182 lines
4.8 KiB
TeX
182 lines
4.8 KiB
TeX
|
% -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
|
||
|
%!TEX root = Vorbis_I_spec.tex
|
||
|
% $Id$
|
||
|
\section{Helper equations} \label{vorbis:spec:helper}
|
||
|
|
||
|
\subsection{Overview}
|
||
|
|
||
|
The equations below are used in multiple places by the Vorbis codec
|
||
|
specification. Rather than cluttering up the main specification
|
||
|
documents, they are defined here and referenced where appropriate.
|
||
|
|
||
|
|
||
|
\subsection{Functions}
|
||
|
|
||
|
\subsubsection{ilog} \label{vorbis:spec:ilog}
|
||
|
|
||
|
The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value
|
||
|
\varname{[x]}. Values of \varname{[x]} less than zero are defined to return zero.
|
||
|
|
||
|
\begin{programlisting}
|
||
|
1) [return\_value] = 0;
|
||
|
2) if ( [x] is greater than zero ) {
|
||
|
|
||
|
3) increment [return\_value];
|
||
|
4) logical shift [x] one bit to the right, padding the MSb with zero
|
||
|
5) repeat at step 2)
|
||
|
|
||
|
}
|
||
|
|
||
|
6) done
|
||
|
\end{programlisting}
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item ilog(0) = 0;
|
||
|
\item ilog(1) = 1;
|
||
|
\item ilog(2) = 2;
|
||
|
\item ilog(3) = 2;
|
||
|
\item ilog(4) = 3;
|
||
|
\item ilog(7) = 3;
|
||
|
\item ilog(negative number) = 0;
|
||
|
\end{itemize}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
\subsubsection{float32\_unpack} \label{vorbis:spec:float32:unpack}
|
||
|
|
||
|
"float32\_unpack(x)" is intended to translate the packed binary
|
||
|
representation of a Vorbis codebook float value into the
|
||
|
representation used by the decoder for floating point numbers. For
|
||
|
purposes of this example, we will unpack a Vorbis float32 into a
|
||
|
host-native floating point number.
|
||
|
|
||
|
\begin{programlisting}
|
||
|
1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
|
||
|
2) [sign] = [x] bitwise AND 0x80000000 (unsigned result)
|
||
|
3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result)
|
||
|
4) if ( [sign] is nonzero ) then negate [mantissa]
|
||
|
5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
|
||
|
\end{programlisting}
|
||
|
|
||
|
|
||
|
|
||
|
\subsubsection{lookup1\_values} \label{vorbis:spec:lookup1:values}
|
||
|
|
||
|
"lookup1\_values(codebook\_entries,codebook\_dimensions)" is used to
|
||
|
compute the correct length of the value index for a codebook VQ lookup
|
||
|
table of lookup type 1. The values on this list are permuted to
|
||
|
construct the VQ vector lookup table of size
|
||
|
\varname{[codebook\_entries]}.
|
||
|
|
||
|
The return value for this function is defined to be 'the greatest
|
||
|
integer value for which \varname{[return\_value]} to the power of
|
||
|
\varname{[codebook\_dimensions]} is less than or equal to
|
||
|
\varname{[codebook\_entries]}'.
|
||
|
|
||
|
|
||
|
|
||
|
\subsubsection{low\_neighbor} \label{vorbis:spec:low:neighbor}
|
||
|
|
||
|
"low\_neighbor(v,x)" finds the position \varname{n} in vector \varname{[v]} of
|
||
|
the greatest value scalar element for which \varname{n} is less than
|
||
|
\varname{[x]} and vector \varname{[v]} element \varname{n} is less
|
||
|
than vector \varname{[v]} element \varname{[x]}.
|
||
|
|
||
|
\subsubsection{high\_neighbor} \label{vorbis:spec:high:neighbor}
|
||
|
|
||
|
"high\_neighbor(v,x)" finds the position \varname{n} in vector [v] of
|
||
|
the lowest value scalar element for which \varname{n} is less than
|
||
|
\varname{[x]} and vector \varname{[v]} element \varname{n} is greater
|
||
|
than vector \varname{[v]} element \varname{[x]}.
|
||
|
|
||
|
|
||
|
|
||
|
\subsubsection{render\_point} \label{vorbis:spec:render:point}
|
||
|
|
||
|
"render\_point(x0,y0,x1,y1,X)" is used to find the Y value at point X
|
||
|
along the line specified by x0, x1, y0 and y1. This function uses an
|
||
|
integer algorithm to solve for the point directly without calculating
|
||
|
intervening values along the line.
|
||
|
|
||
|
\begin{programlisting}
|
||
|
1) [dy] = [y1] - [y0]
|
||
|
2) [adx] = [x1] - [x0]
|
||
|
3) [ady] = absolute value of [dy]
|
||
|
4) [err] = [ady] * ([X] - [x0])
|
||
|
5) [off] = [err] / [adx] using integer division
|
||
|
6) if ( [dy] is less than zero ) {
|
||
|
|
||
|
7) [Y] = [y0] - [off]
|
||
|
|
||
|
} else {
|
||
|
|
||
|
8) [Y] = [y0] + [off]
|
||
|
|
||
|
}
|
||
|
|
||
|
9) done
|
||
|
\end{programlisting}
|
||
|
|
||
|
|
||
|
|
||
|
\subsubsection{render\_line} \label{vorbis:spec:render:line}
|
||
|
|
||
|
Floor decode type one uses the integer line drawing algorithm of
|
||
|
"render\_line(x0, y0, x1, y1, v)" to construct an integer floor
|
||
|
curve for contiguous piecewise line segments. Note that it has not
|
||
|
been relevant elsewhere, but here we must define integer division as
|
||
|
rounding division of both positive and negative numbers toward zero.
|
||
|
|
||
|
|
||
|
\begin{programlisting}
|
||
|
1) [dy] = [y1] - [y0]
|
||
|
2) [adx] = [x1] - [x0]
|
||
|
3) [ady] = absolute value of [dy]
|
||
|
4) [base] = [dy] / [adx] using integer division
|
||
|
5) [x] = [x0]
|
||
|
6) [y] = [y0]
|
||
|
7) [err] = 0
|
||
|
|
||
|
8) if ( [dy] is less than 0 ) {
|
||
|
|
||
|
9) [sy] = [base] - 1
|
||
|
|
||
|
} else {
|
||
|
|
||
|
10) [sy] = [base] + 1
|
||
|
|
||
|
}
|
||
|
|
||
|
11) [ady] = [ady] - (absolute value of [base]) * [adx]
|
||
|
12) vector [v] element [x] = [y]
|
||
|
|
||
|
13) iterate [x] over the range [x0]+1 ... [x1]-1 {
|
||
|
|
||
|
14) [err] = [err] + [ady];
|
||
|
15) if ( [err] >= [adx] ) {
|
||
|
|
||
|
16) [err] = [err] - [adx]
|
||
|
17) [y] = [y] + [sy]
|
||
|
|
||
|
} else {
|
||
|
|
||
|
18) [y] = [y] + [base]
|
||
|
|
||
|
}
|
||
|
|
||
|
19) vector [v] element [x] = [y]
|
||
|
|
||
|
}
|
||
|
\end{programlisting}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|