// ============================================================================= // FILE: StdString.h // AUTHOR: Joe O'Leary (with outside help noted in comments) // REMARKS: // This header file declares the CStdStr template. This template derives // the Standard C++ Library basic_string<> template and add to it the // the following conveniences: // - The full MFC CString set of functions (including implicit cast) // - writing to/reading from COM IStream interfaces // - Functional objects for use in STL algorithms // // From this template, we intstantiate two classes: CStdStringA and // CStdStringW. The name "CStdString" is just a #define of one of these, // based upone the _UNICODE macro setting // // This header also declares our own version of the MFC/ATL UNICODE-MBCS // conversion macros. Our version looks exactly like the Microsoft's to // facilitate portability. // // NOTE: // If you you use this in an MFC or ATL build, you should include either // afx.h or atlbase.h first, as appropriate. // // PEOPLE WHO HAVE CONTRIBUTED TO THIS CLASS: // // Several people have helped me iron out problems and othewise improve // this class. OK, this is a long list but in my own defense, this code // has undergone two major rewrites. Many of the improvements became // necessary after I rewrote the code as a template. Others helped me // improve the CString facade. // // Anyway, these people are (in chronological order): // // - Pete the Plumber (???) // - Julian Selman // - Chris (of Melbsys) // - Dave Plummer // - John C Sipos // - Chris Sells // - Nigel Nunn // - Fan Xia // - Matthew Williams // - Carl Engman // - Mark Zeren // - Craig Watson // - Rich Zuris // - Karim Ratib // - Chris Conti // - Baptiste Lepilleur // - Greg Pickles // - Jim Cline // - Jeff Kohn // - Todd Heckel // - Ullrich Pollähne // - Joe Vitaterna // - Joe Woodbury // - Aaron (no last name) // - Joldakowski (???) // - Scott Hathaway // - Eric Nitzche // - Pablo Presedo // // REVISION HISTORY // 2001-APR-27 - StreamLoad was calculating the number of BYTES in one // case, not characters. Thanks to Pablo Presedo for this. // // 2001-FEB-23 - Replace() had a bug which caused infinite loops if the // source string was empty. Fixed thanks to Eric Nitzsche. // // 2001-FEB-23 - Scott Hathaway was a huge help in providing me with the // ability to build CStdString on Sun Unix systems. He // sent me detailed build reports about what works and what // does not. If CStdString compiles on your Unix box, you // can thank Scott for it. // // 2000-DEC-29 - Joldakowski noticed one overload of Insert failed to do // range check as CString's does. Now fixed -- thanks! // // 2000-NOV-07 - Aaron pointed out that I was calling static member // functions of char_traits via a temporary. This was not // technically wrong, but it was unnecessary and caused // problems for poor old buggy VC5. Thanks Aaron! // // 2000-JUL-11 - Joe Woodbury noted that the CString::Find docs don't match // what the CString::Find code really ends up doing. I was // trying to match the docs. Now I match the CString code // - Joe also caught me truncating strings for GetBuffer() calls // when the supplied length was less than the current length. // // 2000-MAY-25 - Better support for STLPORT's Standard library distribution // - Got rid of the NSP macro - it interfered with Koenig lookup // - Thanks to Joe Woodbury for catching a TrimLeft() bug that // I introduced in January. Empty strings were not getting // trimmed // // 2000-APR-17 - Thanks to Joe Vitaterna for pointing out that ReverseFind // is supposed to be a const function. // // 2000-MAR-07 - Thanks to Ullrich Pollähne for catching a range bug in one // of the overloads of assign. // // 2000-FEB-01 - You can now use CStdString on the Mac with CodeWarrior! // Thanks to Todd Heckel for helping out with this. // // 2000-JAN-23 - Thanks to Jim Cline for pointing out how I could make the // Trim() function more efficient. // - Thanks to Jeff Kohn for prompting me to find and fix a typo // in one of the addition operators that takes _bstr_t. // - Got rid of the .CPP file - you only need StdString.h now! // // 1999-DEC-22 - Thanks to Greg Pickles for helping me identify a problem // with my implementation of CStdString::FormatV in which // resulting string might not be properly NULL terminated. // // 1999-DEC-06 - Chris Conti pointed yet another basic_string<> assignment // bug that MS has not fixed. CStdString did nothing to fix // it either but it does now! The bug was: create a string // longer than 31 characters, get a pointer to it (via c_str()) // and then assign that pointer to the original string object. // The resulting string would be empty. Not with CStdString! // // 1999-OCT-06 - BufferSet was erasing the string even when it was merely // supposed to shrink it. Fixed. Thanks to Chris Conti. // - Some of the Q172398 fixes were not checking for assignment- // to-self. Fixed. Thanks to Baptiste Lepilleur. // // 1999-AUG-20 - Improved Load() function to be more efficient by using // SizeOfResource(). Thanks to Rich Zuris for this. // - Corrected resource ID constructor, again thanks to Rich. // - Fixed a bug that occurred with UNICODE characters above // the first 255 ANSI ones. Thanks to Craig Watson. // - Added missing overloads of TrimLeft() and TrimRight(). // Thanks to Karim Ratib for pointing them out // // 1999-JUL-21 - Made all calls to GetBuf() with no args check length first. // // 1999-JUL-10 - Improved MFC/ATL independence of conversion macros // - Added SS_NO_REFCOUNT macro to allow you to disable any // reference-counting your basic_string<> impl. may do. // - Improved ReleaseBuffer() to be as forgiving as CString. // Thanks for Fan Xia for helping me find this and to // Matthew Williams for pointing it out directly. // // 1999-JUL-06 - Thanks to Nigel Nunn for catching a very sneaky bug in // ToLower/ToUpper. They should call GetBuf() instead of // data() in order to ensure the changed string buffer is not // reference-counted (in those implementations that refcount). // // 1999-JUL-01 - Added a true CString facade. Now you can use CStdString as // a drop-in replacement for CString. If you find this useful, // you can thank Chris Sells for finally convincing me to give // in and implement it. // - Changed operators << and >> (for MFC CArchive) to serialize // EXACTLY as CString's do. So now you can send a CString out // to a CArchive and later read it in as a CStdString. I have // no idea why you would want to do this but you can. // // 1999-JUN-21 - Changed the CStdString class into the CStdStr template. // - Fixed FormatV() to correctly decrement the loop counter. // This was harmless bug but a bug nevertheless. Thanks to // Chris (of Melbsys) for pointing it out // - Changed Format() to try a normal stack-based array before // using to _alloca(). // - Updated the text conversion macros to properly use code // pages and to fit in better in MFC/ATL builds. In other // words, I copied Microsoft's conversion stuff again. // - Added equivalents of CString::GetBuffer, GetBufferSetLength // - new sscpy() replacement of CStdString::CopyString() // - a Trim() function that combines TrimRight() and TrimLeft(). // // 1999-MAR-13 - Corrected the "NotSpace" functional object to use _istpace() // instead of _isspace() Thanks to Dave Plummer for this. // // 1999-FEB-26 - Removed errant line (left over from testing) that #defined // _MFC_VER. Thanks to John C Sipos for noticing this. // // 1999-FEB-03 - Fixed a bug in a rarely-used overload of operator+() that // caused infinite recursion and stack overflow // - Added member functions to simplify the process of // persisting CStdStrings to/from DCOM IStream interfaces // - Added functional objects (e.g. StdStringLessNoCase) that // allow CStdStrings to be used as keys STL map objects with // case-insensitive comparison // - Added array indexing operators (i.e. operator[]). I // originally assumed that these were unnecessary and would be // inherited from basic_string. However, without them, Visual // C++ complains about ambiguous overloads when you try to use // them. Thanks to Julian Selman to pointing this out. // // 1998-FEB-?? - Added overloads of assign() function to completely account // for Q172398 bug. Thanks to "Pete the Plumber" for this // // 1998-FEB-?? - Initial submission // // COPYRIGHT: // 1999 Joseph M. O'Leary. This code is free. Use it anywhere you want. // Rewrite it, restructure it, whatever. Please don't blame me if it makes // your $30 billion dollar satellite explode in orbit. If you redistribute // it in any form, I'd appreciate it if you would leave this notice here. // // If you find any bugs, please let me know: // // jmoleary@earthlink.net // http://home.earthlink.net/~jmoleary // ============================================================================= // Avoid multiple inclusion the VC++ way, // Turn off browser references // Turn off unavoidable compiler warnings #if defined(_MSC_VER) && (_MSC_VER > 1100) #pragma once #pragma component(browser, off, references, "CStdString") #pragma warning (disable : 4290) // C++ Exception Specification ignored #pragma warning (disable : 4127) // Conditional expression is constant #pragma warning (disable : 4097) // typedef name used as synonym for class name #endif #ifndef STDSTRING_H #define STDSTRING_H // MACRO: SS_NO_REFCOUNT: // turns off reference counting at the assignment level // I define this by default. comment it out if you don't want it. #define SS_NO_REFCOUNT // In non-Visual C++ and/or non-Win32 builds, we can't use some cool stuff. #if !defined(_MSC_VER) || !defined(_WIN32) #define SS_ANSI #endif // Avoid legacy code screw up: if _UNICODE is defined, UNICODE must be as well #if defined (_UNICODE) && !defined (UNICODE) #define UNICODE #endif #if defined (UNICODE) && !defined (_UNICODE) #define _UNICODE #endif // ----------------------------------------------------------------------------- // MIN and MAX. The Standard C++ template versions go by so many names (at // at least in the MS implementation) that you never know what's available // ----------------------------------------------------------------------------- template inline const Type& SSMIN(const Type& arg1, const Type& arg2) { return arg2 < arg1 ? arg2 : arg1; } template inline const Type& SSMAX(const Type& arg1, const Type& arg2) { return arg2 > arg1 ? arg2 : arg1; } // If they have not #included W32Base.h (part of my W32 utility library) then // we need to define some stuff. Otherwise, this is all defined there. #if !defined(W32BASE_H) // If they want us to use only standard C++ stuff (no Win32 stuff) #ifdef SS_ANSI // On non-Win32 platforms, there is no TCHAR.H so define what we need #ifndef _WIN32 typedef const char* PCSTR; typedef char* PSTR; typedef const wchar_t* PCWSTR; typedef wchar_t* PWSTR; #ifdef UNICODE typedef wchar_t TCHAR; #else typedef char TCHAR; #endif typedef wchar_t OLECHAR; #else #include #include #ifndef STRICT #define STRICT #endif #endif // #ifndef _WIN32 // Make sure ASSERT and verify are defined in an ANSI fashion #ifndef ASSERT #include #define ASSERT(f) assert((f)) #endif #ifndef VERIFY #ifdef _DEBUG #define VERIFY(x) ASSERT((x)) #else #define VERIFY(x) x #endif #endif #else // #ifdef SS_ANSI #include #include #ifndef STRICT #define STRICT #endif // Make sure ASSERT and verify are defined #ifndef ASSERT #include #define ASSERT(f) _ASSERTE((f)) #endif #ifndef VERIFY #ifdef _DEBUG #define VERIFY(x) ASSERT((x)) #else #define VERIFY(x) x #endif #endif #endif // #ifdef SS_ANSI #ifndef UNUSED #define UNUSED(x) x #endif #endif // #ifndef W32BASE_H // Standard headers needed #include // basic_string #include // for_each, etc. #include // for StdStringLessNoCase, et al #include // for various facets // If this is a recent enough version of VC include comdef.h, so we can write // member functions to deal with COM types & compiler support classes e.g. _bstr_t #if defined (_MSC_VER) && (_MSC_VER >= 1100) #include #define SS_INC_COMDEF // signal that we #included MS comdef.h file #define STDSTRING_INC_COMDEF #define SS_NOTHROW __declspec(nothrow) #else #define SS_NOTHROW #endif #ifndef TRACE #define TRACE_DEFINED_HERE #define TRACE #endif // Microsoft defines PCSTR, PCWSTR, etc, but no PCTSTR. I hate to use the // versions with the "L" in front of them because that's a leftover from Win 16 // days, even though it evaluates to the same thing. Therefore, Define a PCSTR // as an LPCTSTR. #if !defined(PCTSTR) && !defined(PCTSTR_DEFINED) typedef const TCHAR* PCTSTR; #define PCTSTR_DEFINED #endif #if !defined(PCOLESTR) && !defined(PCOLESTR_DEFINED) typedef const OLECHAR* PCOLESTR; #define PCOLESTR_DEFINED #endif #if !defined(POLESTR) && !defined(POLESTR_DEFINED) typedef OLECHAR* POLESTR; #define POLESTR_DEFINED #endif #if !defined(PCUSTR) && !defined(PCUSTR_DEFINED) typedef const unsigned char* PCUSTR; typedef unsigned char* PUSTR; #define PCUSTR_DEFINED #endif // SS_USE_FACET macro and why we need it: // // Since I'm a good little Standard C++ programmer, I use locales. Thus, I // need to make use of the use_facet<> template function here. Unfortunately, // this need is complicated by the fact the MS' implementation of the Standard // C++ Library has a non-standard version of use_facet that takes more // arguments than the standard dictates. Since I'm trying to write CStdString // to work with any version of the Standard library, this presents a problem. // // The upshot of this is that I can't do 'use_facet' directly. The MS' docs // tell me that I have to use a macro, _USE() instead. Since _USE obviously // won't be available in other implementations, this means that I have to write // my OWN macro -- SS_USE_FACET -- that evaluates either to _USE or to the // standard, use_facet. // // If you are having trouble with the SS_USE_FACET macro, in your implementation // of the Standard C++ Library, you can define your own version of SS_USE_FACET. #ifndef schMSG #define schSTR(x) #x #define schSTR2(x) schSTR(x) #define schMSG(desc) message(__FILE__ "(" schSTR2(__LINE__) "):" #desc) #endif #ifndef SS_USE_FACET // STLPort #defines a macro (__STL_NO_EXPLICIT_FUNCTION_TMPL_ARGS) for // all MSVC builds, erroneously in my opinion. It causes problems for // my SS_ANSI builds. In my code, I always comment out that line. You'll // find it in \stlport\config\stl_msvc.h #if defined(__SGI_STL_PORT) && (__SGI_STL_PORT >= 0x400 ) #if defined(__STL_NO_EXPLICIT_FUNCTION_TMPL_ARGS) && defined(_MSC_VER) #ifdef SS_ANSI #pragma schMSG(__STL_NO_EXPLICIT_FUNCTION_TMPL_ARGS defined!!) #endif #endif #define SS_USE_FACET(loc, fac) std::use_facet(loc) #elif defined(_MSC_VER ) #define SS_USE_FACET(loc, fac) _USE(loc, fac) // ...and #elif defined(_RWSTD_NO_TEMPLATE_ON_RETURN_TYPE) #define SS_USE_FACET(loc, fac) std::use_facet(loc, (fac*)0) #else #define SS_USE_FACET(loc, fac) std::use_facet(loc) #endif #endif // ============================================================================= // UNICODE/MBCS conversion macros. Made to work just like the MFC/ATL ones. // ============================================================================= // First define the conversion helper functions. We define these regardless of // any preprocessor macro settings since their names won't collide. #ifdef SS_ANSI // Are we doing things the standard, non-Win32 way?... typedef std::codecvt SSCodeCvt; // Not sure if we need all these headers. I believe ANSI says we do. #include #include #include #ifndef va_start #include #endif // StdCodeCvt - made to look like Win32 functions WideCharToMultiByte annd // MultiByteToWideChar but uses locales in SS_ANSI builds inline PWSTR StdCodeCvt(PWSTR pW, PCSTR pA, int nChars, const std::locale& loc=std::locale()) { ASSERT(0 != pA); ASSERT(0 != pW); pW[0] = '\0'; PCSTR pBadA = 0; PWSTR pBadW = 0; SSCodeCvt::result res = SSCodeCvt::ok; const SSCodeCvt& conv = SS_USE_FACET(loc, SSCodeCvt); SSCodeCvt::state_type st= { 0 }; res = conv.in(st, pA, pA + nChars, pBadA, pW, pW + nChars, pBadW); ASSERT(SSCodeCvt::ok == res); return pW; } inline PWSTR StdCodeCvt(PWSTR pW, PCUSTR pA, int nChars, const std::locale& loc=std::locale()) { return StdCodeCvt(pW, (PCSTR)pA, nChars, loc); } inline PSTR StdCodeCvt(PSTR pA, PCWSTR pW, int nChars, const std::locale& loc=std::locale()) { ASSERT(0 != pA); ASSERT(0 != pW); pA[0] = '\0'; PSTR pBadA = 0; PCWSTR pBadW = 0; SSCodeCvt::result res = SSCodeCvt::ok; const SSCodeCvt& conv = SS_USE_FACET(loc, SSCodeCvt); SSCodeCvt::state_type st= { 0 }; res = conv.out(st, pW, pW + nChars, pBadW, pA, pA + nChars, pBadA); ASSERT(SSCodeCvt::ok == res); return pA; } inline PUSTR StdCodeCvt(PUSTR pA, PCWSTR pW, int nChars, const std::locale& loc=std::locale()) { return (PUSTR)StdCodeCvt((PSTR)pA, pW, nChars, loc); } #else // ...or are we doing things assuming win32 and Visual C++? #include // needed for _alloca inline PWSTR StdCodeCvt(PWSTR pW, PCSTR pA, int nChars, UINT acp=CP_ACP) { ASSERT(0 != pA); ASSERT(0 != pW); pW[0] = '\0'; MultiByteToWideChar(acp, 0, pA, -1, pW, nChars); return pW; } inline PWSTR StdCodeCvt(PWSTR pW, PCUSTR pA, int nChars, UINT acp=CP_ACP) { return StdCodeCvt(pW, (PCSTR)pA, nChars, acp); } inline PSTR StdCodeCvt(PSTR pA, PCWSTR pW, int nChars, UINT acp=CP_ACP) { ASSERT(0 != pA); ASSERT(0 != pW); pA[0] = '\0'; WideCharToMultiByte(acp, 0, pW, -1, pA, nChars, 0, 0); return pA; } inline PUSTR StdCodeCvt(PUSTR pA, PCWSTR pW, int nChars, UINT acp=CP_ACP) { return (PUSTR)StdCodeCvt((PSTR)pA, pW, nChars, acp); } // Define our conversion macros to look exactly like Microsoft's to // facilitate using this stuff both with and without MFC/ATL #ifdef _CONVERSION_USES_THREAD_LOCALE #ifndef _DEBUG #define SSCVT int _cvt; _cvt; UINT _acp=GetACP(); \ _acp; PCWSTR _pw; _pw; PCSTR _pa; _pa #else #define SSCVT int _cvt = 0; _cvt; UINT _acp=GetACP();\ _acp; PCWSTR _pw=0; _pw; PCSTR _pa=0; _pa #endif #else #ifndef _DEBUG #define SSCVT int _cvt; _cvt; UINT _acp=CP_ACP; _acp;\ PCWSTR _pw; _pw; PCSTR _pa; _pa #else #define SSCVT int _cvt = 0; _cvt; UINT _acp=CP_ACP; \ _acp; PCWSTR _pw=0; _pw; PCSTR _pa=0; _pa #endif #endif #ifdef _CONVERSION_USES_THREAD_LOCALE #define SSA2W(pa) (\ ((_pa = pa) == 0) ? 0 : (\ _cvt = (strlen(_pa)+1),\ StdCodeCvt((PWSTR) _alloca(_cvt*2), _pa, _cvt, _acp))) #define SSW2A(pw) (\ ((_pw = pw) == 0) ? 0 : (\ _cvt = (wcslen(_pw)+1)*2,\ StdW2AHelper((LPSTR) _alloca(_cvt), _pw, _cvt, _acp))) #else #define SSA2W(pa) (\ ((_pa = pa) == 0) ? 0 : (\ _cvt = (strlen(_pa)+1),\ StdCodeCvt((PWSTR) _alloca(_cvt*2), _pa, _cvt))) #define SSW2A(pw) (\ ((_pw = pw) == 0) ? 0 : (\ _cvt = (wcslen(_pw)+1)*2,\ StdCodeCvt((LPSTR) _alloca(_cvt), _pw, _cvt))) #endif #define SSA2CW(pa) ((PCWSTR)SSA2W((pa))) #define SSW2CA(pw) ((PCSTR)SSW2A((pw))) #ifdef UNICODE #define SST2A SSW2A #define SSA2T SSA2W #define SST2CA SSW2CA #define SSA2CT SSA2CW inline PWSTR SST2W(PTSTR p) { return p; } inline PTSTR SSW2T(PWSTR p) { return p; } inline PCWSTR SST2CW(PCTSTR p) { return p; } inline PCTSTR SSW2CT(PCWSTR p) { return p; } #else #define SST2W SSA2W #define SSW2T SSW2A #define SST2CW SSA2CW #define SSW2CT SSW2CA inline PSTR SST2A(PTSTR p) { return p; } inline PTSTR SSA2T(PSTR p) { return p; } inline PCSTR SST2CA(PCTSTR p) { return p; } inline PCTSTR SSA2CT(PCSTR p) { return p; } #endif // #ifdef UNICODE #if defined(UNICODE) // in these cases the default (TCHAR) is the same as OLECHAR inline PCOLESTR SST2COLE(PCTSTR p) { return p; } inline PCTSTR SSOLE2CT(PCOLESTR p) { return p; } inline POLESTR SST2OLE(PTSTR p) { return p; } inline PTSTR SSOLE2T(POLESTR p) { return p; } #elif defined(OLE2ANSI) // in these cases the default (TCHAR) is the same as OLECHAR inline PCOLESTR SST2COLE(PCTSTR p) { return p; } inline PCTSTR SSOLE2CT(PCOLESTR p) { return p; } inline POLESTR SST2OLE(PTSTR p) { return p; } inline PTSTR SSOLE2T(POLESTR p) { return p; } #else //CharNextW doesn't work on Win95 so we use this #define SST2COLE(pa) SSA2CW((pa)) #define SST2OLE(pa) SSA2W((pa)) #define SSOLE2CT(po) SSW2CA((po)) #define SSOLE2T(po) SSW2A((po)) #endif #ifdef OLE2ANSI #define SSW2OLE SSW2A #define SSOLE2W SSA2W #define SSW2COLE SSW2CA #define SSOLE2CW SSA2CW inline POLESTR SSA2OLE(PSTR p) { return p; } inline PSTR SSOLE2A(POLESTR p) { return p; } inline PCOLESTR SSA2COLE(PCSTR p) { return p; } inline PCSTR SSOLE2CA(PCOLESTR p){ return p; } #else #define SSA2OLE SSA2W #define SSOLE2A SSW2A #define SSA2COLE SSA2CW #define SSOLE2CA SSW2CA inline POLESTR SSW2OLE(PWSTR p) { return p; } inline PWSTR SSOLE2W(POLESTR p) { return p; } inline PCOLESTR SSW2COLE(PCWSTR p) { return p; } inline PCWSTR SSOLE2CW(PCOLESTR p){ return p; } #endif // Above we've defined macros that look like MS' but all have // an 'SS' prefix. Now we need the real macros. We'll either // get them from the macros above or from MFC/ATL. If // SS_NO_CONVERSION is #defined, we'll forgo them #ifndef SS_NO_CONVERSION #if defined (USES_CONVERSION) #define _NO_STDCONVERSION // just to be consistent #else #ifdef _MFC_VER #include #define _NO_STDCONVERSION // just to be consistent #else #define USES_CONVERSION SSCVT #define A2CW SSA2CW #define W2CA SSW2CA #define T2A SST2A #define A2T SSA2T #define T2W SST2W #define W2T SSW2T #define T2CA SST2CA #define A2CT SSA2CT #define T2CW SST2CW #define W2CT SSW2CT #define ocslen sslen #define ocscpy sscpy #define T2COLE SST2COLE #define OLE2CT SSOLE2CT #define T2OLE SST2COLE #define OLE2T SSOLE2CT #define A2OLE SSA2OLE #define OLE2A SSOLE2A #define W2OLE SSW2OLE #define OLE2W SSOLE2W #define A2COLE SSA2COLE #define OLE2CA SSOLE2CA #define W2COLE SSW2COLE #define OLE2CW SSOLE2CW #endif // #ifdef _MFC_VER #endif // #ifndef USES_CONVERSION #endif // #ifndef SS_NO_CONVERSION // Define ostring - generic name for std::basic_string #if !defined(ostring) && !defined(OSTRING_DEFINED) typedef std::basic_string ostring; #define OSTRING_DEFINED #endif #endif // #ifndef SS_ANSI // StdCodeCvt when there's no conversion to be done inline PSTR StdCodeCvt(PSTR pDst, PCSTR pSrc, int nChars) { pDst[0] = '\0'; std::char_traits::copy(pDst, pSrc, nChars); if ( nChars > 0 ) pDst[nChars] = '\0'; return pDst; } inline PSTR StdCodeCvt(PSTR pDst, PCUSTR pSrc, int nChars) { return StdCodeCvt(pDst, (PCSTR)pSrc, nChars); } inline PUSTR StdCodeCvt(PUSTR pDst, PCSTR pSrc, int nChars) { return (PUSTR)StdCodeCvt((PSTR)pDst, pSrc, nChars); } inline PWSTR StdCodeCvt(PWSTR pDst, PCWSTR pSrc, int nChars) { pDst[0] = '\0'; std::char_traits::copy(pDst, pSrc, nChars); if ( nChars > 0 ) pDst[nChars] = '\0'; return pDst; } // Define tstring -- generic name for std::basic_string #if !defined(tstring) && !defined(TSTRING_DEFINED) typedef std::basic_string tstring; #define TSTRING_DEFINED #endif // a very shorthand way of applying the fix for KB problem Q172398 // (basic_string assignment bug) #if defined ( _MSC_VER ) && ( _MSC_VER < 1200 ) #define Q172398(x) (x).erase() #else #define Q172398(x) #endif // ============================================================================= // INLINE FUNCTIONS ON WHICH CSTDSTRING RELIES // // Usually for generic text mapping, we rely on preprocessor macro definitions // to map to string functions. However the CStdStr<> template cannot use // macro-based generic text mappings because its character types do not get // resolved until template processing which comes AFTER macro processing. In // other words, UNICODE is of little help to us in the CStdStr template // // Therefore, to keep the CStdStr declaration simple, we have these inline // functions. The template calls them often. Since they are inline (and NOT // exported when this is built as a DLL), they will probably be resolved away // to nothing. // // Without these functions, the CStdStr<> template would probably have to broken // out into two, almost identical classes. Either that or it would be a huge, // convoluted mess, with tons of "if" statements all over the place checking the // size of template parameter CT. // // In several cases, you will see two versions of each function. One version is // the more portable, standard way of doing things, while the other is the // non-standard, but often significantly faster Visual C++ way. // ============================================================================= // If they defined SS_NO_REFCOUNT, then we must convert all assignments #ifdef SS_NO_REFCOUNT #define SSREF(x) (x).c_str() #else #define SSREF(x) (x) #endif // ----------------------------------------------------------------------------- // sslen: strlen/wcslen wrappers // ----------------------------------------------------------------------------- template inline int sslen(const CT* pT) { return 0 == pT ? 0 : std::char_traits::length(pT); } inline SS_NOTHROW int sslen(const std::string& s) { return s.length(); } inline SS_NOTHROW int sslen(const std::wstring& s) { return s.length(); } // ----------------------------------------------------------------------------- // ssasn: assignment functions -- assign "sSrc" to "sDst" // ----------------------------------------------------------------------------- typedef std::string::size_type SS_SIZETYPE; // just for shorthand, really typedef std::string::pointer SS_PTRTYPE; typedef std::wstring::size_type SW_SIZETYPE; typedef std::wstring::pointer SW_PTRTYPE; inline void ssasn(std::string& sDst, const std::string& sSrc) { if ( sDst.c_str() != sSrc.c_str() ) { sDst.erase(); sDst.assign(SSREF(sSrc)); } } inline void ssasn(std::string& sDst, PCSTR pA) { // Watch out for NULLs, as always. if ( 0 == pA ) { sDst.erase(); } // If pA actually points to part of sDst, we must NOT erase(), but // rather take a substring else if ( pA >= sDst.c_str() && pA <= sDst.c_str() + sDst.size() ) { sDst =sDst.substr(static_cast(pA-sDst.c_str())); } // Otherwise (most cases) apply the assignment bug fix, if applicable // and do the assignment else { Q172398(sDst); sDst.assign(pA); } } inline void ssasn(std::string& sDst, const std::wstring& sSrc) { #ifdef SS_ANSI int nLen = sSrc.size(); sDst.resize(0); sDst.resize(nLen); StdCodeCvt(const_cast(sDst.data()), sSrc.c_str(), nLen); #else SSCVT; sDst.assign(SSW2CA(sSrc.c_str())); #endif } inline void ssasn(std::string& sDst, PCWSTR pW) { #ifdef SS_ANSI int nLen = sslen(pW); sDst.resize(0); sDst.resize(nLen); StdCodeCvt(const_cast(sDst.data()), pW, nLen); #else SSCVT; sDst.assign(pW ? SSW2CA(pW) : ""); #endif } inline void ssasn(std::string& sDst, const int nNull) { UNUSED(nNull); ASSERT(nNull==0); sDst.assign(""); } inline void ssasn(std::wstring& sDst, const std::wstring& sSrc) { if ( sDst.c_str() != sSrc.c_str() ) { sDst.erase(); sDst.assign(SSREF(sSrc)); } } inline void ssasn(std::wstring& sDst, PCWSTR pW) { // Watch out for NULLs, as always. if ( 0 == pW ) { sDst.erase(); } // If pW actually points to part of sDst, we must NOT erase(), but // rather take a substring else if ( pW >= sDst.c_str() && pW <= sDst.c_str() + sDst.size() ) { sDst = sDst.substr(static_cast(pW-sDst.c_str())); } // Otherwise (most cases) apply the assignment bug fix, if applicable // and do the assignment else { Q172398(sDst); sDst.assign(pW); } } #undef StrSizeType inline void ssasn(std::wstring& sDst, const std::string& sSrc) { #ifdef SS_ANSI int nLen = sSrc.size(); sDst.resize(0); sDst.resize(nLen); StdCodeCvt(const_cast(sDst.data()), sSrc.c_str(), nLen); #else SSCVT; sDst.assign(SSA2CW(sSrc.c_str())); #endif } inline void ssasn(std::wstring& sDst, PCSTR pA) { #ifdef SS_ANSI int nLen = sslen(pA); sDst.resize(0); sDst.resize(nLen); StdCodeCvt(const_cast(sDst.data()), pA, nLen); #else SSCVT; sDst.assign(pA ? SSA2CW(pA) : L""); #endif } inline void ssasn(std::wstring& sDst, const int nNull) { UNUSED(nNull); ASSERT(nNull==0); sDst.assign(L""); } // ----------------------------------------------------------------------------- // ssadd: string object concatenation -- add second argument to first // ----------------------------------------------------------------------------- inline void ssadd(std::string& sDst, const std::wstring& sSrc) { #ifdef SS_ANSI int nLen = sSrc.size(); sDst.resize(sDst.size() + nLen); StdCodeCvt(const_cast(sDst.data()+nLen), sSrc.c_str(), nLen); #else SSCVT; sDst.append(SSW2CA(sSrc.c_str())); #endif } inline void ssadd(std::string& sDst, const std::string& sSrc) { sDst.append(sSrc.c_str()); } inline void ssadd(std::string& sDst, PCWSTR pW) { #ifdef SS_ANSI int nLen = sslen(pW); sDst.resize(sDst.size() + nLen); StdCodeCvt(const_cast(sDst.data()+nLen), pW, nLen); #else SSCVT; if ( 0 != pW ) sDst.append(SSW2CA(pW)); #endif } inline void ssadd(std::string& sDst, PCSTR pA) { if ( pA ) sDst.append(pA); } inline void ssadd(std::wstring& sDst, const std::wstring& sSrc) { sDst.append(sSrc.c_str()); } inline void ssadd(std::wstring& sDst, const std::string& sSrc) { #ifdef SS_ANSI int nLen = sSrc.size(); sDst.resize(sDst.size() + nLen); StdCodeCvt(const_cast(sDst.data()+nLen), sSrc.c_str(), nLen); #else SSCVT; sDst.append(SSA2CW(sSrc.c_str())); #endif } inline void ssadd(std::wstring& sDst, PCSTR pA) { #ifdef SS_ANSI int nLen = sslen(pA); sDst.resize(sDst.size() + nLen); StdCodeCvt(const_cast(sDst.data()+nLen), pA, nLen); #else SSCVT; if ( 0 != pA ) sDst.append(SSA2CW(pA)); #endif } inline void ssadd(std::wstring& sDst, PCWSTR pW) { if ( pW ) sDst.append(pW); } // ----------------------------------------------------------------------------- // ssicmp: comparison (case insensitive ) // ----------------------------------------------------------------------------- #ifdef SS_ANSI template inline int ssicmp(const CT* pA1, const CT* pA2) { std::locale loc; const std::ctype& ct = SS_USE_FACET(loc, std::ctype); CT f; CT l; do { f = ct.tolower(*(pA1++)); l = ct.tolower(*(pA2++)); } while ( (f) && (f == l) ); return (int)(f - l); } #else #ifdef _MBCS inline long sscmp(PCSTR pA1, PCSTR pA2) { return _mbscmp((PCUSTR)pA1, (PCUSTR)pA2); } inline long ssicmp(PCSTR pA1, PCSTR pA2) { return _mbsicmp((PCUSTR)pA1, (PCUSTR)pA2); } #else inline long sscmp(PCSTR pA1, PCSTR pA2) { return strcmp(pA1, pA2); } inline long ssicmp(PCSTR pA1, PCSTR pA2) { return _stricmp(pA1, pA2); } #endif inline long sscmp(PCWSTR pW1, PCWSTR pW2) { return wcscmp(pW1, pW2); } inline long ssicmp(PCWSTR pW1, PCWSTR pW2) { return _wcsicmp(pW1, pW2); } #endif // ----------------------------------------------------------------------------- // ssupr/sslwr: Uppercase/Lowercase conversion functions // ----------------------------------------------------------------------------- #ifdef SS_ANSI template inline void sslwr(CT* pT, size_t nLen) { SS_USE_FACET(std::locale(), std::ctype).tolower(pT, pT+nLen); } template inline void ssupr(CT* pT, size_t nLen) { SS_USE_FACET(std::locale(), std::ctype).toupper(pT, pT+nLen); } #else // #else we must be on Win32 #ifdef _MBCS inline void ssupr(PSTR pA, size_t /*nLen*/) { _mbsupr((PUSTR)pA); } inline void sslwr(PSTR pA, size_t /*nLen*/) { _mbslwr((PUSTR)pA); } #else inline void ssupr(PSTR pA, size_t /*nLen*/) { _strupr(pA); } inline void sslwr(PSTR pA, size_t /*nLen*/) { _strlwr(pA); } #endif inline void ssupr(PWSTR pW, size_t /*nLen*/) { _wcsupr(pW); } inline void sslwr(PWSTR pW, size_t /*nLen*/) { _wcslwr(pW); } #endif // #ifdef SS_ANSI // ----------------------------------------------------------------------------- // vsprintf/vswprintf or _vsnprintf/_vsnwprintf equivalents. In standard // builds we can't use _vsnprintf/_vsnwsprintf because they're MS extensions. // ----------------------------------------------------------------------------- #ifdef SS_ANSI inline int ssvsprintf(PSTR pA, size_t /*nCount*/, PCSTR pFmtA, va_list vl) { return vsprintf(pA, pFmtA, vl); } inline int ssvsprintf(PWSTR pW, size_t nCount, PCWSTR pFmtW, va_list vl) { // JMO: It is beginning to seem like Microsoft Visual C++ is the only // CRT distribution whose version of vswprintf takes THREE arguments. // All others seem to take FOUR arguments. Therefore instead of // checking for every possible distro here, I'll assume that unless // I am running with Microsoft's CRT, then vswprintf takes four // arguments. If you get a compilation error here, then you can just // change this code to call the three-argument version. // #if !defined(__MWERKS__) && !defined(__SUNPRO_CC_COMPAT) && !defined(__SUNPRO_CC) #ifndef _MSC_VER return vswprintf(pW, nCount, pFmtW, vl); #else nCount; return vswprintf(pW, pFmtW, vl); #endif } #else inline int ssnprintf(PSTR pA, size_t nCount, PCSTR pFmtA, va_list vl) { return _vsnprintf(pA, nCount, pFmtA, vl); } inline int ssnprintf(PWSTR pW, size_t nCount, PCWSTR pFmtW, va_list vl) { return _vsnwprintf(pW, nCount, pFmtW, vl); } #endif // ----------------------------------------------------------------------------- // ssload: Type safe, overloaded ::LoadString wrappers // There is no equivalent of these in non-Win32-specific builds. However, I'm // thinking that with the message facet, there might eventually be one // ----------------------------------------------------------------------------- #ifdef SS_ANSI #else inline int ssload(HMODULE hInst, UINT uId, PSTR pBuf, int nMax) { return ::LoadStringA(hInst, uId, pBuf, nMax); } inline int ssload(HMODULE hInst, UINT uId, PWSTR pBuf, int nMax) { return ::LoadStringW(hInst, uId, pBuf, nMax); } #endif // ----------------------------------------------------------------------------- // sscoll/ssicoll: Collation wrappers // ----------------------------------------------------------------------------- #ifdef SS_ANSI template inline int sscoll(const CT* sz1, int nLen1, const CT* sz2, int nLen2) { const std::collate& coll = SS_USE_FACET(std::locale(), std::collate); return coll.compare(sz1, sz1+nLen1, sz2, sz2+nLen2); } template inline int ssicoll(const CT* sz1, int nLen1, const CT* sz2, int nLen2) { const std::locale loc; const std::collate& coll = SS_USE_FACET(loc, std::collate); // Some implementations seem to have trouble using the collate<> // facet typedefs so we'll just default to basic_string and hope // that's what the collate facet uses (which it generally should) // std::collate::string_type s1(sz1); // std::collate::string_type s2(sz2); std::basic_string s1(sz1); std::basic_string s2(sz2); sslwr(const_cast(s1.c_str()), nLen1); sslwr(const_cast(s2.c_str()), nLen2); return coll.compare(s1.c_str(), s1.c_str()+nLen1, s2.c_str(), s2.c_str()+nLen2); } #else #ifdef _MBCS inline int sscoll(PCSTR sz1, int /*nLen1*/, PCSTR sz2, int /*nLen2*/) { return _mbscoll((PCUSTR)sz1, (PCUSTR)sz2); } inline int ssicoll(PCSTR sz1, int /*nLen1*/, PCSTR sz2, int /*nLen2*/) { return _mbsicoll((PCUSTR)sz1, (PCUSTR)sz2); } #else inline int sscoll(PCSTR sz1, int /*nLen1*/, PCSTR sz2, int /*nLen2*/) { return strcoll(sz1, sz2); } inline int ssicoll(PCSTR sz1, int /*nLen1*/, PCSTR sz2, int /*nLen2*/) { return _stricoll(sz1, sz2); } #endif inline int sscoll(PCWSTR sz1, int /*nLen1*/, PCWSTR sz2, int /*nLen2*/) { return wcscoll(sz1, sz2); } inline int ssicoll(PCWSTR sz1, int /*nLen1*/, PCWSTR sz2, int /*nLen2*/) { return _wcsicoll(sz1, sz2); } #endif // ----------------------------------------------------------------------------- // ssfmtmsg: FormatMessage equivalents. Needed because I added a CString facade // Again -- no equivalent of these on non-Win32 builds but their might one day // be one if the message facet gets implemented // ----------------------------------------------------------------------------- #ifdef SS_ANSI #else inline DWORD ssfmtmsg(DWORD dwFlags, LPCVOID pSrc, DWORD dwMsgId, DWORD dwLangId, PSTR pBuf, DWORD nSize, va_list* vlArgs) { return FormatMessageA(dwFlags, pSrc, dwMsgId, dwLangId, pBuf, nSize,vlArgs); } inline DWORD ssfmtmsg(DWORD dwFlags, LPCVOID pSrc, DWORD dwMsgId, DWORD dwLangId, PWSTR pBuf, DWORD nSize, va_list* vlArgs) { return FormatMessageW(dwFlags, pSrc, dwMsgId, dwLangId, pBuf, nSize,vlArgs); } #endif // FUNCTION: sscpy. Copies up to 'nMax' characters from pSrc to pDst. // ----------------------------------------------------------------------------- // FUNCTION: sscpy // inline int sscpy(PSTR pDst, PCSTR pSrc, int nMax=-1); // inline int sscpy(PUSTR pDst, PCSTR pSrc, int nMax=-1) // inline int sscpy(PSTR pDst, PCWSTR pSrc, int nMax=-1); // inline int sscpy(PWSTR pDst, PCWSTR pSrc, int nMax=-1); // inline int sscpy(PWSTR pDst, PCSTR pSrc, int nMax=-1); // // DESCRIPTION: // This function is very much (but not exactly) like strcpy. These // overloads simplify copying one C-style string into another by allowing // the caller to specify two different types of strings if necessary. // // The strings must NOT overlap // // "Character" is expressed in terms of the destination string, not // the source. If no 'nMax' argument is supplied, then the number of // characters copied will be sslen(pSrc). A NULL terminator will // also be added so pDst must actually be big enough to hold nMax+1 // characters. The return value is the number of characters copied, // not including the NULL terminator. // // PARAMETERS: // pSrc - the string to be copied FROM. May be a char based string, an // MBCS string (in Win32 builds) or a wide string (wchar_t). // pSrc - the string to be copied TO. Also may be either MBCS or wide // nMax - the maximum number of characters to be copied into szDest. Note // that this is expressed in whatever a "character" means to pDst. // If pDst is a wchar_t type string than this will be the maximum // number of wchar_ts that my be copied. The pDst string must be // large enough to hold least nMaxChars+1 characters. // If the caller supplies no argument for nMax this is a signal to // the routine to copy all the characters in pSrc, regardless of // how long it is. // // RETURN VALUE: none // ----------------------------------------------------------------------------- template inline int sscpycvt(CT1* pDst, const CT2* pSrc, int nChars) { StdCodeCvt(pDst, pSrc, nChars); pDst[SSMAX(nChars, 0)] = '\0'; return nChars; } template inline int sscpy(CT1* pDst, const CT2* pSrc, int nMax, int nLen) { return sscpycvt(pDst, pSrc, SSMIN(nMax, nLen)); } template inline int sscpy(CT1* pDst, const CT2* pSrc, int nMax) { return sscpycvt(pDst, pSrc, SSMIN(nMax, sslen(pSrc))); } template inline int sscpy(CT1* pDst, const CT2* pSrc) { return sscpycvt(pDst, pSrc, sslen(pSrc)); } template inline int sscpy(CT1* pDst, const std::basic_string& sSrc, int nMax) { return sscpycvt(pDst, sSrc.c_str(), SSMIN(nMax, (int)sSrc.length())); } template inline int sscpy(CT1* pDst, const std::basic_string& sSrc) { return sscpycvt(pDst, sSrc.c_str(), (int)sSrc.length()); } #ifdef SS_INC_COMDEF template inline int sscpy(CT1* pDst, const _bstr_t& bs, int nMax) { return sscpycvt(pDst, static_cast(bs), SSMIN(nMax, (int)bs.length())); } template inline int sscpy(CT1* pDst, const _bstr_t& bs) { return sscpy(pDst, bs, bs.length()); } #endif // ----------------------------------------------------------------------------- // Functional objects for changing case. They also let you pass locales // ----------------------------------------------------------------------------- #ifdef SS_ANSI template struct SSToUpper : public std::binary_function { inline CT operator()(const CT& t, const std::locale& loc) const { return std::toupper(t, loc); } }; template struct SSToLower : public std::binary_function { inline CT operator()(const CT& t, const std::locale& loc) const { return std::tolower(t, loc); } }; #endif // This struct is used for TrimRight() and TrimLeft() function implementations. //template //struct NotSpace : public std::unary_function //{ // const std::locale& loc; // inline NotSpace(const std::locale& locArg) : loc(locArg) {} // inline bool operator() (CT t) { return !std::isspace(t, loc); } //}; template struct NotSpace : public std::unary_function { const std::locale& loc; NotSpace(const std::locale& locArg) : loc(locArg) {} // DINKUMWARE BUG: // Note -- using std::isspace in a COM DLL gives us access violations // because it causes the dynamic addition of a function to be called // when the library shuts down. Unfortunately the list is maintained // in DLL memory but the function is in static memory. So the COM DLL // goes away along with the function that was supposed to be called, // and then later when the DLL CRT shuts down it unloads the list and // tries to call the long-gone function. // This is DinkumWare's implementation problem. Until then, we will // use good old isspace and iswspace from the CRT unless they // specify SS_ANSI #ifdef SS_ANSI bool operator() (CT t) const { return !std::isspace(t, loc); } #else bool ssisp(char c) const { return FALSE != ::isspace((int) c); } bool ssisp(wchar_t c) const { return FALSE != ::iswspace((wint_t) c); } bool operator()(CT t) const { return !ssisp(t); } #endif }; // Now we can define the template (finally!) // ============================================================================= // TEMPLATE: CStdStr // template class CStdStr : public std::basic_string // // REMARKS: // This template derives from basic_string and adds some MFC CString- // like functionality // // Basically, this is my attempt to make Standard C++ library strings as // easy to use as the MFC CString class. // // Note that although this is a template, it makes the assumption that the // template argument (CT, the character type) is either char or wchar_t. // ============================================================================= //#define CStdStr _SS // avoid compiler warning 4786 template class CStdStr : public std::basic_string { // Typedefs for shorter names. Using these names also appears to help // us avoid some ambiguities that otherwise arise on some platforms typedef typename std::basic_string MYBASE; // my base class typedef CStdStr MYTYPE; // myself typedef typename MYBASE::const_pointer PCMYSTR; // PCSTR or PCWSTR typedef typename MYBASE::pointer PMYSTR; // PSTR or PWSTR typedef typename MYBASE::iterator MYITER; // my iterator type typedef typename MYBASE::const_iterator MYCITER; // you get the idea... typedef typename MYBASE::reverse_iterator MYRITER; typedef typename MYBASE::size_type MYSIZE; typedef typename MYBASE::value_type MYVAL; typedef typename MYBASE::allocator_type MYALLOC; public: // shorthand conversion from PCTSTR to string resource ID #define _TRES(pctstr) (LOWORD((DWORD)(pctstr))) // CStdStr inline constructors CStdStr() { } CStdStr(const MYTYPE& str) : MYBASE(SSREF(str)) { } CStdStr(const std::string& str) { ssasn(*this, SSREF(str)); } CStdStr(const std::wstring& str) { ssasn(*this, SSREF(str)); } CStdStr(PCMYSTR pT, MYSIZE n) : MYBASE(pT, n) { } CStdStr(PCSTR pA) { #ifdef SS_ANSI *this = pA; #else if ( 0 != HIWORD(pA) ) *this = pA; else if ( 0 != pA && !Load(_TRES(pA)) ) TRACE(_T("Can't load string %u\n"), _TRES(pA)); #endif } CStdStr(PCWSTR pW) { #ifdef SS_ANSI *this = pW; #else if ( 0 != HIWORD(pW) ) *this = pW; else if ( 0 != pW && !Load(_TRES(pW)) ) TRACE(_T("Can't load string %u\n"), _TRES(pW)); #endif } CStdStr(MYCITER first, MYCITER last) : MYBASE(first, last) { } CStdStr(MYSIZE nSize, MYVAL ch, const MYALLOC& al=MYALLOC()) : MYBASE(nSize, ch, al) { } #ifdef SS_INC_COMDEF CStdStr(const _bstr_t& bstr) { if ( bstr.length() > 0 ) append(static_cast(bstr), bstr.length()); } #endif // CStdStr inline assignment operators -- the ssasn function now takes care // of fixing the MSVC assignment bug (see knowledge base article Q172398). MYTYPE& operator=(const MYTYPE& str) { ssasn(*this, str); return *this; } MYTYPE& operator=(const std::string& str) { ssasn(*this, str); return *this; } MYTYPE& operator=(const std::wstring& str) { ssasn(*this, str); return *this; } MYTYPE& operator=(PCSTR pA) { ssasn(*this, pA); return *this; } MYTYPE& operator=(PCWSTR pW) { ssasn(*this, pW); return *this; } MYTYPE& operator=(CT t) { Q172398(*this); MYBASE::assign(1, t); return *this; } #ifdef SS_INC_COMDEF MYTYPE& operator=(const _bstr_t& bstr) { if ( bstr.length() > 0 ) return assign(static_cast(bstr), bstr.length()); else { erase(); return *this; } } #endif // Overloads also needed to fix the MSVC assignment bug (KB: Q172398) // *** Thanks to Pete The Plumber for catching this one *** // They also are compiled if you have explicitly turned off refcounting #if ( defined(_MSC_VER) && ( _MSC_VER < 1200 ) ) || defined(SS_NO_REFCOUNT) MYTYPE& assign(const MYTYPE& str) { ssasn(*this, str); return *this; } MYTYPE& assign(const MYTYPE& str, MYSIZE nStart, MYSIZE nChars) { // This overload of basic_string::assign is supposed to assign up to // or the NULL terminator, whichever comes first. Since we // are about to call a less forgiving overload (in which // must be a valid length), we must adjust the length here to a safe // value. Thanks to Ullrich Pollähne for catching this bug nChars = SSMIN(nChars, str.length() - nStart); // Watch out for assignment to self if ( this == &str ) { MYTYPE strTemp(str.c_str()+nStart, nChars); assign(strTemp); } else { Q172398(*this); MYBASE::assign(str.c_str()+nStart, nChars); } return *this; } MYTYPE& assign(const MYBASE& str) { ssasn(*this, str); return *this; } MYTYPE& assign(const MYBASE& str, MYSIZE nStart, MYSIZE nChars) { // This overload of basic_string::assign is supposed to assign up to // or the NULL terminator, whichever comes first. Since we // are about to call a less forgiving overload (in which // must be a valid length), we must adjust the length here to a safe // value. Thanks to Ullrich Pollähne for catching this bug nChars = SSMIN(nChars, str.length() - nStart); // Watch out for assignment to self if ( this == &str ) // watch out for assignment to self { MYTYPE strTemp(str.c_str() + nStart, nChars); assign(strTemp); } else { Q172398(*this); MYBASE::assign(str.c_str()+nStart, nChars); } return *this; } MYTYPE& assign(const CT* pC, MYSIZE nChars) { // Q172398 only fix -- erase before assigning, but not if we're // assigning from our own buffer #if defined ( _MSC_VER ) && ( _MSC_VER < 1200 ) if ( !empty() && ( pC < data() || pC > data() + capacity() ) ) erase(); #endif Q172398(*this); MYBASE::assign(pC, nChars); return *this; } MYTYPE& assign(MYSIZE nChars, MYVAL val) { Q172398(*this); MYBASE::assign(nChars, val); return *this; } MYTYPE& assign(const CT* pT) { return assign(pT, CStdStr::traits_type::length(pT)); } MYTYPE& assign(MYCITER iterFirst, MYCITER iterLast) { #if defined ( _MSC_VER ) && ( _MSC_VER < 1200 ) // Q172398 fix. don't call erase() if we're assigning from ourself if ( iterFirst < begin() || iterFirst > begin() + size() ) erase() #endif replace(begin(), end(), iterFirst, iterLast); return *this; } #endif // ------------------------------------------------------------------------- // CStdStr inline concatenation. // ------------------------------------------------------------------------- MYTYPE& operator+=(const MYTYPE& str) { ssadd(*this, str); return *this; } MYTYPE& operator+=(const std::string& str) { ssadd(*this, str); return *this; } MYTYPE& operator+=(const std::wstring& str) { ssadd(*this, str); return *this; } MYTYPE& operator+=(PCSTR pA) { ssadd(*this, pA); return *this; } MYTYPE& operator+=(PCWSTR pW) { ssadd(*this, pW); return *this; } MYTYPE& operator+=(CT t) { append(1, t); return *this; } #ifdef SS_INC_COMDEF // if we have _bstr_t, define a += for it too. MYTYPE& operator+=(const _bstr_t& bstr) { return operator+=(static_cast(bstr)); } #endif // addition operators -- global friend functions. friend MYTYPE operator+(const MYTYPE& str1, const MYTYPE& str2); friend MYTYPE operator+(const MYTYPE& str, CT t); friend MYTYPE operator+(const MYTYPE& str, PCSTR sz); friend MYTYPE operator+(const MYTYPE& str, PCWSTR sz); friend MYTYPE operator+(PCSTR pA, const MYTYPE& str); friend MYTYPE operator+(PCWSTR pW, const MYTYPE& str); #ifdef SS_INC_COMDEF friend MYTYPE operator+(const _bstr_t& bstr, const MYTYPE& str); friend MYTYPE operator+(const MYTYPE& str, const _bstr_t& bstr); #endif // ------------------------------------------------------------------------- // Case changing functions // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- MYTYPE& ToUpper() { // Strictly speaking, this would be about the most portable way // std::transform(begin(), // end(), // begin(), // std::bind2nd(SSToUpper(), std::locale())); // But practically speaking, this works faster if ( !empty() ) ssupr(GetBuf(), size()); return *this; } MYTYPE& ToLower() { // Strictly speaking, this would be about the most portable way // std::transform(begin(), // end(), // begin(), // std::bind2nd(SSToLower(), std::locale())); // But practically speaking, this works faster if ( !empty() ) sslwr(GetBuf(), size()); return *this; } MYTYPE& Normalize() { return Trim().ToLower(); } // ------------------------------------------------------------------------- // CStdStr -- Direct access to character buffer. In the MS' implementation, // the at() function that we use here also calls _Freeze() providing us some // protection from multithreading problems associated with ref-counting. // ------------------------------------------------------------------------- CT* GetBuf(int nMinLen=-1) { if ( static_cast(size()) < nMinLen ) resize(static_cast(nMinLen)); return empty() ? const_cast(data()) : &(at(0)); } CT* SetBuf(int nLen) { nLen = ( nLen > 0 ? nLen : 0 ); if ( capacity() < 1 && nLen == 0 ) resize(1); resize(static_cast(nLen)); return const_cast(data()); } void RelBuf(int nNewLen=-1) { resize(static_cast(nNewLen > -1 ? nNewLen : sslen(c_str()))); } void BufferRel() { RelBuf(); } // backwards compatability CT* Buffer() { return GetBuf(); } // backwards compatability CT* BufferSet(int nLen) { return SetBuf(nLen);}// backwards compatability bool Equals(const CT* pT, bool bUseCase=false) const { // get copy, THEN compare (thread safe) return bUseCase ? compare(pT) == 0 : ssicmp(MYTYPE(*this), pT) == 0; } // ------------------------------------------------------------------------- // FUNCTION: CStdStr::Load // REMARKS: // Loads string from resource specified by nID // // PARAMETERS: // nID - resource Identifier. Purely a Win32 thing in this case // // RETURN VALUE: // true if successful, false otherwise // ------------------------------------------------------------------------- #ifndef SS_ANSI bool Load(UINT nId, HMODULE hModule=NULL) { bool bLoaded = false; // set to true of we succeed. #ifdef _MFC_VER // When in Rome... CString strRes; bLoaded = FALSE != strRes.LoadString(nId); if ( bLoaded ) *this = strRes; #else // Get the resource name and module handle if ( NULL == hModule ) hModule = GetResourceHandle(); PCTSTR szName = MAKEINTRESOURCE((nId>>4)+1); // lifted DWORD dwSize = 0; // No sense continuing if we can't find the resource HRSRC hrsrc = ::FindResource(hModule, szName, RT_STRING); if ( NULL == hrsrc ) TRACE(_T("Cannot find resource %d: 0x%X"), nId, ::GetLastError()); else if ( 0 == (dwSize = ::SizeofResource(hModule, hrsrc) / sizeof(CT))) TRACE(_T("Cant get size of resource %d 0x%X\n"),nId,GetLastError()); else { bLoaded = 0 != ssload(hModule, nId, GetBuf(dwSize), dwSize); ReleaseBuffer(); } #endif if ( !bLoaded ) TRACE(_T("String not loaded 0x%X\n"), ::GetLastError()); return bLoaded; } #endif // ------------------------------------------------------------------------- // FUNCTION: CStdStr::Format // void _cdecl Formst(CStdStringA& PCSTR szFormat, ...) // void _cdecl Format(PCSTR szFormat); // // DESCRIPTION: // This function does sprintf/wsprintf style formatting on CStdStringA // objects. It looks a lot like MFC's CString::Format. Some people // might even call this identical. Fortunately, these people are now // dead. // // PARAMETERS: // nId - ID of string resource holding the format string // szFormat - a PCSTR holding the format specifiers // argList - a va_list holding the arguments for the format specifiers. // // RETURN VALUE: None. // ------------------------------------------------------------------------- // formatting (using wsprintf style formatting) #ifndef SS_ANSI void Format(UINT nId, ...) { va_list argList; va_start(argList, nId); va_start(argList, nId); MYTYPE strFmt; if ( strFmt.Load(nId) ) FormatV(strFmt, argList); va_end(argList); } #endif void Format(const CT* szFmt, ...) { va_list argList; va_start(argList, szFmt); FormatV(szFmt, argList); va_end(argList); } void AppendFormat(const CT* szFmt, ...) { va_list argList; va_start(argList, szFmt); AppendFormatV(szFmt, argList); va_end(argList); } #define MAX_FMT_TRIES 5 // #of times we try #define FMT_BLOCK_SIZE 2048 // # of bytes to increment per try #define BUFSIZE_1ST 256 #define BUFSIZE_2ND 512 #define STD_BUF_SIZE 1024 // an efficient way to add formatted characters to the string. You may only // add up to STD_BUF_SIZE characters at a time, though void AppendFormatV(const CT* szFmt, va_list argList) { CT szBuf[STD_BUF_SIZE]; #ifdef SS_ANSI int nLen = ssvsprintf(szBuf, STD_BUF_SIZE-1, szFmt, argList); #else int nLen = ssnprintf(szBuf, STD_BUF_SIZE-1, szFmt, argList); #endif if ( 0 < nLen ) append(szBuf, nLen); } // ------------------------------------------------------------------------- // FUNCTION: FormatV // void FormatV(PCSTR szFormat, va_list, argList); // // DESCRIPTION: // This function formats the string with sprintf style format-specs. // It makes a general guess at required buffer size and then tries // successively larger buffers until it finds one big enough or a // threshold (MAX_FMT_TRIES) is exceeded. // // PARAMETERS: // szFormat - a PCSTR holding the format of the output // argList - a Microsoft specific va_list for variable argument lists // // RETURN VALUE: // ------------------------------------------------------------------------- void FormatV(const CT* szFormat, va_list argList) { #ifdef SS_ANSI int nLen = sslen(szFormat) + STD_BUF_SIZE; ssvsprintf(GetBuffer(nLen), nLen-1, szFormat, argList); ReleaseBuffer(); #else CT* pBuf = NULL; int nChars = 1; int nUsed = 0; size_type nActual = 0; int nTry = 0; do { // Grow more than linearly (e.g. 512, 1536, 3072, etc) nChars += ((nTry+1) * FMT_BLOCK_SIZE); pBuf = reinterpret_cast(_alloca(sizeof(CT)*nChars)); nUsed = ssnprintf(pBuf, nChars-1, szFormat, argList); // Ensure proper NULL termination. nActual = nUsed == -1 ? nChars-1 : SSMIN(nUsed, nChars-1); pBuf[nActual+1]= '\0'; } while ( nUsed < 0 && nTry++ < MAX_FMT_TRIES ); // assign whatever we managed to format assign(pBuf, nActual); #endif } // ------------------------------------------------------------------------- // CString Facade Functions: // // The following methods are intended to allow you to use this class as a // drop-in replacement for CString. // ------------------------------------------------------------------------- #ifndef SS_ANSI BSTR AllocSysString() const { ostring os; ssasn(os, *this); return ::SysAllocString(os.c_str()); } #endif int Collate(PCMYSTR szThat) const { return sscoll(c_str(), length(), szThat, sslen(szThat)); } int CollateNoCase(PCMYSTR szThat) const { return ssicoll(c_str(), length(), szThat, sslen(szThat)); } int Compare(PCMYSTR szThat) const { return MYBASE::compare(szThat); } int CompareNoCase(PCMYSTR szThat) const { return ssicmp(c_str(), szThat); } int Delete(int nIdx, int nCount=1) { if ( nIdx < GetLength() ) erase(static_cast(nIdx), static_cast(nCount)); return GetLength(); } void Empty() { erase(); } int Find(CT ch) const { MYSIZE nIdx = find_first_of(ch); return static_cast(MYBASE::npos == nIdx ? -1 : nIdx); } int Find(PCMYSTR szSub) const { MYSIZE nIdx = find(szSub); return static_cast(MYBASE::npos == nIdx ? -1 : nIdx); } int Find(CT ch, int nStart) const { // CString::Find docs say add 1 to nStart when it's not zero // CString::Find code doesn't do that however. We'll stick // with what the code does MYSIZE nIdx = find_first_of(ch, static_cast(nStart)); return static_cast(MYBASE::npos == nIdx ? -1 : nIdx); } int Find(PCMYSTR szSub, int nStart) const { // CString::Find docs say add 1 to nStart when it's not zero // CString::Find code doesn't do that however. We'll stick // with what the code does MYSIZE nIdx = find(szSub, static_cast(nStart)); return static_cast(MYBASE::npos == nIdx ? -1 : nIdx); } int FindOneOf(PCMYSTR szCharSet) const { MYSIZE nIdx = find_first_of(szCharSet); return static_cast(MYBASE::npos == nIdx ? -1 : nIdx); } #ifndef SS_ANSI void FormatMessage(PCMYSTR szFormat, ...) throw(std::exception) { va_list argList; va_start(argList, szFormat); PMYSTR szTemp; if ( ssfmtmsg(FORMAT_MESSAGE_FROM_STRING|FORMAT_MESSAGE_ALLOCATE_BUFFER, szFormat, 0, 0, reinterpret_cast(&szTemp), 0, &argList) == 0 || szTemp == 0 ) { throw std::runtime_error("out of memory"); } *this = szTemp; LocalFree(szTemp); va_end(argList); } void FormatMessage(UINT nFormatId, ...) throw(std::exception) { MYTYPE sFormat; VERIFY(sFormat.LoadString(nFormatId) != 0); va_list argList; va_start(argList, nFormatId); PMYSTR szTemp; if ( ssfmtmsg(FORMAT_MESSAGE_FROM_STRING|FORMAT_MESSAGE_ALLOCATE_BUFFER, sFormat, 0, 0, reinterpret_cast(&szTemp), 0, &argList) == 0 || szTemp == 0) { throw std::runtime_error("out of memory"); } *this = szTemp; LocalFree(szTemp); va_end(argList); } #endif // ------------------------------------------------------------------------- // GetXXXX -- Direct access to character buffer // ------------------------------------------------------------------------- CT GetAt(int nIdx) const { return at(static_cast(nIdx)); } CT* GetBuffer(int nMinLen=-1) { return GetBuf(nMinLen); } CT* GetBufferSetLength(int nLen) { return BufferSet(nLen); } // GetLength() -- MFC docs say this is the # of BYTES but // in truth it is the number of CHARACTERs (chars or wchar_ts) int GetLength() const { return static_cast(length()); } int Insert(int nIdx, CT ch) { if ( static_cast(nIdx) > size() -1 ) append(1, ch); else insert(static_cast(nIdx), 1, ch); return GetLength(); } int Insert(int nIdx, PCMYSTR sz) { if ( nIdx >= size() ) append(sz, sslen(sz)); else insert(static_cast(nIdx), sz); return GetLength(); } bool IsEmpty() const { return empty(); } MYTYPE Left(int nCount) const { return substr(0, static_cast(nCount)); } #ifndef SS_ANSI bool LoadString(UINT nId) { return this->Load(nId); } #endif void MakeLower() { ToLower(); } void MakeReverse() { std::reverse(begin(), end()); } void MakeUpper() { ToUpper(); } MYTYPE Mid(int nFirst ) const { return substr(static_cast(nFirst)); } MYTYPE Mid(int nFirst, int nCount) const { return substr(static_cast(nFirst), static_cast(nCount)); } void ReleaseBuffer(int nNewLen=-1) { RelBuf(nNewLen); } int Remove(CT ch) { MYSIZE nIdx = 0; int nRemoved = 0; while ( (nIdx=find_first_of(ch)) != MYBASE::npos ) { erase(nIdx, 1); nRemoved++; } return nRemoved; } int Replace(CT chOld, CT chNew) { int nReplaced = 0; for ( MYITER iter=begin(); iter != end(); iter++ ) { if ( *iter == chOld ) { *iter = chNew; nReplaced++; } } return nReplaced; } int Replace(PCMYSTR szOld, PCMYSTR szNew) { int nReplaced = 0; MYSIZE nIdx = 0; MYSIZE nOldLen = sslen(szOld); if ( 0 == nOldLen ) return 0; static const CT ch = CT(0); MYSIZE nNewLen = sslen(szNew); PCMYSTR szRealNew = szNew == 0 ? &ch : szNew; while ( (nIdx=find(szOld, nIdx)) != MYBASE::npos ) { replace(begin()+nIdx, begin()+nIdx+nOldLen, szRealNew); nReplaced++; nIdx += nNewLen; } return nReplaced; } int ReverseFind(CT ch) const { MYSIZE nIdx = find_last_of(ch); return static_cast(MYBASE::npos == nIdx ? -1 : nIdx); } // ReverseFind overload that's not in CString but might be useful int ReverseFind(PCMYSTR szFind, MYSIZE pos=MYBASE::npos) const { MYSIZE nIdx = rfind(0 == szFind ? MYTYPE() : szFind, pos); return static_cast(MYBASE::npos == nIdx ? -1 : nIdx); } MYTYPE Right(int nCount) const { nCount = SSMIN(nCount, static_cast(size())); return substr(size()-static_cast(nCount)); } void SetAt(int nIndex, CT ch) { ASSERT(size() > static_cast(nIndex)); at(static_cast(nIndex)) = ch; } #ifndef SS_ANSI BSTR SetSysString(BSTR* pbstr) const { ostring os; ssasn(os, *this); if ( !::SysReAllocStringLen(pbstr, os.c_str(), os.length()) ) throw std::runtime_error("out of memory"); ASSERT(*pbstr != 0); return *pbstr; } #endif MYTYPE SpanExcluding(PCMYSTR szCharSet) const { return Left(find_first_of(szCharSet)); } MYTYPE SpanIncluding(PCMYSTR szCharSet) const { return Left(find_first_not_of(szCharSet)); } #if !defined(UNICODE) && !defined(SS_ANSI) // CString's OemToAnsi and AnsiToOem functions are available only in // Unicode builds. However since we're a template we also need a // runtime check of CT and a reinterpret_cast to account for the fact // that CStdStringW gets instantiated even in non-Unicode builds. void AnsiToOem() { if ( sizeof(CT) == sizeof(char) && !empty() ) { ::CharToOem(reinterpret_cast(c_str()), reinterpret_cast(GetBuf())); } else { ASSERT(false); } } void OemToAnsi() { if ( sizeof(CT) == sizeof(char) && !empty() ) { ::OemToChar(reinterpret_cast(c_str()), reinterpret_cast(GetBuf())); } else { ASSERT(false); } } #endif // ------------------------------------------------------------------------- // Trim and its variants // ------------------------------------------------------------------------- MYTYPE& Trim() { return TrimLeft().TrimRight(); } MYTYPE& TrimLeft() { erase(begin(), std::find_if(begin(),end(),NotSpace(std::locale()))); return *this; } MYTYPE& TrimLeft(CT tTrim) { erase(0, find_first_not_of(tTrim)); return *this; } MYTYPE& TrimLeft(PCMYSTR szTrimChars) { erase(0, find_first_not_of(szTrimChars)); return *this; } MYTYPE& TrimRight() { std::locale loc; MYRITER it = std::find_if(rbegin(), rend(), NotSpace(loc)); if ( rend() != it ) erase(rend() - it); erase(it != rend() ? find_last_of(*it) + 1 : 0); return *this; } MYTYPE& TrimRight(CT tTrim) { MYSIZE nIdx = find_last_not_of(tTrim); erase(MYBASE::npos == nIdx ? 0 : ++nIdx); return *this; } MYTYPE& TrimRight(PCMYSTR szTrimChars) { MYSIZE nIdx = find_last_not_of(szTrimChars); erase(MYBASE::npos == nIdx ? 0 : ++nIdx); return *this; } void FreeExtra() { MYTYPE mt; swap(mt); if ( !mt.empty() ) assign(mt.c_str(), mt.size()); } // I have intentionally not implemented the following CString // functions. You cannot make them work without taking advantage // of implementation specific behavior. However if you absolutely // MUST have them, uncomment out these lines for "sort-of-like" // their behavior. You're on your own. // CT* LockBuffer() { return GetBuf(); }// won't really lock // void UnlockBuffer(); { } // why have UnlockBuffer w/o LockBuffer? // Array-indexing operators. Required because we defined an implicit cast // to operator const CT* (Thanks to Julian Selman for pointing this out) CT& operator[](int nIdx) { return MYBASE::operator[](static_cast(nIdx)); } const CT& operator[](int nIdx) const { return MYBASE::operator[](static_cast(nIdx)); } CT& operator[](unsigned int nIdx) { return MYBASE::operator[](static_cast(nIdx)); } const CT& operator[](unsigned int nIdx) const { return MYBASE::operator[](static_cast(nIdx)); } operator const CT*() const { return c_str(); } // IStream related functions. Useful in IPersistStream implementations #ifdef SS_INC_COMDEF // struct SSSHDR - useful for non Std C++ persistence schemes. typedef struct SSSHDR { BYTE byCtrl; ULONG nChars; } SSSHDR; // as in "Standard String Stream Header" #define SSSO_UNICODE 0x01 // the string is a wide string #define SSSO_COMPRESS 0x02 // the string is compressed // ------------------------------------------------------------------------- // FUNCTION: StreamSize // REMARKS: // Returns how many bytes it will take to StreamSave() this CStdString // object to an IStream. // ------------------------------------------------------------------------- ULONG StreamSize() const { // Control header plus string ASSERT(size()*sizeof(CT) < 0xffffffffUL - sizeof(SSSHDR)); return (size() * sizeof(CT)) + sizeof(SSSHDR); } // ------------------------------------------------------------------------- // FUNCTION: StreamSave // REMARKS: // Saves this CStdString object to a COM IStream. // ------------------------------------------------------------------------- HRESULT StreamSave(IStream* pStream) const { ASSERT(size()*sizeof(CT) < 0xffffffffUL - sizeof(SSSHDR)); HRESULT hr = E_FAIL; ASSERT(pStream != 0); SSSHDR hdr; hdr.byCtrl = sizeof(CT) == 2 ? SSSO_UNICODE : 0; hdr.nChars = size(); if ( FAILED(hr=pStream->Write(&hdr, sizeof(SSSHDR), 0)) ) TRACE(_T("StreamSave: Cannot write control header, ERR=0x%X\n"),hr); else if ( empty() ) ; // nothing to write else if ( FAILED(hr=pStream->Write(c_str(), size()*sizeof(CT), 0)) ) TRACE(_T("StreamSave: Cannot write string to stream 0x%X\n"), hr); return hr; } // ------------------------------------------------------------------------- // FUNCTION: StreamLoad // REMARKS: // This method loads the object from an IStream. // ------------------------------------------------------------------------- HRESULT StreamLoad(IStream* pStream) { ASSERT(pStream != 0); SSSHDR hdr; HRESULT hr = E_FAIL; if ( FAILED(hr=pStream->Read(&hdr, sizeof(SSSHDR), 0)) ) { TRACE(_T("StreamLoad: Cant read control header, ERR=0x%X\n"), hr); } else if ( hdr.nChars > 0 ) { ULONG nRead = 0; PMYSTR pMyBuf = BufferSet(hdr.nChars); // If our character size matches the character size of the string // we're trying to read, then we can read it directly into our // buffer. Otherwise, we have to read into an intermediate buffer // and convert. if ( (hdr.byCtrl & SSSO_UNICODE) != 0 ) { ULONG nBytes = hdr.nChars * sizeof(wchar_t); if ( sizeof(CT) == sizeof(wchar_t) ) { if ( FAILED(hr=pStream->Read(pMyBuf, nBytes, &nRead)) ) TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr); } else { PWSTR pBufW = reinterpret_cast(_alloca((nBytes)+1)); if ( FAILED(hr=pStream->Read(pBufW, nBytes, &nRead)) ) TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr); else sscpy(pMyBuf, pBufW, hdr.nChars); } } else { ULONG nBytes = hdr.nChars * sizeof(char); if ( sizeof(CT) == sizeof(char) ) { if ( FAILED(hr=pStream->Read(pMyBuf, nBytes, &nRead)) ) TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr); } else { PSTR pBufA = reinterpret_cast(_alloca(nBytes)); if ( FAILED(hr=pStream->Read(pBufA, hdr.nChars, &nRead)) ) TRACE(_T("StreamLoad: Cannot read string: 0x%X\n"), hr); else sscpy(pMyBuf, pBufA, hdr.nChars); } } } else { this->erase(); } return hr; } #endif // #ifdef SS_INC_COMDEF #ifndef SS_ANSI // SetResourceHandle/GetResourceHandle. In MFC builds, these map directly // to AfxSetResourceHandle and AfxGetResourceHandle. In non-MFC builds they // point to a single static HINST so that those who call the member // functions that take resource IDs can provide an alternate HINST of a DLL // to search. This is not exactly the list of HMODULES that MFC provides // but it's better than nothing. #ifdef _MFC_VER static void SetResourceHandle(HMODULE hNew) { AfxSetResourceHandle(hNew); } static HMODULE GetResourceHandle() { return AfxGetResourceHandle(); } #else static void SetResourceHandle(HMODULE hNew) { SSResourceHandle() = hNew; } static HMODULE GetResourceHandle() { return SSResourceHandle(); } #endif #endif }; // ----------------------------------------------------------------------------- // CStdStr friend addition functions defined as inline // ----------------------------------------------------------------------------- template inline CStdStr operator+(const CStdStr& str1, const CStdStr& str2) { CStdStr strRet(SSREF(str1)); strRet.append(str2); return strRet; } template inline CStdStr operator+(const CStdStr& str, CT t) { // this particular overload is needed for disabling reference counting // though it's only an issue from line 1 to line 2 CStdStr strRet(SSREF(str)); // 1 strRet.append(1, t); // 2 return strRet; } template inline CStdStr operator+(const CStdStr& str, PCSTR pA) { return CStdStr(str) + CStdStr(pA); } template inline CStdStr operator+(PCSTR pA, const CStdStr& str) { CStdStr strRet(pA); strRet.append(str); return strRet; } template inline CStdStr operator+(const CStdStr& str, PCWSTR pW) { return CStdStr(SSREF(str)) + CStdStr(pW); } template inline CStdStr operator+(PCWSTR pW, const CStdStr& str) { CStdStr strRet(pW); strRet.append(str); return strRet; } #ifdef SS_INC_COMDEF template inline CStdStr operator+(const _bstr_t& bstr, const CStdStr& str) { return static_cast(bstr) + str; } template inline CStdStr operator+(const CStdStr& str, const _bstr_t& bstr) { return str + static_cast(bstr); } #endif // ----------------------------------------------------------------------------- // These versions of operator+ provided by Scott Hathaway in order to allow // CStdString to build on Sun Unix systems. // ----------------------------------------------------------------------------- #if defined(__SUNPRO_CC_COMPAT) || defined(__SUNPRO_CC) // Made non-template versions due to "undefined" errors on Sun Forte compiler // when linking with friend template functions inline CStdStr operator+(const CStdStr& str1, const CStdStr& str2) { CStdStr strRet(SSREF(str1)); strRet.append(str2); return strRet; } inline CStdStr operator+(const CStdStr& str, wchar_t t) { // this particular overload is needed for disabling reference counting // though it's only an issue from line 1 to line 2 CStdStr strRet(SSREF(str)); // 1 strRet.append(1, t); // 2 return strRet; } inline CStdStr operator+(const CStdStr& str, PCWSTR pW) { return CStdStr(str) + CStdStr(pW); } inline CStdStr operator+(PCWSTR pA, const CStdStr& str) { CStdStr strRet(pA); strRet.append(str); return strRet; } inline CStdStr operator+(const CStdStr& str, PCSTR pW) { return CStdStr(SSREF(str)) + CStdStr(pW); } inline CStdStr operator+(PCSTR pW, const CStdStr& str) { CStdStr strRet(pW); strRet.append(str); return strRet; } inline CStdStr operator+(const CStdStr& str1, const CStdStr& str2) { CStdStr strRet(SSREF(str1)); strRet.append(str2); return strRet; } inline CStdStr operator+(const CStdStr& str, char t) { // this particular overload is needed for disabling reference counting // though it's only an issue from line 1 to line 2 CStdStr strRet(SSREF(str)); // 1 strRet.append(1, t); // 2 return strRet; } inline CStdStr operator+(const CStdStr& str, PCSTR pA) { return CStdStr(str) + CStdStr(pA); } inline CStdStr operator+(PCSTR pA, const CStdStr& str) { CStdStr strRet(pA); strRet.append(str); return strRet; } inline CStdStr operator+(const CStdStr& str, PCWSTR pW) { return CStdStr(SSREF(str)) + CStdStr(pW); } inline CStdStr operator+(PCWSTR pW, const CStdStr& str) { CStdStr strRet(pW); strRet.append(str); return strRet; } #endif // defined(__SUNPRO_CC_COMPAT) || defined(__SUNPRO_CC) // ============================================================================= // END OF CStdStr INLINE FUNCTION DEFINITIONS // ============================================================================= // Now typedef our class names based upon this humongous template typedef CStdStr CStdStringA; // a better std::string typedef CStdStr CStdStringW; // a better std::wstring typedef CStdStr CStdStringO; // almost always CStdStringW #ifndef SS_ANSI // SSResourceHandle: our MFC-like resource handle inline HMODULE& SSResourceHandle() { static HMODULE hModuleSS = GetModuleHandle(0); return hModuleSS; } #endif // In MFC builds, define some global serialization operators // Special operators that allow us to serialize CStdStrings to CArchives. // Note that we use an intermediate CString object in order to ensure that // we use the exact same format. #ifdef _MFC_VER inline CArchive& AFXAPI operator<<(CArchive& ar, const CStdStringA& strA) { CString strTemp = strA; return ar << strTemp; } inline CArchive& AFXAPI operator<<(CArchive& ar, const CStdStringW& strW) { CString strTemp = strW; return ar << strTemp; } inline CArchive& AFXAPI operator>>(CArchive& ar, CStdStringA& strA) { CString strTemp; ar >> strTemp; strA = strTemp; return ar; } inline CArchive& AFXAPI operator>>(CArchive& ar, CStdStringW& strW) { CString strTemp; ar >> strTemp; strW = strTemp; return ar; } #endif // #ifdef _MFC_VER -- (i.e. is this MFC?) // ----------------------------------------------------------------------------- // HOW TO EXPORT CSTDSTRING FROM A DLL // // If you want to export CStdStringA and CStdStringW from a DLL, then all you // need to // 1. make sure that all components link to the same DLL version // of the CRT (not the static one). // 2. Uncomment the 3 lines of code below // 3. #define 2 macros per the instructions in MS KnowledgeBase // article Q168958. The macros are: // // MACRO DEFINTION WHEN EXPORTING DEFINITION WHEN IMPORTING // ----- ------------------------ ------------------------- // SSDLLEXP (nothing, just #define it) extern // SSDLLSPEC __declspec(dllexport) __declspec(dllimport) // // Note that these macros must be available to ALL clients who want to // link to the DLL and use the class. If they // ----------------------------------------------------------------------------- //#pragma warning(disable:4231) // non-standard extension ("extern template") // SSDLLEXP template class SSDLLSPEC CStdStr; // SSDLLEXP template class SSDLLSPEC CStdStr; // ----------------------------------------------------------------------------- // GLOBAL FUNCTION: WUFormat // CStdStringA WUFormat(UINT nId, ...); // CStdStringA WUFormat(PCSTR szFormat, ...); // // REMARKS: // This function allows the caller for format and return a CStdStringA // object with a single line of code. // ----------------------------------------------------------------------------- #ifdef SS_ANSI #else inline CStdStringA WUFormatA(UINT nId, ...) { va_list argList; va_start(argList, nId); CStdStringA strFmt; CStdStringA strOut; if ( strFmt.Load(nId) ) strOut.FormatV(strFmt, argList); va_end(argList); return strOut; } inline CStdStringA WUFormatA(PCSTR szFormat, ...) { va_list argList; va_start(argList, szFormat); CStdStringA strOut; strOut.FormatV(szFormat, argList); va_end(argList); return strOut; } inline CStdStringW WUFormatW(UINT nId, ...) { va_list argList; va_start(argList, nId); CStdStringW strFmt; CStdStringW strOut; if ( strFmt.Load(nId) ) strOut.FormatV(strFmt, argList); va_end(argList); return strOut; } inline CStdStringW WUFormatW(PCWSTR szwFormat, ...) { va_list argList; va_start(argList, szwFormat); CStdStringW strOut; strOut.FormatV(szwFormat, argList); va_end(argList); return strOut; } #endif // #ifdef SS_ANSI #ifdef SS_ANSI #else // ------------------------------------------------------------------------- // FUNCTION: WUSysMessage // CStdStringA WUSysMessageA(DWORD dwError, DWORD dwLangId=SS_DEFLANGID); // CStdStringW WUSysMessageW(DWORD dwError, DWORD dwLangId=SS_DEFLANGID); // // DESCRIPTION: // This function simplifies the process of obtaining a string equivalent // of a system error code returned from GetLastError(). You simply // supply the value returned by GetLastError() to this function and the // corresponding system string is returned in the form of a CStdStringA. // // PARAMETERS: // dwError - a DWORD value representing the error code to be translated // dwLangId - the language id to use. defaults to english. // // RETURN VALUE: // a CStdStringA equivalent of the error code. Currently, this function // only returns either English of the system default language strings. // ------------------------------------------------------------------------- #define SS_DEFLANGID MAKELANGID(LANG_NEUTRAL,SUBLANG_DEFAULT) inline CStdStringA WUSysMessageA(DWORD dwError, DWORD dwLangId=SS_DEFLANGID) { CHAR szBuf[512]; if ( 0 != ::FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, NULL, dwError, dwLangId, szBuf, 511, NULL) ) return WUFormatA("%s (0x%X)", szBuf, dwError); else return WUFormatA("Unknown error (0x%X)", dwError); } inline CStdStringW WUSysMessageW(DWORD dwError, DWORD dwLangId=SS_DEFLANGID) { WCHAR szBuf[512]; if ( 0 != ::FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM, NULL, dwError, dwLangId, szBuf, 511, NULL) ) return WUFormatW(L"%s (0x%X)", szBuf, dwError); else return WUFormatW(L"Unknown error (0x%X)", dwError); } #endif // Define TCHAR based friendly names for some of these functions #ifdef UNICODE #define CStdString CStdStringW #define WUSysMessage WUSysMessageW #define WUFormat WUFormatW #else #define CStdString CStdStringA #define WUSysMessage WUSysMessageA #define WUFormat WUFormatA #endif // ...and some shorter names for the space-efficient #define WUSysMsg WUSysMessage #define WUSysMsgA WUSysMessageA #define WUSysMsgW WUSysMessageW #define WUFmtA WUFormatA #define WUFmtW WUFormatW #define WUFmt WUFormat #define WULastErrMsg() WUSysMessage(::GetLastError()) #define WULastErrMsgA() WUSysMessageA(::GetLastError()) #define WULastErrMsgW() WUSysMessageW(::GetLastError()) // ----------------------------------------------------------------------------- // FUNCTIONAL COMPARATORS: // REMARKS: // These structs are derived from the std::binary_function template. They // give us functional classes (which may be used in Standard C++ Library // collections and algorithms) that perform case-insensitive comparisons of // CStdString objects. This is useful for maps in which the key may be the // proper string but in the wrong case. // ----------------------------------------------------------------------------- #define StdStringLessNoCaseW SSLNCW // avoid VC compiler warning 4786 #define StdStringEqualsNoCaseW SSENCW #define StdStringLessNoCaseA SSLNCA #define StdStringEqualsNoCaseA SSENCA #ifdef UNICODE #define StdStringLessNoCase SSLNCW #define StdStringEqualsNoCase SSENCW #else #define StdStringLessNoCase SSLNCA #define StdStringEqualsNoCase SSENCA #endif struct StdStringLessNoCaseW : std::binary_function { inline bool operator()(const CStdStringW& sLeft, const CStdStringW& sRight) const { return ssicmp(sLeft.c_str(), sRight.c_str()) < 0; } }; struct StdStringEqualsNoCaseW : std::binary_function { inline bool operator()(const CStdStringW& sLeft, const CStdStringW& sRight) const { return ssicmp(sLeft.c_str(), sRight.c_str()) == 0; } }; struct StdStringLessNoCaseA : std::binary_function { inline bool operator()(const CStdStringA& sLeft, const CStdStringA& sRight) const { return ssicmp(sLeft.c_str(), sRight.c_str()) < 0; } }; struct StdStringEqualsNoCaseA : std::binary_function { inline bool operator()(const CStdStringA& sLeft, const CStdStringA& sRight) const { return ssicmp(sLeft.c_str(), sRight.c_str()) == 0; } }; // If we had to define our own version of TRACE above, get rid of it now #ifdef TRACE_DEFINED_HERE #undef TRACE #undef TRACE_DEFINED_HERE #endif #endif // #ifndef STDSTRING_H