/* * OPL.cpp * ------- * Purpose: Translate data coming from OpenMPT's mixer into OPL commands to be sent to the Opal emulator. * Notes : (currently none) * Authors: OpenMPT Devs * Schism Tracker contributors (bisqwit, JosepMa, Malvineous, code relicensed from GPL to BSD with permission) * The OpenMPT source code is released under the BSD license. Read LICENSE for more details. */ #include "stdafx.h" #include "../common/misc_util.h" #include "OPL.h" #include "opal.h" OPENMPT_NAMESPACE_BEGIN OPL::OPL(uint32 samplerate) { Initialize(samplerate); } OPL::~OPL() { // This destructor is put here so that we can forward-declare the Opal emulator class. } void OPL::Initialize(uint32 samplerate) { if(m_opl == nullptr) m_opl = std::make_unique(samplerate); else m_opl->SetSampleRate(samplerate); Reset(); } void OPL::Mix(int32 *target, size_t count, uint32 volumeFactorQ16) { if(!m_isActive) return; // This factor causes a sample voice to be more or less as loud as an OPL voice const int32 factor = Util::muldiv_unsigned(volumeFactorQ16, 6169, (1 << 16)); while(count--) { int16 l, r; m_opl->Sample(&l, &r); target[0] += l * factor; target[1] += r * factor; target += 2; } } uint16 OPL::ChannelToRegister(uint8 oplCh) { if(oplCh < 9) return oplCh; else return (oplCh - 9) | 0x100; } // Translate a channel's first operator address into a register uint16 OPL::OperatorToRegister(uint8 oplCh) { static constexpr uint8 OPLChannelToOperator[] = { 0, 1, 2, 8, 9, 10, 16, 17, 18 }; if(oplCh < 9) return OPLChannelToOperator[oplCh]; else return OPLChannelToOperator[oplCh - 9] | 0x100; } uint8 OPL::GetVoice(CHANNELINDEX c) const { if((m_ChanToOPL[c] & OPL_CHANNEL_CUT) || m_ChanToOPL[c] == OPL_CHANNEL_INVALID) return OPL_CHANNEL_INVALID; return m_ChanToOPL[c] & OPL_CHANNEL_MASK; } uint8 OPL::AllocateVoice(CHANNELINDEX c) { // Can we re-use a previous channel? if(auto oplCh = m_ChanToOPL[c]; oplCh != OPL_CHANNEL_INVALID) { if(!(m_ChanToOPL[c] & OPL_CHANNEL_CUT)) return oplCh; // Check re-use hint oplCh &= OPL_CHANNEL_MASK; if(m_OPLtoChan[oplCh] == CHANNELINDEX_INVALID || m_OPLtoChan[oplCh] == c) { m_OPLtoChan[oplCh] = c; m_ChanToOPL[c] = oplCh; return oplCh; } } // Search for unused channel or channel with released note uint8 releasedChn = OPL_CHANNEL_INVALID, releasedCutChn = OPL_CHANNEL_INVALID; for(uint8 oplCh = 0; oplCh < OPL_CHANNELS; oplCh++) { if(m_OPLtoChan[oplCh] == CHANNELINDEX_INVALID) { m_OPLtoChan[oplCh] = c; m_ChanToOPL[c] = oplCh; return oplCh; } else if(!(m_KeyOnBlock[oplCh] & KEYON_BIT)) { releasedChn = oplCh; if(m_ChanToOPL[m_OPLtoChan[oplCh]] & OPL_CHANNEL_CUT) releasedCutChn = oplCh; } } if(releasedChn != OPL_CHANNEL_INVALID) { // Prefer channel that has been marked as cut over channel that has just been released if(releasedCutChn != OPL_CHANNEL_INVALID) releasedChn = releasedCutChn; m_ChanToOPL[m_OPLtoChan[releasedChn]] = OPL_CHANNEL_INVALID; m_OPLtoChan[releasedChn] = c; m_ChanToOPL[c] = releasedChn; } return GetVoice(c); } void OPL::MoveChannel(CHANNELINDEX from, CHANNELINDEX to) { uint8 oplCh = GetVoice(from); if(oplCh == OPL_CHANNEL_INVALID) return; m_OPLtoChan[oplCh] = to; m_ChanToOPL[from] = OPL_CHANNEL_INVALID; m_ChanToOPL[to] = oplCh; } void OPL::NoteOff(CHANNELINDEX c) { uint8 oplCh = GetVoice(c); if(oplCh == OPL_CHANNEL_INVALID || m_opl == nullptr) return; m_KeyOnBlock[oplCh] &= ~KEYON_BIT; m_opl->Port(KEYON_BLOCK | ChannelToRegister(oplCh), m_KeyOnBlock[oplCh]); } void OPL::NoteCut(CHANNELINDEX c, bool unassign) { uint8 oplCh = GetVoice(c); if(oplCh == OPL_CHANNEL_INVALID) return; NoteOff(c); Volume(c, 0, false); // Note that a volume of 0 is not complete silence; the release portion of the sound will still be heard at -48dB if(unassign) { m_OPLtoChan[oplCh] = CHANNELINDEX_INVALID; m_ChanToOPL[c] |= OPL_CHANNEL_CUT; } } void OPL::Frequency(CHANNELINDEX c, uint32 milliHertz, bool keyOff, bool beatingOscillators) { uint8 oplCh = GetVoice(c); if(oplCh == OPL_CHANNEL_INVALID || m_opl == nullptr) return; uint16 fnum = 1023; uint8 block = 7; if(milliHertz <= 6208431) { if(milliHertz > 3104215) block = 7; else if(milliHertz > 1552107) block = 6; else if(milliHertz > 776053) block = 5; else if(milliHertz > 388026) block = 4; else if(milliHertz > 194013) block = 3; else if(milliHertz > 97006) block = 2; else if(milliHertz > 48503) block = 1; else block = 0; fnum = static_cast(Util::muldivr_unsigned(milliHertz, 1 << (20 - block), OPL_BASERATE * 1000)); MPT_ASSERT(fnum < 1024); } // Evil CDFM hack! Composer 670 slightly detunes each note based on the OPL channel number modulo 4. // We allocate our OPL channels dynamically, which would result in slightly different beating characteristics, // but we can just take the pattern channel number instead, as the pattern channel layout is always identical. if(beatingOscillators) fnum = std::min(static_cast(fnum + (c & 3)), uint16(1023)); fnum |= (block << 10); uint16 channel = ChannelToRegister(oplCh); m_KeyOnBlock[oplCh] = (keyOff ? 0 : KEYON_BIT) | (fnum >> 8); // Key on bit + Octave (block) + F-number high 2 bits m_opl->Port(FNUM_LOW | channel, fnum & 0xFF); // F-Number low 8 bits m_opl->Port(KEYON_BLOCK | channel, m_KeyOnBlock[oplCh]); m_isActive = true; } uint8 OPL::CalcVolume(uint8 trackerVol, uint8 kslVolume) { if(trackerVol >= 63u) return kslVolume; if(trackerVol > 0) trackerVol++; return (kslVolume & KSL_MASK) | (63u - ((63u - (kslVolume & TOTAL_LEVEL_MASK)) * trackerVol) / 64u); } void OPL::Volume(CHANNELINDEX c, uint8 vol, bool applyToModulator) { uint8 oplCh = GetVoice(c); if(oplCh == OPL_CHANNEL_INVALID || m_opl == nullptr) return; const auto &patch = m_Patches[oplCh]; const uint16 modulator = OperatorToRegister(oplCh), carrier = modulator + 3; if((patch[10] & CONNECTION_BIT) || applyToModulator) { // Set volume of both operators in additive mode m_opl->Port(KSL_LEVEL + modulator, CalcVolume(vol, patch[2])); } if(!applyToModulator) { m_opl->Port(KSL_LEVEL + carrier, CalcVolume(vol, patch[3])); } } int8 OPL::Pan(CHANNELINDEX c, int32 pan) { uint8 oplCh = GetVoice(c); if(oplCh == OPL_CHANNEL_INVALID || m_opl == nullptr) return 0; const auto &patch = m_Patches[oplCh]; uint8 fbConn = patch[10] & ~STEREO_BITS; // OPL3 only knows hard left, center and right, so we need to translate our // continuous panning range into one of those three states. // 0...84 = left, 85...170 = center, 171...256 = right if(pan <= 170) fbConn |= VOICE_TO_LEFT; if(pan >= 85) fbConn |= VOICE_TO_RIGHT; m_opl->Port(FEEDBACK_CONNECTION | ChannelToRegister(oplCh), fbConn); return ((fbConn & VOICE_TO_LEFT) ? -1 : 0) + ((fbConn & VOICE_TO_RIGHT) ? 1 : 0); } void OPL::Patch(CHANNELINDEX c, const OPLPatch &patch) { uint8 oplCh = AllocateVoice(c); if(oplCh == OPL_CHANNEL_INVALID || m_opl == nullptr) return; m_Patches[oplCh] = patch; const uint16 modulator = OperatorToRegister(oplCh), carrier = modulator + 3; for(uint8 op = 0; op < 2; op++) { const auto opReg = op ? carrier : modulator; m_opl->Port(AM_VIB | opReg, patch[0 + op]); m_opl->Port(KSL_LEVEL | opReg, patch[2 + op]); m_opl->Port(ATTACK_DECAY | opReg, patch[4 + op]); m_opl->Port(SUSTAIN_RELEASE | opReg, patch[6 + op]); m_opl->Port(WAVE_SELECT | opReg, patch[8 + op]); } m_opl->Port(FEEDBACK_CONNECTION | ChannelToRegister(oplCh), patch[10]); } void OPL::Reset() { if(m_isActive) { for(CHANNELINDEX chn = 0; chn < MAX_CHANNELS; chn++) { NoteCut(chn); } m_isActive = false; } m_KeyOnBlock.fill(0); m_OPLtoChan.fill(CHANNELINDEX_INVALID); m_ChanToOPL.fill(OPL_CHANNEL_INVALID); } OPENMPT_NAMESPACE_END