Updated vio2sf with multiple configurable resampling modes
parent
c4288a8e61
commit
52e8c8f07d
|
@ -9,8 +9,8 @@
|
|||
/* Begin PBXBuildFile section */
|
||||
833B1A3E180BAD0200414852 /* isqrt.c in Sources */ = {isa = PBXBuildFile; fileRef = 833B1A3A180BAD0200414852 /* isqrt.c */; };
|
||||
833B1A3F180BAD0200414852 /* isqrt.h in Headers */ = {isa = PBXBuildFile; fileRef = 833B1A3B180BAD0200414852 /* isqrt.h */; };
|
||||
833B1A40180BAD0200414852 /* lanczos_resampler.c in Sources */ = {isa = PBXBuildFile; fileRef = 833B1A3C180BAD0200414852 /* lanczos_resampler.c */; };
|
||||
833B1A41180BAD0200414852 /* lanczos_resampler.h in Headers */ = {isa = PBXBuildFile; fileRef = 833B1A3D180BAD0200414852 /* lanczos_resampler.h */; };
|
||||
83DD1A0318EA634F00DADA1A /* resampler.c in Sources */ = {isa = PBXBuildFile; fileRef = 83DD1A0118EA634F00DADA1A /* resampler.c */; };
|
||||
83DD1A0418EA634F00DADA1A /* resampler.h in Headers */ = {isa = PBXBuildFile; fileRef = 83DD1A0218EA634F00DADA1A /* resampler.h */; };
|
||||
83DE0C14180A9BD400269051 /* InfoPlist.strings in Resources */ = {isa = PBXBuildFile; fileRef = 83DE0C12180A9BD400269051 /* InfoPlist.strings */; };
|
||||
83DE0C81180A9CA400269051 /* ARM9.h in Headers */ = {isa = PBXBuildFile; fileRef = 83DE0C46180A9CA400269051 /* ARM9.h */; };
|
||||
83DE0C82180A9CA400269051 /* arm_instructions.c in Sources */ = {isa = PBXBuildFile; fileRef = 83DE0C47180A9CA400269051 /* arm_instructions.c */; };
|
||||
|
@ -55,8 +55,8 @@
|
|||
/* Begin PBXFileReference section */
|
||||
833B1A3A180BAD0200414852 /* isqrt.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = isqrt.c; sourceTree = "<group>"; };
|
||||
833B1A3B180BAD0200414852 /* isqrt.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = isqrt.h; sourceTree = "<group>"; };
|
||||
833B1A3C180BAD0200414852 /* lanczos_resampler.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = lanczos_resampler.c; sourceTree = "<group>"; };
|
||||
833B1A3D180BAD0200414852 /* lanczos_resampler.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = lanczos_resampler.h; sourceTree = "<group>"; };
|
||||
83DD1A0118EA634F00DADA1A /* resampler.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = resampler.c; sourceTree = "<group>"; };
|
||||
83DD1A0218EA634F00DADA1A /* resampler.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = resampler.h; sourceTree = "<group>"; };
|
||||
83DE0C06180A9BD400269051 /* vio2sf.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = vio2sf.framework; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
83DE0C11180A9BD400269051 /* vio2sf-Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = "vio2sf-Info.plist"; sourceTree = "<group>"; };
|
||||
83DE0C13180A9BD400269051 /* en */ = {isa = PBXFileReference; lastKnownFileType = text.plist.strings; name = en; path = en.lproj/InfoPlist.strings; sourceTree = "<group>"; };
|
||||
|
@ -173,10 +173,10 @@
|
|||
83DE0C45180A9CA400269051 /* desmume */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
83DD1A0118EA634F00DADA1A /* resampler.c */,
|
||||
83DD1A0218EA634F00DADA1A /* resampler.h */,
|
||||
833B1A3A180BAD0200414852 /* isqrt.c */,
|
||||
833B1A3B180BAD0200414852 /* isqrt.h */,
|
||||
833B1A3C180BAD0200414852 /* lanczos_resampler.c */,
|
||||
833B1A3D180BAD0200414852 /* lanczos_resampler.h */,
|
||||
83DE0C46180A9CA400269051 /* ARM9.h */,
|
||||
83DE0C47180A9CA400269051 /* arm_instructions.c */,
|
||||
83DE0C48180A9CA400269051 /* arm_instructions.h */,
|
||||
|
@ -238,8 +238,8 @@
|
|||
83DE0C8C180A9CA400269051 /* cp15.h in Headers */,
|
||||
83DE0C95180A9CA400269051 /* matrix.h in Headers */,
|
||||
83DE0C9C180A9CA400269051 /* NDSSystem.h in Headers */,
|
||||
83DD1A0418EA634F00DADA1A /* resampler.h in Headers */,
|
||||
83DE0C89180A9CA400269051 /* config.h in Headers */,
|
||||
833B1A41180BAD0200414852 /* lanczos_resampler.h in Headers */,
|
||||
83DE0C8D180A9CA400269051 /* debug.h in Headers */,
|
||||
83DE0C98180A9CA400269051 /* mem.h in Headers */,
|
||||
83DE0C90180A9CA400269051 /* FIFO.h in Headers */,
|
||||
|
@ -326,13 +326,13 @@
|
|||
83DE0C96180A9CA400269051 /* mc.c in Sources */,
|
||||
83DE0C91180A9CA400269051 /* GPU.c in Sources */,
|
||||
83DE0CA4180A9CA400269051 /* thumb_instructions.c in Sources */,
|
||||
833B1A40180BAD0200414852 /* lanczos_resampler.c in Sources */,
|
||||
83DE0C84180A9CA400269051 /* armcpu.c in Sources */,
|
||||
83DE0C94180A9CA400269051 /* matrix.c in Sources */,
|
||||
833B1A3E180BAD0200414852 /* isqrt.c in Sources */,
|
||||
83DE0C93180A9CA400269051 /* instruction_tabdef.inc in Sources */,
|
||||
83DE0C9B180A9CA400269051 /* NDSSystem.c in Sources */,
|
||||
83DE0CB8180A9FD000269051 /* state.c in Sources */,
|
||||
83DD1A0318EA634F00DADA1A /* resampler.c in Sources */,
|
||||
83DE0C82180A9CA400269051 /* arm_instructions.c in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
|
|
|
@ -308,11 +308,9 @@ void SPU_struct::KeyOn(int channel)
|
|||
{
|
||||
channel_struct &thischan = channels[channel];
|
||||
|
||||
if (spuInterpolationMode(state) == SPUInterpolation_Lanczos)
|
||||
{
|
||||
thischan.init_lanczos();
|
||||
lanczos_resampler_clear(thischan.lanczos_resampler);
|
||||
}
|
||||
thischan.init_resampler();
|
||||
resampler_clear(thischan.resampler);
|
||||
resampler_set_quality(thischan.resampler, thischan.format == 3 ? RESAMPLER_QUALITY_BLEP : spuInterpolationMode(state));
|
||||
|
||||
adjust_channel_timer(&thischan);
|
||||
|
||||
|
@ -514,55 +512,19 @@ extern "C" void SPU_WriteLong(NDS_state *state, u32 addr, u32 val)
|
|||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
static FORCEINLINE s32 Interpolate(s32 a, s32 b, double ratio)
|
||||
{
|
||||
//linear interpolation
|
||||
ratio = ratio - sputrunc(ratio);
|
||||
return s32floor((float)((1-ratio)*a + ratio*b));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
double round(double r)
|
||||
{
|
||||
return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);
|
||||
}
|
||||
|
||||
static FORCEINLINE void Fetch8BitDataInternal(SPUInterpolationMode INTERPOLATE_MODE, channel_struct *chan, s32 *data)
|
||||
static FORCEINLINE void Fetch8BitDataInternal(channel_struct *chan, s32 *data)
|
||||
{
|
||||
u32 loc = sputrunc(chan->sampcnt);
|
||||
if(INTERPOLATE_MODE == SPUInterpolation_Linear)
|
||||
{
|
||||
s32 a = (s32)(chan->buf8[loc] << 8);
|
||||
if(loc < (chan->totlength << 2) - 1) {
|
||||
s32 b = (s32)(chan->buf8[loc + 1] << 8);
|
||||
a = Interpolate(a, b, chan->sampcnt);
|
||||
}
|
||||
*data = a;
|
||||
}
|
||||
else
|
||||
*data = (s32)chan->buf8[loc] << 8;
|
||||
}
|
||||
|
||||
static FORCEINLINE void Fetch16BitDataInternal(SPUInterpolationMode INTERPOLATE_MODE, const channel_struct * const chan, s32 *data)
|
||||
static FORCEINLINE void Fetch16BitDataInternal(const channel_struct * const chan, s32 *data)
|
||||
{
|
||||
const s16* const buf16 = chan->buf16;
|
||||
const int shift = 1;
|
||||
if(INTERPOLATE_MODE == SPUInterpolation_Linear)
|
||||
{
|
||||
u32 loc = sputrunc(chan->sampcnt);
|
||||
s32 a = (s32)buf16[loc], b;
|
||||
if(loc < (chan->totlength << shift) - 1)
|
||||
{
|
||||
b = (s32)buf16[loc + 1];
|
||||
a = Interpolate(a, b, chan->sampcnt);
|
||||
}
|
||||
*data = a;
|
||||
}
|
||||
else
|
||||
*data = (s32)buf16[sputrunc(chan->sampcnt)];
|
||||
}
|
||||
|
||||
static FORCEINLINE void FetchADPCMDataInternal(SPUInterpolationMode INTERPOLATE_MODE, channel_struct * const chan, s32 * const data)
|
||||
static FORCEINLINE void FetchADPCMDataInternal(channel_struct * const chan, s32 * const data)
|
||||
{
|
||||
// No sense decoding, just return the last sample
|
||||
if (chan->lastsampcnt != sputrunc(chan->sampcnt)){
|
||||
|
@ -589,9 +551,6 @@ static FORCEINLINE void FetchADPCMDataInternal(SPUInterpolationMode INTERPOLATE_
|
|||
chan->lastsampcnt = sputrunc(chan->sampcnt);
|
||||
}
|
||||
|
||||
if(INTERPOLATE_MODE == SPUInterpolation_Linear)
|
||||
*data = Interpolate((s32)chan->pcm16b_last,(s32)chan->pcm16b,chan->sampcnt);
|
||||
else
|
||||
*data = (s32)chan->pcm16b;
|
||||
}
|
||||
|
||||
|
@ -674,7 +633,7 @@ static FORCEINLINE void TestForLoop(NDS_state *state, int FORMAT, SPU_struct *SP
|
|||
}
|
||||
else
|
||||
{
|
||||
if (!chan->lanczos_resampler || !lanczos_resampler_get_sample_count(chan->lanczos_resampler))
|
||||
if (!chan->resampler || !resampler_get_sample_count(chan->resampler))
|
||||
{
|
||||
chan->status = CHANSTAT_STOPPED;
|
||||
|
||||
|
@ -717,7 +676,7 @@ static FORCEINLINE void TestForLoop2(NDS_state *state, SPU_struct *SPU, channel_
|
|||
}
|
||||
else
|
||||
{
|
||||
if (!chan->lanczos_resampler || !lanczos_resampler_get_sample_count(chan->lanczos_resampler))
|
||||
if (!chan->resampler || !resampler_get_sample_count(chan->resampler))
|
||||
{
|
||||
chan->status = CHANSTAT_STOPPED;
|
||||
if(SPU == state->SPU_core)
|
||||
|
@ -734,25 +693,22 @@ static FORCEINLINE void TestForLoop2(NDS_state *state, SPU_struct *SPU, channel_
|
|||
|
||||
static FORCEINLINE void Fetch8BitData(SPUInterpolationMode INTERPOLATE_MODE, NDS_state *state, SPU_struct* const SPU, channel_struct *chan, s32 *data)
|
||||
{
|
||||
if (INTERPOLATE_MODE != SPUInterpolation_Lanczos)
|
||||
return Fetch8BitDataInternal(INTERPOLATE_MODE, chan, data);
|
||||
|
||||
double saved_inc = chan->sampinc;
|
||||
chan->sampinc = 1.0;
|
||||
|
||||
lanczos_resampler_set_rate( chan->lanczos_resampler, saved_inc );
|
||||
resampler_set_rate( chan->resampler, saved_inc );
|
||||
|
||||
while (chan->status != CHANSTAT_EMPTYBUFFER && lanczos_resampler_get_free_count(chan->lanczos_resampler))
|
||||
while (chan->status != CHANSTAT_EMPTYBUFFER && resampler_get_free_count(chan->resampler))
|
||||
{
|
||||
s32 sample;
|
||||
Fetch8BitDataInternal(SPUInterpolation_None, chan, &sample);
|
||||
Fetch8BitDataInternal(chan, &sample);
|
||||
TestForLoop(state, 0, SPU, chan);
|
||||
lanczos_resampler_write_sample(chan->lanczos_resampler, sample);
|
||||
resampler_write_sample(chan->resampler, sample);
|
||||
}
|
||||
|
||||
chan->sampinc = saved_inc;
|
||||
|
||||
if (!lanczos_resampler_get_sample_count(chan->lanczos_resampler))
|
||||
if (!resampler_get_sample_count(chan->resampler))
|
||||
{
|
||||
chan->status = CHANSTAT_STOPPED;
|
||||
if(SPU == state->SPU_core)
|
||||
|
@ -760,31 +716,28 @@ static FORCEINLINE void Fetch8BitData(SPUInterpolationMode INTERPOLATE_MODE, NDS
|
|||
SPU->bufpos = SPU->buflength;
|
||||
}
|
||||
|
||||
*data = lanczos_resampler_get_sample(chan->lanczos_resampler);
|
||||
lanczos_resampler_remove_sample(chan->lanczos_resampler);
|
||||
*data = resampler_get_sample(chan->resampler);
|
||||
resampler_remove_sample(chan->resampler);
|
||||
}
|
||||
|
||||
static FORCEINLINE void Fetch16BitData(SPUInterpolationMode INTERPOLATE_MODE, NDS_state *state, SPU_struct* const SPU, channel_struct *chan, s32 *data)
|
||||
{
|
||||
if (INTERPOLATE_MODE != SPUInterpolation_Lanczos)
|
||||
return Fetch16BitDataInternal(INTERPOLATE_MODE, chan, data);
|
||||
|
||||
double saved_inc = chan->sampinc;
|
||||
chan->sampinc = 1.0;
|
||||
|
||||
lanczos_resampler_set_rate( chan->lanczos_resampler, saved_inc );
|
||||
resampler_set_rate( chan->resampler, saved_inc );
|
||||
|
||||
while (chan->status != CHANSTAT_EMPTYBUFFER && lanczos_resampler_get_free_count(chan->lanczos_resampler))
|
||||
while (chan->status != CHANSTAT_EMPTYBUFFER && resampler_get_free_count(chan->resampler))
|
||||
{
|
||||
s32 sample;
|
||||
Fetch16BitDataInternal(SPUInterpolation_None, chan, &sample);
|
||||
Fetch16BitDataInternal(chan, &sample);
|
||||
TestForLoop(state, 1, SPU, chan);
|
||||
lanczos_resampler_write_sample(chan->lanczos_resampler, sample);
|
||||
resampler_write_sample(chan->resampler, sample);
|
||||
}
|
||||
|
||||
chan->sampinc = saved_inc;
|
||||
|
||||
if (!lanczos_resampler_get_sample_count(chan->lanczos_resampler))
|
||||
if (!resampler_get_sample_count(chan->resampler))
|
||||
{
|
||||
chan->status = CHANSTAT_STOPPED;
|
||||
if(SPU == state->SPU_core)
|
||||
|
@ -792,31 +745,28 @@ static FORCEINLINE void Fetch16BitData(SPUInterpolationMode INTERPOLATE_MODE, ND
|
|||
SPU->bufpos = SPU->buflength;
|
||||
}
|
||||
|
||||
*data = lanczos_resampler_get_sample(chan->lanczos_resampler);
|
||||
lanczos_resampler_remove_sample(chan->lanczos_resampler);
|
||||
*data = resampler_get_sample(chan->resampler);
|
||||
resampler_remove_sample(chan->resampler);
|
||||
}
|
||||
|
||||
static FORCEINLINE void FetchADPCMData(SPUInterpolationMode INTERPOLATE_MODE, NDS_state *state, SPU_struct* const SPU, channel_struct *chan, s32 *data)
|
||||
{
|
||||
if (INTERPOLATE_MODE != SPUInterpolation_Lanczos)
|
||||
return FetchADPCMDataInternal(INTERPOLATE_MODE, chan, data);
|
||||
|
||||
double saved_inc = chan->sampinc;
|
||||
chan->sampinc = 1.0;
|
||||
|
||||
lanczos_resampler_set_rate( chan->lanczos_resampler, saved_inc );
|
||||
resampler_set_rate( chan->resampler, saved_inc );
|
||||
|
||||
while (chan->status != CHANSTAT_EMPTYBUFFER && lanczos_resampler_get_free_count(chan->lanczos_resampler))
|
||||
while (chan->status != CHANSTAT_EMPTYBUFFER && resampler_get_free_count(chan->resampler))
|
||||
{
|
||||
s32 sample;
|
||||
FetchADPCMDataInternal(SPUInterpolation_None, chan, &sample);
|
||||
FetchADPCMDataInternal(chan, &sample);
|
||||
TestForLoop2(state, SPU, chan);
|
||||
lanczos_resampler_write_sample(chan->lanczos_resampler, sample);
|
||||
resampler_write_sample(chan->resampler, sample);
|
||||
}
|
||||
|
||||
chan->sampinc = saved_inc;
|
||||
|
||||
if (!lanczos_resampler_get_sample_count(chan->lanczos_resampler))
|
||||
if (!resampler_get_sample_count(chan->resampler))
|
||||
{
|
||||
chan->status = CHANSTAT_STOPPED;
|
||||
if(SPU == state->SPU_core)
|
||||
|
@ -824,34 +774,28 @@ static FORCEINLINE void FetchADPCMData(SPUInterpolationMode INTERPOLATE_MODE, ND
|
|||
SPU->bufpos = SPU->buflength;
|
||||
}
|
||||
|
||||
*data = lanczos_resampler_get_sample(chan->lanczos_resampler);
|
||||
lanczos_resampler_remove_sample(chan->lanczos_resampler);
|
||||
*data = resampler_get_sample(chan->resampler);
|
||||
resampler_remove_sample(chan->resampler);
|
||||
}
|
||||
|
||||
static FORCEINLINE void FetchPSGData(SPUInterpolationMode INTERPOLATE_MODE, channel_struct *chan, s32 *data)
|
||||
{
|
||||
const double PSG_RATIO = 32.0;
|
||||
const double PSG_DIVIDER = 1.0 / PSG_RATIO;
|
||||
resampler_set_rate( chan->resampler, chan->sampinc );
|
||||
|
||||
if (INTERPOLATE_MODE != SPUInterpolation_Lanczos)
|
||||
return FetchPSGDataInternal(chan, data);
|
||||
|
||||
lanczos_resampler_set_rate( chan->lanczos_resampler, chan->sampinc * PSG_RATIO );
|
||||
|
||||
while (lanczos_resampler_get_free_count(chan->lanczos_resampler))
|
||||
while (resampler_get_free_count(chan->resampler))
|
||||
{
|
||||
s32 sample;
|
||||
FetchPSGDataInternal(chan, &sample);
|
||||
chan->sampcnt += PSG_DIVIDER;
|
||||
lanczos_resampler_write_sample(chan->lanczos_resampler, sample);
|
||||
chan->sampcnt += 1.0;
|
||||
resampler_write_sample(chan->resampler, sample);
|
||||
}
|
||||
|
||||
/* No need to check if resampler is empty since we always fill it completely,
|
||||
* and PSG channels never report terminating on their own.
|
||||
*/
|
||||
|
||||
*data = lanczos_resampler_get_sample(chan->lanczos_resampler);
|
||||
lanczos_resampler_remove_sample(chan->lanczos_resampler);
|
||||
*data = resampler_get_sample(chan->resampler);
|
||||
resampler_remove_sample(chan->resampler);
|
||||
}
|
||||
|
||||
FORCEINLINE static void SPU_Mix(int CHANNELS, SPU_struct* SPU, channel_struct *chan, s32 data)
|
||||
|
@ -880,15 +824,6 @@ FORCEINLINE static void ____SPU_ChanUpdate(NDS_state *state, int CHANNELS, int F
|
|||
}
|
||||
SPU_Mix(CHANNELS, SPU, chan, data);
|
||||
}
|
||||
|
||||
if (INTERPOLATE_MODE != SPUInterpolation_Lanczos)
|
||||
{
|
||||
switch(FORMAT) {
|
||||
case 0: case 1: TestForLoop(state, FORMAT, SPU, chan); break;
|
||||
case 2: TestForLoop2(state, SPU, chan); break;
|
||||
case 3: chan->sampcnt += chan->sampinc; break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
#include <math.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "lanczos_resampler.h"
|
||||
#include "resampler.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define FORCEINLINE __forceinline
|
||||
|
@ -84,8 +84,10 @@ static FORCEINLINE s32 spumuldiv7(s32 val, u8 multiplier) {
|
|||
enum SPUInterpolationMode
|
||||
{
|
||||
SPUInterpolation_None = 0,
|
||||
SPUInterpolation_Linear = 1,
|
||||
SPUInterpolation_Lanczos = 2
|
||||
SPUInterpolation_Blep = 1,
|
||||
SPUInterpolation_Linear = 2,
|
||||
SPUInterpolation_Cubic = 3,
|
||||
SPUInterpolation_Sinc = 4
|
||||
};
|
||||
|
||||
typedef struct NDS_state NDS_state;
|
||||
|
@ -106,29 +108,29 @@ typedef struct SoundInterface_struct
|
|||
extern SoundInterface_struct SNDDummy;
|
||||
extern SoundInterface_struct SNDFile;
|
||||
|
||||
static bool lanczos_initialized = false;
|
||||
static bool resampler_initialized = false;
|
||||
|
||||
struct channel_struct
|
||||
{
|
||||
channel_struct()
|
||||
{
|
||||
lanczos_resampler = 0;
|
||||
resampler = 0;
|
||||
}
|
||||
~channel_struct()
|
||||
{
|
||||
if (lanczos_resampler)
|
||||
lanczos_resampler_delete(lanczos_resampler);
|
||||
if (resampler)
|
||||
resampler_delete(resampler);
|
||||
}
|
||||
void init_lanczos()
|
||||
void init_resampler()
|
||||
{
|
||||
if (!lanczos_resampler)
|
||||
if (!resampler)
|
||||
{
|
||||
if (!lanczos_initialized)
|
||||
if (!resampler_initialized)
|
||||
{
|
||||
lanczos_init();
|
||||
lanczos_initialized = true;
|
||||
resampler_init();
|
||||
resampler_initialized = true;
|
||||
}
|
||||
lanczos_resampler = lanczos_resampler_create();
|
||||
resampler = resampler_create();
|
||||
}
|
||||
}
|
||||
u32 num;
|
||||
|
@ -160,7 +162,7 @@ struct channel_struct
|
|||
int loop_index;
|
||||
u16 x;
|
||||
s16 psgnoise_last;
|
||||
void *lanczos_resampler;
|
||||
void *resampler;
|
||||
} ;
|
||||
|
||||
struct SPU_struct
|
||||
|
|
|
@ -1,211 +0,0 @@
|
|||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
#include "lanczos_resampler.h"
|
||||
|
||||
enum { LANCZOS_RESOLUTION = 8192 };
|
||||
enum { LANCZOS_WIDTH = 8 };
|
||||
enum { LANCZOS_SAMPLES = LANCZOS_RESOLUTION * LANCZOS_WIDTH };
|
||||
|
||||
static double lanczos_lut[LANCZOS_SAMPLES + 1];
|
||||
|
||||
enum { lanczos_buffer_size = LANCZOS_WIDTH * 4 };
|
||||
|
||||
int fEqual(const double b, const double a)
|
||||
{
|
||||
return fabs(a - b) < 1.0e-6;
|
||||
}
|
||||
|
||||
static double sinc(double x)
|
||||
{
|
||||
return fEqual(x, 0.0) ? 1.0 : sin(x * M_PI) / (x * M_PI);
|
||||
}
|
||||
|
||||
void lanczos_init()
|
||||
{
|
||||
unsigned i;
|
||||
double dx = (double)(LANCZOS_WIDTH) / LANCZOS_SAMPLES, x = 0.0;
|
||||
for (i = 0; i < LANCZOS_SAMPLES + 1; ++i, x += dx)
|
||||
lanczos_lut[i] = fabs(x) < LANCZOS_WIDTH ? sinc(x) * sinc(x / LANCZOS_WIDTH) : 0.0;
|
||||
}
|
||||
|
||||
typedef struct lanczos_resampler
|
||||
{
|
||||
long write_pos, write_filled;
|
||||
long read_pos, read_filled;
|
||||
unsigned short phase;
|
||||
unsigned long phase_inc;
|
||||
float buffer_in[lanczos_buffer_size * 2];
|
||||
int buffer_out[lanczos_buffer_size];
|
||||
} lanczos_resampler;
|
||||
|
||||
void * lanczos_resampler_create()
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) malloc( sizeof(lanczos_resampler) );
|
||||
if ( !r ) return 0;
|
||||
|
||||
r->write_pos = 0;
|
||||
r->write_filled = 0;
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
r->phase = 0;
|
||||
r->phase_inc = 0;
|
||||
memset( r->buffer_in, 0, sizeof(r->buffer_in) );
|
||||
memset( r->buffer_out, 0, sizeof(r->buffer_out) );
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
void lanczos_resampler_delete(void * _r)
|
||||
{
|
||||
free( _r );
|
||||
}
|
||||
|
||||
long lanczos_resampler_get_free_count(void *_r)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
return lanczos_buffer_size - r->write_filled;
|
||||
}
|
||||
|
||||
long lanczos_resampler_ready(void *_r)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
return r->write_filled > (LANCZOS_WIDTH * 2);
|
||||
}
|
||||
|
||||
void lanczos_resampler_clear(void *_r)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
r->write_pos = 0;
|
||||
r->write_filled = 0;
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
r->phase = 0;
|
||||
}
|
||||
|
||||
void lanczos_resampler_set_rate(void *_r, double new_factor)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
r->phase_inc = (long)( new_factor * LANCZOS_RESOLUTION );
|
||||
}
|
||||
|
||||
void lanczos_resampler_write_sample(void *_r, int s)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
|
||||
if ( r->write_filled < lanczos_buffer_size )
|
||||
{
|
||||
float s32 = (float)s;
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + lanczos_buffer_size ] = s32;
|
||||
|
||||
++r->write_filled;
|
||||
|
||||
r->write_pos = ( r->write_pos + 1 ) % lanczos_buffer_size;
|
||||
}
|
||||
}
|
||||
|
||||
static long lanczos_resampler_run(lanczos_resampler * r, int ** out_, int * out_end)
|
||||
{
|
||||
long in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + lanczos_buffer_size + r->write_pos - r->write_filled;
|
||||
long used = 0;
|
||||
in_size -= LANCZOS_WIDTH * 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
int* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
long phase = r->phase;
|
||||
long phase_inc = r->phase_inc;
|
||||
|
||||
long step = phase_inc > LANCZOS_RESOLUTION ? LANCZOS_RESOLUTION * LANCZOS_RESOLUTION / phase_inc : LANCZOS_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
// accumulate in extended precision
|
||||
double kernel[LANCZOS_WIDTH * 2], kernel_sum = 0.0;
|
||||
long i = LANCZOS_WIDTH;
|
||||
long phase_adj = phase * step / LANCZOS_RESOLUTION;
|
||||
double sample;
|
||||
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
for (; i >= -LANCZOS_WIDTH + 1; --i)
|
||||
{
|
||||
long pos = i * step;
|
||||
kernel_sum += kernel[i + LANCZOS_WIDTH - 1] = lanczos_lut[labs(phase_adj - pos)];
|
||||
}
|
||||
for (sample = 0, i = 0; i < LANCZOS_WIDTH * 2; ++i)
|
||||
sample += in[i] * kernel[i];
|
||||
*out++ = (int) (sample / kernel_sum);
|
||||
|
||||
phase += phase_inc;
|
||||
|
||||
in += phase >> 13;
|
||||
|
||||
phase &= 8191;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
*out_ = out;
|
||||
|
||||
used = in - in_;
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
|
||||
static void lanczos_resampler_fill(lanczos_resampler * r)
|
||||
{
|
||||
while ( r->write_filled > (LANCZOS_WIDTH * 2) &&
|
||||
r->read_filled < lanczos_buffer_size )
|
||||
{
|
||||
long write_pos = ( r->read_pos + r->read_filled ) % lanczos_buffer_size;
|
||||
long write_size = lanczos_buffer_size - write_pos;
|
||||
int * out = r->buffer_out + write_pos;
|
||||
if ( write_size > ( lanczos_buffer_size - r->read_filled ) )
|
||||
write_size = lanczos_buffer_size - r->read_filled;
|
||||
lanczos_resampler_run( r, &out, out + write_size );
|
||||
r->read_filled += out - r->buffer_out - write_pos;
|
||||
}
|
||||
}
|
||||
|
||||
long lanczos_resampler_get_sample_count(void *_r)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
if ( r->read_filled < 1 )
|
||||
lanczos_resampler_fill( r );
|
||||
return r->read_filled;
|
||||
}
|
||||
|
||||
int lanczos_resampler_get_sample(void *_r)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
if ( r->read_filled < 1 )
|
||||
lanczos_resampler_fill( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
return r->buffer_out[ r->read_pos ];
|
||||
}
|
||||
|
||||
void lanczos_resampler_remove_sample(void *_r)
|
||||
{
|
||||
lanczos_resampler * r = ( lanczos_resampler * ) _r;
|
||||
if ( r->read_filled > 0 )
|
||||
{
|
||||
--r->read_filled;
|
||||
r->read_pos = ( r->read_pos + 1 ) % lanczos_buffer_size;
|
||||
}
|
||||
}
|
|
@ -1,26 +0,0 @@
|
|||
#ifndef _LANCZOS_RESAMPLER_H_
|
||||
#define _LANCZOS_RESAMPLER_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void lanczos_init();
|
||||
|
||||
void * lanczos_resampler_create();
|
||||
void lanczos_resampler_delete(void *);
|
||||
|
||||
long lanczos_resampler_get_free_count(void *);
|
||||
void lanczos_resampler_write_sample(void *, int sample);
|
||||
void lanczos_resampler_set_rate( void *, double new_factor );
|
||||
long lanczos_resampler_ready(void *);
|
||||
void lanczos_resampler_clear(void *);
|
||||
long lanczos_resampler_get_sample_count(void *);
|
||||
int lanczos_resampler_get_sample(void *);
|
||||
void lanczos_resampler_remove_sample(void *);
|
||||
|
||||
#ifdef __cplusplus
|
||||
};
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,848 @@
|
|||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#if (defined(_M_IX86) || defined(__i386__) || defined(_M_X64) || defined(__amd64__))
|
||||
#include <xmmintrin.h>
|
||||
#define RESAMPLER_SSE
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define ALIGNED _declspec(align(16))
|
||||
#else
|
||||
#define ALIGNED __attribute__((aligned(16)))
|
||||
#endif
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
#include "resampler.h"
|
||||
|
||||
enum { RESAMPLER_SHIFT = 13 };
|
||||
enum { RESAMPLER_RESOLUTION = 1 << RESAMPLER_SHIFT };
|
||||
enum { SINC_WIDTH = 16 };
|
||||
enum { SINC_SAMPLES = RESAMPLER_RESOLUTION * SINC_WIDTH };
|
||||
enum { CUBIC_SAMPLES = RESAMPLER_RESOLUTION * 4 };
|
||||
|
||||
ALIGNED static float cubic_lut[CUBIC_SAMPLES];
|
||||
|
||||
static float sinc_lut[SINC_SAMPLES + 1];
|
||||
|
||||
enum { resampler_buffer_size = SINC_WIDTH * 4 };
|
||||
|
||||
static int fEqual(const float b, const float a)
|
||||
{
|
||||
return fabs(a - b) < 1.0e-6;
|
||||
}
|
||||
|
||||
static float sinc(float x)
|
||||
{
|
||||
return fEqual(x, 0.0) ? 1.0 : sin(x * M_PI) / (x * M_PI);
|
||||
}
|
||||
|
||||
#ifdef RESAMPLER_SSE
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
#elif defined(__clang__) || defined(__GNUC__)
|
||||
static inline void
|
||||
__cpuid(int *data, int selector)
|
||||
{
|
||||
asm("cpuid"
|
||||
: "=a" (data[0]),
|
||||
"=b" (data[1]),
|
||||
"=c" (data[2]),
|
||||
"=d" (data[3])
|
||||
: "a"(selector));
|
||||
}
|
||||
#else
|
||||
#define __cpuid(a,b) memset((a), 0, sizeof(int) * 4)
|
||||
#endif
|
||||
|
||||
static int query_cpu_feature_sse() {
|
||||
int buffer[4];
|
||||
__cpuid(buffer,1);
|
||||
if ((buffer[3]&(1<<25)) == 0) return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int resampler_has_sse = 0;
|
||||
#endif
|
||||
|
||||
void resampler_init(void)
|
||||
{
|
||||
unsigned i;
|
||||
double dx = (float)(SINC_WIDTH) / SINC_SAMPLES, x = 0.0;
|
||||
for (i = 0; i < SINC_SAMPLES + 1; ++i, x += dx)
|
||||
{
|
||||
float y = x / SINC_WIDTH;
|
||||
#if 0
|
||||
// Blackman
|
||||
float window = 0.42659 - 0.49656 * cos(M_PI + M_PI * y) + 0.076849 * cos(2.0 * M_PI * y);
|
||||
#elif 1
|
||||
// Nuttal 3 term
|
||||
float window = 0.40897 + 0.5 * cos(M_PI * y) + 0.09103 * cos(2.0 * M_PI * y);
|
||||
#elif 0
|
||||
// C.R.Helmrich's 2 term window
|
||||
float window = 0.79445 * cos(0.5 * M_PI * y) + 0.20555 * cos(1.5 * M_PI * y);
|
||||
#elif 0
|
||||
// Lanczos
|
||||
float window = sinc(y);
|
||||
#endif
|
||||
sinc_lut[i] = fabs(x) < SINC_WIDTH ? sinc(x) * window : 0.0;
|
||||
}
|
||||
dx = 1.0 / (float)(RESAMPLER_RESOLUTION);
|
||||
x = 0.0;
|
||||
for (i = 0; i < RESAMPLER_RESOLUTION; ++i, x += dx)
|
||||
{
|
||||
cubic_lut[i*4] = (float)(-0.5 * x * x * x + x * x - 0.5 * x);
|
||||
cubic_lut[i*4+1] = (float)( 1.5 * x * x * x - 2.5 * x * x + 1.0);
|
||||
cubic_lut[i*4+2] = (float)(-1.5 * x * x * x + 2.0 * x * x + 0.5 * x);
|
||||
cubic_lut[i*4+3] = (float)( 0.5 * x * x * x - 0.5 * x * x);
|
||||
}
|
||||
#ifdef RESAMPLER_SSE
|
||||
resampler_has_sse = query_cpu_feature_sse();
|
||||
#endif
|
||||
}
|
||||
|
||||
typedef struct resampler
|
||||
{
|
||||
int write_pos, write_filled;
|
||||
int read_pos, read_filled;
|
||||
unsigned int phase;
|
||||
unsigned int phase_inc;
|
||||
unsigned int inv_phase;
|
||||
unsigned int inv_phase_inc;
|
||||
unsigned char quality;
|
||||
float last_amp;
|
||||
float accumulator;
|
||||
float buffer_in[resampler_buffer_size * 2];
|
||||
float buffer_out[resampler_buffer_size + SINC_WIDTH * 2 - 1];
|
||||
} resampler;
|
||||
|
||||
void * resampler_create(void)
|
||||
{
|
||||
resampler * r = ( resampler * ) malloc( sizeof(resampler) );
|
||||
if ( !r ) return 0;
|
||||
|
||||
r->write_pos = SINC_WIDTH - 1;
|
||||
r->write_filled = SINC_WIDTH - 1;
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
r->phase = 0;
|
||||
r->phase_inc = 0;
|
||||
r->inv_phase = 0;
|
||||
r->inv_phase_inc = 0;
|
||||
r->quality = RESAMPLER_QUALITY_MAX;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset( r->buffer_in, 0, sizeof(r->buffer_in) );
|
||||
memset( r->buffer_out, 0, sizeof(r->buffer_out) );
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
void resampler_delete(void * _r)
|
||||
{
|
||||
free( _r );
|
||||
}
|
||||
|
||||
void * resampler_dup(const void * _r)
|
||||
{
|
||||
const resampler * r_in = ( const resampler * ) _r;
|
||||
resampler * r_out = ( resampler * ) malloc( sizeof(resampler) );
|
||||
if ( !r_out ) return 0;
|
||||
|
||||
r_out->write_pos = r_in->write_pos;
|
||||
r_out->write_filled = r_in->write_filled;
|
||||
r_out->read_pos = r_in->read_pos;
|
||||
r_out->read_filled = r_in->read_filled;
|
||||
r_out->phase = r_in->phase;
|
||||
r_out->phase_inc = r_in->phase_inc;
|
||||
r_out->inv_phase = r_in->inv_phase;
|
||||
r_out->inv_phase_inc = r_in->inv_phase_inc;
|
||||
r_out->quality = r_in->quality;
|
||||
r_out->last_amp = r_in->last_amp;
|
||||
r_out->accumulator = r_in->accumulator;
|
||||
memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) );
|
||||
memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) );
|
||||
|
||||
return r_out;
|
||||
}
|
||||
|
||||
void resampler_dup_inplace(void *_d, const void *_s)
|
||||
{
|
||||
const resampler * r_in = ( const resampler * ) _s;
|
||||
resampler * r_out = ( resampler * ) _d;
|
||||
|
||||
r_out->write_pos = r_in->write_pos;
|
||||
r_out->write_filled = r_in->write_filled;
|
||||
r_out->read_pos = r_in->read_pos;
|
||||
r_out->read_filled = r_in->read_filled;
|
||||
r_out->phase = r_in->phase;
|
||||
r_out->phase_inc = r_in->phase_inc;
|
||||
r_out->inv_phase = r_in->inv_phase;
|
||||
r_out->inv_phase_inc = r_in->inv_phase_inc;
|
||||
r_out->quality = r_in->quality;
|
||||
r_out->last_amp = r_in->last_amp;
|
||||
r_out->accumulator = r_in->accumulator;
|
||||
memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) );
|
||||
memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) );
|
||||
}
|
||||
|
||||
void resampler_set_quality(void *_r, int quality)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
if (quality < RESAMPLER_QUALITY_MIN)
|
||||
quality = RESAMPLER_QUALITY_MIN;
|
||||
else if (quality > RESAMPLER_QUALITY_MAX)
|
||||
quality = RESAMPLER_QUALITY_MAX;
|
||||
if ( r->quality != quality )
|
||||
{
|
||||
if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
r->last_amp = 0;
|
||||
r->accumulator = 0;
|
||||
memset( r->buffer_out, 0, sizeof(r->buffer_out) );
|
||||
}
|
||||
}
|
||||
r->quality = (unsigned char)quality;
|
||||
}
|
||||
|
||||
int resampler_get_free_count(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
return resampler_buffer_size - r->write_filled;
|
||||
}
|
||||
|
||||
static int resampler_min_filled(resampler *r)
|
||||
{
|
||||
switch (r->quality)
|
||||
{
|
||||
default:
|
||||
case RESAMPLER_QUALITY_ZOH:
|
||||
case RESAMPLER_QUALITY_BLEP:
|
||||
return 1;
|
||||
|
||||
case RESAMPLER_QUALITY_LINEAR:
|
||||
return 2;
|
||||
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
return 4;
|
||||
|
||||
case RESAMPLER_QUALITY_SINC:
|
||||
return SINC_WIDTH * 2;
|
||||
}
|
||||
}
|
||||
|
||||
int resampler_ready(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
return r->write_filled > resampler_min_filled(r);
|
||||
}
|
||||
|
||||
void resampler_clear(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
r->write_pos = SINC_WIDTH - 1;
|
||||
r->write_filled = SINC_WIDTH - 1;
|
||||
r->read_pos = 0;
|
||||
r->read_filled = 0;
|
||||
r->phase = 0;
|
||||
memset(r->buffer_in, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
memset(r->buffer_in + resampler_buffer_size, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0]));
|
||||
if (r->quality == RESAMPLER_QUALITY_BLEP)
|
||||
memset(r->buffer_out, 0, sizeof(r->buffer_out));
|
||||
}
|
||||
|
||||
void resampler_set_rate(void *_r, double new_factor)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
r->phase_inc = (int)( new_factor * RESAMPLER_RESOLUTION );
|
||||
new_factor = 1.0 / new_factor;
|
||||
r->inv_phase_inc = (int)( new_factor * RESAMPLER_RESOLUTION );
|
||||
}
|
||||
|
||||
void resampler_write_sample(void *_r, int s)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
||||
++r->write_filled;
|
||||
|
||||
r->write_pos = ( r->write_pos + 1 ) % resampler_buffer_size;
|
||||
}
|
||||
}
|
||||
|
||||
void resampler_write_sample_fixed(void *_r, int s, unsigned char depth)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
|
||||
if ( r->write_filled < resampler_buffer_size )
|
||||
{
|
||||
float s32 = s;
|
||||
s32 /= (double)(1 << (depth - 1));
|
||||
|
||||
r->buffer_in[ r->write_pos ] = s32;
|
||||
r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32;
|
||||
|
||||
++r->write_filled;
|
||||
|
||||
r->write_pos = ( r->write_pos + 1 ) % resampler_buffer_size;
|
||||
}
|
||||
}
|
||||
|
||||
static int resampler_run_zoh(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 1;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
int phase = r->phase;
|
||||
int phase_inc = r->phase_inc;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
sample = *in;
|
||||
*out++ = sample;
|
||||
|
||||
phase += phase_inc;
|
||||
|
||||
in += phase >> RESAMPLER_SHIFT;
|
||||
|
||||
phase &= RESAMPLER_RESOLUTION-1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = (unsigned short) phase;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
|
||||
static int resampler_run_blep(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 1;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
int inv_phase = r->inv_phase;
|
||||
int inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float kernel[SINC_WIDTH * 2], kernel_sum = 0.0;
|
||||
int i = SINC_WIDTH;
|
||||
float sample;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(inv_phase - pos)];
|
||||
}
|
||||
sample = *in++ - last_amp;
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
for (sample = 0, i = 0; i < SINC_WIDTH * 2; ++i)
|
||||
out[i] += sample * kernel[i];
|
||||
|
||||
inv_phase += inv_phase_inc;
|
||||
|
||||
out += inv_phase >> RESAMPLER_SHIFT;
|
||||
|
||||
inv_phase &= RESAMPLER_RESOLUTION-1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
|
||||
#ifdef RESAMPLER_SSE
|
||||
static int resampler_run_blep_sse(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 1;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
float last_amp = r->last_amp;
|
||||
int inv_phase = r->inv_phase;
|
||||
int inv_phase_inc = r->inv_phase_inc;
|
||||
|
||||
const int step = RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
// accumulate in extended precision
|
||||
float kernel_sum = 0.0;
|
||||
__m128 kernel[SINC_WIDTH / 2];
|
||||
__m128 temp1, temp2;
|
||||
__m128 samplex;
|
||||
float sample;
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int i = SINC_WIDTH;
|
||||
|
||||
if ( out + SINC_WIDTH * 2 > out_end )
|
||||
break;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(inv_phase - pos)];
|
||||
}
|
||||
sample = *in++ - last_amp;
|
||||
last_amp += sample;
|
||||
sample /= kernel_sum;
|
||||
samplex = _mm_set1_ps( sample );
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = _mm_load_ps( (const float *)( kernel + i ) );
|
||||
temp1 = _mm_mul_ps( temp1, samplex );
|
||||
temp2 = _mm_loadu_ps( (const float *) out + i * 4 );
|
||||
temp1 = _mm_add_ps( temp1, temp2 );
|
||||
_mm_storeu_ps( (float *) out + i * 4, temp1 );
|
||||
}
|
||||
|
||||
inv_phase += inv_phase_inc;
|
||||
|
||||
out += inv_phase >> RESAMPLER_SHIFT;
|
||||
|
||||
inv_phase &= RESAMPLER_RESOLUTION - 1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->inv_phase = inv_phase;
|
||||
r->last_amp = last_amp;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int resampler_run_linear(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
int phase = r->phase;
|
||||
int phase_inc = r->phase_inc;
|
||||
|
||||
do
|
||||
{
|
||||
float sample;
|
||||
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
sample = in[0] + (in[1] - in[0]) * ((float)phase / RESAMPLER_RESOLUTION);
|
||||
*out++ = sample;
|
||||
|
||||
phase += phase_inc;
|
||||
|
||||
in += phase >> RESAMPLER_SHIFT;
|
||||
|
||||
phase &= RESAMPLER_RESOLUTION-1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
|
||||
static int resampler_run_cubic(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 4;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
int phase = r->phase;
|
||||
int phase_inc = r->phase_inc;
|
||||
|
||||
do
|
||||
{
|
||||
float * kernel;
|
||||
int i;
|
||||
float sample;
|
||||
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
kernel = cubic_lut + phase * 4;
|
||||
|
||||
for (sample = 0, i = 0; i < 4; ++i)
|
||||
sample += in[i] * kernel[i];
|
||||
*out++ = sample;
|
||||
|
||||
phase += phase_inc;
|
||||
|
||||
in += phase >> RESAMPLER_SHIFT;
|
||||
|
||||
phase &= RESAMPLER_RESOLUTION-1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
|
||||
#ifdef RESAMPLER_SSE
|
||||
static int resampler_run_cubic_sse(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= 4;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
int phase = r->phase;
|
||||
int phase_inc = r->phase_inc;
|
||||
|
||||
do
|
||||
{
|
||||
__m128 temp1, temp2;
|
||||
__m128 samplex = _mm_setzero_ps();
|
||||
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
temp1 = _mm_loadu_ps( (const float *)( in ) );
|
||||
temp2 = _mm_load_ps( (const float *)( cubic_lut + phase * 4 ) );
|
||||
temp1 = _mm_mul_ps( temp1, temp2 );
|
||||
samplex = _mm_add_ps( samplex, temp1 );
|
||||
temp1 = _mm_movehl_ps( temp1, samplex );
|
||||
samplex = _mm_add_ps( samplex, temp1 );
|
||||
temp1 = samplex;
|
||||
temp1 = _mm_shuffle_ps( temp1, samplex, _MM_SHUFFLE(0, 0, 0, 1) );
|
||||
samplex = _mm_add_ps( samplex, temp1 );
|
||||
_mm_store_ss( out, samplex );
|
||||
++out;
|
||||
|
||||
phase += phase_inc;
|
||||
|
||||
in += phase >> RESAMPLER_SHIFT;
|
||||
|
||||
phase &= RESAMPLER_RESOLUTION - 1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int resampler_run_sinc(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= SINC_WIDTH * 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
int phase = r->phase;
|
||||
int phase_inc = r->phase_inc;
|
||||
|
||||
int step = phase_inc > RESAMPLER_RESOLUTION ? RESAMPLER_RESOLUTION * RESAMPLER_RESOLUTION / phase_inc : RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
float kernel[SINC_WIDTH * 2], kernel_sum = 0.0;
|
||||
int i = SINC_WIDTH;
|
||||
int phase_adj = phase * step / RESAMPLER_RESOLUTION;
|
||||
float sample;
|
||||
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)];
|
||||
}
|
||||
for (sample = 0, i = 0; i < SINC_WIDTH * 2; ++i)
|
||||
sample += in[i] * kernel[i];
|
||||
*out++ = (float)(sample / kernel_sum);
|
||||
|
||||
phase += phase_inc;
|
||||
|
||||
in += phase >> RESAMPLER_SHIFT;
|
||||
|
||||
phase &= RESAMPLER_RESOLUTION-1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
|
||||
#ifdef RESAMPLER_SSE
|
||||
static int resampler_run_sinc_sse(resampler * r, float ** out_, float * out_end)
|
||||
{
|
||||
int in_size = r->write_filled;
|
||||
float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled;
|
||||
int used = 0;
|
||||
in_size -= SINC_WIDTH * 2;
|
||||
if ( in_size > 0 )
|
||||
{
|
||||
float* out = *out_;
|
||||
float const* in = in_;
|
||||
float const* const in_end = in + in_size;
|
||||
int phase = r->phase;
|
||||
int phase_inc = r->phase_inc;
|
||||
|
||||
int step = phase_inc > RESAMPLER_RESOLUTION ? RESAMPLER_RESOLUTION * RESAMPLER_RESOLUTION / phase_inc : RESAMPLER_RESOLUTION;
|
||||
|
||||
do
|
||||
{
|
||||
// accumulate in extended precision
|
||||
float kernel_sum = 0.0;
|
||||
__m128 kernel[SINC_WIDTH / 2];
|
||||
__m128 temp1, temp2;
|
||||
__m128 samplex = _mm_setzero_ps();
|
||||
float *kernelf = (float*)(&kernel);
|
||||
int i = SINC_WIDTH;
|
||||
int phase_adj = phase * step / RESAMPLER_RESOLUTION;
|
||||
|
||||
if ( out >= out_end )
|
||||
break;
|
||||
|
||||
for (; i >= -SINC_WIDTH + 1; --i)
|
||||
{
|
||||
int pos = i * step;
|
||||
kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)];
|
||||
}
|
||||
for (i = 0; i < SINC_WIDTH / 2; ++i)
|
||||
{
|
||||
temp1 = _mm_loadu_ps( (const float *)( in + i * 4 ) );
|
||||
temp2 = _mm_load_ps( (const float *)( kernel + i ) );
|
||||
temp1 = _mm_mul_ps( temp1, temp2 );
|
||||
samplex = _mm_add_ps( samplex, temp1 );
|
||||
}
|
||||
kernel_sum = 1.0 / kernel_sum;
|
||||
temp1 = _mm_movehl_ps( temp1, samplex );
|
||||
samplex = _mm_add_ps( samplex, temp1 );
|
||||
temp1 = samplex;
|
||||
temp1 = _mm_shuffle_ps( temp1, samplex, _MM_SHUFFLE(0, 0, 0, 1) );
|
||||
samplex = _mm_add_ps( samplex, temp1 );
|
||||
temp1 = _mm_set_ss( kernel_sum );
|
||||
samplex = _mm_mul_ps( samplex, temp1 );
|
||||
_mm_store_ss( out, samplex );
|
||||
++out;
|
||||
|
||||
phase += phase_inc;
|
||||
|
||||
in += phase >> RESAMPLER_SHIFT;
|
||||
|
||||
phase &= RESAMPLER_RESOLUTION - 1;
|
||||
}
|
||||
while ( in < in_end );
|
||||
|
||||
r->phase = phase;
|
||||
*out_ = out;
|
||||
|
||||
used = (int)(in - in_);
|
||||
|
||||
r->write_filled -= used;
|
||||
}
|
||||
|
||||
return used;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void resampler_fill(resampler * r)
|
||||
{
|
||||
int min_filled = resampler_min_filled(r);
|
||||
int quality = r->quality;
|
||||
while ( r->write_filled > min_filled &&
|
||||
r->read_filled < resampler_buffer_size )
|
||||
{
|
||||
int write_pos = ( r->read_pos + r->read_filled ) % resampler_buffer_size;
|
||||
int write_size = resampler_buffer_size - write_pos;
|
||||
float * out = r->buffer_out + write_pos;
|
||||
if ( write_size > ( resampler_buffer_size - r->read_filled ) )
|
||||
write_size = resampler_buffer_size - r->read_filled;
|
||||
switch (quality)
|
||||
{
|
||||
case RESAMPLER_QUALITY_ZOH:
|
||||
resampler_run_zoh( r, &out, out + write_size );
|
||||
break;
|
||||
|
||||
case RESAMPLER_QUALITY_BLEP:
|
||||
{
|
||||
int used;
|
||||
int write_extra = 0;
|
||||
if ( write_pos >= r->read_pos )
|
||||
write_extra = r->read_pos;
|
||||
if ( write_extra > SINC_WIDTH * 2 - 1 )
|
||||
write_extra = SINC_WIDTH * 2 - 1;
|
||||
memcpy( r->buffer_out + resampler_buffer_size, r->buffer_out, write_extra * sizeof(r->buffer_out[0]) );
|
||||
if ( resampler_has_sse )
|
||||
used = resampler_run_blep_sse( r, &out, out + write_size + write_extra );
|
||||
else
|
||||
used = resampler_run_blep( r, &out, out + write_size + write_extra );
|
||||
memcpy( r->buffer_out, r->buffer_out + resampler_buffer_size, write_extra * sizeof(r->buffer_out[0]) );
|
||||
if (!used)
|
||||
return;
|
||||
break;
|
||||
}
|
||||
|
||||
case RESAMPLER_QUALITY_LINEAR:
|
||||
resampler_run_linear( r, &out, out + write_size );
|
||||
break;
|
||||
|
||||
case RESAMPLER_QUALITY_CUBIC:
|
||||
#ifdef RESAMPLER_SSE
|
||||
if ( resampler_has_sse )
|
||||
resampler_run_cubic_sse( r, &out, out + write_size );
|
||||
else
|
||||
#endif
|
||||
resampler_run_cubic( r, &out, out + write_size );
|
||||
break;
|
||||
|
||||
case RESAMPLER_QUALITY_SINC:
|
||||
#ifdef RESAMPLER_SSE
|
||||
if ( resampler_has_sse )
|
||||
resampler_run_sinc_sse( r, &out, out + write_size );
|
||||
else
|
||||
#endif
|
||||
resampler_run_sinc( r, &out, out + write_size );
|
||||
break;
|
||||
}
|
||||
r->read_filled += out - r->buffer_out - write_pos;
|
||||
}
|
||||
}
|
||||
|
||||
int resampler_get_sample_count(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled < 1 && (r->quality != RESAMPLER_QUALITY_BLEP || r->inv_phase_inc))
|
||||
resampler_fill( r );
|
||||
return r->read_filled;
|
||||
}
|
||||
|
||||
int resampler_get_sample(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled < 1 && r->phase_inc)
|
||||
resampler_fill( r );
|
||||
if ( r->read_filled < 1 )
|
||||
return 0;
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
return (int)(r->buffer_out[ r->read_pos ] + r->accumulator);
|
||||
else
|
||||
return (int)r->buffer_out[ r->read_pos ];
|
||||
}
|
||||
|
||||
void resampler_remove_sample(void *_r)
|
||||
{
|
||||
resampler * r = ( resampler * ) _r;
|
||||
if ( r->read_filled > 0 )
|
||||
{
|
||||
if ( r->quality == RESAMPLER_QUALITY_BLEP )
|
||||
{
|
||||
r->accumulator += r->buffer_out[ r->read_pos ];
|
||||
r->buffer_out[ r->read_pos ] = 0;
|
||||
r->accumulator -= r->accumulator * (1.0 / 8192.0);
|
||||
if (fabs(r->accumulator) < 1e-20)
|
||||
r->accumulator = 0;
|
||||
}
|
||||
--r->read_filled;
|
||||
r->read_pos = ( r->read_pos + 1 ) % resampler_buffer_size;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,61 @@
|
|||
#ifndef _RESAMPLER_H_
|
||||
#define _RESAMPLER_H_
|
||||
|
||||
// Ugglay
|
||||
#ifdef RESAMPLER_DECORATE
|
||||
#define PASTE(a,b) a ## b
|
||||
#define EVALUATE(a,b) PASTE(a,b)
|
||||
#define resampler_init EVALUATE(RESAMPLER_DECORATE,_resampler_init)
|
||||
#define resampler_create EVALUATE(RESAMPLER_DECORATE,_resampler_create)
|
||||
#define resampler_delete EVALUATE(RESAMPLER_DECORATE,_resampler_delete)
|
||||
#define resampler_dup EVALUATE(RESAMPLER_DECORATE,_resampler_dup)
|
||||
#define resampler_dup_inplace EVALUATE(RESAMPLER_DECORATE,_resampler_dup_inplace)
|
||||
#define resampler_set_quality EVALUATE(RESAMPLER_DECORATE,_resampler_set_quality)
|
||||
#define resampler_get_free_count EVALUATE(RESAMPLER_DECORATE,_resampler_get_free_count)
|
||||
#define resampler_write_sample EVALUATE(RESAMPLER_DECORATE,_resampler_write_sample)
|
||||
#define resampler_set_rate EVALUATE(RESAMPLER_DECORATE,_resampler_set_rate)
|
||||
#define resampler_ready EVALUATE(RESAMPLER_DECORATE,_resampler_ready)
|
||||
#define resampler_clear EVALUATE(RESAMPLER_DECORATE,_resampler_clear)
|
||||
#define resampler_get_sample_count EVALUATE(RESAMPLER_DECORATE,_resampler_get_sample_count)
|
||||
#define resampler_get_sample EVALUATE(RESAMPLER_DECORATE,_resampler_get_sample)
|
||||
#define resampler_remove_sample EVALUATE(RESAMPLER_DECORATE,_resampler_remove_sample)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void resampler_init(void);
|
||||
|
||||
void * resampler_create(void);
|
||||
void resampler_delete(void *);
|
||||
void * resampler_dup(const void *);
|
||||
void resampler_dup_inplace(void *, const void *);
|
||||
|
||||
enum
|
||||
{
|
||||
RESAMPLER_QUALITY_MIN = 0,
|
||||
RESAMPLER_QUALITY_ZOH = 0,
|
||||
RESAMPLER_QUALITY_BLEP = 1,
|
||||
RESAMPLER_QUALITY_LINEAR = 2,
|
||||
RESAMPLER_QUALITY_CUBIC = 3,
|
||||
RESAMPLER_QUALITY_SINC = 4,
|
||||
RESAMPLER_QUALITY_MAX = 4
|
||||
};
|
||||
|
||||
void resampler_set_quality(void *, int quality);
|
||||
|
||||
int resampler_get_free_count(void *);
|
||||
void resampler_write_sample(void *, int sample);
|
||||
void resampler_set_rate( void *, double new_factor );
|
||||
int resampler_ready(void *);
|
||||
void resampler_clear(void *);
|
||||
int resampler_get_sample_count(void *);
|
||||
int resampler_get_sample(void *);
|
||||
void resampler_remove_sample(void *);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -1098,7 +1098,20 @@ static int usf_info(void * context, const char * name, const char * value)
|
|||
return NO;
|
||||
}
|
||||
|
||||
core->dwInterpolation = 2;
|
||||
int resampling_int = -1;
|
||||
NSString * resampling = [[NSUserDefaults standardUserDefaults] stringForKey:@"resampling"];
|
||||
if ([resampling isEqualToString:@"zoh"])
|
||||
resampling_int = 0;
|
||||
else if ([resampling isEqualToString:@"blep"])
|
||||
resampling_int = 1;
|
||||
else if ([resampling isEqualToString:@"linear"])
|
||||
resampling_int = 2;
|
||||
else if ([resampling isEqualToString:@"cubic"])
|
||||
resampling_int = 3;
|
||||
else if ([resampling isEqualToString:@"sinc"])
|
||||
resampling_int = 4;
|
||||
|
||||
core->dwInterpolation = resampling_int;
|
||||
core->dwChannelMute = 0;
|
||||
|
||||
if (!state.arm7_clockdown_level)
|
||||
|
|
Loading…
Reference in New Issue