// Nes_Snd_Emu $vers. http://www.slack.net/~ant/ #include "Nes_Apu.h" /* Copyright (C) 2003-2006 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" // Nes_Osc void Nes_Osc::clock_length( int halt_mask ) { if ( length_counter && !(regs [0] & halt_mask) ) length_counter--; } void Nes_Envelope::clock_envelope() { int period = regs [0] & 15; if ( reg_written [3] ) { reg_written [3] = false; env_delay = period; envelope = 15; } else if ( --env_delay < 0 ) { env_delay = period; if ( envelope | (regs [0] & 0x20) ) envelope = (envelope - 1) & 15; } } int Nes_Envelope::volume() const { return length_counter == 0 ? 0 : (regs [0] & 0x10) ? (regs [0] & 15) : envelope; } // Nes_Square void Nes_Square::clock_sweep( int negative_adjust ) { int sweep = regs [1]; if ( --sweep_delay < 0 ) { reg_written [1] = true; int period = this->period(); int shift = sweep & shift_mask; if ( shift && (sweep & 0x80) && period >= 8 ) { int offset = period >> shift; if ( sweep & negate_flag ) offset = negative_adjust - offset; if ( period + offset < 0x800 ) { period += offset; // rewrite period regs [2] = period & 0xFF; regs [3] = (regs [3] & ~7) | ((period >> 8) & 7); } } } if ( reg_written [1] ) { reg_written [1] = false; sweep_delay = (sweep >> 4) & 7; } } // TODO: clean up inline Nes_Square::nes_time_t Nes_Square::maintain_phase( nes_time_t time, nes_time_t end_time, nes_time_t timer_period ) { nes_time_t remain = end_time - time; if ( remain > 0 ) { int count = (remain + timer_period - 1) / timer_period; phase = (phase + count) & (phase_range - 1); time += count * timer_period; } return time; } void Nes_Square::run( nes_time_t time, nes_time_t end_time ) { const int period = this->period(); const int timer_period = (period + 1) * 2; if ( !output ) { delay = maintain_phase( time + delay, end_time, timer_period ) - end_time; return; } int offset = period >> (regs [1] & shift_mask); if ( regs [1] & negate_flag ) offset = 0; const int volume = this->volume(); if ( volume == 0 || period < 8 || (period + offset) >= 0x800 ) { if ( last_amp ) { output->set_modified(); synth.offset( time, -last_amp, output ); last_amp = 0; } time += delay; time = maintain_phase( time, end_time, timer_period ); } else { // handle duty select int duty_select = (regs [0] >> 6) & 3; int duty = 1 << duty_select; // 1, 2, 4, 2 int amp = 0; if ( duty_select == 3 ) { duty = 2; // negated 25% amp = volume; } if ( phase < duty ) amp ^= volume; output->set_modified(); { int delta = update_amp( amp ); if ( delta ) synth.offset( time, delta, output ); } time += delay; if ( time < end_time ) { Blip_Buffer* const output = this->output; const Synth& synth = this->synth; int delta = amp * 2 - volume; int phase = this->phase; do { phase = (phase + 1) & (phase_range - 1); if ( phase == 0 || phase == duty ) { delta = -delta; synth.offset_inline( time, delta, output ); } time += timer_period; } while ( time < end_time ); last_amp = (delta + volume) >> 1; this->phase = phase; } } delay = time - end_time; } // Nes_Triangle void Nes_Triangle::clock_linear_counter() { if ( reg_written [3] ) linear_counter = regs [0] & 0x7F; else if ( linear_counter ) linear_counter--; if ( !(regs [0] & 0x80) ) reg_written [3] = false; } inline int Nes_Triangle::calc_amp() const { int amp = phase_range - phase; if ( amp < 0 ) amp = phase - (phase_range + 1); return amp; } // TODO: clean up inline Nes_Square::nes_time_t Nes_Triangle::maintain_phase( nes_time_t time, nes_time_t end_time, nes_time_t timer_period ) { nes_time_t remain = end_time - time; if ( remain > 0 ) { int count = (remain + timer_period - 1) / timer_period; phase = ((unsigned) phase + 1 - count) & (phase_range * 2 - 1); phase++; time += count * timer_period; } return time; } void Nes_Triangle::run( nes_time_t time, nes_time_t end_time ) { const int timer_period = period() + 1; if ( !output ) { time += delay; delay = 0; if ( length_counter && linear_counter && timer_period >= 3 ) delay = maintain_phase( time, end_time, timer_period ) - end_time; return; } // to do: track phase when period < 3 // to do: Output 7.5 on dac when period < 2? More accurate, but results in more clicks. int delta = update_amp( calc_amp() ); if ( delta ) { output->set_modified(); synth.offset( time, delta, output ); } time += delay; if ( length_counter == 0 || linear_counter == 0 || timer_period < 3 ) { time = end_time; } else if ( time < end_time ) { Blip_Buffer* const output = this->output; int phase = this->phase; int volume = 1; if ( phase > phase_range ) { phase -= phase_range; volume = -volume; } output->set_modified(); do { if ( --phase == 0 ) { phase = phase_range; volume = -volume; } else { synth.offset_inline( time, volume, output ); } time += timer_period; } while ( time < end_time ); if ( volume < 0 ) phase += phase_range; this->phase = phase; last_amp = calc_amp(); } delay = time - end_time; } // Nes_Dmc void Nes_Dmc::reset() { address = 0; dac = 0; buf = 0; bits_remain = 1; bits = 0; buf_full = false; silence = true; next_irq = Nes_Apu::no_irq; irq_flag = false; irq_enabled = false; Nes_Osc::reset(); period = 0x1AC; } void Nes_Dmc::recalc_irq() { nes_time_t irq = Nes_Apu::no_irq; if ( irq_enabled && length_counter ) irq = apu->last_dmc_time + delay + ((length_counter - 1) * 8 + bits_remain - 1) * nes_time_t (period) + 1; if ( irq != next_irq ) { next_irq = irq; apu->irq_changed(); } } int Nes_Dmc::count_reads( nes_time_t time, nes_time_t* last_read ) const { if ( last_read ) *last_read = time; if ( length_counter == 0 ) return 0; // not reading nes_time_t first_read = next_read_time(); nes_time_t avail = time - first_read; if ( avail <= 0 ) return 0; int count = (avail - 1) / (period * 8) + 1; if ( !(regs [0] & loop_flag) && count > length_counter ) count = length_counter; if ( last_read ) { *last_read = first_read + (count - 1) * (period * 8) + 1; check( *last_read <= time ); check( count == count_reads( *last_read, NULL ) ); check( count - 1 == count_reads( *last_read - 1, NULL ) ); } return count; } static short const dmc_period_table [2] [16] = { {428, 380, 340, 320, 286, 254, 226, 214, // NTSC 190, 160, 142, 128, 106, 84, 72, 54}, {398, 354, 316, 298, 276, 236, 210, 198, // PAL 176, 148, 132, 118, 98, 78, 66, 50} }; inline void Nes_Dmc::reload_sample() { address = 0x4000 + regs [2] * 0x40; length_counter = regs [3] * 0x10 + 1; } static int const dmc_table [128] = { 0, 24, 48, 71, 94, 118, 141, 163, 186, 209, 231, 253, 275, 297, 319, 340, 361, 383, 404, 425, 445, 466, 486, 507, 527, 547, 567, 587, 606, 626, 645, 664, 683, 702, 721, 740, 758, 777, 795, 813, 832, 850, 867, 885, 903, 920, 938, 955, 972, 989,1006,1023,1040,1056,1073,1089,1105,1122,1138,1154,1170,1185,1201,1217, 1232,1248,1263,1278,1293,1308,1323,1338,1353,1368,1382,1397,1411,1425,1440,1454, 1468,1482,1496,1510,1523,1537,1551,1564,1578,1591,1604,1618,1631,1644,1657,1670, 1683,1695,1708,1721,1733,1746,1758,1771,1783,1795,1807,1819,1831,1843,1855,1867, 1879,1890,1902,1914,1925,1937,1948,1959,1971,1982,1993,2004,2015,2026,2037,2048, }; inline int Nes_Dmc::update_amp_nonlinear( int in ) { if ( !nonlinear ) in = dmc_table [in]; int delta = in - last_amp; last_amp = in; return delta; } void Nes_Dmc::write_register( int addr, int data ) { if ( addr == 0 ) { period = dmc_period_table [pal_mode] [data & 15]; irq_enabled = (data & 0xC0) == 0x80; // enabled only if loop disabled irq_flag &= irq_enabled; recalc_irq(); } else if ( addr == 1 ) { dac = data & 0x7F; } } void Nes_Dmc::start() { reload_sample(); fill_buffer(); recalc_irq(); } void Nes_Dmc::fill_buffer() { if ( !buf_full && length_counter ) { require( apu->dmc_reader.f ); // dmc_reader must be set buf = apu->dmc_reader.f( apu->dmc_reader.data, 0x8000u + address ); address = (address + 1) & 0x7FFF; buf_full = true; if ( --length_counter == 0 ) { if ( regs [0] & loop_flag ) { reload_sample(); } else { apu->osc_enables &= ~0x10; irq_flag = irq_enabled; next_irq = Nes_Apu::no_irq; apu->irq_changed(); } } } } void Nes_Dmc::run( nes_time_t time, nes_time_t end_time ) { int delta = update_amp_nonlinear( dac ); if ( !output ) { silence = true; } else if ( delta ) { output->set_modified(); synth.offset( time, delta, output ); } time += delay; if ( time < end_time ) { int bits_remain = this->bits_remain; if ( silence && !buf_full ) { int count = (end_time - time + period - 1) / period; bits_remain = (bits_remain - 1 + 8 - (count % 8)) % 8 + 1; time += count * period; } else { Blip_Buffer* const output = this->output; const int period = this->period; int bits = this->bits; int dac = this->dac; if ( output ) output->set_modified(); do { if ( !silence ) { int step = (bits & 1) * 4 - 2; bits >>= 1; if ( unsigned (dac + step) <= 0x7F ) { dac += step; synth.offset_inline( time, update_amp_nonlinear( dac ), output ); } } time += period; if ( --bits_remain == 0 ) { bits_remain = 8; if ( !buf_full ) { silence = true; } else { silence = false; bits = buf; buf_full = false; if ( !output ) silence = true; fill_buffer(); } } } while ( time < end_time ); this->dac = dac; this->bits = bits; } this->bits_remain = bits_remain; } delay = time - end_time; } // Nes_Noise static short const noise_period_table [16] = { 0x004, 0x008, 0x010, 0x020, 0x040, 0x060, 0x080, 0x0A0, 0x0CA, 0x0FE, 0x17C, 0x1FC, 0x2FA, 0x3F8, 0x7F2, 0xFE4 }; void Nes_Noise::run( nes_time_t time, nes_time_t end_time ) { int period = noise_period_table [regs [2] & 15]; if ( !output ) { // TODO: clean up time += delay; delay = time + (end_time - time + period - 1) / period * period - end_time; return; } const int volume = this->volume(); int amp = (noise & 1) ? volume : 0; { int delta = update_amp( amp ); if ( delta ) { output->set_modified(); synth.offset( time, delta, output ); } } time += delay; if ( time < end_time ) { const int mode_flag = 0x80; if ( !volume ) { // round to next multiple of period time += (end_time - time + period - 1) / period * period; // approximate noise cycling while muted, by shuffling up noise register // to do: precise muted noise cycling? if ( !(regs [2] & mode_flag) ) { int feedback = (noise << 13) ^ (noise << 14); noise = (feedback & 0x4000) | (noise >> 1); } } else { Blip_Buffer* const output = this->output; // using resampled time avoids conversion in synth.offset() blip_resampled_time_t rperiod = output->resampled_duration( period ); blip_resampled_time_t rtime = output->resampled_time( time ); int noise = this->noise; int delta = amp * 2 - volume; const int tap = (regs [2] & mode_flag ? 8 : 13); output->set_modified(); do { int feedback = (noise << tap) ^ (noise << 14); time += period; if ( (noise + 1) & 2 ) { // bits 0 and 1 of noise differ delta = -delta; synth.offset_resampled( rtime, delta, output ); } rtime += rperiod; noise = (feedback & 0x4000) | (noise >> 1); } while ( time < end_time ); last_amp = (delta + volume) >> 1; this->noise = noise; } } delay = time - end_time; }