/* * TTA (The Lossless True Audio) decoder * Copyright (c) 2006 Alex Beregszaszi * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * TTA (The Lossless True Audio) decoder * @see http://www.true-audio.com/ * @see http://tta.corecodec.org/ * @author Alex Beregszaszi */ #define BITSTREAM_READER_LE #include #include "config.h" #include "ttadata.h" #include "avcodec.h" #include "get_bits.h" #include "thread.h" #include "unary.h" #include "internal.h" #include "libavutil/crc.h" #include "libavutil/intreadwrite.h" #include "libavutil/opt.h" #include "libavutil/internal.h" #define FORMAT_SIMPLE 1 #define FORMAT_ENCRYPTED 2 typedef struct TTAContext { AVClass *class; AVCodecContext *avctx; const AVCRC *crc_table; int format, channels, bps; unsigned data_length; int frame_length, last_frame_length; int32_t *decode_buffer; uint8_t crc_pass[8]; uint8_t *pass; TTAChannel *ch_ctx; } TTAContext; static inline void ttafilter_process(TTAFilter *c, int32_t *in) { register int32_t *dl = c->dl, *qm = c->qm, *dx = c->dx, sum = c->round; if (c->error < 0) { qm[0] -= dx[0]; qm[1] -= dx[1]; qm[2] -= dx[2]; qm[3] -= dx[3]; qm[4] -= dx[4]; qm[5] -= dx[5]; qm[6] -= dx[6]; qm[7] -= dx[7]; } else if (c->error > 0) { qm[0] += dx[0]; qm[1] += dx[1]; qm[2] += dx[2]; qm[3] += dx[3]; qm[4] += dx[4]; qm[5] += dx[5]; qm[6] += dx[6]; qm[7] += dx[7]; } sum += dl[0] * qm[0] + dl[1] * qm[1] + dl[2] * qm[2] + dl[3] * qm[3] + dl[4] * qm[4] + dl[5] * qm[5] + dl[6] * qm[6] + dl[7] * qm[7]; dx[0] = dx[1]; dx[1] = dx[2]; dx[2] = dx[3]; dx[3] = dx[4]; dl[0] = dl[1]; dl[1] = dl[2]; dl[2] = dl[3]; dl[3] = dl[4]; dx[4] = ((dl[4] >> 30) | 1); dx[5] = ((dl[5] >> 30) | 2) & ~1; dx[6] = ((dl[6] >> 30) | 2) & ~1; dx[7] = ((dl[7] >> 30) | 4) & ~3; c->error = *in; *in += (sum >> c->shift); dl[4] = -dl[5]; dl[5] = -dl[6]; dl[6] = *in - dl[7]; dl[7] = *in; dl[5] += dl[6]; dl[4] += dl[5]; } static const int64_t tta_channel_layouts[7] = { AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_STEREO|AV_CH_LOW_FREQUENCY, AV_CH_LAYOUT_QUAD, 0, AV_CH_LAYOUT_5POINT1_BACK, AV_CH_LAYOUT_5POINT1_BACK|AV_CH_BACK_CENTER, AV_CH_LAYOUT_7POINT1_WIDE }; static int tta_check_crc(TTAContext *s, const uint8_t *buf, int buf_size) { uint32_t crc, CRC; CRC = AV_RL32(buf + buf_size); crc = av_crc(s->crc_table, 0xFFFFFFFFU, buf, buf_size); if (CRC != (crc ^ 0xFFFFFFFFU)) { av_log(s->avctx, AV_LOG_ERROR, "CRC error\n"); return AVERROR_INVALIDDATA; } return 0; } static uint64_t tta_check_crc64(uint8_t *pass) { uint64_t crc = UINT64_MAX, poly = 0x42F0E1EBA9EA3693U; uint8_t *end = pass + strlen((const char *) pass); int i; while (pass < end) { crc ^= (uint64_t)*pass++ << 56; for (i = 0; i < 8; i++) crc = (crc << 1) ^ (poly & (((int64_t) crc) >> 63)); } return crc ^ UINT64_MAX; } static int allocate_buffers(AVCodecContext *avctx) { TTAContext *s = avctx->priv_data; if (s->bps < 3) { s->decode_buffer = av_mallocz(sizeof(int32_t)*s->frame_length*s->channels); if (!s->decode_buffer) return AVERROR(ENOMEM); } else s->decode_buffer = NULL; s->ch_ctx = av_malloc(avctx->channels * sizeof(*s->ch_ctx)); if (!s->ch_ctx) { av_freep(&s->decode_buffer); return AVERROR(ENOMEM); } return 0; } static av_cold int tta_decode_init(AVCodecContext * avctx) { TTAContext *s = avctx->priv_data; GetBitContext gb; int total_frames; s->avctx = avctx; // 30bytes includes TTA1 header if (avctx->extradata_size < 22) return AVERROR_INVALIDDATA; s->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE); init_get_bits8(&gb, avctx->extradata, avctx->extradata_size); if (show_bits_long(&gb, 32) == AV_RL32("TTA1")) { /* signature */ skip_bits_long(&gb, 32); s->format = get_bits(&gb, 16); if (s->format > 2) { av_log(avctx, AV_LOG_ERROR, "Invalid format\n"); return AVERROR_INVALIDDATA; } if (s->format == FORMAT_ENCRYPTED) { if (!s->pass) { av_log(avctx, AV_LOG_ERROR, "Missing password for encrypted stream. Please use the -password option\n"); return AVERROR(EINVAL); } AV_WL64(s->crc_pass, tta_check_crc64(s->pass)); } avctx->channels = s->channels = get_bits(&gb, 16); if (s->channels > 1 && s->channels < 9) avctx->channel_layout = tta_channel_layouts[s->channels-2]; avctx->bits_per_raw_sample = get_bits(&gb, 16); s->bps = (avctx->bits_per_raw_sample + 7) / 8; avctx->sample_rate = get_bits_long(&gb, 32); s->data_length = get_bits_long(&gb, 32); skip_bits_long(&gb, 32); // CRC32 of header if (s->channels == 0) { av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); return AVERROR_INVALIDDATA; } else if (avctx->sample_rate == 0) { av_log(avctx, AV_LOG_ERROR, "Invalid samplerate\n"); return AVERROR_INVALIDDATA; } switch(s->bps) { case 1: avctx->sample_fmt = AV_SAMPLE_FMT_U8; break; case 2: avctx->sample_fmt = AV_SAMPLE_FMT_S16; break; case 3: avctx->sample_fmt = AV_SAMPLE_FMT_S32; break; //case 4: avctx->sample_fmt = AV_SAMPLE_FMT_S32; break; default: av_log(avctx, AV_LOG_ERROR, "Invalid/unsupported sample format.\n"); return AVERROR_INVALIDDATA; } // prevent overflow if (avctx->sample_rate > 0x7FFFFFu) { av_log(avctx, AV_LOG_ERROR, "sample_rate too large\n"); return AVERROR(EINVAL); } s->frame_length = 256 * avctx->sample_rate / 245; s->last_frame_length = s->data_length % s->frame_length; total_frames = s->data_length / s->frame_length + (s->last_frame_length ? 1 : 0); av_log(avctx, AV_LOG_DEBUG, "format: %d chans: %d bps: %d rate: %d block: %d\n", s->format, avctx->channels, avctx->bits_per_coded_sample, avctx->sample_rate, avctx->block_align); av_log(avctx, AV_LOG_DEBUG, "data_length: %d frame_length: %d last: %d total: %d\n", s->data_length, s->frame_length, s->last_frame_length, total_frames); if(s->frame_length >= UINT_MAX / (s->channels * sizeof(int32_t))){ av_log(avctx, AV_LOG_ERROR, "frame_length too large\n"); return AVERROR_INVALIDDATA; } } else { av_log(avctx, AV_LOG_ERROR, "Wrong extradata present\n"); return AVERROR_INVALIDDATA; } return allocate_buffers(avctx); } static int tta_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { AVFrame *frame = data; ThreadFrame tframe = { .f = data }; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; TTAContext *s = avctx->priv_data; GetBitContext gb; int i, ret; int cur_chan = 0, framelen = s->frame_length; int32_t *p; if (avctx->err_recognition & AV_EF_CRCCHECK) { if (buf_size < 4 || tta_check_crc(s, buf, buf_size - 4)) return AVERROR_INVALIDDATA; } if ((ret = init_get_bits8(&gb, avpkt->data, avpkt->size)) < 0) return ret; /* get output buffer */ frame->nb_samples = framelen; if ((ret = ff_thread_get_buffer(avctx, &tframe, 0)) < 0) return ret; // decode directly to output buffer for 24-bit sample format if (s->bps == 3) s->decode_buffer = (int32_t *)frame->data[0]; // init per channel states for (i = 0; i < s->channels; i++) { TTAFilter *filter = &s->ch_ctx[i].filter; s->ch_ctx[i].predictor = 0; ff_tta_filter_init(filter, ff_tta_filter_configs[s->bps-1]); if (s->format == FORMAT_ENCRYPTED) { int i; for (i = 0; i < 8; i++) filter->qm[i] = sign_extend(s->crc_pass[i], 8); } ff_tta_rice_init(&s->ch_ctx[i].rice, 10, 10); } i = 0; for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++) { int32_t *predictor = &s->ch_ctx[cur_chan].predictor; TTAFilter *filter = &s->ch_ctx[cur_chan].filter; TTARice *rice = &s->ch_ctx[cur_chan].rice; uint32_t unary, depth, k; int32_t value; unary = get_unary(&gb, 0, get_bits_left(&gb)); if (unary == 0) { depth = 0; k = rice->k0; } else { depth = 1; k = rice->k1; unary--; } if (get_bits_left(&gb) < k) { ret = AVERROR_INVALIDDATA; goto error; } if (k) { if (k > MIN_CACHE_BITS) { ret = AVERROR_INVALIDDATA; goto error; } value = (unary << k) + get_bits(&gb, k); } else value = unary; // FIXME: copy paste from original switch (depth) { case 1: rice->sum1 += value - (rice->sum1 >> 4); if (rice->k1 > 0 && rice->sum1 < ff_tta_shift_16[rice->k1]) rice->k1--; else if(rice->sum1 > ff_tta_shift_16[rice->k1 + 1]) rice->k1++; value += ff_tta_shift_1[rice->k0]; default: rice->sum0 += value - (rice->sum0 >> 4); if (rice->k0 > 0 && rice->sum0 < ff_tta_shift_16[rice->k0]) rice->k0--; else if(rice->sum0 > ff_tta_shift_16[rice->k0 + 1]) rice->k0++; } // extract coded value *p = 1 + ((value >> 1) ^ ((value & 1) - 1)); // run hybrid filter ttafilter_process(filter, p); // fixed order prediction #define PRED(x, k) (int32_t)((((uint64_t)x << k) - x) >> k) switch (s->bps) { case 1: *p += PRED(*predictor, 4); break; case 2: case 3: *p += PRED(*predictor, 5); break; case 4: *p += *predictor; break; } *predictor = *p; // flip channels if (cur_chan < (s->channels-1)) cur_chan++; else { // decorrelate in case of multiple channels if (s->channels > 1) { int32_t *r = p - 1; for (*p += *r / 2; r > p - s->channels; r--) *r = *(r + 1) - *r; } cur_chan = 0; i++; // check for last frame if (i == s->last_frame_length && get_bits_left(&gb) / 8 == 4) { frame->nb_samples = framelen = s->last_frame_length; break; } } } align_get_bits(&gb); if (get_bits_left(&gb) < 32) { ret = AVERROR_INVALIDDATA; goto error; } skip_bits_long(&gb, 32); // frame crc // convert to output buffer switch (s->bps) { case 1: { uint8_t *samples = (uint8_t *)frame->data[0]; for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++) *samples++ = *p + 0x80; break; } case 2: { int16_t *samples = (int16_t *)frame->data[0]; for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++) *samples++ = *p; break; } case 3: { // shift samples for 24-bit sample format int32_t *samples = (int32_t *)frame->data[0]; for (i = 0; i < framelen * s->channels; i++) *samples++ <<= 8; // reset decode buffer s->decode_buffer = NULL; break; } } *got_frame_ptr = 1; return buf_size; error: // reset decode buffer if (s->bps == 3) s->decode_buffer = NULL; return ret; } static int init_thread_copy(AVCodecContext *avctx) { TTAContext *s = avctx->priv_data; s->avctx = avctx; return allocate_buffers(avctx); } static av_cold int tta_decode_close(AVCodecContext *avctx) { TTAContext *s = avctx->priv_data; if (s->bps < 3) av_free(s->decode_buffer); s->decode_buffer = NULL; av_freep(&s->ch_ctx); return 0; } #define OFFSET(x) offsetof(TTAContext, x) #define DEC (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM) static const AVOption options[] = { { "password", "Set decoding password", OFFSET(pass), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, DEC }, { NULL }, }; static const AVClass tta_decoder_class = { .class_name = "TTA Decoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_tta_decoder = { .name = "tta", .long_name = NULL_IF_CONFIG_SMALL("TTA (True Audio)"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_TTA, .priv_data_size = sizeof(TTAContext), .init = tta_decode_init, .close = tta_decode_close, .decode = tta_decode_frame, .init_thread_copy = ONLY_IF_THREADS_ENABLED(init_thread_copy), .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS, .priv_class = &tta_decoder_class, };