cog/Frameworks/GME/vgmplay/chips/x1_010.c

405 lines
12 KiB
C
Raw Normal View History

/***************************************************************************
-= Seta Hardware =-
driver by Luca Elia (l.elia@tin.it)
rewrite by Manbow-J(manbowj@hamal.freemail.ne.jp)
X1-010 Seta Custom Sound Chip (80 Pin PQFP)
Custom programmed Mitsubishi M60016 Gate Array, 3608 gates, 148 Max I/O ports
The X1-010 is 16 Voices sound generator, each channel gets it's
waveform from RAM (128 bytes per waveform, 8 bit unsigned data)
or sampling PCM(8bit unsigned data).
Registers:
8 registers per channel (mapped to the lower bytes of 16 words on the 68K)
Reg: Bits: Meaning:
0 7654 3---
---- -2-- PCM/Waveform repeat flag (0:Ones 1:Repeat) (*1)
---- --1- Sound out select (0:PCM 1:Waveform)
---- ---0 Key on / off
1 7654 ---- PCM Volume 1 (L?)
---- 3210 PCM Volume 2 (R?)
Waveform No.
2 PCM Frequency
Waveform Pitch Lo
3 Waveform Pitch Hi
4 PCM Sample Start / 0x1000 [Start/End in bytes]
Waveform Envelope Time
5 PCM Sample End 0x100 - (Sample End / 0x1000) [PCM ROM is Max 1MB?]
Waveform Envelope No.
6 Reserved
7 Reserved
offset 0x0000 - 0x0fff Wave form data
offset 0x1000 - 0x1fff Envelope data
*1 : when 0 is specified, hardware interrupt is caused(allways return soon)
***************************************************************************/
//#include "emu.h"
#include <stdlib.h>
2016-07-02 09:57:36 +00:00
#include <string.h>
#include <stddef.h> // for NULL
#include "mamedef.h"
#include "x1_010.h"
#define VERBOSE_SOUND 0
#define VERBOSE_REGISTER_WRITE 0
#define VERBOSE_REGISTER_READ 0
#define LOG_SOUND(x) do { if (VERBOSE_SOUND) logerror x; } while (0)
#define LOG_REGISTER_WRITE(x) do { if (VERBOSE_REGISTER_WRITE) logerror x; } while (0)
#define LOG_REGISTER_READ(x) do { if (VERBOSE_REGISTER_READ) logerror x; } while (0)
#define SETA_NUM_CHANNELS 16
2016-07-02 09:57:36 +00:00
//#define FREQ_BASE_BITS 8 // Frequency fixed decimal shift bits
#define FREQ_BASE_BITS 14 // Frequency fixed decimal shift bits
#define ENV_BASE_BITS 16 // wave form envelope fixed decimal shift bits
#define VOL_BASE (2*32*256/30) // Volume base
/* this structure defines the parameters for a channel */
typedef struct {
unsigned char status;
unsigned char volume; // volume / wave form no.
unsigned char frequency; // frequency / pitch lo
unsigned char pitch_hi; // reserved / pitch hi
unsigned char start; // start address / envelope time
unsigned char end; // end address / envelope no.
unsigned char reserve[2];
} X1_010_CHANNEL;
typedef struct _x1_010_state x1_010_state;
struct _x1_010_state
{
/* Variables only used here */
int rate; // Output sampling rate (Hz)
//sound_stream * stream; // Stream handle
//int address; // address eor data
//const UINT8 *region; // region name
UINT32 ROMSize;
UINT8* rom;
int sound_enable; // sound output enable/disable
UINT8 reg[0x2000]; // X1-010 Register & wave form area
// UINT8 HI_WORD_BUF[0x2000]; // X1-010 16bit access ram check avoidance work
UINT32 smp_offset[SETA_NUM_CHANNELS];
UINT32 env_offset[SETA_NUM_CHANNELS];
UINT32 base_clock;
UINT8 Muted[SETA_NUM_CHANNELS];
};
/* mixer tables and internal buffers */
//static short *mixer_buffer = NULL;
/*INLINE x1_010_state *get_safe_token(device_t *device)
{
assert(device != NULL);
assert(device->type() == X1_010);
return (x1_010_state *)downcast<legacy_device_base *>(device)->token();
}*/
/*--------------------------------------------------------------
generate sound to the mix buffer
--------------------------------------------------------------*/
//static STREAM_UPDATE( seta_update )
void seta_update(void *param, stream_sample_t **outputs, int samples)
{
x1_010_state *info = (x1_010_state *)param;
X1_010_CHANNEL *reg;
int ch, i, volL, volR, freq, div;
register INT8 *start, *end, data;
register UINT8 *env;
register UINT32 smp_offs, smp_step, env_offs, env_step, delta;
// mixer buffer zero clear
memset( outputs[0], 0, samples*sizeof(*outputs[0]) );
memset( outputs[1], 0, samples*sizeof(*outputs[1]) );
// if( info->sound_enable == 0 ) return;
for( ch = 0; ch < SETA_NUM_CHANNELS; ch++ ) {
reg = (X1_010_CHANNEL *)&(info->reg[ch*sizeof(X1_010_CHANNEL)]);
if( (reg->status&1) != 0 && ! info->Muted[ch]) { // Key On
stream_sample_t *bufL = outputs[0];
stream_sample_t *bufR = outputs[1];
div = (reg->status&0x80) ? 1 : 0;
if( (reg->status&2) == 0 ) { // PCM sampling
start = (INT8 *)(info->rom + reg->start*0x1000);
end = (INT8 *)(info->rom + (0x100-reg->end)*0x1000);
volL = ((reg->volume>>4)&0xf)*VOL_BASE;
volR = ((reg->volume>>0)&0xf)*VOL_BASE;
smp_offs = info->smp_offset[ch];
freq = reg->frequency>>div;
// Meta Fox does write the frequency register, but this is a hack to make it "work" with the current setup
// This is broken for Arbalester (it writes 8), but that'll be fixed later.
if( freq == 0 ) freq = 4;
2016-07-02 09:57:36 +00:00
smp_step = (UINT32)((float)info->base_clock/8192.0f
*freq*(1<<FREQ_BASE_BITS)/(float)info->rate+0.5f);
#ifdef _DEBUG
if( smp_offs == 0 ) {
LOG_SOUND(( "Play sample %p - %p, channel %X volume %d:%d freq %X step %X offset %X\n",
start, end, ch, volL, volR, freq, smp_step, smp_offs ));
}
2016-07-02 09:57:36 +00:00
#endif
for( i = 0; i < samples; i++ ) {
delta = smp_offs>>FREQ_BASE_BITS;
// sample ended?
if( start+delta >= end ) {
2016-07-02 09:57:36 +00:00
reg->status &= ~0x01; // Key off
break;
}
data = *(start+delta);
*bufL++ += (data*volL/256);
*bufR++ += (data*volR/256);
smp_offs += smp_step;
}
info->smp_offset[ch] = smp_offs;
} else { // Wave form
start = (INT8 *)&(info->reg[reg->volume*128+0x1000]);
smp_offs = info->smp_offset[ch];
freq = ((reg->pitch_hi<<8)+reg->frequency)>>div;
2016-07-02 09:57:36 +00:00
smp_step = (UINT32)((float)info->base_clock/128.0/1024.0/4.0*freq*(1<<FREQ_BASE_BITS)/(float)info->rate+0.5f);
env = (UINT8 *)&(info->reg[reg->end*128]);
env_offs = info->env_offset[ch];
2016-07-02 09:57:36 +00:00
env_step = (UINT32)((float)info->base_clock/128.0/1024.0/4.0*reg->start*(1<<ENV_BASE_BITS)/(float)info->rate+0.5f);
/* Print some more debug info */
2016-07-02 09:57:36 +00:00
#ifdef _DEBUG
if( smp_offs == 0 ) {
LOG_SOUND(( "Play waveform %X, channel %X volume %X freq %4X step %X offset %X\n",
reg->volume, ch, reg->end, freq, smp_step, smp_offs ));
}
2016-07-02 09:57:36 +00:00
#endif
for( i = 0; i < samples; i++ ) {
int vol;
delta = env_offs>>ENV_BASE_BITS;
// Envelope one shot mode
if( (reg->status&4) != 0 && delta >= 0x80 ) {
2016-07-02 09:57:36 +00:00
reg->status &= ~0x01; // Key off
break;
}
vol = *(env+(delta&0x7f));
volL = ((vol>>4)&0xf)*VOL_BASE;
volR = ((vol>>0)&0xf)*VOL_BASE;
data = *(start+((smp_offs>>FREQ_BASE_BITS)&0x7f));
*bufL++ += (data*volL/256);
*bufR++ += (data*volR/256);
smp_offs += smp_step;
env_offs += env_step;
}
info->smp_offset[ch] = smp_offs;
info->env_offset[ch] = env_offs;
}
}
}
}
//static DEVICE_START( x1_010 )
int device_start_x1_010(void **_info, int clock, int CHIP_SAMPLING_MODE, int CHIP_SAMPLE_RATE)
{
int i;
//const x1_010_interface *intf = (const x1_010_interface *)device->static_config();
//x1_010_state *info = get_safe_token(device);
x1_010_state *info;
info = (x1_010_state *) calloc(1, sizeof(x1_010_state));
*_info = (void *) info;
//info->region = *device->region();
//info->base_clock = device->clock();
//info->rate = device->clock() / 1024;
//info->address = intf->adr;
info->ROMSize = 0x00;
info->rom = NULL;
info->base_clock = clock;
info->rate = clock / 1024;
if (((CHIP_SAMPLING_MODE & 0x01) && info->rate < CHIP_SAMPLE_RATE) ||
CHIP_SAMPLING_MODE == 0x02)
info->rate = CHIP_SAMPLE_RATE;
for( i = 0; i < SETA_NUM_CHANNELS; i++ ) {
info->smp_offset[i] = 0;
info->env_offset[i] = 0;
}
/* Print some more debug info */
//LOG_SOUND(("masterclock = %d rate = %d\n", device->clock(), info->rate ));
/* get stream channels */
//info->stream = device->machine().sound().stream_alloc(*device,0,2,info->rate,info,seta_update);
return info->rate;
}
void device_stop_x1_010(void *_info)
{
x1_010_state *info = (x1_010_state *)_info;
free(info->rom); info->rom = NULL;
free(info);
return;
}
void device_reset_x1_010(void *_info)
{
x1_010_state *info = (x1_010_state *)_info;
memset(info->reg, 0, 0x2000);
//memset(info->HI_WORD_BUF, 0, 0x2000);
memset(info->smp_offset, 0, SETA_NUM_CHANNELS * sizeof(UINT32));
memset(info->env_offset, 0, SETA_NUM_CHANNELS * sizeof(UINT32));
return;
}
/*void seta_sound_enable_w(device_t *device, int data)
{
x1_010_state *info = get_safe_token(device);
info->sound_enable = data;
}*/
/* Use these for 8 bit CPUs */
//READ8_DEVICE_HANDLER( seta_sound_r )
UINT8 seta_sound_r(void *_info, offs_t offset)
{
//x1_010_state *info = get_safe_token(device);
x1_010_state *info = (x1_010_state *)_info;
//offset ^= info->address;
return info->reg[offset];
}
//WRITE8_DEVICE_HANDLER( seta_sound_w )
void seta_sound_w(void *_info, offs_t offset, UINT8 data)
{
//x1_010_state *info = get_safe_token(device);
x1_010_state *info = (x1_010_state *)_info;
int channel, reg;
//offset ^= info->address;
channel = offset/sizeof(X1_010_CHANNEL);
reg = offset%sizeof(X1_010_CHANNEL);
if( channel < SETA_NUM_CHANNELS && reg == 0
&& (info->reg[offset]&1) == 0 && (data&1) != 0 ) {
info->smp_offset[channel] = 0;
info->env_offset[channel] = 0;
}
//LOG_REGISTER_WRITE(("%s: offset %6X : data %2X\n", device->machine().describe_context(), offset, data ));
info->reg[offset] = data;
}
void x1_010_write_rom(void *_info, offs_t ROMSize, offs_t DataStart, offs_t DataLength,
const UINT8* ROMData)
{
x1_010_state *info = (x1_010_state *)_info;
if (info->ROMSize != ROMSize)
{
info->rom = (UINT8*)realloc(info->rom, ROMSize);
info->ROMSize = ROMSize;
memset(info->rom, 0xFF, ROMSize);
}
if (DataStart > ROMSize)
return;
if (DataStart + DataLength > ROMSize)
DataLength = ROMSize - DataStart;
memcpy(info->rom + DataStart, ROMData, DataLength);
return;
}
void x1_010_set_mute_mask(void *_info, UINT32 MuteMask)
{
x1_010_state *info = (x1_010_state *)_info;
UINT8 CurChn;
for (CurChn = 0; CurChn < SETA_NUM_CHANNELS; CurChn ++)
info->Muted[CurChn] = (MuteMask >> CurChn) & 0x01;
return;
}
/* Use these for 16 bit CPUs */
/*READ16_DEVICE_HANDLER( seta_sound_word_r )
{
//x1_010_state *info = get_safe_token(device);
x1_010_state *info = &X1010Data[ChipID];
UINT16 ret;
ret = info->HI_WORD_BUF[offset]<<8;
ret += (seta_sound_r( device, offset )&0xff);
LOG_REGISTER_READ(( "%s: Read X1-010 Offset:%04X Data:%04X\n", device->machine().describe_context(), offset, ret ));
return ret;
}
WRITE16_DEVICE_HANDLER( seta_sound_word_w )
{
//x1_010_state *info = get_safe_token(device);
x1_010_state *info = &X1010Data[ChipID];
info->HI_WORD_BUF[offset] = (data>>8)&0xff;
seta_sound_w( device, offset, data&0xff );
LOG_REGISTER_WRITE(( "%s: Write X1-010 Offset:%04X Data:%04X\n", device->machine().describe_context(), offset, data ));
}*/
/**************************************************************************
* Generic get_info
**************************************************************************/
/*DEVICE_GET_INFO( x1_010 )
{
switch (state)
{
// --- the following bits of info are returned as 64-bit signed integers ---
case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(x1_010_state); break;
// --- the following bits of info are returned as pointers to data or functions ---
case DEVINFO_FCT_START: info->start = DEVICE_START_NAME( x1_010 ); break;
case DEVINFO_FCT_STOP: // Nothing // break;
case DEVINFO_FCT_RESET: // Nothing // break;
// --- the following bits of info are returned as NULL-terminated strings ---
case DEVINFO_STR_NAME: strcpy(info->s, "X1-010"); break;
case DEVINFO_STR_FAMILY: strcpy(info->s, "Seta custom"); break;
case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break;
case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break;
case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright Nicola Salmoria and the MAME Team"); break;
}
}
DEFINE_LEGACY_SOUND_DEVICE(X1_010, x1_010);*/