Updated Blam Synthesis resampler, improving quality and performance significantly.
parent
4fdbf35aba
commit
0213dd9741
|
@ -35,9 +35,9 @@ enum { RESAMPLER_RESOLUTION_EXTRA = 1 << (RESAMPLER_SHIFT + RESAMPLER_SHIFT_EXTR
|
|||
enum { SINC_WIDTH = 16 };
|
||||
enum { SINC_SAMPLES = RESAMPLER_RESOLUTION * SINC_WIDTH };
|
||||
enum { CUBIC_SAMPLES = RESAMPLER_RESOLUTION * 4 };
|
||||
enum { IIR_ORDER = 6 };
|
||||
|
||||
static const float RESAMPLER_BLEP_CUTOFF = 0.90f;
|
||||
static const float RESAMPLER_BLAM_CUTOFF = 0.93f;
|
||||
static const float RESAMPLER_SINC_CUTOFF = 0.999f;
|
||||
|
||||
ALIGNED static float cubic_lut[CUBIC_SAMPLES];
|
||||
|
@ -138,6 +138,54 @@ void resampler_init(void)
|
|||
#endif
|
||||
}
|
||||
|
||||
typedef struct iir
|
||||
{
|
||||
double cutoff; //frequency cutoff
|
||||
double quality; //frequency response quality
|
||||
double gain; //peak gain
|
||||
double a0, a1, a2, b1, b2; //coefficients
|
||||
double z1, z2; //second-order IIR
|
||||
} iir;
|
||||
|
||||
static void iir_reset(iir * i, double cutoff, double quality, double gain)
|
||||
{
|
||||
double v, k, q, n;
|
||||
|
||||
i->cutoff = cutoff;
|
||||
i->quality = quality;
|
||||
i->gain = gain;
|
||||
|
||||
v = pow(10, fabs(gain) / 20.0);
|
||||
k = tan(M_PI * cutoff);
|
||||
q = quality;
|
||||
|
||||
n = 1 / (1 + k / q + k * k);
|
||||
i->a0 = k * k * n;
|
||||
i->a1 = 2 * i->a0;
|
||||
i->a2 = i->a0;
|
||||
i->b1 = 2 * (k * k - 1) * n;
|
||||
i->b2 = (1 - k / q + k * k) * n;
|
||||
}
|
||||
|
||||
static void iir_clear(iir * i)
|
||||
{
|
||||
i->z1 = 0.0;
|
||||
i->z2 = 0.0;
|
||||
}
|
||||
|
||||
static double iir_process(iir * i, double in)
|
||||
{
|
||||
double out = in * i->a0 + i->z1;
|
||||
i->z1 = in * i->a1 + i->z2 - i->b1 * out;
|
||||
i->z2 = in * i->a2 - i->b2 * out;
|
||||
return out;
|
||||
}
|
||||
|
||||
static double butterworth(unsigned int order, unsigned int phase)
|
||||
{
|
||||
return -0.5 / cos(M_PI / 2.0 * (1.0 + (1.0 + (2.0 * phase + 1.0) / order)));
|
||||
}
|
||||
|
||||
typedef struct resampler
|
||||
{
|
||||
int write_pos, write_filled;
|
||||
|
@ -149,10 +197,12 @@ typedef struct resampler
|
|||
unsigned char quality;
|
||||
signed char delay_added;
|
||||
signed char delay_removed;
|
||||
unsigned char output_stage;
|
||||
float last_amp;
|
||||
float accumulator;
|
||||
float buffer_in[resampler_buffer_size * 2];
|
||||
float buffer_out[resampler_buffer_size + SINC_WIDTH * 2 - 1];
|
||||
iir filter[IIR_ORDER / 2];
|
||||
} resampler;
|
||||
|
||||
void * resampler_create(void)
|
||||
|
@ -171,10 +221,12 @@ void * resampler_create(void)
|
|||
r->quality = RESAMPLER_QUALITY_MAX;
|
||||
r->delay_added = -1;
|
||||
r->delay_removed = -1;
|
||||
r->output_stage = 0;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset( r->buffer_in, 0, sizeof(r->buffer_in) );
|
||||
memset( r->buffer_out, 0, sizeof(r->buffer_out) );
|
||||
memset( r->filter, 0, sizeof(r->filter) );
|
||||
|
||||
return r;
|
||||
}
|
||||
|
@ -210,10 +262,12 @@ void resampler_dup_inplace(void *_d, const void *_s)
|
|||
r_out->quality = r_in->quality;
|
||||
r_out->delay_added = r_in->delay_added;
|
||||
r_out->delay_removed = r_in->delay_removed;
|
||||
r_out->output_stage = r_in->output_stage;
|
||||
r_out->last_amp = r_in->last_amp;
|
||||
r_out->accumulator = r_in->accumulator;
|
||||
memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) );
|
||||
memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) );
|
||||
memcpy( r_out->filter, r_in->filter, sizeof(r_in->filter) );
|
||||
}
|
||||
|
||||
void resampler_set_quality(void *_r, int quality)
|
||||
|
@ -225,8 +279,7 @@ void resampler_set_quality(void *_r, int quality)
|
|||
quality = RESAMPLER_QUALITY_MAX;
|
||||
if ( r->quality != quality )
|
||||
{
|
||||
if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP ||
|
||||
quality == RESAMPLER_QUALITY_BLAM || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
|
@ -236,6 +289,8 @@ void resampler_set_quality(void *_r, int quality)
|
|||
}
|
||||
r->delay_added = -1;
|
||||
r->delay_removed = -1;
|
||||
if ( quality == RESAMPLER_QUALITY_BLAM && r->phase_inc )
|
||||
resampler_set_rate( r, r->phase_inc );
|
||||
}
|
||||
r->quality = (unsigned char)quality;
|
||||
}
|
||||
|
@ -293,16 +348,21 @@ static int resampler_output_delay(resampler *r)
|
|||
default:
|
||||
case RESAMPLER_QUALITY_ZOH:
|
||||
case RESAMPLER_QUALITY_LINEAR:
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
case RESAMPLER_QUALITY_SINC:
|
||||
return 0;
|
||||
|
||||
case RESAMPLER_QUALITY_BLEP:
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
return SINC_WIDTH - 1;
|
||||
}
|
||||
}
|
||||
|
||||
int resampler_get_padding_size()
|
||||
{
|
||||
return SINC_WIDTH - 1;
|
||||
}
|
||||
|
||||
int resampler_ready(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
|
@ -321,21 +381,48 @@ void resampler_clear(void *_r)
|
|||
r->delay_removed = -1;
|
||||
memset(r->buffer_in, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
memset(r->buffer_in + resampler_buffer_size, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
if (r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM)
|
||||
if (r->quality == RESAMPLER_QUALITY_BLEP)
|
||||
{
|
||||
r->inv_phase = 0;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset(r->buffer_out, 0, sizeof(r->buffer_out));
|
||||
}
|
||||
if (r->quality == RESAMPLER_QUALITY_BLAM)
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
iir_clear(r->filter + i);
|
||||
}
|
||||
}
|
||||
|
||||
void resampler_set_rate(void *_r, double new_factor)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
float old_phase_inc = r->phase_inc;
|
||||
r->phase_inc = new_factor;
|
||||
new_factor = 1.0 / new_factor;
|
||||
r->inv_phase_inc = new_factor;
|
||||
if (r->quality == RESAMPLER_QUALITY_BLAM && old_phase_inc != r->phase_inc)
|
||||
{
|
||||
double ratio_ = new_factor;
|
||||
unsigned int i, j;
|
||||
r->output_stage = (ratio_ >= 1.0);
|
||||
if (!r->output_stage)
|
||||
{
|
||||
ratio_ *= 0.45;
|
||||
}
|
||||
else
|
||||
{
|
||||
ratio_ = (1.0 / ratio_) * 0.45;
|
||||
}
|
||||
if (ratio_ > 0.45)
|
||||
{
|
||||
ratio_ = 0.45;
|
||||
}
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
iir_reset(r->filter + i, ratio_, butterworth(IIR_ORDER, i), 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
void resampler_write_sample(void *_r, short s)
|
||||
|
@ -350,8 +437,16 @@ void resampler_write_sample(void *_r, short s)
|
|||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
double s32 = s;
|
||||
s32 *= 256.0;
|
||||
s32 += 1e-25;
|
||||
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLAM && !r->output_stage )
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
s32 = iir_process(r->filter + i, s32);
|
||||
}
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
@ -374,8 +469,16 @@ void resampler_write_sample_fixed(void *_r, int s, unsigned char depth)
|
|||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
double s32 = s;
|
||||
s32 /= (double)(1 << (depth - 1));
|
||||
s32 += 1e-25;
|
||||
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLAM && !r->output_stage )
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
s32 = iir_process(r->filter + i, s32);
|
||||
}
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
@ -697,11 +800,11 @@ static int resampler_run_linear(resampler * r, float ** out_, float * out_end)
|
|||
return used;
|
||||
}
|
||||
|
||||
#ifndef RESAMPLER_NEON
|
||||
static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
unsigned int output_stage = r->output_stage;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
|
@ -709,66 +812,36 @@ static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
|||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
sample -= last_amp;
|
||||
sample = in[0] + (in[1] - in[0]) * phase;
|
||||
|
||||
if (sample)
|
||||
if ( output_stage )
|
||||
{
|
||||
float kernel[SINC_WIDTH * 2], kernel_sum = 0.0f;
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
for (i = 0; i < SINC_WIDTH * 2; ++i)
|
||||
out[i] += sample * kernel[i];
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
sample = iir_process(r->filter + i, sample);
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
*out++ = sample;
|
||||
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
in += (int)phase;
|
||||
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
@ -778,204 +851,6 @@ static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
|||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef RESAMPLER_SSE
|
||||
static int resampler_run_blam_sse(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
{
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
}
|
||||
sample -= last_amp;
|
||||
|
||||
if (sample)
|
||||
{
|
||||
float kernel_sum = 0.0f;
|
||||
__m128 kernel[SINC_WIDTH / 2];
|
||||
__m128 temp1, temp2;
|
||||
__m128 samplex;
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
samplex = _mm_set1_ps( sample );
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = _mm_load_ps( (const float *)( kernel + i ) );
|
||||
temp1 = _mm_mul_ps( temp1, samplex );
|
||||
temp2 = _mm_loadu_ps( (const float *) out + i * 4 );
|
||||
temp1 = _mm_add_ps( temp1, temp2 );
|
||||
_mm_storeu_ps( (float *) out + i * 4, temp1 );
|
||||
}
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
if (phase >= 1.0f)
|
||||
{
|
||||
++in;
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef RESAMPLER_NEON
|
||||
static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
sample -= last_amp;
|
||||
|
||||
if (sample)
|
||||
{
|
||||
float kernel_sum = 0.0;
|
||||
float32x4_t kernel[SINC_WIDTH / 2];
|
||||
float32x4_t temp1, temp2;
|
||||
float32x4_t samplex;
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
samplex = vdupq_n_f32(sample);
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = vld1q_f32( (const float32_t *)( kernel + i ) );
|
||||
temp2 = vld1q_f32( (const float32_t *) out + i * 4 );
|
||||
temp2 = vmlaq_f32( temp2, temp1, samplex );
|
||||
vst1q_f32( (float32_t *) out + i * 4, temp2 );
|
||||
}
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
if (phase >= 1.0f)
|
||||
{
|
||||
++in;
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef RESAMPLER_NEON
|
||||
static int resampler_run_cubic(resampler * r, float ** out_, float * out_end)
|
||||
|
@ -1382,25 +1257,8 @@ static void resampler_fill(resampler * r)
|
|||
break;
|
||||
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
{
|
||||
float * out_ = out;
|
||||
int write_extra = 0;
|
||||
if ( write_pos >= r->read_pos )
|
||||
write_extra = r->read_pos;
|
||||
if ( write_extra > SINC_WIDTH * 2 - 1 )
|
||||
write_extra = SINC_WIDTH * 2 - 1;
|
||||
memcpy( r->buffer_out + resampler_buffer_size, r->buffer_out, write_extra * sizeof(r->buffer_out[0]) );
|
||||
#ifdef RESAMPLER_SSE
|
||||
if ( resampler_has_sse )
|
||||
resampler_run_blam_sse( r, &out, out + write_size + write_extra );
|
||||
else
|
||||
#endif
|
||||
resampler_run_blam( r, &out, out + write_size + write_extra );
|
||||
memcpy( r->buffer_out, r->buffer_out + resampler_buffer_size, write_extra * sizeof(r->buffer_out[0]) );
|
||||
if ( out == out_ )
|
||||
return;
|
||||
resampler_run_blam( r, &out, out + write_size );
|
||||
break;
|
||||
}
|
||||
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
#ifdef RESAMPLER_SSE
|
||||
|
@ -1439,7 +1297,7 @@ static void resampler_fill_and_remove_delay(resampler * r)
|
|||
int resampler_get_sample_count(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled < 1 && ((r->quality != RESAMPLER_QUALITY_BLEP && r->quality != RESAMPLER_QUALITY_BLAM) || r->inv_phase_inc))
|
||||
if ( r->read_filled < 1 && (r->quality != RESAMPLER_QUALITY_BLEP || r->inv_phase_inc) )
|
||||
resampler_fill_and_remove_delay( r );
|
||||
return r->read_filled;
|
||||
}
|
||||
|
@ -1451,7 +1309,7 @@ int resampler_get_sample(void *_r)
|
|||
resampler_fill_and_remove_delay( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
return (int)(r->buffer_out[ r->read_pos ] + r->accumulator);
|
||||
else
|
||||
return (int)r->buffer_out[ r->read_pos ];
|
||||
|
@ -1464,7 +1322,7 @@ float resampler_get_sample_float(void *_r)
|
|||
resampler_fill_and_remove_delay( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
return r->buffer_out[ r->read_pos ] + r->accumulator;
|
||||
else
|
||||
return r->buffer_out[ r->read_pos ];
|
||||
|
@ -1475,7 +1333,7 @@ void resampler_remove_sample(void *_r, int decay)
|
|||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled > 0 )
|
||||
{
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->accumulator += r->buffer_out[ r->read_pos ];
|
||||
r->buffer_out[ r->read_pos ] = 0;
|
||||
|
|
|
@ -35,9 +35,9 @@ enum { RESAMPLER_RESOLUTION_EXTRA = 1 << (RESAMPLER_SHIFT + RESAMPLER_SHIFT_EXTR
|
|||
enum { SINC_WIDTH = 16 };
|
||||
enum { SINC_SAMPLES = RESAMPLER_RESOLUTION * SINC_WIDTH };
|
||||
enum { CUBIC_SAMPLES = RESAMPLER_RESOLUTION * 4 };
|
||||
enum { IIR_ORDER = 6 };
|
||||
|
||||
static const float RESAMPLER_BLEP_CUTOFF = 0.90f;
|
||||
static const float RESAMPLER_BLAM_CUTOFF = 0.93f;
|
||||
static const float RESAMPLER_SINC_CUTOFF = 0.999f;
|
||||
|
||||
ALIGNED static float cubic_lut[CUBIC_SAMPLES];
|
||||
|
@ -138,6 +138,54 @@ void resampler_init(void)
|
|||
#endif
|
||||
}
|
||||
|
||||
typedef struct iir
|
||||
{
|
||||
double cutoff; //frequency cutoff
|
||||
double quality; //frequency response quality
|
||||
double gain; //peak gain
|
||||
double a0, a1, a2, b1, b2; //coefficients
|
||||
double z1, z2; //second-order IIR
|
||||
} iir;
|
||||
|
||||
static void iir_reset(iir * i, double cutoff, double quality, double gain)
|
||||
{
|
||||
double v, k, q, n;
|
||||
|
||||
i->cutoff = cutoff;
|
||||
i->quality = quality;
|
||||
i->gain = gain;
|
||||
|
||||
v = pow(10, fabs(gain) / 20.0);
|
||||
k = tan(M_PI * cutoff);
|
||||
q = quality;
|
||||
|
||||
n = 1 / (1 + k / q + k * k);
|
||||
i->a0 = k * k * n;
|
||||
i->a1 = 2 * i->a0;
|
||||
i->a2 = i->a0;
|
||||
i->b1 = 2 * (k * k - 1) * n;
|
||||
i->b2 = (1 - k / q + k * k) * n;
|
||||
}
|
||||
|
||||
static void iir_clear(iir * i)
|
||||
{
|
||||
i->z1 = 0.0;
|
||||
i->z2 = 0.0;
|
||||
}
|
||||
|
||||
static double iir_process(iir * i, double in)
|
||||
{
|
||||
double out = in * i->a0 + i->z1;
|
||||
i->z1 = in * i->a1 + i->z2 - i->b1 * out;
|
||||
i->z2 = in * i->a2 - i->b2 * out;
|
||||
return out;
|
||||
}
|
||||
|
||||
static double butterworth(unsigned int order, unsigned int phase)
|
||||
{
|
||||
return -0.5 / cos(M_PI / 2.0 * (1.0 + (1.0 + (2.0 * phase + 1.0) / order)));
|
||||
}
|
||||
|
||||
typedef struct resampler
|
||||
{
|
||||
int write_pos, write_filled;
|
||||
|
@ -149,10 +197,12 @@ typedef struct resampler
|
|||
unsigned char quality;
|
||||
signed char delay_added;
|
||||
signed char delay_removed;
|
||||
unsigned char output_stage;
|
||||
float last_amp;
|
||||
float accumulator;
|
||||
float buffer_in[resampler_buffer_size * 2];
|
||||
float buffer_out[resampler_buffer_size + SINC_WIDTH * 2 - 1];
|
||||
iir filter[IIR_ORDER / 2];
|
||||
} resampler;
|
||||
|
||||
void * resampler_create(void)
|
||||
|
@ -171,10 +221,12 @@ void * resampler_create(void)
|
|||
r->quality = RESAMPLER_QUALITY_MAX;
|
||||
r->delay_added = -1;
|
||||
r->delay_removed = -1;
|
||||
r->output_stage = 0;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset( r->buffer_in, 0, sizeof(r->buffer_in) );
|
||||
memset( r->buffer_out, 0, sizeof(r->buffer_out) );
|
||||
memset( r->filter, 0, sizeof(r->filter) );
|
||||
|
||||
return r;
|
||||
}
|
||||
|
@ -210,10 +262,12 @@ void resampler_dup_inplace(void *_d, const void *_s)
|
|||
r_out->quality = r_in->quality;
|
||||
r_out->delay_added = r_in->delay_added;
|
||||
r_out->delay_removed = r_in->delay_removed;
|
||||
r_out->output_stage = r_in->output_stage;
|
||||
r_out->last_amp = r_in->last_amp;
|
||||
r_out->accumulator = r_in->accumulator;
|
||||
memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) );
|
||||
memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) );
|
||||
memcpy( r_out->filter, r_in->filter, sizeof(r_in->filter) );
|
||||
}
|
||||
|
||||
void resampler_set_quality(void *_r, int quality)
|
||||
|
@ -225,8 +279,7 @@ void resampler_set_quality(void *_r, int quality)
|
|||
quality = RESAMPLER_QUALITY_MAX;
|
||||
if ( r->quality != quality )
|
||||
{
|
||||
if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP ||
|
||||
quality == RESAMPLER_QUALITY_BLAM || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
|
@ -236,6 +289,8 @@ void resampler_set_quality(void *_r, int quality)
|
|||
}
|
||||
r->delay_added = -1;
|
||||
r->delay_removed = -1;
|
||||
if ( quality == RESAMPLER_QUALITY_BLAM && r->phase_inc )
|
||||
resampler_set_rate( r, r->phase_inc );
|
||||
}
|
||||
r->quality = (unsigned char)quality;
|
||||
}
|
||||
|
@ -293,12 +348,12 @@ static int resampler_output_delay(resampler *r)
|
|||
default:
|
||||
case RESAMPLER_QUALITY_ZOH:
|
||||
case RESAMPLER_QUALITY_LINEAR:
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
case RESAMPLER_QUALITY_SINC:
|
||||
return 0;
|
||||
|
||||
case RESAMPLER_QUALITY_BLEP:
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
return SINC_WIDTH - 1;
|
||||
}
|
||||
}
|
||||
|
@ -326,21 +381,48 @@ void resampler_clear(void *_r)
|
|||
r->delay_removed = -1;
|
||||
memset(r->buffer_in, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
memset(r->buffer_in + resampler_buffer_size, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
if (r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM)
|
||||
if (r->quality == RESAMPLER_QUALITY_BLEP)
|
||||
{
|
||||
r->inv_phase = 0;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset(r->buffer_out, 0, sizeof(r->buffer_out));
|
||||
}
|
||||
if (r->quality == RESAMPLER_QUALITY_BLAM)
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
iir_clear(r->filter + i);
|
||||
}
|
||||
}
|
||||
|
||||
void resampler_set_rate(void *_r, double new_factor)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
float old_phase_inc = r->phase_inc;
|
||||
r->phase_inc = new_factor;
|
||||
new_factor = 1.0 / new_factor;
|
||||
r->inv_phase_inc = new_factor;
|
||||
if (r->quality == RESAMPLER_QUALITY_BLAM && old_phase_inc != r->phase_inc)
|
||||
{
|
||||
double ratio_ = new_factor;
|
||||
unsigned int i, j;
|
||||
r->output_stage = (ratio_ >= 1.0);
|
||||
if (!r->output_stage)
|
||||
{
|
||||
ratio_ *= 0.45;
|
||||
}
|
||||
else
|
||||
{
|
||||
ratio_ = (1.0 / ratio_) * 0.45;
|
||||
}
|
||||
if (ratio_ > 0.45)
|
||||
{
|
||||
ratio_ = 0.45;
|
||||
}
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
iir_reset(r->filter + i, ratio_, butterworth(IIR_ORDER, i), 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
void resampler_write_sample(void *_r, short s)
|
||||
|
@ -355,8 +437,16 @@ void resampler_write_sample(void *_r, short s)
|
|||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
double s32 = s;
|
||||
s32 *= 256.0;
|
||||
s32 += 1e-25;
|
||||
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLAM && !r->output_stage )
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
s32 = iir_process(r->filter + i, s32);
|
||||
}
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
@ -379,8 +469,16 @@ void resampler_write_sample_fixed(void *_r, int s, unsigned char depth)
|
|||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
double s32 = s;
|
||||
s32 /= (double)(1 << (depth - 1));
|
||||
s32 += 1e-25;
|
||||
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLAM && !r->output_stage )
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
s32 = iir_process(r->filter + i, s32);
|
||||
}
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
@ -702,11 +800,11 @@ static int resampler_run_linear(resampler * r, float ** out_, float * out_end)
|
|||
return used;
|
||||
}
|
||||
|
||||
#ifndef RESAMPLER_NEON
|
||||
static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
unsigned int output_stage = r->output_stage;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
|
@ -714,66 +812,36 @@ static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
|||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
sample -= last_amp;
|
||||
sample = in[0] + (in[1] - in[0]) * phase;
|
||||
|
||||
if (sample)
|
||||
if ( output_stage )
|
||||
{
|
||||
float kernel[SINC_WIDTH * 2], kernel_sum = 0.0f;
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
for (i = 0; i < SINC_WIDTH * 2; ++i)
|
||||
out[i] += sample * kernel[i];
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
sample = iir_process(r->filter + i, sample);
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
*out++ = sample;
|
||||
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
in += (int)phase;
|
||||
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
@ -783,204 +851,6 @@ static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
|||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef RESAMPLER_SSE
|
||||
static int resampler_run_blam_sse(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
{
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
}
|
||||
sample -= last_amp;
|
||||
|
||||
if (sample)
|
||||
{
|
||||
float kernel_sum = 0.0f;
|
||||
__m128 kernel[SINC_WIDTH / 2];
|
||||
__m128 temp1, temp2;
|
||||
__m128 samplex;
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
samplex = _mm_set1_ps( sample );
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = _mm_load_ps( (const float *)( kernel + i ) );
|
||||
temp1 = _mm_mul_ps( temp1, samplex );
|
||||
temp2 = _mm_loadu_ps( (const float *) out + i * 4 );
|
||||
temp1 = _mm_add_ps( temp1, temp2 );
|
||||
_mm_storeu_ps( (float *) out + i * 4, temp1 );
|
||||
}
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
if (phase >= 1.0f)
|
||||
{
|
||||
++in;
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef RESAMPLER_NEON
|
||||
static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
sample -= last_amp;
|
||||
|
||||
if (sample)
|
||||
{
|
||||
float kernel_sum = 0.0;
|
||||
float32x4_t kernel[SINC_WIDTH / 2];
|
||||
float32x4_t temp1, temp2;
|
||||
float32x4_t samplex;
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
samplex = vdupq_n_f32(sample);
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = vld1q_f32( (const float32_t *)( kernel + i ) );
|
||||
temp2 = vld1q_f32( (const float32_t *) out + i * 4 );
|
||||
temp2 = vmlaq_f32( temp2, temp1, samplex );
|
||||
vst1q_f32( (float32_t *) out + i * 4, temp2 );
|
||||
}
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
if (phase >= 1.0f)
|
||||
{
|
||||
++in;
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef RESAMPLER_NEON
|
||||
static int resampler_run_cubic(resampler * r, float ** out_, float * out_end)
|
||||
|
@ -1218,7 +1088,7 @@ static int resampler_run_sinc_sse(resampler * r, float ** out_, float * out_end)
|
|||
// accumulate in extended precision
|
||||
float kernel_sum = 0.0;
|
||||
__m128 kernel[SINC_WIDTH / 2];
|
||||
__m128 temp1 = {0}, temp2;
|
||||
__m128 temp1, temp2;
|
||||
__m128 samplex = _mm_setzero_ps();
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int i = SINC_WIDTH;
|
||||
|
@ -1387,25 +1257,8 @@ static void resampler_fill(resampler * r)
|
|||
break;
|
||||
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
{
|
||||
float * out_ = out;
|
||||
int write_extra = 0;
|
||||
if ( write_pos >= r->read_pos )
|
||||
write_extra = r->read_pos;
|
||||
if ( write_extra > SINC_WIDTH * 2 - 1 )
|
||||
write_extra = SINC_WIDTH * 2 - 1;
|
||||
memcpy( r->buffer_out + resampler_buffer_size, r->buffer_out, write_extra * sizeof(r->buffer_out[0]) );
|
||||
#ifdef RESAMPLER_SSE
|
||||
if ( resampler_has_sse )
|
||||
resampler_run_blam_sse( r, &out, out + write_size + write_extra );
|
||||
else
|
||||
#endif
|
||||
resampler_run_blam( r, &out, out + write_size + write_extra );
|
||||
memcpy( r->buffer_out, r->buffer_out + resampler_buffer_size, write_extra * sizeof(r->buffer_out[0]) );
|
||||
if ( out == out_ )
|
||||
return;
|
||||
resampler_run_blam( r, &out, out + write_size );
|
||||
break;
|
||||
}
|
||||
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
#ifdef RESAMPLER_SSE
|
||||
|
@ -1444,7 +1297,7 @@ static void resampler_fill_and_remove_delay(resampler * r)
|
|||
int resampler_get_sample_count(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled < 1 && ((r->quality != RESAMPLER_QUALITY_BLEP && r->quality != RESAMPLER_QUALITY_BLAM) || r->inv_phase_inc))
|
||||
if ( r->read_filled < 1 && (r->quality != RESAMPLER_QUALITY_BLEP || r->inv_phase_inc) )
|
||||
resampler_fill_and_remove_delay( r );
|
||||
return r->read_filled;
|
||||
}
|
||||
|
@ -1456,7 +1309,7 @@ int resampler_get_sample(void *_r)
|
|||
resampler_fill_and_remove_delay( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
return (int)(r->buffer_out[ r->read_pos ] + r->accumulator);
|
||||
else
|
||||
return (int)r->buffer_out[ r->read_pos ];
|
||||
|
@ -1469,7 +1322,7 @@ float resampler_get_sample_float(void *_r)
|
|||
resampler_fill_and_remove_delay( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
return r->buffer_out[ r->read_pos ] + r->accumulator;
|
||||
else
|
||||
return r->buffer_out[ r->read_pos ];
|
||||
|
@ -1480,7 +1333,7 @@ void resampler_remove_sample(void *_r, int decay)
|
|||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled > 0 )
|
||||
{
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->accumulator += r->buffer_out[ r->read_pos ];
|
||||
r->buffer_out[ r->read_pos ] = 0;
|
||||
|
|
|
@ -35,9 +35,9 @@ enum { RESAMPLER_RESOLUTION_EXTRA = 1 << (RESAMPLER_SHIFT + RESAMPLER_SHIFT_EXTR
|
|||
enum { SINC_WIDTH = 16 };
|
||||
enum { SINC_SAMPLES = RESAMPLER_RESOLUTION * SINC_WIDTH };
|
||||
enum { CUBIC_SAMPLES = RESAMPLER_RESOLUTION * 4 };
|
||||
enum { IIR_ORDER = 6 };
|
||||
|
||||
static const float RESAMPLER_BLEP_CUTOFF = 0.90f;
|
||||
static const float RESAMPLER_BLAM_CUTOFF = 0.93f;
|
||||
static const float RESAMPLER_SINC_CUTOFF = 0.999f;
|
||||
|
||||
ALIGNED static float cubic_lut[CUBIC_SAMPLES];
|
||||
|
@ -138,6 +138,54 @@ void resampler_init(void)
|
|||
#endif
|
||||
}
|
||||
|
||||
typedef struct iir
|
||||
{
|
||||
double cutoff; //frequency cutoff
|
||||
double quality; //frequency response quality
|
||||
double gain; //peak gain
|
||||
double a0, a1, a2, b1, b2; //coefficients
|
||||
double z1, z2; //second-order IIR
|
||||
} iir;
|
||||
|
||||
static void iir_reset(iir * i, double cutoff, double quality, double gain)
|
||||
{
|
||||
double v, k, q, n;
|
||||
|
||||
i->cutoff = cutoff;
|
||||
i->quality = quality;
|
||||
i->gain = gain;
|
||||
|
||||
v = pow(10, fabs(gain) / 20.0);
|
||||
k = tan(M_PI * cutoff);
|
||||
q = quality;
|
||||
|
||||
n = 1 / (1 + k / q + k * k);
|
||||
i->a0 = k * k * n;
|
||||
i->a1 = 2 * i->a0;
|
||||
i->a2 = i->a0;
|
||||
i->b1 = 2 * (k * k - 1) * n;
|
||||
i->b2 = (1 - k / q + k * k) * n;
|
||||
}
|
||||
|
||||
static void iir_clear(iir * i)
|
||||
{
|
||||
i->z1 = 0.0;
|
||||
i->z2 = 0.0;
|
||||
}
|
||||
|
||||
static double iir_process(iir * i, double in)
|
||||
{
|
||||
double out = in * i->a0 + i->z1;
|
||||
i->z1 = in * i->a1 + i->z2 - i->b1 * out;
|
||||
i->z2 = in * i->a2 - i->b2 * out;
|
||||
return out;
|
||||
}
|
||||
|
||||
static double butterworth(unsigned int order, unsigned int phase)
|
||||
{
|
||||
return -0.5 / cos(M_PI / 2.0 * (1.0 + (1.0 + (2.0 * phase + 1.0) / order)));
|
||||
}
|
||||
|
||||
typedef struct resampler
|
||||
{
|
||||
int write_pos, write_filled;
|
||||
|
@ -149,10 +197,12 @@ typedef struct resampler
|
|||
unsigned char quality;
|
||||
signed char delay_added;
|
||||
signed char delay_removed;
|
||||
unsigned char output_stage;
|
||||
float last_amp;
|
||||
float accumulator;
|
||||
float buffer_in[resampler_buffer_size * 2];
|
||||
float buffer_out[resampler_buffer_size + SINC_WIDTH * 2 - 1];
|
||||
iir filter[IIR_ORDER / 2];
|
||||
} resampler;
|
||||
|
||||
void * resampler_create(void)
|
||||
|
@ -171,10 +221,12 @@ void * resampler_create(void)
|
|||
r->quality = RESAMPLER_QUALITY_MAX;
|
||||
r->delay_added = -1;
|
||||
r->delay_removed = -1;
|
||||
r->output_stage = 0;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset( r->buffer_in, 0, sizeof(r->buffer_in) );
|
||||
memset( r->buffer_out, 0, sizeof(r->buffer_out) );
|
||||
memset( r->filter, 0, sizeof(r->filter) );
|
||||
|
||||
return r;
|
||||
}
|
||||
|
@ -210,10 +262,12 @@ void resampler_dup_inplace(void *_d, const void *_s)
|
|||
r_out->quality = r_in->quality;
|
||||
r_out->delay_added = r_in->delay_added;
|
||||
r_out->delay_removed = r_in->delay_removed;
|
||||
r_out->output_stage = r_in->output_stage;
|
||||
r_out->last_amp = r_in->last_amp;
|
||||
r_out->accumulator = r_in->accumulator;
|
||||
memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) );
|
||||
memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) );
|
||||
memcpy( r_out->filter, r_in->filter, sizeof(r_in->filter) );
|
||||
}
|
||||
|
||||
void resampler_set_quality(void *_r, int quality)
|
||||
|
@ -225,8 +279,7 @@ void resampler_set_quality(void *_r, int quality)
|
|||
quality = RESAMPLER_QUALITY_MAX;
|
||||
if ( r->quality != quality )
|
||||
{
|
||||
if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP ||
|
||||
quality == RESAMPLER_QUALITY_BLAM || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
|
@ -236,6 +289,8 @@ void resampler_set_quality(void *_r, int quality)
|
|||
}
|
||||
r->delay_added = -1;
|
||||
r->delay_removed = -1;
|
||||
if ( quality == RESAMPLER_QUALITY_BLAM && r->phase_inc )
|
||||
resampler_set_rate( r, r->phase_inc );
|
||||
}
|
||||
r->quality = (unsigned char)quality;
|
||||
}
|
||||
|
@ -293,12 +348,12 @@ static int resampler_output_delay(resampler *r)
|
|||
default:
|
||||
case RESAMPLER_QUALITY_ZOH:
|
||||
case RESAMPLER_QUALITY_LINEAR:
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
case RESAMPLER_QUALITY_SINC:
|
||||
return 0;
|
||||
|
||||
case RESAMPLER_QUALITY_BLEP:
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
return SINC_WIDTH - 1;
|
||||
}
|
||||
}
|
||||
|
@ -326,21 +381,48 @@ void resampler_clear(void *_r)
|
|||
r->delay_removed = -1;
|
||||
memset(r->buffer_in, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
memset(r->buffer_in + resampler_buffer_size, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
if (r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM)
|
||||
if (r->quality == RESAMPLER_QUALITY_BLEP)
|
||||
{
|
||||
r->inv_phase = 0;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset(r->buffer_out, 0, sizeof(r->buffer_out));
|
||||
}
|
||||
if (r->quality == RESAMPLER_QUALITY_BLAM)
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
iir_clear(r->filter + i);
|
||||
}
|
||||
}
|
||||
|
||||
void resampler_set_rate(void *_r, double new_factor)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
float old_phase_inc = r->phase_inc;
|
||||
r->phase_inc = new_factor;
|
||||
new_factor = 1.0 / new_factor;
|
||||
r->inv_phase_inc = new_factor;
|
||||
if (r->quality == RESAMPLER_QUALITY_BLAM && old_phase_inc != r->phase_inc)
|
||||
{
|
||||
double ratio_ = new_factor;
|
||||
unsigned int i, j;
|
||||
r->output_stage = (ratio_ >= 1.0);
|
||||
if (!r->output_stage)
|
||||
{
|
||||
ratio_ *= 0.45;
|
||||
}
|
||||
else
|
||||
{
|
||||
ratio_ = (1.0 / ratio_) * 0.45;
|
||||
}
|
||||
if (ratio_ > 0.45)
|
||||
{
|
||||
ratio_ = 0.45;
|
||||
}
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
iir_reset(r->filter + i, ratio_, butterworth(IIR_ORDER, i), 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
void resampler_write_sample(void *_r, short s)
|
||||
|
@ -355,8 +437,16 @@ void resampler_write_sample(void *_r, short s)
|
|||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
double s32 = s;
|
||||
s32 *= 256.0;
|
||||
s32 += 1e-25;
|
||||
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLAM && !r->output_stage )
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
s32 = iir_process(r->filter + i, s32);
|
||||
}
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
@ -379,8 +469,16 @@ void resampler_write_sample_fixed(void *_r, int s, unsigned char depth)
|
|||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
double s32 = s;
|
||||
s32 /= (double)(1 << (depth - 1));
|
||||
s32 += 1e-25;
|
||||
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLAM && !r->output_stage )
|
||||
{
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
s32 = iir_process(r->filter + i, s32);
|
||||
}
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
@ -702,11 +800,11 @@ static int resampler_run_linear(resampler * r, float ** out_, float * out_end)
|
|||
return used;
|
||||
}
|
||||
|
||||
#ifndef RESAMPLER_NEON
|
||||
static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
unsigned int output_stage = r->output_stage;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
|
@ -714,66 +812,36 @@ static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
|||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
sample -= last_amp;
|
||||
sample = in[0] + (in[1] - in[0]) * phase;
|
||||
|
||||
if (sample)
|
||||
if ( output_stage )
|
||||
{
|
||||
float kernel[SINC_WIDTH * 2], kernel_sum = 0.0f;
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
for (i = 0; i < SINC_WIDTH * 2; ++i)
|
||||
out[i] += sample * kernel[i];
|
||||
unsigned int i, j;
|
||||
for (i = 0, j = IIR_ORDER / 2; i < j; ++i)
|
||||
sample = iir_process(r->filter + i, sample);
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
*out++ = sample;
|
||||
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
in += (int)phase;
|
||||
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
@ -783,204 +851,6 @@ static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
|||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef RESAMPLER_SSE
|
||||
static int resampler_run_blam_sse(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
{
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
}
|
||||
sample -= last_amp;
|
||||
|
||||
if (sample)
|
||||
{
|
||||
float kernel_sum = 0.0f;
|
||||
__m128 kernel[SINC_WIDTH / 2];
|
||||
__m128 temp1, temp2;
|
||||
__m128 samplex;
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
samplex = _mm_set1_ps( sample );
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = _mm_load_ps( (const float *)( kernel + i ) );
|
||||
temp1 = _mm_mul_ps( temp1, samplex );
|
||||
temp2 = _mm_loadu_ps( (const float *) out + i * 4 );
|
||||
temp1 = _mm_add_ps( temp1, temp2 );
|
||||
_mm_storeu_ps( (float *) out + i * 4, temp1 );
|
||||
}
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
if (phase >= 1.0f)
|
||||
{
|
||||
++in;
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef RESAMPLER_NEON
|
||||
static int resampler_run_blam(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
float phase = r->phase;
|
||||
float phase_inc = r->phase_inc;
|
||||
float inv_phase = r->inv_phase;
|
||||
float inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_BLAM_CUTOFF * RESAMPLER_RESOLUTION;
|
||||
const int window_step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
sample = in[0];
|
||||
if (phase_inc < 1.0f)
|
||||
sample += (in[1] - in[0]) * phase;
|
||||
sample -= last_amp;
|
||||
|
||||
if (sample)
|
||||
{
|
||||
float kernel_sum = 0.0;
|
||||
float32x4_t kernel[SINC_WIDTH / 2];
|
||||
float32x4_t temp1, temp2;
|
||||
float32x4_t samplex;
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int phase_reduced = (int)(inv_phase * RESAMPLER_RESOLUTION);
|
||||
int phase_adj = phase_reduced * step / RESAMPLER_RESOLUTION;
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
int window_pos = i * window_step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase_reduced - window_pos)];
|
||||
}
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
samplex = vdupq_n_f32(sample);
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = vld1q_f32( (const float32_t *)( kernel + i ) );
|
||||
temp2 = vld1q_f32( (const float32_t *) out + i * 4 );
|
||||
temp2 = vmlaq_f32( temp2, temp1, samplex );
|
||||
vst1q_f32( (float32_t *) out + i * 4, temp2 );
|
||||
}
|
||||
}
|
||||
|
||||
if (inv_phase_inc < 1.0f)
|
||||
{
|
||||
++in;
|
||||
inv_phase += inv_phase_inc;
|
||||
out += (int)inv_phase;
|
||||
inv_phase = fmod(inv_phase, 1.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
phase += phase_inc;
|
||||
++out;
|
||||
|
||||
if (phase >= 1.0f)
|
||||
{
|
||||
++in;
|
||||
phase = fmod(phase, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef RESAMPLER_NEON
|
||||
static int resampler_run_cubic(resampler * r, float ** out_, float * out_end)
|
||||
|
@ -1387,25 +1257,8 @@ static void resampler_fill(resampler * r)
|
|||
break;
|
||||
|
||||
case RESAMPLER_QUALITY_BLAM:
|
||||
{
|
||||
float * out_ = out;
|
||||
int write_extra = 0;
|
||||
if ( write_pos >= r->read_pos )
|
||||
write_extra = r->read_pos;
|
||||
if ( write_extra > SINC_WIDTH * 2 - 1 )
|
||||
write_extra = SINC_WIDTH * 2 - 1;
|
||||
memcpy( r->buffer_out + resampler_buffer_size, r->buffer_out, write_extra * sizeof(r->buffer_out[0]) );
|
||||
#ifdef RESAMPLER_SSE
|
||||
if ( resampler_has_sse )
|
||||
resampler_run_blam_sse( r, &out, out + write_size + write_extra );
|
||||
else
|
||||
#endif
|
||||
resampler_run_blam( r, &out, out + write_size + write_extra );
|
||||
memcpy( r->buffer_out, r->buffer_out + resampler_buffer_size, write_extra * sizeof(r->buffer_out[0]) );
|
||||
if ( out == out_ )
|
||||
return;
|
||||
resampler_run_blam( r, &out, out + write_size );
|
||||
break;
|
||||
}
|
||||
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
#ifdef RESAMPLER_SSE
|
||||
|
@ -1444,7 +1297,7 @@ static void resampler_fill_and_remove_delay(resampler * r)
|
|||
int resampler_get_sample_count(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled < 1 && ((r->quality != RESAMPLER_QUALITY_BLEP && r->quality != RESAMPLER_QUALITY_BLAM) || r->inv_phase_inc))
|
||||
if ( r->read_filled < 1 && (r->quality != RESAMPLER_QUALITY_BLEP || r->inv_phase_inc) )
|
||||
resampler_fill_and_remove_delay( r );
|
||||
return r->read_filled;
|
||||
}
|
||||
|
@ -1456,7 +1309,7 @@ int resampler_get_sample(void *_r)
|
|||
resampler_fill_and_remove_delay( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
return (int)(r->buffer_out[ r->read_pos ] + r->accumulator);
|
||||
else
|
||||
return (int)r->buffer_out[ r->read_pos ];
|
||||
|
@ -1469,7 +1322,7 @@ float resampler_get_sample_float(void *_r)
|
|||
resampler_fill_and_remove_delay( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
return r->buffer_out[ r->read_pos ] + r->accumulator;
|
||||
else
|
||||
return r->buffer_out[ r->read_pos ];
|
||||
|
@ -1480,7 +1333,7 @@ void resampler_remove_sample(void *_r, int decay)
|
|||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled > 0 )
|
||||
{
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLAM )
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->accumulator += r->buffer_out[ r->read_pos ];
|
||||
r->buffer_out[ r->read_pos ] = 0;
|
||||
|
|
Loading…
Reference in New Issue