,(HL)
R8( opcode >> 3, 8 ) = READ_MEM( r.w.hl );
goto loop;
case 0x01: // LD r.w,imm
case 0x11:
case 0x21:
R16( opcode, 4, 0x01 ) = GET_ADDR();
pc += 2;
goto loop;
case 0x31: // LD sp,imm
sp = GET_ADDR();
pc += 2;
goto loop;
case 0x2A:{// LD HL,(addr)
int addr = GET_ADDR();
pc += 2;
r.w.hl = READ_WORD( addr );
goto loop;
}
case 0x32:{// LD (addr),A
int addr = GET_ADDR();
pc += 2;
WRITE_MEM( addr, r.b.a );
goto loop;
}
case 0x22:{// LD (addr),HL
int addr = GET_ADDR();
pc += 2;
WRITE_WORD( addr, r.w.hl );
goto loop;
}
case 0x02: // LD (BC),A
case 0x12: // LD (DE),A
WRITE_MEM( R16( opcode, 4, 0x02 ), r.b.a );
goto loop;
case 0x0A: // LD A,(BC)
case 0x1A: // LD A,(DE)
r.b.a = READ_MEM( R16( opcode, 4, 0x0A ) );
goto loop;
case 0xF9: // LD SP,HL
sp = r.w.hl;
goto loop;
// Rotate
case 0x07:{// RLCA
int temp = r.b.a;
temp = (temp << 1) + (temp >> 7);
flags = (flags & (S80 | Z40 | P04)) +
(temp & (F20 | F08 | C01));
r.b.a = temp;
goto loop;
}
case 0x0F:{// RRCA
int temp = r.b.a;
flags = (flags & (S80 | Z40 | P04)) +
(temp & C01);
temp = (temp << 7) + (temp >> 1);
flags += temp & (F20 | F08);
r.b.a = temp;
goto loop;
}
case 0x17:{// RLA
int temp = (r.b.a << 1) + (flags & C01);
flags = (flags & (S80 | Z40 | P04)) +
(temp & (F20 | F08)) +
(temp >> 8);
r.b.a = temp;
goto loop;
}
case 0x1F:{// RRA
int temp = (flags << 7) + (r.b.a >> 1);
flags = (flags & (S80 | Z40 | P04)) +
(temp & (F20 | F08)) +
(r.b.a & C01);
r.b.a = temp;
goto loop;
}
// Misc
case 0x2F:{// CPL
int temp = ~r.b.a;
flags = (flags & (S80 | Z40 | P04 | C01)) +
(temp & (F20 | F08)) +
(H10 | N02);
r.b.a = temp;
goto loop;
}
case 0x3F:{// CCF
flags = ((flags & (S80 | Z40 | P04 | C01)) ^ C01) +
(flags << 4 & H10) +
(r.b.a & (F20 | F08));
goto loop;
}
case 0x37: // SCF
flags = (flags & (S80 | Z40 | P04)) | C01 +
(r.b.a & (F20 | F08));
goto loop;
case 0xDB: // IN A,(imm)
pc++;
r.b.a = IN_PORT( (data + r.b.a * 0x100) );
goto loop;
case 0xE3:{// EX (SP),HL
int temp = READ_WORD( sp );
WRITE_WORD( sp, r.w.hl );
r.w.hl = temp;
goto loop;
}
case 0xEB: // EX DE,HL
EX( r.w.hl, r.w.de );
goto loop;
case 0xD9: // EXX DE,HL
EXX( w.bc );
EXX( w.de );
EXX( w.hl );
goto loop;
case 0xF3: // DI
R.iff1 = 0;
R.iff2 = 0;
goto loop;
case 0xFB: // EI
R.iff1 = 1;
R.iff2 = 1;
// TODO: delayed effect
goto loop;
case 0x76: // HALT
goto halt;
//////////////////////////////////////// CB prefix
{
case 0xCB:
pc++;
switch ( data )
{
// Rotate left
#define RLC( read, write ) {\
int result = read;\
result = BYTE( result << 1 ) + (result >> 7);\
flags = SZ28P( result ) + (result & C01);\
write;\
goto loop;\
}
case 0x06: // RLC (HL)
s_time += 7;
data = r.w.hl;
rlc_data_addr:
RLC( READ_MEM( data ), WRITE_MEM( data, result ) )
CASE7( 00, 01, 02, 03, 04, 05, 07 ):{// RLC r
byte& reg = R8( data, 0 );
RLC( reg, reg = result )
}
#define RL( read, write ) {\
int result = (read << 1) + (flags & C01);\
flags = SZ28PC( result );\
write;\
goto loop;\
}
case 0x16: // RL (HL)
s_time += 7;
data = r.w.hl;
rl_data_addr:
RL( READ_MEM( data ), WRITE_MEM( data, result ) )
CASE7( 10, 11, 12, 13, 14, 15, 17 ):{// RL r
byte& reg = R8( data, 0x10 );
RL( reg, reg = result )
}
#define SLA( read, low_bit, write ) {\
int result = (read << 1) + low_bit;\
flags = SZ28PC( result );\
write;\
goto loop;\
}
case 0x26: // SLA (HL)
s_time += 7;
data = r.w.hl;
sla_data_addr:
SLA( READ_MEM( data ), 0, WRITE_MEM( data, result ) )
CASE7( 20, 21, 22, 23, 24, 25, 27 ):{// SLA r
byte& reg = R8( data, 0x20 );
SLA( reg, 0, reg = result )
}
case 0x36: // SLL (HL)
s_time += 7;
data = r.w.hl;
sll_data_addr:
SLA( READ_MEM( data ), 1, WRITE_MEM( data, result ) )
CASE7( 30, 31, 32, 33, 34, 35, 37 ):{// SLL r
byte& reg = R8( data, 0x30 );
SLA( reg, 1, reg = result )
}
// Rotate right
#define RRC( read, write ) {\
int result = read;\
flags = result & C01;\
result = BYTE( result << 7 ) + (result >> 1);\
flags += SZ28P( result );\
write;\
goto loop;\
}
case 0x0E: // RRC (HL)
s_time += 7;
data = r.w.hl;
rrc_data_addr:
RRC( READ_MEM( data ), WRITE_MEM( data, result ) )
CASE7( 08, 09, 0A, 0B, 0C, 0D, 0F ):{// RRC r
byte& reg = R8( data, 0x08 );
RRC( reg, reg = result )
}
#define RR( read, write ) {\
int result = read;\
int temp = result & C01;\
result = BYTE( flags << 7 ) + (result >> 1);\
flags = SZ28P( result ) + temp;\
write;\
goto loop;\
}
case 0x1E: // RR (HL)
s_time += 7;
data = r.w.hl;
rr_data_addr:
RR( READ_MEM( data ), WRITE_MEM( data, result ) )
CASE7( 18, 19, 1A, 1B, 1C, 1D, 1F ):{// RR r
byte& reg = R8( data, 0x18 );
RR( reg, reg = result )
}
#define SRA( read, write ) {\
int result = read;\
flags = result & C01;\
result = (result & 0x80) + (result >> 1);\
flags += SZ28P( result );\
write;\
goto loop;\
}
case 0x2E: // SRA (HL)
data = r.w.hl;
s_time += 7;
sra_data_addr:
SRA( READ_MEM( data ), WRITE_MEM( data, result ) )
CASE7( 28, 29, 2A, 2B, 2C, 2D, 2F ):{// SRA r
byte& reg = R8( data, 0x28 );
SRA( reg, reg = result )
}
#define SRL( read, write ) {\
int result = read;\
flags = result & C01;\
result >>= 1;\
flags += SZ28P( result );\
write;\
goto loop;\
}
case 0x3E: // SRL (HL)
s_time += 7;
data = r.w.hl;
srl_data_addr:
SRL( READ_MEM( data ), WRITE_MEM( data, result ) )
CASE7( 38, 39, 3A, 3B, 3C, 3D, 3F ):{// SRL r
byte& reg = R8( data, 0x38 );
SRL( reg, reg = result )
}
// BIT
{
int temp;
CASE8( 46, 4E, 56, 5E, 66, 6E, 76, 7E ): // BIT b,(HL)
s_time += 4;
temp = READ_MEM( r.w.hl );
flags &= C01;
goto bit_temp;
CASE7( 40, 41, 42, 43, 44, 45, 47 ): // BIT 0,r
CASE7( 48, 49, 4A, 4B, 4C, 4D, 4F ): // BIT 1,r
CASE7( 50, 51, 52, 53, 54, 55, 57 ): // BIT 2,r
CASE7( 58, 59, 5A, 5B, 5C, 5D, 5F ): // BIT 3,r
CASE7( 60, 61, 62, 63, 64, 65, 67 ): // BIT 4,r
CASE7( 68, 69, 6A, 6B, 6C, 6D, 6F ): // BIT 5,r
CASE7( 70, 71, 72, 73, 74, 75, 77 ): // BIT 6,r
CASE7( 78, 79, 7A, 7B, 7C, 7D, 7F ): // BIT 7,r
temp = R8( data & 7, 0 );
flags = (flags & C01) + (temp & (F20 | F08));
bit_temp:
temp = temp & (1 << (data >> 3 & 7));
flags += (temp & S80) + H10;
flags += (unsigned) --temp >> 8 & (Z40 | P04);
goto loop;
}
// SET/RES
CASE8( 86, 8E, 96, 9E, A6, AE, B6, BE ): // RES b,(HL)
CASE8( C6, CE, D6, DE, E6, EE, F6, FE ):{// SET b,(HL)
s_time += 7;
int temp = READ_MEM( r.w.hl );
int bit = 1 << (data >> 3 & 7);
temp |= bit; // SET
if ( !(data & 0x40) )
temp ^= bit; // RES
WRITE_MEM( r.w.hl, temp );
goto loop;
}
CASE7( C0, C1, C2, C3, C4, C5, C7 ): // SET 0,r
CASE7( C8, C9, CA, CB, CC, CD, CF ): // SET 1,r
CASE7( D0, D1, D2, D3, D4, D5, D7 ): // SET 2,r
CASE7( D8, D9, DA, DB, DC, DD, DF ): // SET 3,r
CASE7( E0, E1, E2, E3, E4, E5, E7 ): // SET 4,r
CASE7( E8, E9, EA, EB, EC, ED, EF ): // SET 5,r
CASE7( F0, F1, F2, F3, F4, F5, F7 ): // SET 6,r
CASE7( F8, F9, FA, FB, FC, FD, FF ): // SET 7,r
R8( data & 7, 0 ) |= 1 << (data >> 3 & 7);
goto loop;
CASE7( 80, 81, 82, 83, 84, 85, 87 ): // RES 0,r
CASE7( 88, 89, 8A, 8B, 8C, 8D, 8F ): // RES 1,r
CASE7( 90, 91, 92, 93, 94, 95, 97 ): // RES 2,r
CASE7( 98, 99, 9A, 9B, 9C, 9D, 9F ): // RES 3,r
CASE7( A0, A1, A2, A3, A4, A5, A7 ): // RES 4,r
CASE7( A8, A9, AA, AB, AC, AD, AF ): // RES 5,r
CASE7( B0, B1, B2, B3, B4, B5, B7 ): // RES 6,r
CASE7( B8, B9, BA, BB, BC, BD, BF ): // RES 7,r
R8( data & 7, 0 ) &= ~(1 << (data >> 3 & 7));
goto loop;
}
assert( false );
}
#undef GET_ADDR
#define GET_ADDR() GET_LE16( &INSTR( 1, pc ) )
//////////////////////////////////////// ED prefix
{
case 0xED:
pc++;
s_time += (clock_table + 256) [data] >> 4;
switch ( data )
{
{
int temp;
case 0x72: // SBC HL,SP
case 0x7A: // ADC HL,SP
temp = sp;
if ( 0 )
case 0x42: // SBC HL,BC
case 0x52: // SBC HL,DE
case 0x62: // SBC HL,HL
case 0x4A: // ADC HL,BC
case 0x5A: // ADC HL,DE
case 0x6A: // ADC HL,HL
temp = R16( data >> 3 & 6, 1, 0 );
int sum = temp + (flags & C01);
flags = ~data >> 2 & N02;
if ( flags )
sum = -sum;
sum += r.w.hl;
temp ^= r.w.hl;
temp ^= sum;
flags +=(sum >> 16 & C01) +
(temp >> 8 & H10) +
(sum >> 8 & (S80 | F20 | F08)) +
((temp + 0x8000) >> 14 & V04);
r.w.hl = sum;
if ( WORD( sum ) )
goto loop;
flags += Z40;
goto loop;
}
CASE8( 40, 48, 50, 58, 60, 68, 70, 78 ):{// IN r,(C)
int temp = IN_PORT( r.w.bc );
R8( data >> 3, 8 ) = temp;
flags = (flags & C01) + SZ28P( temp );
goto loop;
}
case 0x71: // OUT (C),0
r.b.flags = 0;
CASE7( 41, 49, 51, 59, 61, 69, 79 ): // OUT (C),r
OUT_PORT( r.w.bc, R8( data >> 3, 8 ) );
goto loop;
{
int temp;
case 0x73: // LD (ADDR),SP
temp = sp;
if ( 0 )
case 0x43: // LD (ADDR),BC
case 0x53: // LD (ADDR),DE
temp = R16( data, 4, 0x43 );
int addr = GET_ADDR();
pc += 2;
WRITE_WORD( addr, temp );
goto loop;
}
case 0x4B: // LD BC,(ADDR)
case 0x5B:{// LD DE,(ADDR)
int addr = GET_ADDR();
pc += 2;
R16( data, 4, 0x4B ) = READ_WORD( addr );
goto loop;
}
case 0x7B:{// LD SP,(ADDR)
int addr = GET_ADDR();
pc += 2;
sp = READ_WORD( addr );
goto loop;
}
case 0x67:{// RRD
int temp = READ_MEM( r.w.hl );
WRITE_MEM( r.w.hl, ((r.b.a << 4) + (temp >> 4)) );
temp = (r.b.a & 0xF0) + (temp & 0x0F);
flags = (flags & C01) + SZ28P( temp );
r.b.a = temp;
goto loop;
}
case 0x6F:{// RLD
int temp = READ_MEM( r.w.hl );
WRITE_MEM( r.w.hl, ((temp << 4) + (r.b.a & 0x0F)) );
temp = (r.b.a & 0xF0) + (temp >> 4);
flags = (flags & C01) + SZ28P( temp );
r.b.a = temp;
goto loop;
}
CASE8( 44, 4C, 54, 5C, 64, 6C, 74, 7C ): // NEG
opcode = 0x10; // flag to do SBC instead of ADC
flags &= ~C01;
data = r.b.a;
r.b.a = 0;
goto adc_data;
{
int inc;
case 0xA9: // CPD
case 0xB9: // CPDR
inc = -1;
if ( 0 )
case 0xA1: // CPI
case 0xB1: // CPIR
inc = +1;
int addr = r.w.hl;
r.w.hl = addr + inc;
int temp = READ_MEM( addr );
int result = r.b.a - temp;
flags = (flags & C01) + N02 +
((((temp ^ r.b.a) & H10) ^ result) & (S80 | H10));
if ( !BYTE( result ) )
flags += Z40;
result -= (flags & H10) >> 4;
flags += result & F08;
flags += result << 4 & F20;
if ( !--r.w.bc )
goto loop;
flags += V04;
if ( flags & Z40 || data < 0xB0 )
goto loop;
pc -= 2;
s_time += 5;
goto loop;
}
{
int inc;
case 0xA8: // LDD
case 0xB8: // LDDR
inc = -1;
if ( 0 )
case 0xA0: // LDI
case 0xB0: // LDIR
inc = +1;
int addr = r.w.hl;
r.w.hl = addr + inc;
int temp = READ_MEM( addr );
addr = r.w.de;
r.w.de = addr + inc;
WRITE_MEM( addr, temp );
temp += r.b.a;
flags = (flags & (S80 | Z40 | C01)) +
(temp & F08) + (temp << 4 & F20);
if ( !--r.w.bc )
goto loop;
flags += V04;
if ( data < 0xB0 )
goto loop;
pc -= 2;
s_time += 5;
goto loop;
}
{
int inc;
case 0xAB: // OUTD
case 0xBB: // OTDR
inc = -1;
if ( 0 )
case 0xA3: // OUTI
case 0xB3: // OTIR
inc = +1;
int addr = r.w.hl;
r.w.hl = addr + inc;
int temp = READ_MEM( addr );
int b = --r.b.b;
flags = (temp >> 6 & N02) + SZ28( b );
if ( b && data >= 0xB0 )
{
pc -= 2;
s_time += 5;
}
OUT_PORT( r.w.bc, temp );
goto loop;
}
{
int inc;
case 0xAA: // IND
case 0xBA: // INDR
inc = -1;
if ( 0 )
case 0xA2: // INI
case 0xB2: // INIR
inc = +1;
int addr = r.w.hl;
r.w.hl = addr + inc;
int temp = IN_PORT( r.w.bc );
int b = --r.b.b;
flags = (temp >> 6 & N02) + SZ28( b );
if ( b && data >= 0xB0 )
{
pc -= 2;
s_time += 5;
}
WRITE_MEM( addr, temp );
goto loop;
}
case 0x47: // LD I,A
R.i = r.b.a;
goto loop;
case 0x4F: // LD R,A
SET_R( r.b.a );
dprintf( "LD R,A not supported\n" );
warning = true;
goto loop;
case 0x57: // LD A,I
r.b.a = R.i;
goto ld_ai_common;
case 0x5F: // LD A,R
r.b.a = GET_R();
dprintf( "LD A,R not supported\n" );
warning = true;
ld_ai_common:
flags = (flags & C01) + SZ28( r.b.a ) + (R.iff2 << 2 & V04);
goto loop;
CASE8( 45, 4D, 55, 5D, 65, 6D, 75, 7D ): // RETI/RETN
R.iff1 = R.iff2;
goto ret_taken;
case 0x46: case 0x4E: case 0x66: case 0x6E: // IM 0
R.im = 0;
goto loop;
case 0x56: case 0x76: // IM 1
R.im = 1;
goto loop;
case 0x5E: case 0x7E: // IM 2
R.im = 2;
goto loop;
default:
dprintf( "Opcode $ED $%02X not supported\n", data );
warning = true;
goto loop;
}
assert( false );
}
//////////////////////////////////////// DD/FD prefix
{
int ixy;
case 0xDD:
ixy = ix;
goto ix_prefix;
case 0xFD:
ixy = iy;
ix_prefix:
pc++;
int data2 = READ_CODE( pc );
s_time += (clock_table + 256) [data] & 0x0F;
switch ( data )
{
// TODO: more efficient way of avoid negative address
// TODO: avoid using this as argument to READ_MEM() since it is evaluated twice
#define IXY_DISP( ixy, disp ) WORD( (ixy ) + (disp))
#define SET_IXY( in ) if ( opcode == 0xDD ) ix = in; else iy = in;
// ADD/ADC/SUB/SBC
case 0x96: // SUB (IXY+disp)
case 0x86: // ADD (IXY+disp)
flags &= ~C01;
case 0x9E: // SBC (IXY+disp)
case 0x8E: // ADC (IXY+disp)
pc++;
opcode = data;
data = READ_MEM( IXY_DISP( ixy, SBYTE( data2 ) ) );
goto adc_data;
case 0x94: // SUB HXY
case 0x84: // ADD HXY
flags &= ~C01;
case 0x9C: // SBC HXY
case 0x8C: // ADC HXY
opcode = data;
data = ixy >> 8;
goto adc_data;
case 0x95: // SUB LXY
case 0x85: // ADD LXY
flags &= ~C01;
case 0x9D: // SBC LXY
case 0x8D: // ADC LXY
opcode = data;
data = BYTE( ixy );
goto adc_data;
{
int temp;
case 0x39: // ADD IXY,SP
temp = sp;
goto add_ixy_data;
case 0x29: // ADD IXY,HL
temp = ixy;
goto add_ixy_data;
case 0x09: // ADD IXY,BC
case 0x19: // ADD IXY,DE
temp = R16( data, 4, 0x09 );
add_ixy_data: {
int sum = ixy + temp;
temp ^= ixy;
ixy = WORD( sum );
flags = (flags & (S80 | Z40 | V04)) +
(sum >> 16) +
(sum >> 8 & (F20 | F08)) +
((temp ^ sum) >> 8 & H10);
goto set_ixy;
}
}
// AND
case 0xA6: // AND (IXY+disp)
pc++;
data = READ_MEM( IXY_DISP( ixy, SBYTE( data2 ) ) );
goto and_data;
case 0xA4: // AND HXY
data = ixy >> 8;
goto and_data;
case 0xA5: // AND LXY
data = BYTE( ixy );
goto and_data;
// OR
case 0xB6: // OR (IXY+disp)
pc++;
data = READ_MEM( IXY_DISP( ixy, SBYTE( data2 ) ) );
goto or_data;
case 0xB4: // OR HXY
data = ixy >> 8;
goto or_data;
case 0xB5: // OR LXY
data = BYTE( ixy );
goto or_data;
// XOR
case 0xAE: // XOR (IXY+disp)
pc++;
data = READ_MEM( IXY_DISP( ixy, SBYTE( data2 ) ) );
goto xor_data;
case 0xAC: // XOR HXY
data = ixy >> 8;
goto xor_data;
case 0xAD: // XOR LXY
data = BYTE( ixy );
goto xor_data;
// CP
case 0xBE: // CP (IXY+disp)
pc++;
data = READ_MEM( IXY_DISP( ixy, SBYTE( data2 ) ) );
goto cp_data;
case 0xBC: // CP HXY
data = ixy >> 8;
goto cp_data;
case 0xBD: // CP LXY
data = BYTE( ixy );
goto cp_data;
// LD
CASE7( 70, 71, 72, 73, 74, 75, 77 ): // LD (IXY+disp),r
data = R8( data, 0x70 );
if ( 0 )
case 0x36: // LD (IXY+disp),imm
pc++, data = READ_CODE( pc );
pc++;
WRITE_MEM( IXY_DISP( ixy, SBYTE( data2 ) ), data );
goto loop;
CASE5( 44, 4C, 54, 5C, 7C ): // LD r,HXY
R8( data >> 3, 8 ) = ixy >> 8;
goto loop;
case 0x64: // LD HXY,HXY
case 0x6D: // LD LXY,LXY
goto loop;
CASE5( 45, 4D, 55, 5D, 7D ): // LD r,LXY
R8( data >> 3, 8 ) = ixy;
goto loop;
CASE7( 46, 4E, 56, 5E, 66, 6E, 7E ): // LD r,(IXY+disp)
pc++;
R8( data >> 3, 8 ) = READ_MEM( IXY_DISP( ixy, SBYTE( data2 ) ) );
goto loop;
case 0x26: // LD HXY,imm
pc++;
goto ld_hxy_data;
case 0x65: // LD HXY,LXY
data2 = BYTE( ixy );
goto ld_hxy_data;
CASE5( 60, 61, 62, 63, 67 ): // LD HXY,r
data2 = R8( data, 0x60 );
ld_hxy_data:
ixy = BYTE( ixy ) + (data2 << 8);
goto set_ixy;
case 0x2E: // LD LXY,imm
pc++;
goto ld_lxy_data;
case 0x6C: // LD LXY,HXY
data2 = ixy >> 8;
goto ld_lxy_data;
CASE5( 68, 69, 6A, 6B, 6F ): // LD LXY,r
data2 = R8( data, 0x68 );
ld_lxy_data:
ixy = (ixy & 0xFF00) + data2;
set_ixy:
if ( opcode == 0xDD )
{
ix = ixy;
goto loop;
}
iy = ixy;
goto loop;
case 0xF9: // LD SP,IXY
sp = ixy;
goto loop;
case 0x22:{// LD (ADDR),IXY
int addr = GET_ADDR();
pc += 2;
WRITE_WORD( addr, ixy );
goto loop;
}
case 0x21: // LD IXY,imm
ixy = GET_ADDR();
pc += 2;
goto set_ixy;
case 0x2A:{// LD IXY,(addr)
int addr = GET_ADDR();
ixy = READ_WORD( addr );
pc += 2;
goto set_ixy;
}
// DD/FD CB prefix
case 0xCB: {
data = IXY_DISP( ixy, SBYTE( data2 ) );
pc++;
data2 = READ_CODE( pc );
pc++;
switch ( data2 )
{
case 0x06: goto rlc_data_addr; // RLC (IXY)
case 0x16: goto rl_data_addr; // RL (IXY)
case 0x26: goto sla_data_addr; // SLA (IXY)
case 0x36: goto sll_data_addr; // SLL (IXY)
case 0x0E: goto rrc_data_addr; // RRC (IXY)
case 0x1E: goto rr_data_addr; // RR (IXY)
case 0x2E: goto sra_data_addr; // SRA (IXY)
case 0x3E: goto srl_data_addr; // SRL (IXY)
CASE8( 46, 4E, 56, 5E, 66, 6E, 76, 7E ):{// BIT b,(IXY+disp)
int temp = READ_MEM( data );
temp = temp & (1 << (data2 >> 3 & 7));
flags = (flags & C01) + H10 + (temp & S80);
flags += (unsigned) --temp >> 8 & (Z40 | P04);
goto loop;
}
CASE8( 86, 8E, 96, 9E, A6, AE, B6, BE ): // RES b,(IXY+disp)
CASE8( C6, CE, D6, DE, E6, EE, F6, FE ):{// SET b,(IXY+disp)
int temp = READ_MEM( data );
int bit = 1 << (data2 >> 3 & 7);
temp |= bit; // SET
if ( !(data2 & 0x40) )
temp ^= bit; // RES
WRITE_MEM( data, temp );
goto loop;
}
default:
dprintf( "Opcode $%02X $CB $%02X not supported\n", opcode, data2 );
warning = true;
goto loop;
}
assert( false );
}
// INC/DEC
case 0x23: // INC IXY
ixy = WORD( ixy + 1 );
goto set_ixy;
case 0x2B: // DEC IXY
ixy = WORD( ixy - 1 );
goto set_ixy;
case 0x34: // INC (IXY+disp)
ixy = IXY_DISP( ixy, SBYTE( data2 ) );
pc++;
data = READ_MEM( ixy ) + 1;
WRITE_MEM( ixy, data );
goto inc_set_flags;
case 0x35: // DEC (IXY+disp)
ixy = IXY_DISP( ixy, SBYTE( data2 ) );
pc++;
data = READ_MEM( ixy ) - 1;
WRITE_MEM( ixy, data );
goto dec_set_flags;
case 0x24: // INC HXY
ixy = WORD( ixy + 0x100 );
data = ixy >> 8;
goto inc_xy_common;
case 0x2C: // INC LXY
data = BYTE( ixy + 1 );
ixy = (ixy & 0xFF00) + data;
inc_xy_common:
if ( opcode == 0xDD )
{
ix = ixy;
goto inc_set_flags;
}
iy = ixy;
goto inc_set_flags;
case 0x25: // DEC HXY
ixy = WORD( ixy - 0x100 );
data = ixy >> 8;
goto dec_xy_common;
case 0x2D: // DEC LXY
data = BYTE( ixy - 1 );
ixy = (ixy & 0xFF00) + data;
dec_xy_common:
if ( opcode == 0xDD )
{
ix = ixy;
goto dec_set_flags;
}
iy = ixy;
goto dec_set_flags;
// PUSH/POP
case 0xE5: // PUSH IXY
data = ixy;
goto push_data;
case 0xE1:{// POP IXY
ixy = READ_WORD( sp );
sp = WORD( sp + 2 );
goto set_ixy;
}
// Misc
case 0xE9: // JP (IXY)
pc = ixy;
goto loop;
case 0xE3:{// EX (SP),IXY
int temp = READ_WORD( sp );
WRITE_WORD( sp, ixy );
ixy = temp;
goto set_ixy;
}
default:
dprintf( "Unnecessary DD/FD prefix encountered\n" );
warning = true;
pc--;
goto loop;
}
assert( false );
}
}
dprintf( "Unhandled main opcode: $%02X\n", opcode );
assert( false );
#ifdef IDLE_ADDR
hit_idle_addr:
s_time -= 11;
goto out_of_time;
#endif
halt:
s_time &= 3; // increment by multiple of 4
out_of_time:
pc--;
r.b.flags = flags;
R.ix = ix;
R.iy = iy;
R.sp = sp;
R.pc = pc;
R.b = r.b;
CPU.cpu_state_.base = s.base;
CPU.cpu_state_.time = s_time;
CPU.cpu_state = &CPU.cpu_state_;
}