Cog Audio / WavPack input: Add DSD decimation to converter, and change WavPack input to emit only raw DSD

CQTexperiment
Christopher Snowhill 2022-01-14 06:12:14 -08:00
parent 996bdec4be
commit 748891f285
3 changed files with 336 additions and 90 deletions

View File

@ -51,6 +51,10 @@
void *extrapolateBuffer; void *extrapolateBuffer;
size_t extrapolateBufferSize; size_t extrapolateBufferSize;
void **dsd2pcm;
size_t dsd2pcmCount;
int dsd2pcmLatency;
AudioStreamBasicDescription inputFormat; AudioStreamBasicDescription inputFormat;
AudioStreamBasicDescription floatFormat; AudioStreamBasicDescription floatFormat;

View File

@ -65,6 +65,9 @@ void PrintStreamDesc (AudioStreamBasicDescription *inDesc)
extrapolateBuffer = NULL; extrapolateBuffer = NULL;
extrapolateBufferSize = 0; extrapolateBufferSize = 0;
dsd2pcm = NULL;
dsd2pcmCount = 0;
[[NSUserDefaultsController sharedUserDefaultsController] addObserver:self forKeyPath:@"values.volumeScaling" options:0 context:nil]; [[NSUserDefaultsController sharedUserDefaultsController] addObserver:self forKeyPath:@"values.volumeScaling" options:0 context:nil];
[[NSUserDefaultsController sharedUserDefaultsController] addObserver:self forKeyPath:@"values.outputResampling" options:0 context:nil]; [[NSUserDefaultsController sharedUserDefaultsController] addObserver:self forKeyPath:@"values.outputResampling" options:0 context:nil];
@ -256,6 +259,248 @@ void scale_by_volume(float * buffer, size_t count, float volume)
buffer[i] *= volume; buffer[i] *= volume;
} }
/**
* DSD 2 PCM: Stage 1:
* Decimate by factor 8
* (one byte (8 samples) -> one float sample)
* The bits are processed from least signicifant to most signicicant.
* @author Sebastian Gesemann
*/
#define dsd2pcm_FILTER_COEFFS_COUNT 64
static const float dsd2pcm_FILTER_COEFFS[64] =
{
0.09712411121659f, 0.09613438994044f, 0.09417884216316f, 0.09130441727307f,
0.08757947648990f, 0.08309142055179f, 0.07794369263673f, 0.07225228745463f,
0.06614191680338f, 0.05974199351302f, 0.05318259916599f, 0.04659059631228f,
0.04008603356890f, 0.03377897290478f, 0.02776684382775f, 0.02213240062966f,
0.01694232798846f, 0.01224650881275f, 0.00807793792573f, 0.00445323755944f,
0.00137370697215f,-0.00117318019994f,-0.00321193033831f,-0.00477694265140f,
-0.00591028841335f,-0.00665946056286f,-0.00707518873201f,-0.00720940203988f,
-0.00711340642819f,-0.00683632603227f,-0.00642384017266f,-0.00591723006715f,
-0.00535273320457f,-0.00476118922548f,-0.00416794965654f,-0.00359301524813f,
-0.00305135909510f,-0.00255339111833f,-0.00210551956895f,-0.00171076760278f,
-0.00136940723130f,-0.00107957856005f,-0.00083786862365f,-0.00063983084245f,
-0.00048043272086f,-0.00035442550015f,-0.00025663481039f,-0.00018217573430f,
-0.00012659899635f,-0.00008597726991f,-0.00005694188820f,-0.00003668060332f,
-0.00002290670286f,-0.00001380895679f,-0.00000799057558f,-0.00000440385083f,
-0.00000228567089f,-0.00000109760778f,-0.00000047286430f,-0.00000017129652f,
-0.00000004282776f, 0.00000000119422f, 0.00000000949179f, 0.00000000747450f
};
struct dsd2pcm_state {
/*
* This is the 2nd half of an even order symmetric FIR
* lowpass filter (to be used on a signal sampled at 44100*64 Hz)
* Passband is 0-24 kHz (ripples +/- 0.025 dB)
* Stopband starts at 176.4 kHz (rejection: 170 dB)
* The overall gain is 2.0
*/
/* These remain constant for the duration */
int FILT_LOOKUP_PARTS;
float * FILT_LOOKUP_TABLE;
uint8_t * REVERSE_BITS;
int FIFO_LENGTH;
int FIFO_OFS_MASK;
/* These are altered */
int * fifo;
int fpos;
};
static void dsd2pcm_free(void *);
static void dsd2pcm_reset(void *);
static void * dsd2pcm_alloc()
{
struct dsd2pcm_state * state = (struct dsd2pcm_state *) calloc(1, sizeof(struct dsd2pcm_state));
if (!state)
return NULL;
state->FILT_LOOKUP_PARTS = ( dsd2pcm_FILTER_COEFFS_COUNT + 7 ) / 8;
const int FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
// The current 128 tap FIR leads to an 8 KB lookup table
state->FILT_LOOKUP_TABLE = (float*) calloc(sizeof(float), FILT_LOOKUP_PARTS << 8);
if (!state->FILT_LOOKUP_TABLE)
goto fail;
float* FILT_LOOKUP_TABLE = state->FILT_LOOKUP_TABLE;
double * temp = (double*) calloc(sizeof(double), 0x100);
if (!temp)
goto fail;
for ( int part=0, sofs=0, dofs=0; part < FILT_LOOKUP_PARTS; )
{
memset( temp, 0, 0x100 * sizeof( double ) );
for ( int bit=0, bitmask=0x80; bit<8 && sofs+bit < dsd2pcm_FILTER_COEFFS_COUNT; )
{
double coeff = dsd2pcm_FILTER_COEFFS[ sofs + bit ];
for ( int bite=0; bite < 0x100; bite++ )
{
if ( ( bite & bitmask ) == 0 )
{
temp[ bite ] -= coeff;
} else {
temp[ bite ] += coeff;
}
}
bit++;
bitmask >>= 1;
}
for ( int s = 0; s < 0x100; ) {
FILT_LOOKUP_TABLE[dofs++] = (float) temp[s++];
}
part++;
sofs += 8;
}
free(temp);
{ // calculate FIFO stuff
int k = 1;
while (k<FILT_LOOKUP_PARTS*2) k<<=1;
state->FIFO_LENGTH = k;
state->FIFO_OFS_MASK = k-1;
}
state->REVERSE_BITS = (uint8_t*) calloc(1, 0x100);
if (!state->REVERSE_BITS)
goto fail;
uint8_t* REVERSE_BITS = state->REVERSE_BITS;
for (int i=0, j=0; i<0x100; i++) {
REVERSE_BITS[i] = ( uint8_t ) j;
// "reverse-increment" of j
for (int bitmask=0x80;;) {
if (((j^=bitmask) & bitmask)!=0) break;
if (bitmask==1) break;
bitmask >>= 1;
}
}
state->fifo = (int*) calloc(sizeof(int), state->FIFO_LENGTH);
if (!state->fifo)
goto fail;
dsd2pcm_reset(state);
return (void*) state;
fail:
dsd2pcm_free(state);
return NULL;
}
static void * dsd2pcm_dup(void * _state)
{
struct dsd2pcm_state * state = (struct dsd2pcm_state *) _state;
if (state)
{
struct dsd2pcm_state * newstate = (struct dsd2pcm_state *) calloc(1, sizeof(struct dsd2pcm_state));
if (newstate) {
newstate->FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
newstate->FIFO_LENGTH = state->FIFO_LENGTH;
newstate->FIFO_OFS_MASK = state->FIFO_OFS_MASK;
newstate->fpos = state->fpos;
newstate->FILT_LOOKUP_TABLE = (float*) calloc(sizeof(float), state->FILT_LOOKUP_PARTS << 8);
if (!newstate->FILT_LOOKUP_TABLE)
goto fail;
memcpy(newstate->FILT_LOOKUP_TABLE, state->FILT_LOOKUP_TABLE, sizeof(float) * (state->FILT_LOOKUP_PARTS << 8));
newstate->REVERSE_BITS = (uint8_t*) calloc(1, 0x100);
if (!newstate->REVERSE_BITS)
goto fail;
memcpy(newstate->REVERSE_BITS, state->REVERSE_BITS, 0x100);
newstate->fifo = (int*) calloc(sizeof(int), state->FIFO_LENGTH);
if (!newstate->fifo)
goto fail;
memcpy(newstate->fifo, state->fifo, sizeof(int) * state->FIFO_LENGTH);
return (void*) newstate;
}
fail:
dsd2pcm_free(newstate);
return NULL;
}
return NULL;
}
static void dsd2pcm_free(void * _state)
{
struct dsd2pcm_state * state = (struct dsd2pcm_state *) _state;
if (state)
{
free(state->fifo);
free(state->REVERSE_BITS);
free(state->FILT_LOOKUP_TABLE);
free(state);
}
}
static void dsd2pcm_reset(void * _state)
{
struct dsd2pcm_state * state = (struct dsd2pcm_state *) _state;
const int FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
int* fifo = state->fifo;
for (int i=0; i<FILT_LOOKUP_PARTS; i++) {
fifo[i] = 0x55;
fifo[i+FILT_LOOKUP_PARTS] = 0xAA;
}
state->fpos = FILT_LOOKUP_PARTS;
}
static void dsd2pcm_process(void * _state, uint8_t * src, size_t sofs, size_t sinc, float * dest, size_t dofs, size_t dinc, size_t len)
{
struct dsd2pcm_state * state = (struct dsd2pcm_state *) _state;
int bite1, bite2, temp;
float sample;
int* fifo = state->fifo;
const uint8_t* REVERSE_BITS = state->REVERSE_BITS;
const float* FILT_LOOKUP_TABLE = state->FILT_LOOKUP_TABLE;
const int FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
const int FIFO_OFS_MASK = state->FIFO_OFS_MASK;
int fpos = state->fpos;
while ( len > 0 )
{
fifo[ fpos ] = REVERSE_BITS[ fifo[ fpos ] ] & 0xFF;
fifo[ ( fpos + FILT_LOOKUP_PARTS ) & FIFO_OFS_MASK ] = src[ sofs ] & 0xFF;
sofs += sinc;
temp = ( fpos + 1 ) & FIFO_OFS_MASK;
sample = 0;
for ( int k=0, lofs=0; k < FILT_LOOKUP_PARTS; )
{
bite1 = fifo[ ( fpos - k ) & FIFO_OFS_MASK ];
bite2 = fifo[ ( temp + k ) & FIFO_OFS_MASK ];
sample += FILT_LOOKUP_TABLE[ lofs + bite1 ] + FILT_LOOKUP_TABLE[ lofs + bite2 ];
k++;
lofs += 0x100;
}
fpos = temp;
dest[ dofs ] = sample;
dofs += dinc;
len--;
}
state->fpos = fpos;
}
static int dsd2pcm_latency(void * _state)
{
struct dsd2pcm_state * state = (struct dsd2pcm_state *) _state;
if (state) return state->FIFO_LENGTH;
else return 0;
}
static void convert_dsd_to_f32(float *output, uint8_t *input, size_t count, size_t channels, void ** dsd2pcm)
{
for (size_t channel = 0; channel < channels; ++channel)
{
dsd2pcm_process(dsd2pcm[channel], input, channel, channels, output, channel, channels, count);
}
}
static void convert_u8_to_s16(int16_t *output, uint8_t *input, size_t count) static void convert_u8_to_s16(int16_t *output, uint8_t *input, size_t count)
{ {
for (size_t i = 0; i < count; ++i) for (size_t i = 0; i < count; ++i)
@ -457,6 +702,7 @@ static void extrapolate(float *buffer, size_t channels, size_t frameSize, size_t
int amountRead = 0; int amountRead = 0;
int extrapolateStart = 0; int extrapolateStart = 0;
int extrapolateEnd = 0; int extrapolateEnd = 0;
int eatFromEnd = 0;
size_t amountToSkip = 0; size_t amountToSkip = 0;
if (stopping) if (stopping)
@ -477,6 +723,11 @@ tryagain:
while (inpOffset == inpSize) { while (inpOffset == inpSize) {
size_t samplesRead = 0; size_t samplesRead = 0;
BOOL isFloat = !!(inputFormat.mFormatFlags & kAudioFormatFlagIsFloat);
BOOL isUnsigned = !isFloat && !(inputFormat.mFormatFlags & kAudioFormatFlagIsSignedInteger);
uint8_t fillByte = (dsd2pcm) ? 0x55 : ((isUnsigned) ? 0x80 : 0x00);
// Approximately the most we want on input // Approximately the most we want on input
ioNumberPackets = (amount - amountRead) / outputFormat.mBytesPerPacket; ioNumberPackets = (amount - amountRead) / outputFormat.mBytesPerPacket;
@ -490,97 +741,36 @@ tryagain:
if (!inputBuffer || inputBufferSize < newSize) if (!inputBuffer || inputBufferSize < newSize)
inputBuffer = realloc( inputBuffer, inputBufferSize = newSize * 3 ); inputBuffer = realloc( inputBuffer, inputBufferSize = newSize * 3 );
// Pad end of track with floats. For simplicity, pad start in track ssize_t amountToWrite = ioNumberPackets * inputFormat.mBytesPerPacket;
// native format.
if (stopping || [self shouldContinue] == NO || [self endOfStream] == YES)
{
if (!skipResampler && !latencyPostfill)
{
ioNumberPackets = (int)resampler->latency(resampler_data);
newSize = ioNumberPackets * floatFormat.mBytesPerPacket;
newSize += inpSize;
if (!inputBuffer || inputBufferSize < newSize)
inputBuffer = realloc( inputBuffer, inputBufferSize = newSize * 3);
extrapolateEnd = ioNumberPackets;
// Extrapolate end samples
if ( inpSize < sizeof(floatConvertedLast))
{
size_t inpTotal = newSize + floatConvertedSize;
if (inpTotal > sizeof(floatConvertedLast))
inpTotal = sizeof(floatConvertedLast);
if (inpTotal - newSize < floatConvertedSize)
{
memmove(floatConvertedLast, ((uint8_t*)floatConvertedLast) + newSize, inpTotal - newSize);
floatConvertedSize = inpTotal - newSize;
}
memcpy(((uint8_t*)floatConvertedLast) + floatConvertedSize, inputBuffer, inpSize);
extrapolate( floatConvertedLast, floatFormat.mChannelsPerFrame, inpTotal / floatFormat.mBytesPerPacket, extrapolateEnd, NO, &extrapolateBuffer, &extrapolateBufferSize );
newSize = ioNumberPackets * floatFormat.mBytesPerPacket;
memcpy( inputBuffer, ((uint8_t*)floatConvertedLast) + inpTotal - newSize, newSize );
inpSize = newSize;
inpOffset = 0;
}
else
{
extrapolate( inputBuffer, floatFormat.mChannelsPerFrame, newSize / floatFormat.mBytesPerPacket, extrapolateEnd, NO, &extrapolateBuffer, &extrapolateBufferSize );
inpOffset = inpSize;
inpSize = newSize;
}
latencyPostfill = YES;
break;
}
else
{
convertEntered = NO;
return amountRead;
}
}
size_t amountToWrite = ioNumberPackets * inputFormat.mBytesPerPacket;
amountToSkip = 0; amountToSkip = 0;
BOOL isFloat = !!(inputFormat.mFormatFlags & kAudioFormatFlagIsFloat);
BOOL isUnsigned = !isFloat && !(inputFormat.mFormatFlags & kAudioFormatFlagIsSignedInteger);
if (!skipResampler) if (!skipResampler)
{ {
if (latencyStarted < 0) if (latencyStarted < 0)
{ {
latencyStarted = resampler->latency(resampler_data); latencyStarted = resampler->latency(resampler_data);
extrapolateStart = (int)latencyStarted; extrapolateStart = (int)latencyStarted;
if (dsd2pcm) extrapolateStart += dsd2pcmLatency;
} }
if (latencyStarted) if (latencyStarted)
{ {
size_t latencyToWrite = latencyStarted * inputFormat.mBytesPerPacket; ssize_t latencyToWrite = latencyStarted * inputFormat.mBytesPerPacket;
if (latencyToWrite > amountToWrite) if (latencyToWrite > amountToWrite)
latencyToWrite = amountToWrite; latencyToWrite = amountToWrite;
if (isUnsigned) memset(inputBuffer, fillByte, latencyToWrite);
memset(inputBuffer, 0x80, latencyToWrite);
else
memset(inputBuffer, 0, latencyToWrite);
amountToSkip = latencyToWrite; amountToSkip = latencyToWrite;
amountToWrite -= amountToSkip; amountToWrite -= amountToSkip;
latencyEaten = latencyStarted * sampleRatio; latencyEaten = extrapolateStart * sampleRatio;
latencyStarted -= latencyToWrite / inputFormat.mBytesPerPacket; latencyStarted -= latencyToWrite / inputFormat.mBytesPerPacket;
} }
} }
size_t bytesReadFromInput = 0; ssize_t bytesReadFromInput = 0;
while (bytesReadFromInput < amountToWrite && !stopping && [self shouldContinue] == YES && [self endOfStream] == NO) while (bytesReadFromInput < amountToWrite && !stopping && [self shouldContinue] == YES && [self endOfStream] == NO)
{ {
@ -595,8 +785,40 @@ tryagain:
} }
} }
bytesReadFromInput += amountToSkip; // Pad end of track with input format silence
if (stopping || [self shouldContinue] == NO || [self endOfStream] == YES)
{
if (!skipResampler && !latencyPostfill)
{
ioNumberPackets = (int)resampler->latency(resampler_data);
newSize = ioNumberPackets * inputFormat.mBytesPerPacket;
newSize += bytesReadFromInput;
if (!inputBuffer || inputBufferSize < newSize)
inputBuffer = realloc( inputBuffer, inputBufferSize = newSize * 3);
latencyPostfill = ioNumberPackets;
memset(inputBuffer + bytesReadFromInput, fillByte, latencyPostfill * inputFormat.mBytesPerPacket);
bytesReadFromInput = newSize;
extrapolateEnd = ioNumberPackets;
if (dsd2pcm)
{
extrapolateEnd += dsd2pcmLatency;
eatFromEnd = dsd2pcmLatency * sampleRatio;
}
}
}
if (!bytesReadFromInput) {
convertEntered = NO;
return amountRead;
}
bytesReadFromInput += amountToSkip;
if (bytesReadFromInput && if (bytesReadFromInput &&
(inputFormat.mFormatFlags & kAudioFormatFlagIsBigEndian)) (inputFormat.mFormatFlags & kAudioFormatFlagIsBigEndian))
{ {
@ -616,7 +838,15 @@ tryagain:
if (bytesReadFromInput && !isFloat) if (bytesReadFromInput && !isFloat)
{ {
size_t bitsPerSample = inputFormat.mBitsPerChannel; size_t bitsPerSample = inputFormat.mBitsPerChannel;
if (bitsPerSample <= 8) { if (bitsPerSample == 1) {
samplesRead = bytesReadFromInput / inputFormat.mChannelsPerFrame;
convert_dsd_to_f32(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead, inputFormat.mChannelsPerFrame, dsd2pcm);
memmove(inputBuffer, inputBuffer + bytesReadFromInput, samplesRead * inputFormat.mChannelsPerFrame * sizeof(float));
bitsPerSample = 32;
bytesReadFromInput = samplesRead * inputFormat.mChannelsPerFrame * sizeof(float);
isFloat = YES;
}
else if (bitsPerSample <= 8) {
samplesRead = bytesReadFromInput; samplesRead = bytesReadFromInput;
if (!isUnsigned) if (!isUnsigned)
convert_s8_to_s16(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead); convert_s8_to_s16(inputBuffer + bytesReadFromInput, inputBuffer, samplesRead);
@ -668,6 +898,14 @@ tryagain:
extrapolate( inputBuffer, floatFormat.mChannelsPerFrame, bytesReadFromInput / floatFormat.mBytesPerPacket, extrapolateStart, YES, &extrapolateBuffer, &extrapolateBufferSize); extrapolate( inputBuffer, floatFormat.mChannelsPerFrame, bytesReadFromInput / floatFormat.mBytesPerPacket, extrapolateStart, YES, &extrapolateBuffer, &extrapolateBufferSize);
extrapolateStart = 0; extrapolateStart = 0;
} }
else if (extrapolateEnd)
{
extrapolate( inputBuffer, floatFormat.mChannelsPerFrame, bytesReadFromInput / floatFormat.mBytesPerPacket, extrapolateEnd, NO, &extrapolateBuffer, &extrapolateBufferSize);
extrapolateEnd = 0;
bytesReadFromInput -= eatFromEnd * floatFormat.mBytesPerPacket;
if (bytesReadFromInput < 0)
bytesReadFromInput = 0;
}
// Input now contains bytesReadFromInput worth of floats, in the input sample rate // Input now contains bytesReadFromInput worth of floats, in the input sample rate
inpSize = bytesReadFromInput; inpSize = bytesReadFromInput;
@ -860,6 +1098,19 @@ static float db_to_scale(float db)
|| (isFloat && !(inputFormat.mBitsPerChannel == 32 || inputFormat.mBitsPerChannel == 64))) || (isFloat && !(inputFormat.mBitsPerChannel == 32 || inputFormat.mBitsPerChannel == 64)))
return NO; return NO;
if (inputFormat.mBitsPerChannel == 1) {
// Decimate this for speed
inputFormat.mSampleRate *= 1.0 / 8.0;
dsd2pcmCount = inputFormat.mChannelsPerFrame;
dsd2pcm = calloc(dsd2pcmCount, sizeof(void*));
dsd2pcm[0] = dsd2pcm_alloc();
dsd2pcmLatency = dsd2pcm_latency(dsd2pcm[0]);
for (size_t i = 1; i < dsd2pcmCount; ++i)
{
dsd2pcm[i] = dsd2pcm_dup(dsd2pcm[0]);
}
}
// These are really placeholders, as we're doing everything internally now // These are really placeholders, as we're doing everything internally now
floatFormat = inputFormat; floatFormat = inputFormat;
@ -1006,6 +1257,16 @@ static float db_to_scale(float db)
resampler = NULL; resampler = NULL;
resampler_data = NULL; resampler_data = NULL;
} }
if (dsd2pcm && dsd2pcmCount)
{
for (size_t i = 0; i < dsd2pcmCount; ++i)
{
dsd2pcm_free(dsd2pcm[i]);
dsd2pcm[i] = NULL;
}
free(dsd2pcm);
dsd2pcm = NULL;
}
if (extrapolateBuffer) if (extrapolateBuffer)
{ {
free(extrapolateBuffer); free(extrapolateBuffer);

View File

@ -225,31 +225,15 @@ int32_t WriteBytesProc(void *ds, void *data, int32_t bcount)
int16_t *alias16; int16_t *alias16;
int32_t *alias32; int32_t *alias32;
UInt32 trueFrames = frames; size_t newSize = frames*sizeof(int32_t)*channels;
if (isDSD) trueFrames = (frames / 8) & ~7;
size_t newSize = trueFrames*sizeof(int32_t)*channels;
if (!inputBuffer || newSize > inputBufferSize) { if (!inputBuffer || newSize > inputBufferSize) {
inputBuffer = realloc(inputBuffer, inputBufferSize = newSize); inputBuffer = realloc(inputBuffer, inputBufferSize = newSize);
} }
samplesRead = WavpackUnpackSamples(wpc, inputBuffer, trueFrames); samplesRead = WavpackUnpackSamples(wpc, inputBuffer, frames);
switch(bitsPerSample) { switch(bitsPerSample) {
case 1: case 1:
alias8 = buf;
for (sample = 0; sample < samplesRead * channels;) {
for (int channel = 0; channel < channels; channel++) {
for (int i = 0, mask = 0x80; i < 8; ++i, mask >>= 1) {
alias8[i * channels] = (inputBuffer[sample] & mask) ? 127 : -128;
}
alias8 += 1;
sample++;
}
alias8 += 7 * channels;
}
break;
case 8: case 8:
// No need for byte swapping // No need for byte swapping
alias8 = buf; alias8 = buf;
@ -285,9 +269,6 @@ int32_t WriteBytesProc(void *ds, void *data, int32_t bcount)
ALog(@"Unsupported sample size: %d", bitsPerSample); ALog(@"Unsupported sample size: %d", bitsPerSample);
} }
if (isDSD)
samplesRead *= 8;
return samplesRead; return samplesRead;
} }