Added missing files and updated .hgignore file

CQTexperiment
Chris Moeller 2013-10-04 10:54:40 -07:00
parent 936e8a07f5
commit 8ac55b2e27
9 changed files with 1657 additions and 0 deletions

View File

@ -2,5 +2,7 @@ syntax: glob
*.mode1v3 *.mode1v3
*.mode2v3 *.mode2v3
*.pbxuser *.pbxuser
xcuserdata
build build
*/build */build
.DS_Store

View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<Workspace
version = "1.0">
<FileRef
location = "self:Cog.xcodeproj">
</FileRef>
</Workspace>

View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<Workspace
version = "1.0">
<FileRef
location = "self:WMA.xcodeproj">
</FileRef>
</Workspace>

View File

@ -0,0 +1,713 @@
////////////////////////////////////////////////////////////////////////////
// **** WAVPACK **** //
// Hybrid Lossless Wavefile Compressor //
// Copyright (c) 1998 - 2009 Conifer Software. //
// All Rights Reserved. //
// Distributed under the BSD Software License (see license.txt) //
////////////////////////////////////////////////////////////////////////////
// tags.c
// This module provides support for reading and writing metadata tags.
#include <stdlib.h>
#include <string.h>
#include "wavpack_local.h"
#ifdef WIN32
#define stricmp(x,y) _stricmp(x,y)
#define fileno _fileno
#else
#define stricmp(x,y) strcasecmp(x,y)
#endif
#ifdef DEBUG_ALLOC
#define malloc malloc_db
#define realloc realloc_db
#define free free_db
void *malloc_db (uint32_t size);
void *realloc_db (void *ptr, uint32_t size);
void free_db (void *ptr);
int32_t dump_alloc (void);
#endif
#ifndef NO_TAGS
static int get_ape_tag_item (M_Tag *m_tag, const char *item, char *value, int size, int type);
static int get_id3_tag_item (M_Tag *m_tag, const char *item, char *value, int size);
static int get_ape_tag_item_indexed (M_Tag *m_tag, int index, char *item, int size, int type);
static int get_id3_tag_item_indexed (M_Tag *m_tag, int index, char *item, int size);
static int append_ape_tag_item (WavpackContext *wpc, const char *item, const char *value, int vsize, int type);
static int write_tag_blockout (WavpackContext *wpc);
static int write_tag_reader (WavpackContext *wpc);
static void tagcpy (char *dest, char *src, int tag_size);
static int tagdata (char *src, int tag_size);
//////////////////// Global functions part of external API /////////////////////////
// Count and return the total number of tag items in the specified file.
int WavpackGetNumTagItems (WavpackContext *wpc)
{
int i = 0;
while (WavpackGetTagItemIndexed (wpc, i, NULL, 0))
++i;
return i;
}
// Count and return the total number of binary tag items in the specified file. This applies
// only to APEv2 tags and was implemented as a separate function to avoid breaking the old API.
int WavpackGetNumBinaryTagItems (WavpackContext *wpc)
{
int i = 0;
while (WavpackGetBinaryTagItemIndexed (wpc, i, NULL, 0))
++i;
return i;
}
// Attempt to get the specified item from the specified file's ID3v1 or APEv2
// tag. The "size" parameter specifies the amount of space available at "value",
// if the desired item will not fit in this space then ellipses (...) will
// be appended and the string terminated. Only text data are supported. The
// actual length of the string is returned (or 0 if no matching value found).
// Note that with APEv2 tags the length might not be the same as the number of
// characters because UTF-8 encoding is used. Also, APEv2 tags can have multiple
// (NULL separated) strings for a single value (this is why the length is
// returned). If this function is called with a NULL "value" pointer (or a
// zero "length") then only the actual length of the value data is returned
// (not counting the terminating NULL). This can be used to determine the
// actual memory to be allocated beforehand.
int WavpackGetTagItem (WavpackContext *wpc, const char *item, char *value, int size)
{
M_Tag *m_tag = &wpc->m_tag;
if (value && size)
*value = 0;
if (m_tag->ape_tag_hdr.ID [0] == 'A')
return get_ape_tag_item (m_tag, item, value, size, APE_TAG_TYPE_TEXT);
else if (m_tag->id3_tag.tag_id [0] == 'T')
return get_id3_tag_item (m_tag, item, value, size);
else
return 0;
}
// Attempt to get the specified binary item from the specified file's APEv2
// tag. The "size" parameter specifies the amount of space available at "value".
// If the desired item will not fit in this space then nothing will be copied
// and 0 will be returned, otherwise the actual size will be returned. If this
// function is called with a NULL "value" pointer (or a zero "length") then only
// the actual length of the value data is returned and can be used to determine
// the actual memory to be allocated beforehand.
int WavpackGetBinaryTagItem (WavpackContext *wpc, const char *item, char *value, int size)
{
M_Tag *m_tag = &wpc->m_tag;
if (value && size)
*value = 0;
if (m_tag->ape_tag_hdr.ID [0] == 'A')
return get_ape_tag_item (m_tag, item, value, size, APE_TAG_TYPE_BINARY);
else
return 0;
}
// This function looks up the tag item name by index and is used when the
// application wants to access all the items in the file's ID3v1 or APEv2 tag.
// Note that this function accesses only the item's name; WavpackGetTagItem()
// still must be called to get the actual value. The "size" parameter specifies
// the amount of space available at "item", if the desired item will not fit in
// this space then ellipses (...) will be appended and the string terminated.
// The actual length of the string is returned (or 0 if no item exists for
// index). If this function is called with a NULL "value" pointer (or a
// zero "length") then only the actual length of the item name is returned
// (not counting the terminating NULL). This can be used to determine the
// actual memory to be allocated beforehand. For binary tag values use the
// otherwise identical WavpackGetBinaryTagItemIndexed ();
int WavpackGetTagItemIndexed (WavpackContext *wpc, int index, char *item, int size)
{
M_Tag *m_tag = &wpc->m_tag;
if (item && size)
*item = 0;
if (m_tag->ape_tag_hdr.ID [0] == 'A')
return get_ape_tag_item_indexed (m_tag, index, item, size, APE_TAG_TYPE_TEXT);
else if (m_tag->id3_tag.tag_id [0] == 'T')
return get_id3_tag_item_indexed (m_tag, index, item, size);
else
return 0;
}
int WavpackGetBinaryTagItemIndexed (WavpackContext *wpc, int index, char *item, int size)
{
M_Tag *m_tag = &wpc->m_tag;
if (item && size)
*item = 0;
if (m_tag->ape_tag_hdr.ID [0] == 'A')
return get_ape_tag_item_indexed (m_tag, index, item, size, APE_TAG_TYPE_BINARY);
else
return 0;
}
// These two functions are used to append APEv2 tags to WavPack files; one is
// for text values (UTF-8 encoded) and the other is for binary values. If no tag
// has been started, then an empty one will be allocated first. When finished,
// use WavpackWriteTag() to write the completed tag to the file. The purpose of
// the passed size parameter is obvious for binary values, but might not be for
// text values. Keep in mind that APEv2 text values can have multiple values
// that are NULL separated, so the size is required to know the extent of the
// value (although the final terminating NULL is not included in the passed
// size). If the specified item already exists, it will be replaced with the
// new value. ID3v1 tags are not supported.
int WavpackAppendTagItem (WavpackContext *wpc, const char *item, const char *value, int vsize)
{
while (WavpackDeleteTagItem (wpc, item));
return append_ape_tag_item (wpc, item, value, vsize, APE_TAG_TYPE_TEXT);
}
int WavpackAppendBinaryTagItem (WavpackContext *wpc, const char *item, const char *value, int vsize)
{
while (WavpackDeleteTagItem (wpc, item));
return append_ape_tag_item (wpc, item, value, vsize, APE_TAG_TYPE_BINARY);
}
// Delete the specified tag item from the APEv2 tag on the specified WavPack file
// (fields cannot be deleted from ID3v1 tags). A return value of TRUE indicates
// that the item was found and successfully deleted.
int WavpackDeleteTagItem (WavpackContext *wpc, const char *item)
{
M_Tag *m_tag = &wpc->m_tag;
if (m_tag->ape_tag_hdr.ID [0] == 'A') {
unsigned char *p = m_tag->ape_tag_data;
unsigned char *q = p + m_tag->ape_tag_hdr.length - sizeof (APE_Tag_Hdr);
int i;
for (i = 0; i < m_tag->ape_tag_hdr.item_count; ++i) {
int vsize, flags, isize;
vsize = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24); p += 4;
flags = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24); p += 4;
for (isize = 0; p[isize] && p + isize < q; ++isize);
if (vsize < 0 || vsize > m_tag->ape_tag_hdr.length || p + isize + vsize + 1 > q)
break;
if (isize && vsize && !stricmp (item, (char *) p)) {
unsigned char *d = p - 8;
p += isize + vsize + 1;
while (p < q)
*d++ = *p++;
m_tag->ape_tag_hdr.length = (int32_t)(d - m_tag->ape_tag_data) + sizeof (APE_Tag_Hdr);
m_tag->ape_tag_hdr.item_count--;
return 1;
}
else
p += isize + vsize + 1;
}
}
return 0;
}
// Once a APEv2 tag has been created with WavpackAppendTag(), this function is
// used to write the completed tag to the end of the WavPack file. Note that
// this function uses the same "blockout" function that is used to write
// regular WavPack blocks, although that's where the similarity ends.
int WavpackWriteTag (WavpackContext *wpc)
{
if (wpc->blockout)
return write_tag_blockout (wpc);
else
return write_tag_reader (wpc);
}
//////// Utility functions provided to other modules (but not part of lib API) /////////
// This function attempts to load an ID3v1 or APEv2 tag from the specified
// file into the specified M_Tag structure. The ID3 tag fits in completely,
// but an APEv2 tag is variable length and so space must be allocated here
// to accomodate the data, and this will need to be freed later. A return
// value of TRUE indicates a valid tag was found and loaded. Note that the
// file pointer is undefined when this function exits.
int load_tag (WavpackContext *wpc)
{
int ape_tag_length, ape_tag_items;
M_Tag *m_tag = &wpc->m_tag;
CLEAR (*m_tag);
while (1) {
// attempt to find an APEv2 tag either at end-of-file or before a ID3v1 tag we found
if (m_tag->id3_tag.tag_id [0] == 'T')
wpc->reader->set_pos_rel (wpc->wv_in, -(int32_t)(sizeof (APE_Tag_Hdr) + sizeof (ID3_Tag)), SEEK_END);
else
wpc->reader->set_pos_rel (wpc->wv_in, -(int32_t)sizeof (APE_Tag_Hdr), SEEK_END);
if (wpc->reader->read_bytes (wpc->wv_in, &m_tag->ape_tag_hdr, sizeof (APE_Tag_Hdr)) == sizeof (APE_Tag_Hdr) &&
!strncmp (m_tag->ape_tag_hdr.ID, "APETAGEX", 8)) {
little_endian_to_native (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
if (m_tag->ape_tag_hdr.version == 2000 && m_tag->ape_tag_hdr.item_count &&
m_tag->ape_tag_hdr.length > sizeof (m_tag->ape_tag_hdr) &&
m_tag->ape_tag_hdr.length <= APE_TAG_MAX_LENGTH &&
(m_tag->ape_tag_data = malloc (m_tag->ape_tag_hdr.length)) != NULL) {
ape_tag_items = m_tag->ape_tag_hdr.item_count;
ape_tag_length = m_tag->ape_tag_hdr.length;
if (m_tag->id3_tag.tag_id [0] == 'T')
m_tag->tag_file_pos = -(int32_t)sizeof (ID3_Tag);
else
m_tag->tag_file_pos = 0;
m_tag->tag_file_pos -= ape_tag_length;
// if the footer claims there is a header present also, we will read that and use it
// instead of the footer (after verifying it, of course) for enhanced robustness
if (m_tag->ape_tag_hdr.flags & APE_TAG_CONTAINS_HEADER)
m_tag->tag_file_pos -= sizeof (APE_Tag_Hdr);
wpc->reader->set_pos_rel (wpc->wv_in, m_tag->tag_file_pos, SEEK_END);
memset (m_tag->ape_tag_data, 0, ape_tag_length);
if (m_tag->ape_tag_hdr.flags & APE_TAG_CONTAINS_HEADER) {
if (wpc->reader->read_bytes (wpc->wv_in, &m_tag->ape_tag_hdr, sizeof (APE_Tag_Hdr)) !=
sizeof (APE_Tag_Hdr) || strncmp (m_tag->ape_tag_hdr.ID, "APETAGEX", 8)) {
free (m_tag->ape_tag_data);
CLEAR (*m_tag);
return FALSE; // something's wrong...
}
little_endian_to_native (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
if (m_tag->ape_tag_hdr.version != 2000 || m_tag->ape_tag_hdr.item_count != ape_tag_items ||
m_tag->ape_tag_hdr.length != ape_tag_length) {
free (m_tag->ape_tag_data);
CLEAR (*m_tag);
return FALSE; // something's wrong...
}
}
if (wpc->reader->read_bytes (wpc->wv_in, m_tag->ape_tag_data,
ape_tag_length - sizeof (APE_Tag_Hdr)) != ape_tag_length - sizeof (APE_Tag_Hdr)) {
free (m_tag->ape_tag_data);
CLEAR (*m_tag);
return FALSE; // something's wrong...
}
else {
CLEAR (m_tag->id3_tag); // ignore ID3v1 tag if we found APEv2 tag
return TRUE;
}
}
}
if (m_tag->id3_tag.tag_id [0] == 'T') { // settle for the ID3v1 tag that we found
CLEAR (m_tag->ape_tag_hdr);
return TRUE;
}
// look for ID3v1 tag if APEv2 tag not found during first pass
m_tag->tag_file_pos = -(int32_t)sizeof (ID3_Tag);
wpc->reader->set_pos_rel (wpc->wv_in, m_tag->tag_file_pos, SEEK_END);
if (wpc->reader->read_bytes (wpc->wv_in, &m_tag->id3_tag, sizeof (ID3_Tag)) != sizeof (ID3_Tag) ||
strncmp (m_tag->id3_tag.tag_id, "TAG", 3)) {
CLEAR (*m_tag);
return FALSE; // neither type of tag found
}
}
}
// Return TRUE is a valid ID3v1 or APEv2 tag has been loaded.
int valid_tag (M_Tag *m_tag)
{
if (m_tag->ape_tag_hdr.ID [0] == 'A')
return 'A';
else if (m_tag->id3_tag.tag_id [0] == 'T')
return 'T';
else
return 0;
}
// Free the data for any APEv2 tag that was allocated.
void free_tag (M_Tag *m_tag)
{
if (m_tag->ape_tag_data) {
free (m_tag->ape_tag_data);
m_tag->ape_tag_data = NULL;
}
}
////////////////////////// local static functions /////////////////////////////
static int get_ape_tag_item (M_Tag *m_tag, const char *item, char *value, int size, int type)
{
unsigned char *p = m_tag->ape_tag_data;
unsigned char *q = p + m_tag->ape_tag_hdr.length - sizeof (APE_Tag_Hdr);
int i;
for (i = 0; i < m_tag->ape_tag_hdr.item_count && q - p > 8; ++i) {
int vsize, flags, isize;
vsize = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24); p += 4;
flags = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24); p += 4;
for (isize = 0; p[isize] && p + isize < q; ++isize);
if (vsize < 0 || vsize > m_tag->ape_tag_hdr.length || p + isize + vsize + 1 > q)
break;
if (isize && vsize && !stricmp (item, (char *) p) && ((flags & 6) >> 1) == type) {
if (!value || !size)
return vsize;
if (type == APE_TAG_TYPE_BINARY) {
if (vsize <= size) {
memcpy (value, p + isize + 1, vsize);
return vsize;
}
else
return 0;
}
else if (vsize < size) {
memcpy (value, p + isize + 1, vsize);
value [vsize] = 0;
return vsize;
}
else if (size >= 4) {
memcpy (value, p + isize + 1, size - 1);
value [size - 4] = value [size - 3] = value [size - 2] = '.';
value [size - 1] = 0;
return size - 1;
}
else
return 0;
}
else
p += isize + vsize + 1;
}
return 0;
}
static int get_id3_tag_item (M_Tag *m_tag, const char *item, char *value, int size)
{
char lvalue [64];
int len;
lvalue [0] = 0;
if (!stricmp (item, "title"))
tagcpy (lvalue, m_tag->id3_tag.title, sizeof (m_tag->id3_tag.title));
else if (!stricmp (item, "artist"))
tagcpy (lvalue, m_tag->id3_tag.artist, sizeof (m_tag->id3_tag.artist));
else if (!stricmp (item, "album"))
tagcpy (lvalue, m_tag->id3_tag.album, sizeof (m_tag->id3_tag.album));
else if (!stricmp (item, "year"))
tagcpy (lvalue, m_tag->id3_tag.year, sizeof (m_tag->id3_tag.year));
else if (!stricmp (item, "comment"))
tagcpy (lvalue, m_tag->id3_tag.comment, sizeof (m_tag->id3_tag.comment));
else if (!stricmp (item, "track") && m_tag->id3_tag.comment [29] && !m_tag->id3_tag.comment [28])
sprintf (lvalue, "%d", m_tag->id3_tag.comment [29]);
else
return 0;
len = (int) strlen (lvalue);
if (!value || !size)
return len;
if (len < size) {
strcpy (value, lvalue);
return len;
}
else if (size >= 4) {
strncpy (value, lvalue, size - 1);
value [size - 4] = value [size - 3] = value [size - 2] = '.';
value [size - 1] = 0;
return size - 1;
}
else
return 0;
}
static int get_ape_tag_item_indexed (M_Tag *m_tag, int index, char *item, int size, int type)
{
unsigned char *p = m_tag->ape_tag_data;
unsigned char *q = p + m_tag->ape_tag_hdr.length - sizeof (APE_Tag_Hdr);
int i;
for (i = 0; i < m_tag->ape_tag_hdr.item_count && index >= 0 && q - p > 8; ++i) {
int vsize, flags, isize;
vsize = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24); p += 4;
flags = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24); p += 4;
for (isize = 0; p[isize] && p + isize < q; ++isize);
if (vsize < 0 || vsize > m_tag->ape_tag_hdr.length || p + isize + vsize + 1 > q)
break;
if (isize && vsize && ((flags & 6) >> 1) == type && !index--) {
if (!item || !size)
return isize;
if (isize < size) {
memcpy (item, p, isize);
item [isize] = 0;
return isize;
}
else if (size >= 4) {
memcpy (item, p, size - 1);
item [size - 4] = item [size - 3] = item [size - 2] = '.';
item [size - 1] = 0;
return size - 1;
}
else
return 0;
}
else
p += isize + vsize + 1;
}
return 0;
}
static int get_id3_tag_item_indexed (M_Tag *m_tag, int index, char *item, int size)
{
char lvalue [16];
int len;
lvalue [0] = 0;
if (tagdata (m_tag->id3_tag.title, sizeof (m_tag->id3_tag.title)) && !index--)
strcpy (lvalue, "Title");
else if (tagdata (m_tag->id3_tag.artist, sizeof (m_tag->id3_tag.artist)) && !index--)
strcpy (lvalue, "Artist");
else if (tagdata (m_tag->id3_tag.album, sizeof (m_tag->id3_tag.album)) && !index--)
strcpy (lvalue, "Album");
else if (tagdata (m_tag->id3_tag.year, sizeof (m_tag->id3_tag.year)) && !index--)
strcpy (lvalue, "Year");
else if (tagdata (m_tag->id3_tag.comment, sizeof (m_tag->id3_tag.comment)) && !index--)
strcpy (lvalue, "Comment");
else if (m_tag->id3_tag.comment [29] && !m_tag->id3_tag.comment [28] && !index--)
strcpy (lvalue, "Track");
else
return 0;
len = (int) strlen (lvalue);
if (!item || !size)
return len;
if (len < size) {
strcpy (item, lvalue);
return len;
}
else if (size >= 4) {
strncpy (item, lvalue, size - 1);
item [size - 4] = item [size - 3] = item [size - 2] = '.';
item [size - 1] = 0;
return size - 1;
}
else
return 0;
}
static int append_ape_tag_item (WavpackContext *wpc, const char *item, const char *value, int vsize, int type)
{
M_Tag *m_tag = &wpc->m_tag;
int isize = (int) strlen (item);
if (!m_tag->ape_tag_hdr.ID [0]) {
strncpy (m_tag->ape_tag_hdr.ID, "APETAGEX", sizeof (m_tag->ape_tag_hdr.ID));
m_tag->ape_tag_hdr.version = 2000;
m_tag->ape_tag_hdr.length = sizeof (m_tag->ape_tag_hdr);
m_tag->ape_tag_hdr.item_count = 0;
m_tag->ape_tag_hdr.flags = APE_TAG_CONTAINS_HEADER; // we will include header on tags we originate
}
if (m_tag->ape_tag_hdr.ID [0] == 'A') {
int new_item_len = vsize + isize + 9, flags = type << 1;
unsigned char *p;
if (m_tag->ape_tag_hdr.length + new_item_len > APE_TAG_MAX_LENGTH) {
strcpy (wpc->error_message, "APEv2 tag exceeds maximum allowed length!");
return FALSE;
}
m_tag->ape_tag_hdr.item_count++;
m_tag->ape_tag_hdr.length += new_item_len;
p = m_tag->ape_tag_data = realloc (m_tag->ape_tag_data, m_tag->ape_tag_hdr.length);
p += m_tag->ape_tag_hdr.length - sizeof (APE_Tag_Hdr) - new_item_len;
*p++ = (unsigned char) vsize;
*p++ = (unsigned char) (vsize >> 8);
*p++ = (unsigned char) (vsize >> 16);
*p++ = (unsigned char) (vsize >> 24);
*p++ = (unsigned char) flags;
*p++ = (unsigned char) (flags >> 8);
*p++ = (unsigned char) (flags >> 16);
*p++ = (unsigned char) (flags >> 24);
strcpy ((char *) p, item);
p += isize + 1;
memcpy (p, value, vsize);
return TRUE;
}
else
return FALSE;
}
static int write_tag_blockout (WavpackContext *wpc)
{
M_Tag *m_tag = &wpc->m_tag;
int result = TRUE;
if (m_tag->ape_tag_hdr.ID [0] == 'A' && m_tag->ape_tag_hdr.item_count) {
// only write header if it's specified in the flags
if (m_tag->ape_tag_hdr.flags & APE_TAG_CONTAINS_HEADER) {
m_tag->ape_tag_hdr.flags |= APE_TAG_THIS_IS_HEADER;
native_to_little_endian (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
result = wpc->blockout (wpc->wv_out, &m_tag->ape_tag_hdr, sizeof (m_tag->ape_tag_hdr));
little_endian_to_native (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
}
if (m_tag->ape_tag_hdr.length > sizeof (m_tag->ape_tag_hdr))
result = wpc->blockout (wpc->wv_out, m_tag->ape_tag_data, m_tag->ape_tag_hdr.length - sizeof (m_tag->ape_tag_hdr));
m_tag->ape_tag_hdr.flags &= ~APE_TAG_THIS_IS_HEADER; // this is NOT header
native_to_little_endian (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
result = wpc->blockout (wpc->wv_out, &m_tag->ape_tag_hdr, sizeof (m_tag->ape_tag_hdr));
little_endian_to_native (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
}
if (!result)
strcpy (wpc->error_message, "can't write WavPack data, disk probably full!");
return result;
}
static int write_tag_reader (WavpackContext *wpc)
{
M_Tag *m_tag = &wpc->m_tag;
int32_t tag_size = 0;
int result = TRUE;
if (m_tag->ape_tag_hdr.ID [0] == 'A' && m_tag->ape_tag_hdr.item_count &&
m_tag->ape_tag_hdr.length > sizeof (m_tag->ape_tag_hdr))
tag_size = m_tag->ape_tag_hdr.length;
// only write header if it's specified in the flags
if (m_tag->ape_tag_hdr.flags & APE_TAG_CONTAINS_HEADER)
tag_size += sizeof (m_tag->ape_tag_hdr);
result = (wpc->open_flags & OPEN_EDIT_TAGS) && wpc->reader->can_seek (wpc->wv_in) &&
!wpc->reader->set_pos_rel (wpc->wv_in, m_tag->tag_file_pos, SEEK_END);
if (result && tag_size < -m_tag->tag_file_pos) {
int nullcnt = -m_tag->tag_file_pos - tag_size;
char zero [1] = { 0 };
while (nullcnt--)
wpc->reader->write_bytes (wpc->wv_in, &zero, 1);
}
if (result && tag_size) {
if (m_tag->ape_tag_hdr.flags & APE_TAG_CONTAINS_HEADER) {
m_tag->ape_tag_hdr.flags |= APE_TAG_THIS_IS_HEADER;
native_to_little_endian (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
result = (wpc->reader->write_bytes (wpc->wv_in, &m_tag->ape_tag_hdr, sizeof (m_tag->ape_tag_hdr)) == sizeof (m_tag->ape_tag_hdr));
little_endian_to_native (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
}
result = (wpc->reader->write_bytes (wpc->wv_in, m_tag->ape_tag_data, m_tag->ape_tag_hdr.length - sizeof (m_tag->ape_tag_hdr)) == sizeof (m_tag->ape_tag_hdr));
m_tag->ape_tag_hdr.flags &= ~APE_TAG_THIS_IS_HEADER; // this is NOT header
native_to_little_endian (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
result = (wpc->reader->write_bytes (wpc->wv_in, &m_tag->ape_tag_hdr, sizeof (m_tag->ape_tag_hdr)) == sizeof (m_tag->ape_tag_hdr));
little_endian_to_native (&m_tag->ape_tag_hdr, APE_Tag_Hdr_Format);
}
if (!result)
strcpy (wpc->error_message, "can't write WavPack data, disk probably full!");
return result;
}
// Copy the specified ID3v1 tag value (with specified field size) from the
// source pointer to the destination, eliminating leading spaces and trailing
// spaces and nulls.
static void tagcpy (char *dest, char *src, int tag_size)
{
char *s1 = src, *s2 = src + tag_size - 1;
if (*s2 && !s2 [-1])
s2--;
while (s1 <= s2)
if (*s1 == ' ')
++s1;
else if (!*s2 || *s2 == ' ')
--s2;
else
break;
while (*s1 && s1 <= s2)
*dest++ = *s1++;
*dest = 0;
}
static int tagdata (char *src, int tag_size)
{
char *s1 = src, *s2 = src + tag_size - 1;
if (*s2 && !s2 [-1])
s2--;
while (s1 <= s2)
if (*s1 == ' ')
++s1;
else if (!*s2 || *s2 == ' ')
--s2;
else
break;
return (*s1 && s1 <= s2);
}
#endif

View File

@ -0,0 +1,55 @@
////////////////////////////////////////////////////////////////////////////
// **** WAVPACK **** //
// Hybrid Lossless Wavefile Compressor //
// Copyright (c) 1998 - 2006 Conifer Software. //
// All Rights Reserved. //
// Distributed under the BSD Software License (see license.txt) //
////////////////////////////////////////////////////////////////////////////
// utils.h
#ifndef UTILS_H
#define UTILS_H
#ifndef PATH_MAX
#ifdef MAX_PATH
#define PATH_MAX MAX_PATH
#elif defined (MAXPATHLEN)
#define PATH_MAX MAXPATHLEN
#else
#define PATH_MAX 1024
#endif
#endif
#if defined(WIN32)
#undef VERSION_OS
#define VERSION_OS "Win32"
#endif
#define FALSE 0
#define TRUE 1
#define CLEAR(destin) memset (&destin, 0, sizeof (destin));
int copy_timestamp (const char *src_filename, const char *dst_filename);
char *filespec_ext (char *filespec), *filespec_path (char *filespec);
char *filespec_name (char *filespec), *filespec_wild (char *filespec);
void error_line (char *error, ...);
void setup_break (void), finish_line (void);
int check_break (void);
char yna (void);
int DoReadFile (FILE *hFile, void *lpBuffer, uint32_t nNumberOfBytesToRead, uint32_t *lpNumberOfBytesRead);
int DoWriteFile (FILE *hFile, void *lpBuffer, uint32_t nNumberOfBytesToWrite, uint32_t *lpNumberOfBytesWritten);
int64_t DoGetFileSize (FILE *hFile);
uint32_t DoGetFilePosition (FILE *hFile);
int DoSetFilePositionAbsolute (FILE *hFile, uint32_t pos);
int DoSetFilePositionRelative (FILE *hFile, int32_t pos, int mode);
int DoUngetc (int c, FILE *hFile);
int DoCloseHandle (FILE *hFile);
int DoTruncateFile (FILE *hFile);
int DoDeleteFile (char *filename);
#define FN_FIT(fn) ((strlen (fn) > 30) ? filespec_name (fn) : fn)
#endif

View File

@ -0,0 +1,794 @@
////////////////////////////////////////////////////////////////////////////
// **** WAVPACK **** //
// Hybrid Lossless Wavefile Compressor //
// Copyright (c) 1998 - 2006 Conifer Software. //
// All Rights Reserved. //
// Distributed under the BSD Software License (see license.txt) //
////////////////////////////////////////////////////////////////////////////
// wavpack_local.h
#ifndef WAVPACK_LOCAL_H
#define WAVPACK_LOCAL_H
#if defined(WIN32)
#define FASTCALL __fastcall
#else
#define FASTCALL
#endif
#if defined(WIN32) || \
(defined(BYTE_ORDER) && defined(LITTLE_ENDIAN) && (BYTE_ORDER == LITTLE_ENDIAN))
#define BITSTREAM_SHORTS // use "shorts" for reading/writing bitstreams
// (only works on little-endian machines)
#endif
#include <sys/types.h>
// This header file contains all the definitions required by WavPack.
#if defined(_WIN32) && !defined(__MINGW32__)
#include <stdlib.h>
typedef unsigned __int64 uint64_t;
typedef unsigned __int32 uint32_t;
typedef unsigned __int16 uint16_t;
typedef unsigned __int8 uint8_t;
typedef __int64 int64_t;
typedef __int32 int32_t;
typedef __int16 int16_t;
typedef __int8 int8_t;
typedef float float32_t;
#else
#include <inttypes.h>
#endif
// Because the C99 specification states that "The order of allocation of
// bit-fields within a unit (high-order to low-order or low-order to
// high-order) is implementation-defined" (6.7.2.1), I decided to change
// the representation of floating-point values from a structure of
// bit-fields to a 32-bit integer with access macros. Note that the WavPack
// library doesn't use any floating-point math to implement compression of
// floating-point data (although a little floating-point math is used in
// high-level functions unrelated to the codec).
typedef int32_t f32;
#define get_mantissa(f) ((f) & 0x7fffff)
#define get_exponent(f) (((f) >> 23) & 0xff)
#define get_sign(f) (((f) >> 31) & 0x1)
#define set_mantissa(f,v) (f) ^= (((f) ^ (v)) & 0x7fffff)
#define set_exponent(f,v) (f) ^= (((f) ^ ((v) << 23)) & 0x7f800000)
#define set_sign(f,v) (f) ^= (((f) ^ ((v) << 31)) & 0x80000000)
#include <stdio.h>
#define FALSE 0
#define TRUE 1
// ID3v1 and APEv2 TAG formats (may occur at the end of WavPack files)
typedef struct {
char tag_id [3], title [30], artist [30], album [30];
char year [4], comment [30], genre;
} ID3_Tag;
typedef struct {
char ID [8];
int32_t version, length, item_count, flags;
char res [8];
} APE_Tag_Hdr;
#define APE_Tag_Hdr_Format "8LLLL"
#define APE_TAG_TYPE_TEXT 0x0
#define APE_TAG_TYPE_BINARY 0x1
#define APE_TAG_THIS_IS_HEADER 0x20000000
#define APE_TAG_CONTAINS_HEADER 0x80000000
#define APE_TAG_MAX_LENGTH (1024 * 1024)
typedef struct {
int32_t tag_file_pos;
ID3_Tag id3_tag;
APE_Tag_Hdr ape_tag_hdr;
unsigned char *ape_tag_data;
} M_Tag;
// RIFF / wav header formats (these occur at the beginning of both wav files
// and pre-4.0 WavPack files that are not in the "raw" mode)
typedef struct {
char ckID [4];
uint32_t ckSize;
char formType [4];
} RiffChunkHeader;
typedef struct {
char ckID [4];
uint32_t ckSize;
} ChunkHeader;
#define ChunkHeaderFormat "4L"
typedef struct {
unsigned short FormatTag, NumChannels;
uint32_t SampleRate, BytesPerSecond;
unsigned short BlockAlign, BitsPerSample;
unsigned short cbSize, ValidBitsPerSample;
int32_t ChannelMask;
unsigned short SubFormat;
char GUID [14];
} WaveHeader;
#define WaveHeaderFormat "SSLLSSSSLS"
////////////////////////////// WavPack Header /////////////////////////////////
// Note that this is the ONLY structure that is written to (or read from)
// WavPack 4.0 files, and is the preamble to every block in both the .wv
// and .wvc files.
typedef struct {
char ckID [4];
uint32_t ckSize;
short version;
unsigned char track_no, index_no;
uint32_t total_samples, block_index, block_samples, flags, crc;
} WavpackHeader;
#define WavpackHeaderFormat "4LS2LLLLL"
// or-values for "flags"
#define BYTES_STORED 3 // 1-4 bytes/sample
#define MONO_FLAG 4 // not stereo
#define HYBRID_FLAG 8 // hybrid mode
#define JOINT_STEREO 0x10 // joint stereo
#define CROSS_DECORR 0x20 // no-delay cross decorrelation
#define HYBRID_SHAPE 0x40 // noise shape (hybrid mode only)
#define FLOAT_DATA 0x80 // ieee 32-bit floating point data
#define INT32_DATA 0x100 // special extended int handling
#define HYBRID_BITRATE 0x200 // bitrate noise (hybrid mode only)
#define HYBRID_BALANCE 0x400 // balance noise (hybrid stereo mode only)
#define INITIAL_BLOCK 0x800 // initial block of multichannel segment
#define FINAL_BLOCK 0x1000 // final block of multichannel segment
#define SHIFT_LSB 13
#define SHIFT_MASK (0x1fL << SHIFT_LSB)
#define MAG_LSB 18
#define MAG_MASK (0x1fL << MAG_LSB)
#define SRATE_LSB 23
#define SRATE_MASK (0xfL << SRATE_LSB)
#define FALSE_STEREO 0x40000000 // block is stereo, but data is mono
#define IGNORED_FLAGS 0x18000000 // reserved, but ignore if encountered
#define NEW_SHAPING 0x20000000 // use IIR filter for negative shaping
#define UNKNOWN_FLAGS 0x80000000 // also reserved, but refuse decode if
// encountered
#define MONO_DATA (MONO_FLAG | FALSE_STEREO)
#define MIN_STREAM_VERS 0x402 // lowest stream version we'll decode
#define MAX_STREAM_VERS 0x410 // highest stream version we'll decode or encode
#define CUR_STREAM_VERS 0x407 // stream version we are [normally] writing now
//////////////////////////// WavPack Metadata /////////////////////////////////
// This is an internal representation of metadata.
typedef struct {
int32_t byte_length;
void *data;
unsigned char id;
} WavpackMetadata;
#define ID_UNIQUE 0x3f
#define ID_OPTIONAL_DATA 0x20
#define ID_ODD_SIZE 0x40
#define ID_LARGE 0x80
#define ID_DUMMY 0x0
#define ID_ENCODER_INFO 0x1
#define ID_DECORR_TERMS 0x2
#define ID_DECORR_WEIGHTS 0x3
#define ID_DECORR_SAMPLES 0x4
#define ID_ENTROPY_VARS 0x5
#define ID_HYBRID_PROFILE 0x6
#define ID_SHAPING_WEIGHTS 0x7
#define ID_FLOAT_INFO 0x8
#define ID_INT32_INFO 0x9
#define ID_WV_BITSTREAM 0xa
#define ID_WVC_BITSTREAM 0xb
#define ID_WVX_BITSTREAM 0xc
#define ID_CHANNEL_INFO 0xd
#define ID_RIFF_HEADER (ID_OPTIONAL_DATA | 0x1)
#define ID_RIFF_TRAILER (ID_OPTIONAL_DATA | 0x2)
#define ID_REPLAY_GAIN (ID_OPTIONAL_DATA | 0x3)
#define ID_CUESHEET (ID_OPTIONAL_DATA | 0x4)
#define ID_CONFIG_BLOCK (ID_OPTIONAL_DATA | 0x5)
#define ID_MD5_CHECKSUM (ID_OPTIONAL_DATA | 0x6)
#define ID_SAMPLE_RATE (ID_OPTIONAL_DATA | 0x7)
///////////////////////// WavPack Configuration ///////////////////////////////
// This internal structure is used during encode to provide configuration to
// the encoding engine and during decoding to provide fle information back to
// the higher level functions. Not all fields are used in both modes.
typedef struct {
float bitrate, shaping_weight;
int bits_per_sample, bytes_per_sample;
int qmode, flags, xmode, num_channels, float_norm_exp;
int32_t block_samples, extra_flags, sample_rate, channel_mask;
unsigned char md5_checksum [16], md5_read;
int num_tag_strings;
char **tag_strings;
} WavpackConfig;
#define CONFIG_BYTES_STORED 3 // 1-4 bytes/sample
#define CONFIG_MONO_FLAG 4 // not stereo
#define CONFIG_HYBRID_FLAG 8 // hybrid mode
#define CONFIG_JOINT_STEREO 0x10 // joint stereo
#define CONFIG_CROSS_DECORR 0x20 // no-delay cross decorrelation
#define CONFIG_HYBRID_SHAPE 0x40 // noise shape (hybrid mode only)
#define CONFIG_FLOAT_DATA 0x80 // ieee 32-bit floating point data
#define CONFIG_FAST_FLAG 0x200 // fast mode
#define CONFIG_HIGH_FLAG 0x800 // high quality mode
#define CONFIG_VERY_HIGH_FLAG 0x1000 // very high
#define CONFIG_BITRATE_KBPS 0x2000 // bitrate is kbps, not bits / sample
#define CONFIG_AUTO_SHAPING 0x4000 // automatic noise shaping
#define CONFIG_SHAPE_OVERRIDE 0x8000 // shaping mode specified
#define CONFIG_JOINT_OVERRIDE 0x10000 // joint-stereo mode specified
#define CONFIG_DYNAMIC_SHAPING 0x20000 // dynamic noise shaping
#define CONFIG_CREATE_EXE 0x40000 // create executable
#define CONFIG_CREATE_WVC 0x80000 // create correction file
#define CONFIG_OPTIMIZE_WVC 0x100000 // maximize bybrid compression
#define CONFIG_CALC_NOISE 0x800000 // calc noise in hybrid mode
#define CONFIG_LOSSY_MODE 0x1000000 // obsolete (for information)
#define CONFIG_EXTRA_MODE 0x2000000 // extra processing mode
#define CONFIG_SKIP_WVX 0x4000000 // no wvx stream w/ floats & big ints
#define CONFIG_MD5_CHECKSUM 0x8000000 // compute & store MD5 signature
#define CONFIG_MERGE_BLOCKS 0x10000000 // merge blocks of equal redundancy (for lossyWAV)
#define CONFIG_PAIR_UNDEF_CHANS 0x20000000 // encode undefined channels in stereo pairs
#define CONFIG_OPTIMIZE_MONO 0x80000000 // optimize for mono streams posing as stereo
/*
* These config flags were never actually used, or are no longer used, or are
* used for something else now. They may be used in the future for what they
* say, or for something else. WavPack files in the wild *may* have some of
* these bit set in their config flags (with these older meanings), but only
* if the stream version is 0x410 or less than 0x407. Of course, this is not
* very important because once the file has been encoded, the config bits are
* just for information purposes (i.e., they do not affect decoding),
*
#define CONFIG_ADOBE_MODE 0x100 // "adobe" mode for 32-bit floats
#define CONFIG_VERY_FAST_FLAG 0x400 // double fast
#define CONFIG_COPY_TIME 0x20000 // copy file-time from source
#define CONFIG_QUALITY_MODE 0x200000 // psychoacoustic quality mode
#define CONFIG_RAW_FLAG 0x400000 // raw mode (not implemented yet)
#define CONFIG_QUIET_MODE 0x10000000 // don't report progress %
#define CONFIG_IGNORE_LENGTH 0x20000000 // ignore length in wav header
#define CONFIG_NEW_RIFF_HEADER 0x40000000 // generate new RIFF wav header
*
*/
#define EXTRA_SCAN_ONLY 1
#define EXTRA_STEREO_MODES 2
#define EXTRA_TRY_DELTAS 8
#define EXTRA_ADJUST_DELTAS 16
#define EXTRA_SORT_FIRST 32
#define EXTRA_BRANCHES 0x1c0
#define EXTRA_SKIP_8TO16 512
#define EXTRA_TERMS 0x3c00
#define EXTRA_DUMP_TERMS 16384
#define EXTRA_SORT_LAST 32768
//////////////////////////////// WavPack Stream ///////////////////////////////
// This internal structure contains everything required to handle a WavPack
// "stream", which is defined as a stereo or mono stream of audio samples. For
// multichannel audio several of these would be required. Each stream contains
// pointers to hold a complete allocated block of WavPack data, although it's
// possible to decode WavPack blocks without buffering an entire block.
typedef struct bs {
#ifdef BITSTREAM_SHORTS
unsigned short *buf, *end, *ptr;
#else
unsigned char *buf, *end, *ptr;
#endif
void (*wrap)(struct bs *bs);
int error, bc;
uint32_t sr;
} Bitstream;
#define MAX_WRAPPER_BYTES 16777216
#define NEW_MAX_STREAMS 4096
#define OLD_MAX_STREAMS 8
#define MAX_NTERMS 16
#define MAX_TERM 8
struct decorr_pass {
int term, delta, weight_A, weight_B;
int32_t samples_A [MAX_TERM], samples_B [MAX_TERM];
int32_t aweight_A, aweight_B;
int32_t sum_A, sum_B;
};
typedef struct {
char joint_stereo, delta, terms [MAX_NTERMS+1];
} WavpackDecorrSpec;
struct entropy_data {
uint32_t median [3], slow_level, error_limit;
};
struct words_data {
uint32_t bitrate_delta [2], bitrate_acc [2];
uint32_t pend_data, holding_one, zeros_acc;
int holding_zero, pend_count;
struct entropy_data c [2];
};
typedef struct {
WavpackHeader wphdr;
struct words_data w;
unsigned char *blockbuff, *blockend;
unsigned char *block2buff, *block2end;
int32_t *sample_buffer;
int bits, num_terms, mute_error, joint_stereo, false_stereo, shift;
int num_decorrs, num_passes, best_decorr, mask_decorr;
uint32_t sample_index, crc, crc_x, crc_wvx;
Bitstream wvbits, wvcbits, wvxbits;
int init_done, wvc_skip;
float delta_decay;
unsigned char int32_sent_bits, int32_zeros, int32_ones, int32_dups;
unsigned char float_flags, float_shift, float_max_exp, float_norm_exp;
struct {
int32_t shaping_acc [2], shaping_delta [2], error [2];
double noise_sum, noise_ave, noise_max;
short *shaping_data, *shaping_array;
int32_t shaping_samples;
} dc;
struct decorr_pass decorr_passes [MAX_NTERMS], analysis_pass;
const WavpackDecorrSpec *decorr_specs;
} WavpackStream;
// flags for float_flags:
#define FLOAT_SHIFT_ONES 1 // bits left-shifted into float = '1'
#define FLOAT_SHIFT_SAME 2 // bits left-shifted into float are the same
#define FLOAT_SHIFT_SENT 4 // bits shifted into float are sent literally
#define FLOAT_ZEROS_SENT 8 // "zeros" are not all real zeros
#define FLOAT_NEG_ZEROS 0x10 // contains negative zeros
#define FLOAT_EXCEPTIONS 0x20 // contains exceptions (inf, nan, etc.)
/////////////////////////////// WavPack Context ///////////////////////////////
// This internal structure holds everything required to encode or decode WavPack
// files. It is recommended that direct access to this structure be minimized
// and the provided utilities used instead.
typedef struct {
int32_t (*read_bytes)(void *id, void *data, int32_t bcount);
uint32_t (*get_pos)(void *id);
int (*set_pos_abs)(void *id, uint32_t pos);
int (*set_pos_rel)(void *id, int32_t delta, int mode);
int (*push_back_byte)(void *id, int c);
uint32_t (*get_length)(void *id);
int (*can_seek)(void *id);
// this callback is for writing edited tags only
int32_t (*write_bytes)(void *id, void *data, int32_t bcount);
} WavpackStreamReader;
typedef int (*WavpackBlockOutput)(void *id, void *data, int32_t bcount);
typedef struct {
WavpackConfig config;
WavpackMetadata *metadata;
uint32_t metabytes;
int metacount;
unsigned char *wrapper_data;
uint32_t wrapper_bytes;
WavpackBlockOutput blockout;
void *wv_out, *wvc_out;
WavpackStreamReader *reader;
void *wv_in, *wvc_in;
uint32_t filelen, file2len, filepos, file2pos, total_samples, crc_errors, first_flags;
int wvc_flag, open_flags, norm_offset, reduced_channels, lossy_blocks, close_files;
uint32_t block_samples, ave_block_samples, block_boundary, max_samples, acc_samples, initial_index, riff_trailer_bytes;
int riff_header_added, riff_header_created;
M_Tag m_tag;
int current_stream, num_streams, max_streams, stream_version;
WavpackStream **streams;
void *stream3;
char error_message [80];
} WavpackContext;
//////////////////////// function prototypes and macros //////////////////////
#define CLEAR(destin) memset (&destin, 0, sizeof (destin));
// These macros implement the weight application and update operations
// that are at the heart of the decorrelation loops. Note that there are
// sometimes two and even three versions of each macro. Theses should be
// equivalent and produce identical results, but some may perform better
// or worse on a given architecture.
#if 1 // PERFCOND - apply decorrelation weight when no 32-bit overflow possible
#define apply_weight_i(weight, sample) ((weight * sample + 512) >> 10)
#else
#define apply_weight_i(weight, sample) ((((weight * sample) >> 8) + 2) >> 2)
#endif
#if 1 // PERFCOND - apply decorrelation weight when 32-bit overflow is possible
#define apply_weight_f(weight, sample) (((((sample & 0xffff) * weight) >> 9) + \
(((sample & ~0xffff) >> 9) * weight) + 1) >> 1)
#else
#define apply_weight_f(weight, sample) ((int32_t)floor(((double) weight * sample + 512.0) / 1024.0))
#endif
#if 1 // PERFCOND - universal version that checks input magnitude (or simply uses 64-bit ints)
#define apply_weight(weight, sample) (sample != (short) sample ? \
apply_weight_f (weight, sample) : apply_weight_i (weight, sample))
#else
#define apply_weight(weight, sample) ((int32_t)((weight * (int64_t) sample + 512) >> 10))
#endif
#if 1 // PERFCOND
#define update_weight(weight, delta, source, result) \
if (source && result) { int32_t s = (int32_t) (source ^ result) >> 31; weight = (delta ^ s) + (weight - s); }
#elif 1
#define update_weight(weight, delta, source, result) \
if (source && result) weight += (((source ^ result) >> 30) | 1) * delta;
#else
#define update_weight(weight, delta, source, result) \
if (source && result) (source ^ result) < 0 ? (weight -= delta) : (weight += delta);
#endif
#define update_weight_d2(weight, delta, source, result) \
if (source && result) weight -= (((source ^ result) >> 29) & 4) - 2;
#define update_weight_clip(weight, delta, source, result) \
if (source && result) { \
const int32_t s = (source ^ result) >> 31; \
if ((weight = (weight ^ s) + (delta - s)) > 1024) weight = 1024; \
weight = (weight ^ s) - s; \
}
#define update_weight_clip_d2(weight, delta, source, result) \
if (source && result) { \
const int32_t s = (source ^ result) >> 31; \
if ((weight = (weight ^ s) + (2 - s)) > 1024) weight = 1024; \
weight = (weight ^ s) - s; \
}
// bits.c
void bs_open_read (Bitstream *bs, void *buffer_start, void *buffer_end);
void bs_open_write (Bitstream *bs, void *buffer_start, void *buffer_end);
uint32_t bs_close_read (Bitstream *bs);
uint32_t bs_close_write (Bitstream *bs);
int DoReadFile (FILE *hFile, void *lpBuffer, uint32_t nNumberOfBytesToRead, uint32_t *lpNumberOfBytesRead);
int DoWriteFile (FILE *hFile, void *lpBuffer, uint32_t nNumberOfBytesToWrite, uint32_t *lpNumberOfBytesWritten);
uint32_t DoGetFileSize (FILE *hFile), DoGetFilePosition (FILE *hFile);
int DoSetFilePositionRelative (FILE *hFile, int32_t pos, int mode);
int DoSetFilePositionAbsolute (FILE *hFile, uint32_t pos);
int DoUngetc (int c, FILE *hFile), DoDeleteFile (char *filename);
int DoCloseHandle (FILE *hFile), DoTruncateFile (FILE *hFile);
#define bs_is_open(bs) ((bs)->ptr != NULL)
#define getbit(bs) ( \
(((bs)->bc) ? \
((bs)->bc--, (bs)->sr & 1) : \
(((++((bs)->ptr) != (bs)->end) ? (void) 0 : (bs)->wrap (bs)), (bs)->bc = sizeof (*((bs)->ptr)) * 8 - 1, ((bs)->sr = *((bs)->ptr)) & 1) \
) ? \
((bs)->sr >>= 1, 1) : \
((bs)->sr >>= 1, 0) \
)
#define getbits(value, nbits, bs) { \
while ((nbits) > (bs)->bc) { \
if (++((bs)->ptr) == (bs)->end) (bs)->wrap (bs); \
(bs)->sr |= (int32_t)*((bs)->ptr) << (bs)->bc; \
(bs)->bc += sizeof (*((bs)->ptr)) * 8; \
} \
*(value) = (bs)->sr; \
if ((bs)->bc > 32) { \
(bs)->bc -= (nbits); \
(bs)->sr = *((bs)->ptr) >> (sizeof (*((bs)->ptr)) * 8 - (bs)->bc); \
} \
else { \
(bs)->bc -= (nbits); \
(bs)->sr >>= (nbits); \
} \
}
#define putbit(bit, bs) { if (bit) (bs)->sr |= (1 << (bs)->bc); \
if (++((bs)->bc) == sizeof (*((bs)->ptr)) * 8) { \
*((bs)->ptr) = (bs)->sr; \
(bs)->sr = (bs)->bc = 0; \
if (++((bs)->ptr) == (bs)->end) (bs)->wrap (bs); \
}}
#define putbit_0(bs) { \
if (++((bs)->bc) == sizeof (*((bs)->ptr)) * 8) { \
*((bs)->ptr) = (bs)->sr; \
(bs)->sr = (bs)->bc = 0; \
if (++((bs)->ptr) == (bs)->end) (bs)->wrap (bs); \
}}
#define putbit_1(bs) { (bs)->sr |= (1 << (bs)->bc); \
if (++((bs)->bc) == sizeof (*((bs)->ptr)) * 8) { \
*((bs)->ptr) = (bs)->sr; \
(bs)->sr = (bs)->bc = 0; \
if (++((bs)->ptr) == (bs)->end) (bs)->wrap (bs); \
}}
#define putbits(value, nbits, bs) { \
(bs)->sr |= (int32_t)(value) << (bs)->bc; \
if (((bs)->bc += (nbits)) >= sizeof (*((bs)->ptr)) * 8) \
do { \
*((bs)->ptr) = (bs)->sr; \
(bs)->sr >>= sizeof (*((bs)->ptr)) * 8; \
if (((bs)->bc -= sizeof (*((bs)->ptr)) * 8) > 32 - sizeof (*((bs)->ptr)) * 8) \
(bs)->sr |= ((value) >> ((nbits) - (bs)->bc)); \
if (++((bs)->ptr) == (bs)->end) (bs)->wrap (bs); \
} while ((bs)->bc >= sizeof (*((bs)->ptr)) * 8); \
}
void little_endian_to_native (void *data, char *format);
void native_to_little_endian (void *data, char *format);
// pack.c
void pack_init (WavpackContext *wpc);
int pack_block (WavpackContext *wpc, int32_t *buffer);
double WavpackGetEncodedNoise (WavpackContext *wpc, double *peak);
// unpack.c
int unpack_init (WavpackContext *wpc);
int init_wv_bitstream (WavpackStream *wps, WavpackMetadata *wpmd);
int init_wvc_bitstream (WavpackStream *wps, WavpackMetadata *wpmd);
int init_wvx_bitstream (WavpackStream *wps, WavpackMetadata *wpmd);
int read_decorr_terms (WavpackStream *wps, WavpackMetadata *wpmd);
int read_decorr_weights (WavpackStream *wps, WavpackMetadata *wpmd);
int read_decorr_samples (WavpackStream *wps, WavpackMetadata *wpmd);
int read_shaping_info (WavpackStream *wps, WavpackMetadata *wpmd);
int read_float_info (WavpackStream *wps, WavpackMetadata *wpmd);
int read_int32_info (WavpackStream *wps, WavpackMetadata *wpmd);
int read_channel_info (WavpackContext *wpc, WavpackMetadata *wpmd);
int read_config_info (WavpackContext *wpc, WavpackMetadata *wpmd);
int read_sample_rate (WavpackContext *wpc, WavpackMetadata *wpmd);
int read_wrapper_data (WavpackContext *wpc, WavpackMetadata *wpmd);
int32_t unpack_samples (WavpackContext *wpc, int32_t *buffer, uint32_t sample_count);
int check_crc_error (WavpackContext *wpc);
// unpack3.c
WavpackContext *open_file3 (WavpackContext *wpc, char *error);
int32_t unpack_samples3 (WavpackContext *wpc, int32_t *buffer, uint32_t sample_count);
int seek_sample3 (WavpackContext *wpc, uint32_t desired_index);
uint32_t get_sample_index3 (WavpackContext *wpc);
void free_stream3 (WavpackContext *wpc);
int get_version3 (WavpackContext *wpc);
// metadata.c stuff
int read_metadata_buff (WavpackMetadata *wpmd, unsigned char *blockbuff, unsigned char **buffptr);
int write_metadata_block (WavpackContext *wpc);
int copy_metadata (WavpackMetadata *wpmd, unsigned char *buffer_start, unsigned char *buffer_end);
int add_to_metadata (WavpackContext *wpc, void *data, uint32_t bcount, unsigned char id);
int process_metadata (WavpackContext *wpc, WavpackMetadata *wpmd);
void free_metadata (WavpackMetadata *wpmd);
// words.c stuff
void init_words (WavpackStream *wps);
void word_set_bitrate (WavpackStream *wps);
void write_entropy_vars (WavpackStream *wps, WavpackMetadata *wpmd);
void write_hybrid_profile (WavpackStream *wps, WavpackMetadata *wpmd);
int read_entropy_vars (WavpackStream *wps, WavpackMetadata *wpmd);
int read_hybrid_profile (WavpackStream *wps, WavpackMetadata *wpmd);
int32_t FASTCALL send_word (WavpackStream *wps, int32_t value, int chan);
void send_words_lossless (WavpackStream *wps, int32_t *buffer, int32_t nsamples);
int32_t FASTCALL get_word (WavpackStream *wps, int chan, int32_t *correction);
int32_t get_words_lossless (WavpackStream *wps, int32_t *buffer, int32_t nsamples);
void flush_word (WavpackStream *wps);
int32_t nosend_word (WavpackStream *wps, int32_t value, int chan);
void scan_word (WavpackStream *wps, int32_t *samples, uint32_t num_samples, int dir);
int log2s (int32_t value);
int32_t exp2s (int log);
uint32_t log2buffer (int32_t *samples, uint32_t num_samples, int limit);
signed char store_weight (int weight);
int restore_weight (signed char weight);
#define WORD_EOF ((int32_t)(1L << 31))
// float.c
void write_float_info (WavpackStream *wps, WavpackMetadata *wpmd);
int scan_float_data (WavpackStream *wps, f32 *values, int32_t num_values);
void send_float_data (WavpackStream *wps, f32 *values, int32_t num_values);
int read_float_info (WavpackStream *wps, WavpackMetadata *wpmd);
void float_values (WavpackStream *wps, int32_t *values, int32_t num_values);
void WavpackFloatNormalize (int32_t *values, int32_t num_values, int delta_exp);
// extra?.c
// void analyze_stereo (WavpackContext *wpc, int32_t *samples);
// void analyze_mono (WavpackContext *wpc, int32_t *samples);
void execute_stereo (WavpackContext *wpc, int32_t *samples, int no_history, int do_samples);
void execute_mono (WavpackContext *wpc, int32_t *samples, int no_history, int do_samples);
// wputils.c
WavpackContext *WavpackOpenFileInputEx (WavpackStreamReader *reader, void *wv_id, void *wvc_id, char *error, int flags, int norm_offset);
WavpackContext *WavpackOpenFileInput (const char *infilename, char *error, int flags, int norm_offset);
#define OPEN_WVC 0x1 // open/read "correction" file
#define OPEN_TAGS 0x2 // read ID3v1 / APEv2 tags (seekable file)
#define OPEN_WRAPPER 0x4 // make audio wrapper available (i.e. RIFF)
#define OPEN_2CH_MAX 0x8 // open multichannel as stereo (no downmix)
#define OPEN_NORMALIZE 0x10 // normalize floating point data to +/- 1.0
#define OPEN_STREAMING 0x20 // "streaming" mode blindly unpacks blocks
// w/o regard to header file position info
#define OPEN_EDIT_TAGS 0x40 // allow editing of tags
int WavpackGetMode (WavpackContext *wpc);
#define MODE_WVC 0x1
#define MODE_LOSSLESS 0x2
#define MODE_HYBRID 0x4
#define MODE_FLOAT 0x8
#define MODE_VALID_TAG 0x10
#define MODE_HIGH 0x20
#define MODE_FAST 0x40
#define MODE_EXTRA 0x80 // extra mode used, see MODE_XMODE for possible level
#define MODE_APETAG 0x100
#define MODE_SFX 0x200
#define MODE_VERY_HIGH 0x400
#define MODE_MD5 0x800
#define MODE_XMODE 0x7000 // mask for extra level (1-6, 0=unknown)
#define MODE_DNS 0x8000
char *WavpackGetErrorMessage (WavpackContext *wpc);
int WavpackGetVersion (WavpackContext *wpc);
uint32_t WavpackUnpackSamples (WavpackContext *wpc, int32_t *buffer, uint32_t samples);
uint32_t WavpackGetNumSamples (WavpackContext *wpc);
uint32_t WavpackGetSampleIndex (WavpackContext *wpc);
int WavpackGetNumErrors (WavpackContext *wpc);
int WavpackLossyBlocks (WavpackContext *wpc);
int WavpackSeekSample (WavpackContext *wpc, uint32_t sample);
WavpackContext *WavpackCloseFile (WavpackContext *wpc);
uint32_t WavpackGetSampleRate (WavpackContext *wpc);
int WavpackGetBitsPerSample (WavpackContext *wpc);
int WavpackGetBytesPerSample (WavpackContext *wpc);
int WavpackGetNumChannels (WavpackContext *wpc);
int WavpackGetChannelMask (WavpackContext *wpc);
int WavpackGetReducedChannels (WavpackContext *wpc);
int WavpackGetFloatNormExp (WavpackContext *wpc);
int WavpackGetMD5Sum (WavpackContext *wpc, unsigned char data [16]);
uint32_t WavpackGetWrapperBytes (WavpackContext *wpc);
unsigned char *WavpackGetWrapperData (WavpackContext *wpc);
void WavpackFreeWrapper (WavpackContext *wpc);
void WavpackSeekTrailingWrapper (WavpackContext *wpc);
double WavpackGetProgress (WavpackContext *wpc);
uint32_t WavpackGetFileSize (WavpackContext *wpc);
double WavpackGetRatio (WavpackContext *wpc);
double WavpackGetAverageBitrate (WavpackContext *wpc, int count_wvc);
double WavpackGetInstantBitrate (WavpackContext *wpc);
WavpackContext *WavpackOpenFileOutput (WavpackBlockOutput blockout, void *wv_id, void *wvc_id);
int WavpackSetConfiguration (WavpackContext *wpc, WavpackConfig *config, uint32_t total_samples);
int WavpackAddWrapper (WavpackContext *wpc, void *data, uint32_t bcount);
int WavpackStoreMD5Sum (WavpackContext *wpc, unsigned char data [16]);
int WavpackPackInit (WavpackContext *wpc);
int WavpackPackSamples (WavpackContext *wpc, int32_t *sample_buffer, uint32_t sample_count);
int WavpackFlushSamples (WavpackContext *wpc);
void WavpackUpdateNumSamples (WavpackContext *wpc, void *first_block);
void *WavpackGetWrapperLocation (void *first_block, uint32_t *size);
void WavpackLittleEndianToNative (void *data, char *format);
void WavpackNativeToLittleEndian (void *data, char *format);
uint32_t WavpackGetLibraryVersion (void);
const char *WavpackGetLibraryVersionString (void);
// tags.c
int WavpackGetNumTagItems (WavpackContext *wpc);
int WavpackGetTagItem (WavpackContext *wpc, const char *item, char *value, int size);
int WavpackGetTagItemIndexed (WavpackContext *wpc, int index, char *item, int size);
int WavpackGetNumBinaryTagItems (WavpackContext *wpc);
int WavpackGetBinaryTagItem (WavpackContext *wpc, const char *item, char *value, int size);
int WavpackGetBinaryTagItemIndexed (WavpackContext *wpc, int index, char *item, int size);
int WavpackAppendTagItem (WavpackContext *wpc, const char *item, const char *value, int vsize);
int WavpackAppendBinaryTagItem (WavpackContext *wpc, const char *item, const char *value, int vsize);
int WavpackDeleteTagItem (WavpackContext *wpc, const char *item);
int WavpackWriteTag (WavpackContext *wpc);
int load_tag (WavpackContext *wpc);
void free_tag (M_Tag *m_tag);
int valid_tag (M_Tag *m_tag);
///////////////////////////// SIMD helper macros /////////////////////////////
#ifdef OPT_MMX
#if defined (__GNUC__) && !defined (__INTEL_COMPILER)
//directly map to gcc's native builtins for faster code
#if __GNUC__ < 4
typedef int __di __attribute__ ((__mode__ (__DI__)));
typedef int __m64 __attribute__ ((__mode__ (__V2SI__)));
typedef int __v4hi __attribute__ ((__mode__ (__V4HI__)));
#define _m_paddsw(m1, m2) (__m64) __builtin_ia32_paddsw ((__v4hi) m1, (__v4hi) m2)
#define _m_pand(m1, m2) (__m64) __builtin_ia32_pand ((__di) m1, (__di) m2)
#define _m_pandn(m1, m2) (__m64) __builtin_ia32_pandn ((__di) m1, (__di) m2)
#define _m_pmaddwd(m1, m2) __builtin_ia32_pmaddwd ((__v4hi) m1, (__v4hi) m2)
#define _m_por(m1, m2) (__m64) __builtin_ia32_por ((__di) m1, (__di) m2)
#define _m_pxor(m1, m2) (__m64) __builtin_ia32_pxor ((__di) m1, (__di) m2)
#else
typedef int __m64 __attribute__ ((__vector_size__ (8)));
typedef short __m64_16 __attribute__ ((__vector_size__ (8)));
#define _m_paddsw(m1, m2) (__m64) __builtin_ia32_paddsw ((__m64_16) m1, (__m64_16) m2)
#define _m_pand(m1, m2) __builtin_ia32_pand (m1, m2)
#define _m_pandn(m1, m2) __builtin_ia32_pandn (m1, m2)
#define _m_pmaddwd(m1, m2) __builtin_ia32_pmaddwd ((__m64_16) m1, (__m64_16) m2)
#define _m_por(m1, m2) __builtin_ia32_por (m1, m2)
#define _m_pxor(m1, m2) __builtin_ia32_pxor (m1, m2)
#endif
#define _m_paddd(m1, m2) __builtin_ia32_paddd (m1, m2)
#define _m_pcmpeqd(m1, m2) __builtin_ia32_pcmpeqd (m1, m2)
#if (__GNUC__ == 4 && __GNUC_MINOR__ >= 4) || __GNUC__ > 4
# define _m_pslldi(m1, m2) __builtin_ia32_pslldi ((__m64)m1, m2)
# define _m_psradi(m1, m2) __builtin_ia32_psradi ((__m64)m1, m2)
# define _m_psrldi(m1, m2) __builtin_ia32_psrldi ((__m64)m1, m2)
#else
# define _m_pslldi(m1, m2) __builtin_ia32_pslld (m1, m2)
# define _m_psradi(m1, m2) __builtin_ia32_psrad (m1, m2)
# define _m_psrldi(m1, m2) __builtin_ia32_psrld (m1, m2)
#endif
#define _m_psubd(m1, m2) __builtin_ia32_psubd (m1, m2)
#define _m_punpckhdq(m1, m2) __builtin_ia32_punpckhdq (m1, m2)
#define _m_punpckldq(m1, m2) __builtin_ia32_punpckldq (m1, m2)
#define _mm_empty() __builtin_ia32_emms ()
#define _mm_set_pi32(m1, m2) { m2, m1 }
#define _mm_set1_pi32(m) { m, m }
#else
#include <mmintrin.h>
#endif
#endif //OPT_MMX
#endif

View File

@ -0,0 +1,19 @@
////////////////////////////////////////////////////////////////////////////
// **** WAVPACK **** //
// Hybrid Lossless Wavefile Compressor //
// Copyright (c) 1998 - 2006 Conifer Software. //
// All Rights Reserved. //
// Distributed under the BSD Software License (see license.txt) //
////////////////////////////////////////////////////////////////////////////
// wavpack_version.h
#ifndef WAVPACK_VERSION_H
#define WAVPACK_VERSION_H
#define LIBWAVPACK_MAJOR 4
#define LIBWAVPACK_MINOR 60
#define LIBWAVPACK_MICRO 1
#define LIBWAVPACK_VERSION_STRING "4.60.1"
#endif

View File

@ -0,0 +1,13 @@
//
// VolumeBehaviorArrayController.h
// General
//
// Created by Christopher Snowhill on 10/1/13.
//
//
#import <Cocoa/Cocoa.h>
@interface VolumeBehaviorArrayController : NSArrayController
@end

View File

@ -0,0 +1,47 @@
//
// VolumeBehaviorArrayController.m
// General
//
// Created by Christopher Snowhill on 10/1/13.
//
//
#import "VolumeBehaviorArrayController.h"
@implementation VolumeBehaviorArrayController
- (void)awakeFromNib
{
[self removeObjects:[self arrangedObjects]];
[self addObject:
[NSDictionary dictionaryWithObjectsAndKeys:
NSLocalizedStringFromTableInBundle(@"ReplayGain Album Gain with peak", nil, [NSBundle bundleForClass:[self class]], @"") , @"name",
@"albumGainWithPeak", @"preference",nil]];
[self addObject:
[NSDictionary dictionaryWithObjectsAndKeys:
NSLocalizedStringFromTableInBundle(@"ReplayGain Album Gain", nil, [NSBundle bundleForClass:[self class]], @"") , @"name",
@"albumGain", @"preference",nil]];
[self addObject:
[NSDictionary dictionaryWithObjectsAndKeys:
NSLocalizedStringFromTableInBundle(@"ReplayGain Track Gain with peak", nil, [NSBundle bundleForClass:[self class]], @"") , @"name",
@"trackGainWithPeak", @"preference",nil]];
[self addObject:
[NSDictionary dictionaryWithObjectsAndKeys:
NSLocalizedStringFromTableInBundle(@"ReplayGain Track Gain", nil, [NSBundle bundleForClass:[self class]], @"") , @"name",
@"trackGain", @"preference",nil]];
[self addObject:
[NSDictionary dictionaryWithObjectsAndKeys:
NSLocalizedStringFromTableInBundle(@"Volume scale tag only", nil, [NSBundle bundleForClass:[self class]], @"") , @"name",
@"volumeScale", @"preference",nil]];
[self addObject:
[NSDictionary dictionaryWithObjectsAndKeys:
NSLocalizedStringFromTableInBundle(@"No volume scaling", nil, [NSBundle bundleForClass:[self class]], @"") , @"name",
@"none", @"preference",nil]];
}
@end