// Ported from NSFPlay to VGMPlay (including C++ -> C conversion) // by Valley Bell on 25 September 2013 // Updated to NSFPlay 2.3 on 26 September 2013 // (Note: Encoding is UTF-8) #include // for rand() #include // for memset() #include // for NULL #include "mamedef.h" #include "../stdbool.h" #include "np_nes_apu.h" // for NES_APU_np_FrameSequence #include "np_nes_dmc.h" // Master Clock: 21477272 (NTSC) // APU Clock = Master Clock / 12 #define DEFAULT_CLOCK 1789772.0 #define DEFAULT_CLK_PAL 1662607 #define DEFAULT_RATE 44100 /** Bottom Half of APU **/ enum { OPT_UNMUTE_ON_RESET=0, OPT_NONLINEAR_MIXER, OPT_ENABLE_4011, OPT_ENABLE_PNOISE, OPT_DPCM_ANTI_CLICK, OPT_RANDOMIZE_NOISE, OPT_TRI_MUTE, OPT_TRI_NULL, OPT_END }; // Note: For increased speed, I'll inline all of NSFPlay's Counter member functions. #define COUNTER_SHIFT 24 typedef struct _Counter Counter; struct _Counter { double ratio; UINT32 val, step; }; #define COUNTER_setcycle(cntr, s) (cntr).step = (UINT32)((cntr).ratio / (s + 1)) #define COUNTER_iup(cntr) (cntr).val += (cntr).step #define COUNTER_value(cntr) ((cntr).val >> COUNTER_SHIFT) #define COUNTER_init(cntr, clk, rate) \ { \ (cntr).ratio = (1 << COUNTER_SHIFT) * (1.0 * clk / rate); \ (cntr).step = (UINT32)((cntr).ratio + 0.5); \ (cntr).val = 0; \ } typedef struct _NES_DMC NES_DMC; struct _NES_DMC { //const int GETA_BITS; //static const UINT32 freq_table[2][16]; //static const UINT32 wavlen_table[2][16]; UINT32 tnd_table[2][16][16][128]; int option[OPT_END]; int mask; INT32 sm[2][3]; UINT8 reg[0x10]; UINT32 len_reg; UINT32 adr_reg; //IDevice *memory; const UINT8* memory; UINT32 out[3]; UINT32 daddress; UINT32 length; UINT32 data; INT16 damp; int dac_lsb; bool dmc_pop; INT32 dmc_pop_offset; INT32 dmc_pop_follow; UINT32 clock; UINT32 rate; int pal; int mode; bool irq; bool active; UINT32 counter[3]; // frequency dividers int tphase; // triangle phase UINT32 nfreq; // noise frequency UINT32 dfreq; // DPCM frequency UINT32 tri_freq; int linear_counter; int linear_counter_reload; bool linear_counter_halt; bool linear_counter_control; int noise_volume; UINT32 noise, noise_tap; // noise envelope bool envelope_loop; bool envelope_disable; bool envelope_write; int envelope_div_period; int envelope_div; int envelope_counter; bool enable[3]; int length_counter[2]; // 0=tri, 1=noise // frame sequencer void* apu; // apu is clocked by DMC's frame sequencer int frame_sequence_count; // current cycle count int frame_sequence_length; // CPU cycles per FrameSequence int frame_sequence_step; // current step of frame sequence int frame_sequence_steps; // 4/5 steps per frame bool frame_irq; bool frame_irq_enable; Counter tick_count; UINT32 tick_last; }; INLINE UINT32 calc_tri(NES_DMC* dmc, UINT32 clocks); INLINE UINT32 calc_dmc(NES_DMC* dmc, UINT32 clocks); INLINE UINT32 calc_noise(NES_DMC* dmc, UINT32 clocks); static void FrameSequence(NES_DMC* dmc, int s); static void TickFrameSequence(NES_DMC* dmc, UINT32 clocks); static void Tick(NES_DMC* dmc, UINT32 clocks); #define GETA_BITS 20 static const UINT32 wavlen_table[2][16] = { { // NTSC 4, 8, 16, 32, 64, 96, 128, 160, 202, 254, 380, 508, 762, 1016, 2034, 4068 }, { // PAL 4, 8, 14, 30, 60, 88, 118, 148, 188, 236, 354, 472, 708, 944, 1890, 3778 }}; static const UINT32 freq_table[2][16] = { { // NTSC 428, 380, 340, 320, 286, 254, 226, 214, 190, 160, 142, 128, 106, 84, 72, 54 }, { // PAL 398, 354, 316, 298, 276, 236, 210, 198, 176, 148, 132, 118, 98, 78, 66, 50 }}; void* NES_DMC_np_Create(int clock, int rate) { NES_DMC* dmc; int c, t; dmc = (NES_DMC*)malloc(sizeof(NES_DMC)); if (dmc == NULL) return NULL; memset(dmc, 0x00, sizeof(NES_DMC)); //NES_DMC_np_SetClock(dmc, DEFAULT_CLOCK); //NES_DMC_np_SetRate(dmc, DEFAULT_RATE); //NES_DMC_np_SetPal(dmc, false); NES_DMC_np_SetClock(dmc, clock); // does SetPal, too NES_DMC_np_SetRate(dmc, rate); dmc->option[OPT_ENABLE_4011] = 1; dmc->option[OPT_ENABLE_PNOISE] = 1; dmc->option[OPT_UNMUTE_ON_RESET] = 1; dmc->option[OPT_DPCM_ANTI_CLICK] = 0; dmc->option[OPT_NONLINEAR_MIXER] = 1; dmc->option[OPT_RANDOMIZE_NOISE] = 1; dmc->option[OPT_TRI_MUTE] = 1; dmc->tnd_table[0][0][0][0] = 0; dmc->tnd_table[1][0][0][0] = 0; dmc->apu = NULL; dmc->frame_sequence_count = 0; dmc->frame_sequence_length = 7458; dmc->frame_sequence_steps = 4; for(c=0;c<2;++c) for(t=0;t<3;++t) dmc->sm[c][t] = 128; return dmc; } void NES_DMC_np_Destroy(void* chip) { free(chip); } int NES_DMC_np_GetDamp(void* chip) { NES_DMC* dmc = (NES_DMC*)chip; return (dmc->damp<<1)|dmc->dac_lsb; } void NES_DMC_np_SetMask(void* chip, int m) { NES_DMC* dmc = (NES_DMC*)chip; dmc->mask = m; } void NES_DMC_np_SetStereoMix(void* chip, int trk, INT16 mixl, INT16 mixr) { NES_DMC* dmc = (NES_DMC*)chip; if (trk < 0) return; if (trk > 2) return; dmc->sm[0][trk] = mixl; dmc->sm[1][trk] = mixr; } static void FrameSequence(NES_DMC* dmc, int s) { //DEBUG_OUT("FrameSequence: %d\n",s); if (s > 3) return; // no operation in step 4 if (dmc->apu != NULL) { NES_APU_np_FrameSequence(dmc->apu, s); } if (s == 0 && (dmc->frame_sequence_steps == 4)) { dmc->frame_irq = true; } // 240hz clock { bool divider = false; // triangle linear counter if (dmc->linear_counter_halt) { dmc->linear_counter = dmc->linear_counter_reload; } else { if (dmc->linear_counter > 0) --dmc->linear_counter; } if (!dmc->linear_counter_control) { dmc->linear_counter_halt = false; } // noise envelope //bool divider = false; if (dmc->envelope_write) { dmc->envelope_write = false; dmc->envelope_counter = 15; dmc->envelope_div = 0; } else { ++dmc->envelope_div; if (dmc->envelope_div > dmc->envelope_div_period) { divider = true; dmc->envelope_div = 0; } } if (divider) { if (dmc->envelope_loop && dmc->envelope_counter == 0) dmc->envelope_counter = 15; else if (dmc->envelope_counter > 0) --dmc->envelope_counter; // TODO: Make this work. } } // 120hz clock if ((s&1) == 0) { // triangle length counter if (!dmc->linear_counter_control && (dmc->length_counter[0] > 0)) --dmc->length_counter[0]; // noise length counter if (!dmc->envelope_loop && (dmc->length_counter[1] > 0)) --dmc->length_counter[1]; } } // 三角波チャンネルの計算 戻り値は0-15 UINT32 calc_tri(NES_DMC* dmc, UINT32 clocks) { static UINT32 tritbl[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 }; if (dmc->linear_counter > 0 && dmc->length_counter[0] > 0 && (!dmc->option[OPT_TRI_MUTE] || dmc->tri_freq > 0)) { dmc->counter[0] += clocks; while (dmc->counter[0] > dmc->tri_freq) { dmc->tphase = (dmc->tphase + 1) & 31; dmc->counter[0] -= (dmc->tri_freq + 1); } } // Note: else-block added by VB else if (dmc->option[OPT_TRI_NULL]) { if (dmc->tphase && dmc->tphase < 31) { // Finish the Triangle wave to prevent clicks. dmc->counter[0] += clocks; while(dmc->counter[0] > dmc->tri_freq && dmc->tphase) { dmc->tphase = (dmc->tphase + 1) & 31; dmc->counter[0] -= (dmc->tri_freq + 1); } } } //UINT32 ret = tritbl[tphase]; //return ret; return tritbl[dmc->tphase]; } // ノイズチャンネルの計算 戻り値は0-127 // 低サンプリングレートで合成するとエイリアスノイズが激しいので // ノイズだけはこの関数内で高クロック合成し、簡易なサンプリングレート // 変換を行っている。 UINT32 calc_noise(NES_DMC* dmc, UINT32 clocks) { UINT32 env, last, count, accum, clocks_accum; env = dmc->envelope_disable ? dmc->noise_volume : dmc->envelope_counter; if (dmc->length_counter[1] < 1) env = 0; last = (dmc->noise & 0x4000) ? env : 0; if (clocks < 1) return last; // simple anti-aliasing (noise requires it, even when oversampling is off) count = 0; accum = 0; dmc->counter[1] += clocks; // assert(dmc->nfreq > 0); // prevent infinite loop if (dmc->nfreq <= 0) // prevent infinite loop -VB return last; while (dmc->counter[1] >= dmc->nfreq) { // tick the noise generator UINT32 feedback = (dmc->noise&1) ^ ((dmc->noise&dmc->noise_tap)?1:0); dmc->noise = (dmc->noise>>1) | (feedback<<14); ++count; accum += last; last = (dmc->noise & 0x4000) ? env : 0; dmc->counter[1] -= dmc->nfreq; } if (count < 1) // no change over interval, don't anti-alias { return last; } clocks_accum = clocks - dmc->counter[1]; // count = number of samples in accum // counter[1] = number of clocks since last sample accum = (accum * clocks_accum) + (last * dmc->counter[1] * count); // note accum as an average is already premultiplied by count return accum / (clocks * count); } // DMCチャンネルの計算 戻り値は0-127 UINT32 calc_dmc(NES_DMC* dmc, UINT32 clocks) { dmc->counter[2] += clocks; // assert(dmc->dfreq > 0); // prevent infinite loop if (dmc->dfreq <= 0) // prevent infinite loop -VB return (dmc->damp<<1) + dmc->dac_lsb; while (dmc->counter[2] >= dmc->dfreq) { if ( dmc->data != 0x100 ) // data = 0x100 は EMPTY を意味する。 { if ((dmc->data & 1) && (dmc->damp < 63)) dmc->damp++; else if (!(dmc->data & 1) && (0 < dmc->damp)) dmc->damp--; dmc->data >>=1; } if ( dmc->data == 0x100 && dmc->active ) { //dmc->memory->Read(dmc->daddress, dmc->data); dmc->data = dmc->memory[dmc->daddress]; dmc->data |= (dmc->data&0xFF)|0x10000; // 8bitシフトで 0x100 になる if ( dmc->length > 0 ) { dmc->daddress = ((dmc->daddress+1)&0xFFFF)|0x8000 ; dmc->length --; } } if ( dmc->length == 0 ) // 最後のフェッチが終了したら(再生完了より前に)即座に終端処理 { if (dmc->mode & 1) { dmc->daddress = ((dmc->adr_reg<<6)|0xC000); dmc->length = (dmc->len_reg<<4)+1; } else { dmc->irq = (dmc->mode==2&&dmc->active)?1:0; // 直前がactiveだったときはIRQ発行 dmc->active = false; } } dmc->counter[2] -= dmc->dfreq; } return (dmc->damp<<1) + dmc->dac_lsb; } static void TickFrameSequence(NES_DMC* dmc, UINT32 clocks) { dmc->frame_sequence_count += clocks; while (dmc->frame_sequence_count > dmc->frame_sequence_length) { FrameSequence(dmc, dmc->frame_sequence_step); dmc->frame_sequence_count -= dmc->frame_sequence_length; ++dmc->frame_sequence_step; if(dmc->frame_sequence_step >= dmc->frame_sequence_steps) dmc->frame_sequence_step = 0; } } static void Tick(NES_DMC* dmc, UINT32 clocks) { dmc->out[0] = calc_tri(dmc, clocks); dmc->out[1] = calc_noise(dmc, clocks); dmc->out[2] = calc_dmc(dmc, clocks); } UINT32 NES_DMC_np_Render(void* chip, INT32 b[2]) { NES_DMC* dmc = (NES_DMC*)chip; UINT32 clocks; INT32 m[3]; COUNTER_iup(dmc->tick_count); // increase counter (overflows after 255) clocks = (COUNTER_value(dmc->tick_count) - dmc->tick_last) & 0xFF; TickFrameSequence(dmc, clocks); Tick(dmc, clocks); dmc->tick_last = COUNTER_value(dmc->tick_count); dmc->out[0] = (dmc->mask & 1) ? 0 : dmc->out[0]; dmc->out[1] = (dmc->mask & 2) ? 0 : dmc->out[1]; dmc->out[2] = (dmc->mask & 4) ? 0 : dmc->out[2]; m[0] = dmc->tnd_table[0][dmc->out[0]][0][0]; m[1] = dmc->tnd_table[0][0][dmc->out[1]][0]; m[2] = dmc->tnd_table[0][0][0][dmc->out[2]]; if (dmc->option[OPT_NONLINEAR_MIXER]) { INT32 ref = m[0] + m[1] + m[2]; INT32 voltage = dmc->tnd_table[1][dmc->out[0]][dmc->out[1]][dmc->out[2]]; int i; if (ref) { for (i=0; i < 3; ++i) m[i] = (m[i] * voltage) / ref; } else { for (i=0; i < 3; ++i) m[i] = voltage; } } // anti-click nullifies any 4011 write but preserves nonlinearity if (dmc->option[OPT_DPCM_ANTI_CLICK]) { if (dmc->dmc_pop) // $4011 will cause pop this frame { // adjust offset to counteract pop dmc->dmc_pop_offset += dmc->dmc_pop_follow - m[2]; dmc->dmc_pop = false; // prevent overflow, keep headspace at edges //const INT32 OFFSET_MAX = (1 << 30) - (4 << 16); #define OFFSET_MAX ((1 << 30) - (4 << 16)) if (dmc->dmc_pop_offset > OFFSET_MAX) dmc->dmc_pop_offset = OFFSET_MAX; if (dmc->dmc_pop_offset < -OFFSET_MAX) dmc->dmc_pop_offset = -OFFSET_MAX; } dmc->dmc_pop_follow = m[2]; // remember previous position m[2] += dmc->dmc_pop_offset; // apply offset // TODO implement this in a better way // roll off offset (not ideal, but prevents overflow) if (dmc->dmc_pop_offset > 0) --dmc->dmc_pop_offset; else if (dmc->dmc_pop_offset < 0) ++dmc->dmc_pop_offset; } b[0] = m[0] * dmc->sm[0][0]; b[0] += m[1] * dmc->sm[0][1]; b[0] +=-m[2] * dmc->sm[0][2]; b[0] >>= 7-2; b[1] = m[0] * dmc->sm[1][0]; b[1] += m[1] * dmc->sm[1][1]; b[1] +=-m[2] * dmc->sm[1][2]; b[1] >>= 7-2; return 2; } void NES_DMC_np_SetClock(void* chip, double c) { NES_DMC* dmc = (NES_DMC*)chip; dmc->clock = (UINT32)(c); if (abs(dmc->clock - DEFAULT_CLK_PAL) <= 1000) // check for approximately DEFAULT_CLK_PAL NES_DMC_np_SetPal(dmc, true); else NES_DMC_np_SetPal(dmc, false); } void NES_DMC_np_SetRate(void* chip, double r) { NES_DMC* dmc = (NES_DMC*)chip; dmc->rate = (UINT32)(r?r:DEFAULT_RATE); COUNTER_init(dmc->tick_count, dmc->clock, dmc->rate); dmc->tick_last = 0; } void NES_DMC_np_SetPal(void* chip, bool is_pal) { NES_DMC* dmc = (NES_DMC*)chip; dmc->pal = (is_pal ? 1 : 0); // set CPU cycles in frame_sequence dmc->frame_sequence_length = is_pal ? 8314 : 7458; } void NES_DMC_np_SetAPU(void* chip, void* apu_) { NES_DMC* dmc = (NES_DMC*)chip; dmc->apu = apu_; } // Initializing TRI, NOISE, DPCM mixing table static void InitializeTNDTable(NES_DMC* dmc, double wt, double wn, double wd) { // volume adjusted by 0.75 based on empirical measurements const double MASTER = 8192.0 * 0.75; // truthfully, the nonlinear curve does not appear to match well // with my tests, triangle in particular seems too quiet relatively. // do more testing of the APU/DMC DAC later int t, n, d; { // Linear Mixer for(t=0; t<16 ; t++) { for(n=0; n<16; n++) { for(d=0; d<128; d++) { dmc->tnd_table[0][t][n][d] = (UINT32)(MASTER*(3.0*t+2.0*n+d)/208.0); } } } } { // Non-Linear Mixer dmc->tnd_table[1][0][0][0] = 0; for(t=0; t<16 ; t++) { for(n=0; n<16; n++) { for(d=0; d<128; d++) { if(t!=0||n!=0||d!=0) dmc->tnd_table[1][t][n][d] = (UINT32)((MASTER*159.79)/(100.0+1.0/((double)t/wt+(double)n/wn+(double)d/wd))); } } } } } void NES_DMC_np_Reset(void* chip) { NES_DMC* dmc = (NES_DMC*)chip; int i; dmc->mask = 0; InitializeTNDTable(dmc,8227,12241,22638); dmc->counter[0] = 0; dmc->counter[1] = 0; dmc->counter[2] = 0; dmc->tphase = 0; dmc->nfreq = wavlen_table[0][0]; dmc->dfreq = freq_table[0][0]; dmc->envelope_div = 0; dmc->length_counter[0] = 0; dmc->length_counter[1] = 0; dmc->linear_counter = 0; dmc->envelope_counter = 0; dmc->frame_irq = false; dmc->frame_irq_enable = false; dmc->frame_sequence_count = 0; dmc->frame_sequence_steps = 4; dmc->frame_sequence_step = 0; for (i = 0; i < 0x10; i++) NES_DMC_np_Write(dmc, 0x4008 + i, 0); dmc->irq = false; NES_DMC_np_Write(dmc, 0x4015, 0x00); if (dmc->option[OPT_UNMUTE_ON_RESET]) NES_DMC_np_Write(dmc, 0x4015, 0x0f); dmc->out[0] = dmc->out[1] = dmc->out[2] = 0; dmc->tri_freq = 0; dmc->damp = 0; dmc->dmc_pop = false; dmc->dmc_pop_offset = 0; dmc->dmc_pop_follow = 0; dmc->dac_lsb = 0; dmc->data = 0x100; dmc->adr_reg = 0; dmc->active = false; dmc->length = 0; dmc->len_reg = 0; dmc->daddress = 0; dmc->noise = 1; dmc->noise_tap = (1<<1); if (dmc->option[OPT_RANDOMIZE_NOISE]) { dmc->noise |= rand(); } NES_DMC_np_SetRate(dmc, dmc->rate); } void NES_DMC_np_SetMemory(void* chip, const UINT8* r) { NES_DMC* dmc = (NES_DMC*)chip; dmc->memory = r; } void NES_DMC_np_SetOption(void* chip, int id, int val) { NES_DMC* dmc = (NES_DMC*)chip; if(idoption[id] = val; if(id==OPT_NONLINEAR_MIXER) InitializeTNDTable(dmc, 8227,12241,22638); } } bool NES_DMC_np_Write(void* chip, UINT32 adr, UINT32 val) { static const UINT8 length_table[32] = { 0x0A, 0xFE, 0x14, 0x02, 0x28, 0x04, 0x50, 0x06, 0xA0, 0x08, 0x3C, 0x0A, 0x0E, 0x0C, 0x1A, 0x0E, 0x0C, 0x10, 0x18, 0x12, 0x30, 0x14, 0x60, 0x16, 0xC0, 0x18, 0x48, 0x1A, 0x10, 0x1C, 0x20, 0x1E }; NES_DMC* dmc = (NES_DMC*)chip; if (adr == 0x4015) { dmc->enable[0] = (val & 4) ? true : false; dmc->enable[1] = (val & 8) ? true : false; if (!dmc->enable[0]) { dmc->length_counter[0] = 0; } if (!dmc->enable[1]) { dmc->length_counter[1] = 0; } if ((val & 16)&&!dmc->active) { dmc->enable[2] = dmc->active = true; dmc->daddress = (0xC000 | (dmc->adr_reg << 6)); dmc->length = (dmc->len_reg << 4) + 1; dmc->irq = 0; } else if (!(val & 16)) { dmc->enable[2] = dmc->active = false; } dmc->reg[adr-0x4008] = val; return true; } if (adr == 0x4017) { //DEBUG_OUT("4017 = %02X\n", val); dmc->frame_irq_enable = ((val & 0x40) == 0x40); dmc->frame_irq = (dmc->frame_irq_enable ? dmc->frame_irq : 0); dmc->frame_sequence_count = 0; if (val & 0x80) { dmc->frame_sequence_steps = 5; dmc->frame_sequence_step = 0; FrameSequence(dmc, dmc->frame_sequence_step); ++dmc->frame_sequence_step; } else { dmc->frame_sequence_steps = 4; dmc->frame_sequence_step = 1; } } if (adr<0x4008||0x4013reg[adr-0x4008] = val&0xff; //DEBUG_OUT("$%04X %02X\n", adr, val); switch (adr) { // tri case 0x4008: dmc->linear_counter_control = (val >> 7) & 1; dmc->linear_counter_reload = val & 0x7F; break; case 0x4009: break; case 0x400a: dmc->tri_freq = val | (dmc->tri_freq & 0x700) ; if (dmc->counter[0] > dmc->tri_freq) dmc->counter[0] = dmc->tri_freq; break; case 0x400b: dmc->tri_freq = (dmc->tri_freq & 0xff) | ((val & 0x7) << 8) ; if (dmc->counter[0] > dmc->tri_freq) dmc->counter[0] = dmc->tri_freq; dmc->linear_counter_halt = true; if (dmc->enable[0]) { dmc->length_counter[0] = length_table[(val >> 3) & 0x1f]; } break; // noise case 0x400c: dmc->noise_volume = val & 15; dmc->envelope_div_period = val & 15; dmc->envelope_disable = (val >> 4) & 1; dmc->envelope_loop = (val >> 5) & 1; break; case 0x400d: break; case 0x400e: if (dmc->option[OPT_ENABLE_PNOISE]) dmc->noise_tap = (val & 0x80) ? (1<<6) : (1<<1); else dmc->noise_tap = (1<<1); dmc->nfreq = wavlen_table[dmc->pal][val&15]; if (dmc->counter[1] > dmc->nfreq) dmc->counter[1] = dmc->nfreq; break; case 0x400f: if (dmc->enable[1]) { dmc->length_counter[1] = length_table[(val >> 3) & 0x1f]; } dmc->envelope_write = true; break; // dmc case 0x4010: dmc->mode = (val >> 6) & 3; dmc->dfreq = freq_table[dmc->pal][val&15]; if (dmc->counter[2] > dmc->dfreq) dmc->counter[2] = dmc->dfreq; break; case 0x4011: if (dmc->option[OPT_ENABLE_4011]) { dmc->damp = (val >> 1) & 0x3f; dmc->dac_lsb = val & 1; dmc->dmc_pop = true; } break; case 0x4012: dmc->adr_reg = val&0xff; // ここでdaddressは更新されない break; case 0x4013: dmc->len_reg = val&0xff; // ここでlengthは更新されない break; default: return false; } return true; } bool NES_DMC_np_Read(void* chip, UINT32 adr, UINT32* val) { NES_DMC* dmc = (NES_DMC*)chip; if (adr == 0x4015) { *val |= (dmc->irq?128:0) | (dmc->frame_irq ? 0x40 : 0) | (dmc->active?16:0) | (dmc->length_counter[1]?8:0) | (dmc->length_counter[0]?4:0) ; dmc->frame_irq = false; return true; } else if (0x4008<=adr&&adr<=0x4014) { *val |= dmc->reg[adr-0x4008]; return true; } else return false; }