2022-01-19 08:27:59 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2013, 2018 lvqcl
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <memory.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include "lpc.h"
|
|
|
|
|
2022-02-16 06:41:18 +00:00
|
|
|
static void apply_window(float *const data, const size_t data_len) {
|
2022-01-19 08:27:59 +00:00
|
|
|
#if 0
|
2022-02-16 06:41:18 +00:00
|
|
|
if (0) // subtract the mean
|
|
|
|
{
|
|
|
|
double mean = 0;
|
|
|
|
for(int i = 0; i < (int)data_len; i++)
|
|
|
|
mean += data[i];
|
|
|
|
mean /= data_len;
|
|
|
|
|
|
|
|
for(int i = 0; i < (int)data_len; i++)
|
|
|
|
data[i] -= (float)mean;
|
|
|
|
}
|
2022-01-19 08:27:59 +00:00
|
|
|
#endif
|
|
|
|
|
2022-02-16 06:41:18 +00:00
|
|
|
if(1) // Welch window
|
|
|
|
{
|
|
|
|
const float n2 = (data_len + 1) / 2.0f;
|
|
|
|
for(int i = 0; i < (int)data_len; i++) {
|
|
|
|
float k = (i + 1 - n2) / n2;
|
|
|
|
data[data_len - 1 - i] *= 1.0f - k * k;
|
|
|
|
}
|
|
|
|
}
|
2022-01-19 08:27:59 +00:00
|
|
|
}
|
|
|
|
|
2022-02-16 06:41:18 +00:00
|
|
|
static float vorbis_lpc_from_data(float *data, float *lpci, int n, int m, double *aut, double *lpc) {
|
|
|
|
double error;
|
|
|
|
double epsilon;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
/* autocorrelation, p+1 lag coefficients */
|
|
|
|
j = m + 1;
|
|
|
|
while(j--) {
|
|
|
|
double d = 0; /* double needed for accumulator depth */
|
|
|
|
for(i = j; i < n; i++) d += (double)data[i] * data[i - j];
|
|
|
|
aut[j] = d;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate lpc coefficients from autocorr values */
|
|
|
|
|
|
|
|
/* set our noise floor to about -100dB */
|
|
|
|
error = aut[0] * (1. + 1e-10);
|
|
|
|
epsilon = 1e-9 * aut[0] + 1e-10;
|
|
|
|
|
|
|
|
for(i = 0; i < m; i++) {
|
|
|
|
double r = -aut[i + 1];
|
|
|
|
|
|
|
|
if(error < epsilon) {
|
|
|
|
memset(lpc + i, 0, (m - i) * sizeof(*lpc));
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Sum up this iteration's reflection coefficient; note that in
|
|
|
|
Vorbis we don't save it. If anyone wants to recycle this code
|
|
|
|
and needs reflection coefficients, save the results of 'r' from
|
|
|
|
each iteration. */
|
|
|
|
|
|
|
|
for(j = 0; j < i; j++) r -= lpc[j] * aut[i - j];
|
|
|
|
r /= error;
|
|
|
|
|
|
|
|
/* Update LPC coefficients and total error */
|
|
|
|
|
|
|
|
lpc[i] = r;
|
|
|
|
for(j = 0; j < i / 2; j++) {
|
|
|
|
double tmp = lpc[j];
|
|
|
|
|
|
|
|
lpc[j] += r * lpc[i - 1 - j];
|
|
|
|
lpc[i - 1 - j] += r * tmp;
|
|
|
|
}
|
|
|
|
if(i & 1) lpc[j] += lpc[j] * r;
|
|
|
|
|
|
|
|
error *= 1. - r * r;
|
|
|
|
}
|
|
|
|
|
|
|
|
done:
|
|
|
|
|
|
|
|
/* slightly damp the filter */
|
|
|
|
{
|
|
|
|
double g = .99;
|
|
|
|
double damp = g;
|
|
|
|
for(j = 0; j < m; j++) {
|
|
|
|
lpc[j] *= damp;
|
|
|
|
damp *= g;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(j = 0; j < m; j++) lpci[j] = (float)lpc[j];
|
2022-01-19 08:27:59 +00:00
|
|
|
|
2022-02-16 06:41:18 +00:00
|
|
|
/* we need the error value to know how big an impulse to hit the
|
|
|
|
filter with later */
|
2022-01-19 08:27:59 +00:00
|
|
|
|
2022-02-16 06:41:18 +00:00
|
|
|
return error;
|
2022-01-19 08:27:59 +00:00
|
|
|
}
|
|
|
|
|
2022-02-16 06:41:18 +00:00
|
|
|
static void vorbis_lpc_predict(float *coeff, float *prime, int m, float *data, long n, float *work) {
|
|
|
|
/* in: coeff[0...m-1] LPC coefficients
|
|
|
|
prime[0...m-1] initial values (allocated size of n+m-1)
|
|
|
|
out: data[0...n-1] data samples */
|
|
|
|
|
|
|
|
long i, j, o, p;
|
|
|
|
float y;
|
|
|
|
|
|
|
|
if(!prime)
|
|
|
|
for(i = 0; i < m; i++)
|
|
|
|
work[i] = 0.f;
|
|
|
|
else
|
|
|
|
for(i = 0; i < m; i++)
|
|
|
|
work[i] = prime[i];
|
|
|
|
|
|
|
|
for(i = 0; i < n; i++) {
|
|
|
|
y = 0;
|
|
|
|
o = i;
|
|
|
|
p = m;
|
|
|
|
for(j = 0; j < m; j++)
|
|
|
|
y -= work[o++] * coeff[--p];
|
|
|
|
|
|
|
|
data[i] = work[o] = y;
|
|
|
|
}
|
2022-01-19 08:27:59 +00:00
|
|
|
}
|
|
|
|
|
2022-02-16 06:41:18 +00:00
|
|
|
void lpc_extrapolate2(float *const data, const size_t data_len, const int nch, const int lpc_order, const size_t extra_bkwd, const size_t extra_fwd, void **extrapolate_buffer, size_t *extrapolate_buffer_size) {
|
|
|
|
const size_t tdata_size = sizeof(float) * (extra_bkwd + data_len + extra_fwd);
|
|
|
|
const size_t aut_size = sizeof(double) * (lpc_order + 1);
|
|
|
|
const size_t lpc_size = sizeof(double) * lpc_order;
|
|
|
|
const size_t lpci_size = sizeof(float) * lpc_order;
|
|
|
|
const size_t work_size = sizeof(float) * (extra_bkwd + lpc_order + extra_fwd);
|
|
|
|
|
|
|
|
const size_t new_size = tdata_size + aut_size + lpc_size + lpci_size + work_size;
|
|
|
|
|
|
|
|
if(new_size > *extrapolate_buffer_size) {
|
|
|
|
*extrapolate_buffer = realloc(*extrapolate_buffer, new_size);
|
|
|
|
*extrapolate_buffer_size = new_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
float *tdata = (float *)(*extrapolate_buffer); // for 1 channel only
|
|
|
|
|
|
|
|
double *aut = (double *)(*extrapolate_buffer + tdata_size);
|
|
|
|
double *lpc = (double *)(*extrapolate_buffer + tdata_size + aut_size);
|
|
|
|
float *lpci = (float *)(*extrapolate_buffer + tdata_size + aut_size + lpc_size);
|
|
|
|
float *work = (float *)(*extrapolate_buffer + tdata_size + aut_size + lpc_size + lpci_size);
|
|
|
|
|
|
|
|
for(int c = 0; c < nch; c++) {
|
|
|
|
if(extra_bkwd) {
|
|
|
|
for(int i = 0; i < (int)data_len; i++)
|
|
|
|
tdata[data_len - 1 - i] = data[i * nch + c];
|
|
|
|
} else {
|
|
|
|
for(int i = 0; i < (int)data_len; i++)
|
|
|
|
tdata[i] = data[i * nch + c];
|
|
|
|
}
|
|
|
|
|
|
|
|
apply_window(tdata, data_len);
|
|
|
|
vorbis_lpc_from_data(tdata, lpci, (int)data_len, lpc_order, aut, lpc);
|
|
|
|
|
|
|
|
// restore after apply_window
|
|
|
|
if(extra_bkwd) {
|
|
|
|
for(int i = 0; i < (int)data_len; i++)
|
|
|
|
tdata[data_len - 1 - i] = data[i * nch + c];
|
|
|
|
} else {
|
|
|
|
for(int i = 0; i < (int)data_len; i++)
|
|
|
|
tdata[i] = data[i * nch + c];
|
|
|
|
}
|
|
|
|
|
|
|
|
vorbis_lpc_predict(lpci, tdata + data_len - lpc_order, lpc_order, tdata + data_len, extra_fwd + extra_bkwd, work);
|
|
|
|
|
|
|
|
if(extra_bkwd) {
|
|
|
|
for(int i = 0; i < extra_bkwd; i++)
|
|
|
|
data[(-i - 1) * nch + c] = tdata[data_len + i];
|
|
|
|
} else {
|
|
|
|
for(int i = 0; i < extra_fwd; i++)
|
|
|
|
data[(i + data_len) * nch + c] = tdata[data_len + i];
|
|
|
|
}
|
|
|
|
}
|
2022-01-19 08:27:59 +00:00
|
|
|
}
|