cog/Frameworks/OpenMPT.old/OpenMPT/soundlib/Load_xm.cpp

1438 lines
42 KiB
C++
Raw Normal View History

/*
* Load_xm.cpp
* -----------
* Purpose: XM (FastTracker II) module loader / saver
* Notes : (currently none)
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#include "../common/version.h"
#include "XMTools.h"
#include "mod_specifications.h"
#ifndef MODPLUG_NO_FILESAVE
#include "../common/mptFileIO.h"
#endif
#include "OggStream.h"
#include <algorithm>
#ifdef MODPLUG_TRACKER
#include "../mptrack/TrackerSettings.h" // For super smooth ramping option
#endif // MODPLUG_TRACKER
#if defined(MPT_WITH_VORBIS) && defined(MPT_WITH_VORBISFILE)
#include <sstream>
#endif
#if defined(MPT_WITH_VORBIS)
#if MPT_COMPILER_CLANG
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-id-macro"
#endif // MPT_COMPILER_CLANG
#include <vorbis/codec.h>
#if MPT_COMPILER_CLANG
#pragma clang diagnostic pop
#endif // MPT_COMPILER_CLANG
#endif
#if defined(MPT_WITH_VORBISFILE)
#if MPT_COMPILER_CLANG
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-id-macro"
#endif // MPT_COMPILER_CLANG
#include <vorbis/vorbisfile.h>
#if MPT_COMPILER_CLANG
#pragma clang diagnostic pop
#endif // MPT_COMPILER_CLANG
#include "../soundbase/SampleFormatConverters.h"
#include "../soundbase/SampleFormatCopy.h"
#endif
#ifdef MPT_WITH_STBVORBIS
#include <stb_vorbis/stb_vorbis.c>
#include "../soundbase/SampleFormatConverters.h"
#include "../soundbase/SampleFormatCopy.h"
#endif // MPT_WITH_STBVORBIS
OPENMPT_NAMESPACE_BEGIN
#if defined(MPT_WITH_VORBIS) && defined(MPT_WITH_VORBISFILE)
static size_t VorbisfileFilereaderRead(void *ptr, size_t size, size_t nmemb, void *datasource)
{
FileReader &file = *reinterpret_cast<FileReader*>(datasource);
return file.ReadRaw(mpt::void_cast<std::byte*>(ptr), size * nmemb) / size;
}
static int VorbisfileFilereaderSeek(void *datasource, ogg_int64_t offset, int whence)
{
FileReader &file = *reinterpret_cast<FileReader*>(datasource);
switch(whence)
{
case SEEK_SET:
{
if(!Util::TypeCanHoldValue<FileReader::off_t>(offset))
{
return -1;
}
return file.Seek(mpt::saturate_cast<FileReader::off_t>(offset)) ? 0 : -1;
}
break;
case SEEK_CUR:
{
if(offset < 0)
{
if(offset == std::numeric_limits<ogg_int64_t>::min())
{
return -1;
}
if(!Util::TypeCanHoldValue<FileReader::off_t>(0-offset))
{
return -1;
}
return file.SkipBack(mpt::saturate_cast<FileReader::off_t>(0 - offset)) ? 0 : -1;
} else
{
if(!Util::TypeCanHoldValue<FileReader::off_t>(offset))
{
return -1;
}
return file.Skip(mpt::saturate_cast<FileReader::off_t>(offset)) ? 0 : -1;
}
}
break;
case SEEK_END:
{
if(!Util::TypeCanHoldValue<FileReader::off_t>(offset))
{
return -1;
}
if(!Util::TypeCanHoldValue<FileReader::off_t>(file.GetLength() + offset))
{
return -1;
}
return file.Seek(mpt::saturate_cast<FileReader::off_t>(file.GetLength() + offset)) ? 0 : -1;
}
break;
default:
return -1;
}
}
static long VorbisfileFilereaderTell(void *datasource)
{
FileReader &file = *reinterpret_cast<FileReader*>(datasource);
FileReader::off_t result = file.GetPosition();
if(!Util::TypeCanHoldValue<long>(result))
{
return -1;
}
return static_cast<long>(result);
}
#endif // MPT_WITH_VORBIS && MPT_WITH_VORBISFILE
// Allocate samples for an instrument
static std::vector<SAMPLEINDEX> AllocateXMSamples(CSoundFile &sndFile, SAMPLEINDEX numSamples)
{
LimitMax(numSamples, SAMPLEINDEX(32));
std::vector<SAMPLEINDEX> foundSlots;
foundSlots.reserve(numSamples);
for(SAMPLEINDEX i = 0; i < numSamples; i++)
{
SAMPLEINDEX candidateSlot = sndFile.GetNumSamples() + 1;
if(candidateSlot >= MAX_SAMPLES)
{
// If too many sample slots are needed, try to fill some empty slots first.
for(SAMPLEINDEX j = 1; j <= sndFile.GetNumSamples(); j++)
{
if(sndFile.GetSample(j).HasSampleData())
{
continue;
}
if(std::find(foundSlots.begin(), foundSlots.end(), j) == foundSlots.end())
{
// Empty sample slot that is not occupied by the current instrument. Yay!
candidateSlot = j;
// Remove unused sample from instrument sample assignments
for(INSTRUMENTINDEX ins = 1; ins <= sndFile.GetNumInstruments(); ins++)
{
if(sndFile.Instruments[ins] == nullptr)
{
continue;
}
for(auto &sample : sndFile.Instruments[ins]->Keyboard)
{
if(sample == candidateSlot)
{
sample = 0;
}
}
}
break;
}
}
}
if(candidateSlot >= MAX_SAMPLES)
{
// Still couldn't find any empty sample slots, so look out for existing but unused samples.
std::vector<bool> usedSamples;
SAMPLEINDEX unusedSampleCount = sndFile.DetectUnusedSamples(usedSamples);
if(unusedSampleCount > 0)
{
sndFile.RemoveSelectedSamples(usedSamples);
// Remove unused samples from instrument sample assignments
for(INSTRUMENTINDEX ins = 1; ins <= sndFile.GetNumInstruments(); ins++)
{
if(sndFile.Instruments[ins] == nullptr)
{
continue;
}
for(auto &sample : sndFile.Instruments[ins]->Keyboard)
{
if(sample < usedSamples.size() && !usedSamples[sample])
{
sample = 0;
}
}
}
// New candidate slot is first unused sample slot.
candidateSlot = static_cast<SAMPLEINDEX>(std::find(usedSamples.begin() + 1, usedSamples.end(), false) - usedSamples.begin());
} else
{
// No unused sampel slots: Give up :(
break;
}
}
if(candidateSlot < MAX_SAMPLES)
{
foundSlots.push_back(candidateSlot);
if(candidateSlot > sndFile.GetNumSamples())
{
sndFile.m_nSamples = candidateSlot;
}
}
}
return foundSlots;
}
// Read .XM patterns
static void ReadXMPatterns(FileReader &file, const XMFileHeader &fileHeader, CSoundFile &sndFile)
{
// Reading patterns
sndFile.Patterns.ResizeArray(fileHeader.patterns);
for(PATTERNINDEX pat = 0; pat < fileHeader.patterns; pat++)
{
FileReader::off_t curPos = file.GetPosition();
uint32 headerSize = file.ReadUint32LE();
file.Skip(1); // Pack method (= 0)
ROWINDEX numRows = 64;
if(fileHeader.version == 0x0102)
{
numRows = file.ReadUint8() + 1;
} else
{
numRows = file.ReadUint16LE();
}
// A packed size of 0 indicates a completely empty pattern.
const uint16 packedSize = file.ReadUint16LE();
if(numRows == 0)
numRows = 64;
else if(numRows > MAX_PATTERN_ROWS)
numRows = MAX_PATTERN_ROWS;
file.Seek(curPos + headerSize);
FileReader patternChunk = file.ReadChunk(packedSize);
if(!sndFile.Patterns.Insert(pat, numRows) || packedSize == 0)
{
continue;
}
enum PatternFlags
{
isPackByte = 0x80,
allFlags = 0xFF,
notePresent = 0x01,
instrPresent = 0x02,
volPresent = 0x04,
commandPresent = 0x08,
paramPresent = 0x10,
};
for(auto &m : sndFile.Patterns[pat])
{
uint8 info = patternChunk.ReadUint8();
uint8 vol = 0;
if(info & isPackByte)
{
// Interpret byte as flag set.
if(info & notePresent) m.note = patternChunk.ReadUint8();
} else
{
// Interpret byte as note, read all other pattern fields as well.
m.note = info;
info = allFlags;
}
if(info & instrPresent) m.instr = patternChunk.ReadUint8();
if(info & volPresent) vol = patternChunk.ReadUint8();
if(info & commandPresent) m.command = patternChunk.ReadUint8();
if(info & paramPresent) m.param = patternChunk.ReadUint8();
if(m.note == 97)
{
m.note = NOTE_KEYOFF;
} else if(m.note > 0 && m.note < 97)
{
m.note += 12;
} else
{
m.note = NOTE_NONE;
}
if(m.command | m.param)
{
CSoundFile::ConvertModCommand(m);
} else
{
m.command = CMD_NONE;
}
if(m.instr == 0xFF)
{
m.instr = 0;
}
if(vol >= 0x10 && vol <= 0x50)
{
m.volcmd = VOLCMD_VOLUME;
m.vol = vol - 0x10;
} else if (vol >= 0x60)
{
// Volume commands 6-F translation.
static constexpr ModCommand::VOLCMD volEffTrans[] =
{
VOLCMD_VOLSLIDEDOWN, VOLCMD_VOLSLIDEUP, VOLCMD_FINEVOLDOWN, VOLCMD_FINEVOLUP,
VOLCMD_VIBRATOSPEED, VOLCMD_VIBRATODEPTH, VOLCMD_PANNING, VOLCMD_PANSLIDELEFT,
VOLCMD_PANSLIDERIGHT, VOLCMD_TONEPORTAMENTO,
};
m.volcmd = volEffTrans[(vol - 0x60) >> 4];
m.vol = vol & 0x0F;
if(m.volcmd == VOLCMD_PANNING)
{
m.vol *= 4; // FT2 does indeed not scale panning symmetrically.
}
}
}
}
}
enum TrackerVersions
{
verUnknown = 0x00, // Probably not made with MPT
verOldModPlug = 0x01, // Made with MPT Alpha / Beta
verNewModPlug = 0x02, // Made with MPT (not Alpha / Beta)
verModPlug1_09 = 0x04, // Made with MPT 1.09 or possibly other version
verOpenMPT = 0x08, // Made with OpenMPT
verConfirmed = 0x10, // We are very sure that we found the correct tracker version.
verFT2Generic = 0x20, // "FastTracker v2.00", but FastTracker has NOT been ruled out
verOther = 0x40, // Something we don't know, testing for DigiTrakker.
verFT2Clone = 0x80, // NOT FT2: itype changed between instruments, or \0 found in song title
verDigiTrakker = 0x100, // Probably DigiTrakker
verUNMO3 = 0x200, // TODO: UNMO3-ed XMs are detected as MPT 1.16
verEmptyOrders = 0x400, // Allow empty order list like in OpenMPT (FT2 just plays pattern 0 if the order list is empty according to the header)
};
DECLARE_FLAGSET(TrackerVersions)
static bool ValidateHeader(const XMFileHeader &fileHeader)
{
if(fileHeader.channels == 0
|| fileHeader.channels > MAX_BASECHANNELS
|| std::memcmp(fileHeader.signature, "Extended Module: ", 17)
)
{
return false;
}
return true;
}
static uint64 GetHeaderMinimumAdditionalSize(const XMFileHeader &fileHeader)
{
return fileHeader.orders + 4 * (fileHeader.patterns + fileHeader.instruments);
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderXM(MemoryFileReader file, const uint64 *pfilesize)
{
XMFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
return ProbeAdditionalSize(file, pfilesize, GetHeaderMinimumAdditionalSize(fileHeader));
}
static bool ReadSampleData(ModSample &sample, SampleIO sampleFlags, FileReader &sampleChunk, bool &isOXM)
{
bool unsupportedSample = false;
bool isOGG = false;
if(sampleChunk.CanRead(8))
{
isOGG = true;
sampleChunk.Skip(4);
// In order to avoid false-detecting PCM as OggVorbis as much as possible,
// we parse and verify the complete sample data and only assume OggVorbis,
// if all Ogg checksums are correct a no single byte of non-Ogg data exists.
// The fast-path for regular PCM will only check "OggS" magic and do no other work after failing that check.
while(!sampleChunk.EndOfFile())
{
if(!Ogg::ReadPage(sampleChunk))
{
isOGG = false;
break;
}
}
}
isOXM = isOXM || isOGG;
sampleChunk.Rewind();
if(isOGG)
{
uint32 originalSize = sampleChunk.ReadInt32LE();
FileReader sampleData = sampleChunk.ReadChunk(sampleChunk.BytesLeft());
sample.uFlags.set(CHN_16BIT, sampleFlags.GetBitDepth() >= 16);
sample.uFlags.set(CHN_STEREO, sampleFlags.GetChannelFormat() != SampleIO::mono);
sample.nLength = originalSize / (sample.uFlags[CHN_16BIT] ? 2 : 1) / (sample.uFlags[CHN_STEREO] ? 2 : 1);
#if defined(MPT_WITH_VORBIS) && defined(MPT_WITH_VORBISFILE)
ov_callbacks callbacks = {
&VorbisfileFilereaderRead,
&VorbisfileFilereaderSeek,
NULL,
&VorbisfileFilereaderTell
};
OggVorbis_File vf;
MemsetZero(vf);
if(ov_open_callbacks(&sampleData, &vf, nullptr, 0, callbacks) == 0)
{
if(ov_streams(&vf) == 1)
{ // we do not support chained vorbis samples
vorbis_info *vi = ov_info(&vf, -1);
if(vi && vi->rate > 0 && vi->channels > 0)
{
sample.AllocateSample();
SmpLength offset = 0;
int channels = vi->channels;
int current_section = 0;
long decodedSamples = 0;
bool eof = false;
while(!eof && offset < sample.nLength && sample.HasSampleData())
{
float **output = nullptr;
long ret = ov_read_float(&vf, &output, 1024, &current_section);
if(ret == 0)
{
eof = true;
} else if(ret < 0)
{
// stream error, just try to continue
} else
{
decodedSamples = ret;
LimitMax(decodedSamples, mpt::saturate_cast<long>(sample.nLength - offset));
if(decodedSamples > 0 && channels == sample.GetNumChannels())
{
for(int chn = 0; chn < channels; chn++)
{
if(sample.uFlags[CHN_16BIT])
{
CopyChannelToInterleaved<SC::Convert<int16, float> >(sample.sample16() + offset * sample.GetNumChannels(), output[chn], channels, decodedSamples, chn);
} else
{
CopyChannelToInterleaved<SC::Convert<int8, float> >(sample.sample8() + offset * sample.GetNumChannels(), output[chn], channels, decodedSamples, chn);
}
}
}
offset += decodedSamples;
}
}
} else
{
unsupportedSample = true;
}
} else
{
unsupportedSample = true;
}
ov_clear(&vf);
} else
{
unsupportedSample = true;
}
#elif defined(MPT_WITH_STBVORBIS)
// NOTE/TODO: stb_vorbis does not handle inferred negative PCM sample
// position at stream start. (See
// <https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-132000A.2>).
// This means that, for remuxed and re-aligned/cutted (at stream start)
// Vorbis files, stb_vorbis will include superfluous samples at the
// beginning. OXM files with this property are yet to be spotted in the
// wild, thus, this behaviour is currently not problematic.
int consumed = 0, error = 0;
stb_vorbis *vorb = nullptr;
FileReader::PinnedRawDataView sampleDataView = sampleData.GetPinnedRawDataView();
const std::byte* data = sampleDataView.data();
std::size_t dataLeft = sampleDataView.size();
vorb = stb_vorbis_open_pushdata(mpt::byte_cast<const unsigned char*>(data), mpt::saturate_cast<int>(dataLeft), &consumed, &error, nullptr);
sampleData.Skip(consumed);
data += consumed;
dataLeft -= consumed;
if(vorb)
{
// Header has been read, proceed to reading the sample data
sample.AllocateSample();
SmpLength offset = 0;
while((error == VORBIS__no_error || (error == VORBIS_need_more_data && dataLeft > 0))
&& offset < sample.nLength && sample.HasSampleData())
{
int channels = 0, decodedSamples = 0;
float **output;
consumed = stb_vorbis_decode_frame_pushdata(vorb, mpt::byte_cast<const unsigned char*>(data), mpt::saturate_cast<int>(dataLeft), &channels, &output, &decodedSamples);
sampleData.Skip(consumed);
data += consumed;
dataLeft -= consumed;
LimitMax(decodedSamples, mpt::saturate_cast<int>(sample.nLength - offset));
if(decodedSamples > 0 && channels == sample.GetNumChannels())
{
for(int chn = 0; chn < channels; chn++)
{
if(sample.uFlags[CHN_16BIT])
CopyChannelToInterleaved<SC::Convert<int16, float> >(sample.sample16() + offset * sample.GetNumChannels(), output[chn], channels, decodedSamples, chn);
else
CopyChannelToInterleaved<SC::Convert<int8, float> >(sample.sample8() + offset * sample.GetNumChannels(), output[chn], channels, decodedSamples, chn);
}
}
offset += decodedSamples;
error = stb_vorbis_get_error(vorb);
}
stb_vorbis_close(vorb);
} else
{
unsupportedSample = true;
}
#else // !VORBIS
unsupportedSample = true;
#endif // VORBIS
} else
{
sampleFlags.ReadSample(sample, sampleChunk);
}
return !unsupportedSample;
}
bool CSoundFile::ReadXM(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
XMFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
if(!ValidateHeader(fileHeader))
{
return false;
}
if(!file.CanRead(mpt::saturate_cast<FileReader::off_t>(GetHeaderMinimumAdditionalSize(fileHeader))))
{
return false;
} else if(loadFlags == onlyVerifyHeader)
{
return true;
}
InitializeGlobals(MOD_TYPE_XM);
InitializeChannels();
m_nMixLevels = mixLevelsCompatible;
FlagSet<TrackerVersions> madeWith(verUnknown);
mpt::ustring madeWithTracker;
bool isMadTracker = false;
if(!memcmp(fileHeader.trackerName, "FastTracker v2.00 ", 20) && fileHeader.size == 276)
{
if(fileHeader.version < 0x0104)
madeWith = verFT2Generic | verConfirmed;
else if(memchr(fileHeader.songName, '\0', 20) != nullptr)
// FT2 pads the song title with spaces, some other trackers use null chars
madeWith = verFT2Clone | verNewModPlug | verEmptyOrders;
else
madeWith = verFT2Generic | verNewModPlug;
} else if(!memcmp(fileHeader.trackerName, "FastTracker v 2.00 ", 20))
{
// MPT 1.0 (exact version to be determined later)
madeWith = verOldModPlug;
} else
{
// Something else!
madeWith = verUnknown | verConfirmed;
madeWithTracker = mpt::ToUnicode(mpt::Charset::CP437, mpt::String::ReadBuf(mpt::String::spacePadded, fileHeader.trackerName));
if(!memcmp(fileHeader.trackerName, "OpenMPT ", 8))
{
madeWith = verOpenMPT | verConfirmed | verEmptyOrders;
} else if(!memcmp(fileHeader.trackerName, "MilkyTracker ", 12))
{
// MilkyTracker prior to version 0.90.87 doesn't set a version string.
// Luckily, starting with v0.90.87, MilkyTracker also implements the FT2 panning scheme.
if(memcmp(fileHeader.trackerName + 12, " ", 8))
{
m_nMixLevels = mixLevelsCompatibleFT2;
}
} else if(!memcmp(fileHeader.trackerName, "Fasttracker II clone", 20))
{
// 8bitbubsy's FT2 clone should be treated exactly like FT2
madeWith = verFT2Generic | verConfirmed;
} else if(!memcmp(fileHeader.trackerName, "MadTracker 2.0\0", 15))
{
// Fix channel 2 in m3_cha.xm
m_playBehaviour.reset(kFT2PortaNoNote);
// Fix arpeggios in kragle_-_happy_day.xm
m_playBehaviour.reset(kFT2Arpeggio);
isMadTracker = true;
} else if(!memcmp(fileHeader.trackerName, "Skale Tracker\0", 14) || !memcmp(fileHeader.trackerName, "Sk@le Tracker\0", 14))
{
m_playBehaviour.reset(kFT2ST3OffsetOutOfRange);
// Fix arpeggios in KAPTENFL.XM
m_playBehaviour.reset(kFT2Arpeggio);
} else if(!memcmp(fileHeader.trackerName, "*Converted ", 11))
{
madeWith = verDigiTrakker;
}
}
m_songName = mpt::String::ReadBuf(mpt::String::spacePadded, fileHeader.songName);
m_nMinPeriod = 1;
m_nMaxPeriod = 31999;
Order().SetRestartPos(fileHeader.restartPos);
m_nChannels = fileHeader.channels;
m_nInstruments = std::min(static_cast<uint16>(fileHeader.instruments), static_cast<uint16>(MAX_INSTRUMENTS - 1));
if(fileHeader.speed)
m_nDefaultSpeed = fileHeader.speed;
if(fileHeader.tempo)
m_nDefaultTempo = Clamp(TEMPO(fileHeader.tempo, 0), ModSpecs::xmEx.GetTempoMin(), ModSpecs::xmEx.GetTempoMax());
m_SongFlags.reset();
m_SongFlags.set(SONG_LINEARSLIDES, (fileHeader.flags & XMFileHeader::linearSlides) != 0);
m_SongFlags.set(SONG_EXFILTERRANGE, (fileHeader.flags & XMFileHeader::extendedFilterRange) != 0);
if(m_SongFlags[SONG_EXFILTERRANGE] && madeWith == (verFT2Generic | verNewModPlug))
{
madeWith = verFT2Clone | verNewModPlug | verConfirmed;
}
ReadOrderFromFile<uint8>(Order(), file, fileHeader.orders);
if(fileHeader.orders == 0 && !madeWith[verEmptyOrders])
{
// Fix lamb_-_dark_lighthouse.xm, which only contains one pattern and an empty order list
Order().assign(1, 0);
}
file.Seek(fileHeader.size + 60);
if(fileHeader.version >= 0x0104)
{
ReadXMPatterns(file, fileHeader, *this);
}
bool isOXM = false;
// In case of XM versions < 1.04, we need to memorize the sample flags for all samples, as they are not stored immediately after the sample headers.
std::vector<SampleIO> sampleFlags;
uint8 sampleReserved = 0;
int instrType = -1;
bool unsupportedSamples = false;
// Reading instruments
for(INSTRUMENTINDEX instr = 1; instr <= m_nInstruments; instr++)
{
// First, try to read instrument header length...
uint32 headerSize = file.ReadUint32LE();
if(headerSize == 0)
{
headerSize = sizeof(XMInstrumentHeader);
}
// Now, read the complete struct.
file.SkipBack(4);
XMInstrumentHeader instrHeader;
file.ReadStructPartial(instrHeader, headerSize);
// Time for some version detection stuff.
if(madeWith == verOldModPlug)
{
madeWith.set(verConfirmed);
if(instrHeader.size == 245)
{
// ModPlug Tracker Alpha
m_dwLastSavedWithVersion = MPT_V("1.00.00.A5");
madeWithTracker = U_("ModPlug Tracker 1.0 alpha");
} else if(instrHeader.size == 263)
{
// ModPlug Tracker Beta (Beta 1 still behaves like Alpha, but Beta 3.3 does it this way)
m_dwLastSavedWithVersion = MPT_V("1.00.00.B3");
madeWithTracker = U_("ModPlug Tracker 1.0 beta");
} else
{
// WTF?
madeWith = (verUnknown | verConfirmed);
}
} else if(instrHeader.numSamples == 0)
{
// Empty instruments make tracker identification pretty easy!
if(instrHeader.size == 263 && instrHeader.sampleHeaderSize == 0 && madeWith[verNewModPlug])
madeWith.set(verConfirmed);
else if(instrHeader.size != 29 && madeWith[verDigiTrakker])
madeWith.reset(verDigiTrakker);
else if(madeWith[verFT2Clone | verFT2Generic] && instrHeader.size != 33)
{
// Sure isn't FT2.
// Note: FT2 NORMALLY writes shdr=40 for all samples, but sometimes it
// just happens to write random garbage there instead. Surprise!
// Note: 4-mat's eternity.xm has an instrument header size of 29.
madeWith = verUnknown;
}
}
if(AllocateInstrument(instr) == nullptr)
{
continue;
}
instrHeader.ConvertToMPT(*Instruments[instr]);
if(instrType == -1)
{
instrType = instrHeader.type;
} else if(instrType != instrHeader.type && madeWith[verFT2Generic])
{
// FT2 writes some random junk for the instrument type field,
// but it's always the SAME junk for every instrument saved.
madeWith.reset(verFT2Generic);
madeWith.set(verFT2Clone);
}
if(instrHeader.numSamples > 0)
{
// Yep, there are some samples associated with this instrument.
if((instrHeader.instrument.midiEnabled | instrHeader.instrument.midiChannel | instrHeader.instrument.midiProgram | instrHeader.instrument.muteComputer) != 0)
{
// Definitely not an old MPT.
madeWith.reset(verOldModPlug | verNewModPlug);
}
// Read sample headers
std::vector<SAMPLEINDEX> sampleSlots = AllocateXMSamples(*this, instrHeader.numSamples);
// Update sample assignment map
for(size_t k = 0 + 12; k < 96 + 12; k++)
{
if(Instruments[instr]->Keyboard[k] < sampleSlots.size())
{
Instruments[instr]->Keyboard[k] = sampleSlots[Instruments[instr]->Keyboard[k]];
}
}
if(fileHeader.version >= 0x0104)
{
sampleFlags.clear();
}
// Need to memorize those if we're going to skip any samples...
std::vector<uint32> sampleSize(instrHeader.numSamples);
// Early versions of Sk@le Tracker set instrHeader.sampleHeaderSize = 0 (IFULOVE.XM)
// cybernostra weekend has instrHeader.sampleHeaderSize = 0x12, which would leave out the sample name, but FT2 still reads the name.
MPT_ASSERT(instrHeader.sampleHeaderSize == 0 || instrHeader.sampleHeaderSize == sizeof(XMSample));
for(SAMPLEINDEX sample = 0; sample < instrHeader.numSamples; sample++)
{
XMSample sampleHeader;
file.ReadStruct(sampleHeader);
sampleFlags.push_back(sampleHeader.GetSampleFormat());
sampleSize[sample] = sampleHeader.length;
sampleReserved |= sampleHeader.reserved;
if(sample < sampleSlots.size())
{
SAMPLEINDEX mptSample = sampleSlots[sample];
sampleHeader.ConvertToMPT(Samples[mptSample]);
instrHeader.instrument.ApplyAutoVibratoToMPT(Samples[mptSample]);
m_szNames[mptSample] = mpt::String::ReadBuf(mpt::String::spacePadded, sampleHeader.name);
if((sampleHeader.flags & 3) == 3 && madeWith[verNewModPlug])
{
// MPT 1.09 and maybe newer / older versions set both loop flags for bidi loops.
madeWith.set(verModPlug1_09);
}
}
}
// Read samples
if(fileHeader.version >= 0x0104)
{
for(SAMPLEINDEX sample = 0; sample < instrHeader.numSamples; sample++)
{
// Sample 15 in dirtysex.xm by J/M/T/M is a 16-bit sample with an odd size of 0x18B according to the header, while the real sample size would be 0x18A.
// Always read as many bytes as specified in the header, even if the sample reader would probably read less bytes.
FileReader sampleChunk = file.ReadChunk(sampleFlags[sample].GetEncoding() != SampleIO::ADPCM ? sampleSize[sample] : (16 + (sampleSize[sample] + 1) / 2));
if(sample < sampleSlots.size() && (loadFlags & loadSampleData))
{
if(!ReadSampleData(Samples[sampleSlots[sample]], sampleFlags[sample], sampleChunk, isOXM))
{
unsupportedSamples = true;
}
}
}
}
}
}
if(sampleReserved == 0 && madeWith[verNewModPlug] && memchr(fileHeader.songName, '\0', sizeof(fileHeader.songName)) != nullptr)
{
// Null-terminated song name: Quite possibly MPT. (could really be an MPT-made file resaved in FT2, though)
madeWith.set(verConfirmed);
}
if(fileHeader.version < 0x0104)
{
// Load Patterns and Samples (Version 1.02 and 1.03)
if(loadFlags & (loadPatternData | loadSampleData))
{
ReadXMPatterns(file, fileHeader, *this);
}
if(loadFlags & loadSampleData)
{
for(SAMPLEINDEX sample = 1; sample <= GetNumSamples(); sample++)
{
sampleFlags[sample - 1].ReadSample(Samples[sample], file);
}
}
}
if(unsupportedSamples)
{
AddToLog(LogWarning, U_("Some compressed samples could not be loaded because they use an unsupported codec."));
}
// Read song comments: "text"
if(file.ReadMagic("text"))
{
m_songMessage.Read(file, file.ReadUint32LE(), SongMessage::leCR);
madeWith.set(verConfirmed);
}
// Read midi config: "MIDI"
bool hasMidiConfig = false;
if(file.ReadMagic("MIDI"))
{
file.ReadStructPartial<MIDIMacroConfigData>(m_MidiCfg, file.ReadUint32LE());
m_MidiCfg.Sanitize();
hasMidiConfig = true;
madeWith.set(verConfirmed);
}
// Read pattern names: "PNAM"
if(file.ReadMagic("PNAM"))
{
const PATTERNINDEX namedPats = std::min(static_cast<PATTERNINDEX>(file.ReadUint32LE() / MAX_PATTERNNAME), Patterns.Size());
for(PATTERNINDEX pat = 0; pat < namedPats; pat++)
{
char patName[MAX_PATTERNNAME];
file.ReadString<mpt::String::maybeNullTerminated>(patName, MAX_PATTERNNAME);
Patterns[pat].SetName(patName);
}
madeWith.set(verConfirmed);
}
// Read channel names: "CNAM"
if(file.ReadMagic("CNAM"))
{
const CHANNELINDEX namedChans = std::min(static_cast<CHANNELINDEX>(file.ReadUint32LE() / MAX_CHANNELNAME), GetNumChannels());
for(CHANNELINDEX chn = 0; chn < namedChans; chn++)
{
file.ReadString<mpt::String::maybeNullTerminated>(ChnSettings[chn].szName, MAX_CHANNELNAME);
}
madeWith.set(verConfirmed);
}
// Read mix plugins information
if(file.CanRead(8))
{
FileReader::off_t oldPos = file.GetPosition();
LoadMixPlugins(file);
if(file.GetPosition() != oldPos)
{
madeWith.set(verConfirmed);
}
}
if(madeWith[verConfirmed])
{
if(madeWith[verModPlug1_09])
{
m_dwLastSavedWithVersion = MPT_V("1.09.00.00");
madeWithTracker = U_("ModPlug Tracker 1.09");
} else if(madeWith[verNewModPlug])
{
m_dwLastSavedWithVersion = MPT_V("1.16.00.00");
madeWithTracker = U_("ModPlug Tracker 1.10 - 1.16");
}
}
if(!memcmp(fileHeader.trackerName, "OpenMPT ", 8))
{
// Hey, I know this tracker!
std::string mptVersion(fileHeader.trackerName + 8, 12);
m_dwLastSavedWithVersion = Version::Parse(mpt::ToUnicode(mpt::Charset::ASCII, mptVersion));
madeWith = verOpenMPT | verConfirmed;
if(m_dwLastSavedWithVersion < MPT_V("1.22.07.19"))
m_nMixLevels = mixLevelsCompatible;
else
m_nMixLevels = mixLevelsCompatibleFT2;
}
if(m_dwLastSavedWithVersion && !madeWith[verOpenMPT])
{
m_nMixLevels = mixLevelsOriginal;
m_playBehaviour.reset();
}
if(madeWith[verFT2Generic])
{
m_nMixLevels = mixLevelsCompatibleFT2;
if(!hasMidiConfig)
{
// FT2 allows typing in arbitrary unsupported effect letters such as Zxx.
// Prevent these commands from being interpreted as filter commands by erasing the default MIDI Config.
m_MidiCfg.ClearZxxMacros();
}
if(fileHeader.version >= 0x0104 // Old versions of FT2 didn't have (smooth) ramping. Disable it for those versions where we can be sure that there should be no ramping.
#ifdef MODPLUG_TRACKER
&& TrackerSettings::Instance().autoApplySmoothFT2Ramping
#endif // MODPLUG_TRACKER
)
{
// apply FT2-style super-soft volume ramping
m_playBehaviour.set(kFT2VolumeRamping);
}
}
if(madeWithTracker.empty())
{
if(madeWith[verDigiTrakker] && sampleReserved == 0 && (instrType ? instrType : -1) == -1)
{
madeWithTracker = U_("DigiTrakker");
} else if(madeWith[verFT2Generic])
{
madeWithTracker = U_("FastTracker 2 or compatible");
} else
{
madeWithTracker = U_("Unknown");
}
}
bool isOpenMPTMade = false; // specific for OpenMPT 1.17+
if(GetNumInstruments())
{
isOpenMPTMade = LoadExtendedInstrumentProperties(file);
}
LoadExtendedSongProperties(file, true, &isOpenMPTMade);
if(isOpenMPTMade && m_dwLastSavedWithVersion < MPT_V("1.17.00.00"))
{
// Up to OpenMPT 1.17.02.45 (r165), it was possible that the "last saved with" field was 0
// when saving a file in OpenMPT for the first time.
m_dwLastSavedWithVersion = MPT_V("1.17.00.00");
}
if(m_dwLastSavedWithVersion >= MPT_V("1.17.00.00"))
{
madeWithTracker = U_("OpenMPT ") + m_dwLastSavedWithVersion.ToUString();
}
// We no longer allow any --- or +++ items in the order list now.
if(m_dwLastSavedWithVersion && m_dwLastSavedWithVersion < MPT_V("1.22.02.02"))
{
if(!Patterns.IsValidPat(0xFE))
Order().RemovePattern(0xFE);
if(!Patterns.IsValidPat(0xFF))
Order().Replace(0xFF, Order.GetInvalidPatIndex());
}
m_modFormat.formatName = mpt::format(U_("FastTracker 2 v%1.%2"))(fileHeader.version >> 8, mpt::ufmt::hex0<2>(fileHeader.version & 0xFF));
m_modFormat.madeWithTracker = std::move(madeWithTracker);
m_modFormat.charset = (m_dwLastSavedWithVersion || isMadTracker) ? mpt::Charset::Windows1252 : mpt::Charset::CP437;
if(isOXM)
{
m_modFormat.originalFormatName = std::move(m_modFormat.formatName);
m_modFormat.formatName = U_("OggMod FastTracker 2");
m_modFormat.type = U_("oxm");
m_modFormat.originalType = U_("xm");
} else
{
m_modFormat.type = U_("xm");
}
return true;
}
#ifndef MODPLUG_NO_FILESAVE
#define str_tooMuchPatternData ("Warning: File format limit was reached. Some pattern data may not get written to file.")
#define str_pattern ("pattern")
bool CSoundFile::SaveXM(std::ostream &f, bool compatibilityExport)
{
bool addChannel = false; // avoid odd channel count for FT2 compatibility
XMFileHeader fileHeader;
MemsetZero(fileHeader);
memcpy(fileHeader.signature, "Extended Module: ", 17);
mpt::String::WriteBuf(mpt::String::spacePadded, fileHeader.songName) = m_songName;
fileHeader.eof = 0x1A;
const std::string openMptTrackerName = mpt::ToCharset(GetCharsetFile(), Version::Current().GetOpenMPTVersionString());
mpt::String::WriteBuf(mpt::String::spacePadded, fileHeader.trackerName) = openMptTrackerName;
// Writing song header
fileHeader.version = 0x0104; // XM Format v1.04
fileHeader.size = sizeof(XMFileHeader) - 60; // minus everything before this field
fileHeader.restartPos = Order().GetRestartPos();
fileHeader.channels = m_nChannels;
if((m_nChannels % 2u) && m_nChannels < 32)
{
// Avoid odd channel count for FT2 compatibility
fileHeader.channels++;
addChannel = true;
} else if(compatibilityExport && fileHeader.channels > 32)
{
fileHeader.channels = 32;
}
// Find out number of orders and patterns used.
// +++ and --- patterns are not taken into consideration as FastTracker does not support them.
const ORDERINDEX trimmedLength = Order().GetLengthTailTrimmed();
std::vector<uint8> orderList(trimmedLength);
const ORDERINDEX orderLimit = compatibilityExport ? 256 : uint16_max;
ORDERINDEX numOrders = 0;
PATTERNINDEX numPatterns = Patterns.GetNumPatterns();
bool changeOrderList = false;
for(ORDERINDEX ord = 0; ord < trimmedLength; ord++)
{
PATTERNINDEX pat = Order()[ord];
if(pat == Order.GetIgnoreIndex() || pat == Order.GetInvalidPatIndex() || pat > uint8_max)
{
changeOrderList = true;
} else if(numOrders < orderLimit)
{
orderList[numOrders++] = static_cast<uint8>(pat);
if(pat >= numPatterns)
numPatterns = pat + 1;
}
}
if(changeOrderList)
{
AddToLog("Skip and stop order list items (+++ and ---) are not saved in XM files.");
}
orderList.resize(compatibilityExport ? 256 : numOrders);
fileHeader.orders = numOrders;
fileHeader.patterns = numPatterns;
fileHeader.size += static_cast<uint32>(orderList.size());
uint16 writeInstruments;
if(m_nInstruments > 0)
fileHeader.instruments = writeInstruments = m_nInstruments;
else
fileHeader.instruments = writeInstruments = m_nSamples;
if(m_SongFlags[SONG_LINEARSLIDES]) fileHeader.flags |= XMFileHeader::linearSlides;
if(m_SongFlags[SONG_EXFILTERRANGE] && !compatibilityExport) fileHeader.flags |= XMFileHeader::extendedFilterRange;
fileHeader.flags = fileHeader.flags;
// Fasttracker 2 will happily accept any tempo faster than 255 BPM. XMPlay does also support this, great!
fileHeader.tempo = mpt::saturate_cast<uint16>(m_nDefaultTempo.GetInt());
fileHeader.speed = static_cast<uint16>(Clamp(m_nDefaultSpeed, 1u, 31u));
mpt::IO::Write(f, fileHeader);
// Write processed order list
mpt::IO::Write(f, orderList);
// Writing patterns
#define ASSERT_CAN_WRITE(x) \
if(len > s.size() - x) /*Buffer running out? Make it larger.*/ \
s.resize(s.size() + 10 * 1024, 0);
std::vector<uint8> s(64 * 64 * 5, 0);
for(PATTERNINDEX pat = 0; pat < numPatterns; pat++)
{
uint8 patHead[9] = { 0 };
patHead[0] = 9;
if(!Patterns.IsValidPat(pat))
{
// There's nothing to write... chicken out.
patHead[5] = 64;
mpt::IO::Write(f, patHead);
continue;
}
const uint16 numRows = mpt::saturate_cast<uint16>(Patterns[pat].GetNumRows());
patHead[5] = static_cast<uint8>(numRows & 0xFF);
patHead[6] = static_cast<uint8>(numRows >> 8);
auto p = Patterns[pat].cbegin();
size_t len = 0;
// Empty patterns are always loaded as 64-row patterns in FT2, regardless of their real size...
bool emptyPattern = true;
for(size_t j = m_nChannels * numRows; j > 0; j--, p++)
{
// Don't write more than 32 channels
if(compatibilityExport && m_nChannels - ((j - 1) % m_nChannels) > 32) continue;
uint8 note = p->note;
uint8 command = p->command, param = p->param;
ModSaveCommand(command, param, true, compatibilityExport);
if (note >= NOTE_MIN_SPECIAL) note = 97; else
if ((note <= 12) || (note > 96+12)) note = 0; else
note -= 12;
uint8 vol = 0;
if (p->volcmd != VOLCMD_NONE)
{
switch(p->volcmd)
{
case VOLCMD_VOLUME: vol = 0x10 + p->vol; break;
case VOLCMD_VOLSLIDEDOWN: vol = 0x60 + (p->vol & 0x0F); break;
case VOLCMD_VOLSLIDEUP: vol = 0x70 + (p->vol & 0x0F); break;
case VOLCMD_FINEVOLDOWN: vol = 0x80 + (p->vol & 0x0F); break;
case VOLCMD_FINEVOLUP: vol = 0x90 + (p->vol & 0x0F); break;
case VOLCMD_VIBRATOSPEED: vol = 0xA0 + (p->vol & 0x0F); break;
case VOLCMD_VIBRATODEPTH: vol = 0xB0 + (p->vol & 0x0F); break;
case VOLCMD_PANNING: vol = 0xC0 + (p->vol / 4); if (vol > 0xCF) vol = 0xCF; break;
case VOLCMD_PANSLIDELEFT: vol = 0xD0 + (p->vol & 0x0F); break;
case VOLCMD_PANSLIDERIGHT: vol = 0xE0 + (p->vol & 0x0F); break;
case VOLCMD_TONEPORTAMENTO: vol = 0xF0 + (p->vol & 0x0F); break;
}
// Those values are ignored in FT2. Don't save them, also to avoid possible problems with other trackers (or MPT itself)
if(compatibilityExport && p->vol == 0)
{
switch(p->volcmd)
{
case VOLCMD_VOLUME:
case VOLCMD_PANNING:
case VOLCMD_VIBRATODEPTH:
case VOLCMD_TONEPORTAMENTO:
case VOLCMD_PANSLIDELEFT: // Doesn't have memory, but does weird things with zero param.
break;
default:
// no memory here.
vol = 0;
}
}
}
// no need to fix non-empty patterns
if(!p->IsEmpty())
emptyPattern = false;
// Apparently, completely empty patterns are loaded as empty 64-row patterns in FT2, regardless of their original size.
// We have to avoid this, so we add a "break to row 0" command in the last row.
if(j == 1 && emptyPattern && numRows != 64)
{
command = 0x0D;
param = 0;
}
if ((note) && (p->instr) && (vol > 0x0F) && (command) && (param))
{
s[len++] = note;
s[len++] = p->instr;
s[len++] = vol;
s[len++] = command;
s[len++] = param;
} else
{
uint8 b = 0x80;
if (note) b |= 0x01;
if (p->instr) b |= 0x02;
if (vol >= 0x10) b |= 0x04;
if (command) b |= 0x08;
if (param) b |= 0x10;
s[len++] = b;
if (b & 1) s[len++] = note;
if (b & 2) s[len++] = p->instr;
if (b & 4) s[len++] = vol;
if (b & 8) s[len++] = command;
if (b & 16) s[len++] = param;
}
if(addChannel && (j % m_nChannels == 1 || m_nChannels == 1))
{
ASSERT_CAN_WRITE(1);
s[len++] = 0x80;
}
ASSERT_CAN_WRITE(5);
}
if(emptyPattern && numRows == 64)
{
// Be smart when saving empty patterns!
len = 0;
}
// Reaching the limits of file format?
if(len > uint16_max)
{
AddToLog(mpt::format("%1 (%2 %3)")(str_tooMuchPatternData, str_pattern, pat));
len = uint16_max;
}
patHead[7] = static_cast<uint8>(len & 0xFF);
patHead[8] = static_cast<uint8>(len >> 8);
mpt::IO::Write(f, patHead);
if(len) mpt::IO::WriteRaw(f, s.data(), len);
}
#undef ASSERT_CAN_WRITE
// Check which samples are referenced by which instruments (for assigning unreferenced samples to instruments)
std::vector<bool> sampleAssigned(GetNumSamples() + 1, false);
for(INSTRUMENTINDEX ins = 1; ins <= GetNumInstruments(); ins++)
{
if(Instruments[ins] != nullptr)
{
Instruments[ins]->GetSamples(sampleAssigned);
}
}
// Writing instruments
for(INSTRUMENTINDEX ins = 1; ins <= writeInstruments; ins++)
{
XMInstrumentHeader insHeader;
std::vector<SAMPLEINDEX> samples;
if(GetNumInstruments())
{
if(Instruments[ins] != nullptr)
{
// Convert instrument
insHeader.ConvertToXM(*Instruments[ins], compatibilityExport);
samples = insHeader.instrument.GetSampleList(*Instruments[ins], compatibilityExport);
if(samples.size() > 0 && samples[0] <= GetNumSamples())
{
// Copy over auto-vibrato settings of first sample
insHeader.instrument.ApplyAutoVibratoToXM(Samples[samples[0]], GetType());
}
std::vector<SAMPLEINDEX> additionalSamples;
// Try to save "instrument-less" samples as well by adding those after the "normal" samples of our sample.
// We look for unassigned samples directly after the samples assigned to our current instrument, so if
// e.g. sample 1 is assigned to instrument 1 and samples 2 to 10 aren't assigned to any instrument,
// we will assign those to sample 1. Any samples before the first referenced sample are going to be lost,
// but hey, I wrote this mostly for preserving instrument texts in existing modules, where we shouldn't encounter this situation...
for(auto smp : samples)
{
while(++smp <= GetNumSamples()
&& !sampleAssigned[smp]
&& insHeader.numSamples < (compatibilityExport ? 16 : 32))
{
sampleAssigned[smp] = true; // Don't want to add this sample again.
additionalSamples.push_back(smp);
insHeader.numSamples++;
}
}
samples.insert(samples.end(), additionalSamples.begin(), additionalSamples.end());
} else
{
MemsetZero(insHeader);
}
} else
{
// Convert samples to instruments
MemsetZero(insHeader);
insHeader.numSamples = 1;
insHeader.instrument.ApplyAutoVibratoToXM(Samples[ins], GetType());
samples.push_back(ins);
}
insHeader.Finalise();
size_t insHeaderSize = insHeader.size;
mpt::IO::WritePartial(f, insHeader, insHeaderSize);
std::vector<SampleIO> sampleFlags(samples.size());
// Write Sample Headers
for(SAMPLEINDEX smp = 0; smp < samples.size(); smp++)
{
XMSample xmSample;
if(samples[smp] <= GetNumSamples())
{
xmSample.ConvertToXM(Samples[samples[smp]], GetType(), compatibilityExport);
} else
{
MemsetZero(xmSample);
}
sampleFlags[smp] = xmSample.GetSampleFormat();
mpt::String::WriteBuf(mpt::String::spacePadded, xmSample.name) = m_szNames[samples[smp]];
mpt::IO::Write(f, xmSample);
}
// Write Sample Data
for(SAMPLEINDEX smp = 0; smp < samples.size(); smp++)
{
if(samples[smp] <= GetNumSamples())
{
sampleFlags[smp].WriteSample(f, Samples[samples[smp]]);
}
}
}
if(!compatibilityExport)
{
// Writing song comments
if(!m_songMessage.empty())
{
uint32 size = mpt::saturate_cast<uint32>(m_songMessage.length());
mpt::IO::WriteRaw(f, "text", 4);
mpt::IO::WriteIntLE<uint32>(f, size);
mpt::IO::WriteRaw(f, m_songMessage.c_str(), size);
}
// Writing midi cfg
if(!m_MidiCfg.IsMacroDefaultSetupUsed())
{
mpt::IO::WriteRaw(f, "MIDI", 4);
mpt::IO::WriteIntLE<uint32>(f, sizeof(MIDIMacroConfigData));
mpt::IO::Write(f, static_cast<MIDIMacroConfigData &>(m_MidiCfg));
}
// Writing Pattern Names
const PATTERNINDEX numNamedPats = Patterns.GetNumNamedPatterns();
if(numNamedPats > 0)
{
mpt::IO::WriteRaw(f, "PNAM", 4);
mpt::IO::WriteIntLE<uint32>(f, numNamedPats * MAX_PATTERNNAME);
for(PATTERNINDEX pat = 0; pat < numNamedPats; pat++)
{
char name[MAX_PATTERNNAME];
mpt::String::WriteBuf(mpt::String::maybeNullTerminated, name) = Patterns[pat].GetName();
mpt::IO::Write(f, name);
}
}
// Writing Channel Names
{
CHANNELINDEX numNamedChannels = 0;
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
if (ChnSettings[chn].szName[0]) numNamedChannels = chn + 1;
}
// Do it!
if(numNamedChannels)
{
mpt::IO::WriteRaw(f, "CNAM", 4);
mpt::IO::WriteIntLE<uint32>(f, numNamedChannels * MAX_CHANNELNAME);
for(CHANNELINDEX chn = 0; chn < numNamedChannels; chn++)
{
char name[MAX_CHANNELNAME];
mpt::String::WriteBuf(mpt::String::maybeNullTerminated, name) = ChnSettings[chn].szName;
mpt::IO::Write(f, name);
}
}
}
//Save hacked-on extra info
SaveMixPlugins(&f);
if(GetNumInstruments())
{
SaveExtendedInstrumentProperties(writeInstruments, f);
}
SaveExtendedSongProperties(f);
}
return true;
}
#endif // MODPLUG_NO_FILESAVE
OPENMPT_NAMESPACE_END