/* * Paula.cpp * --------- * Purpose: Emulating the Amiga's sound chip, Paula, by implementing resampling using band-limited steps (BLEPs) * Notes : The BLEP table generator code is a translation of Antti S. Lankila's original Python code. * Authors: OpenMPT Devs * Antti S. Lankila * The OpenMPT source code is released under the BSD license. Read LICENSE for more details. */ #include "stdafx.h" #include "Paula.h" #include "TinyFFT.h" #include #include OPENMPT_NAMESPACE_BEGIN // Compute Bessel function Izero(y) using a series approximation double Izero(double y); namespace Paula { namespace { MPT_NOINLINE std::vector KaiserFIR(int numTaps, double cutoff, double beta) { const double izeroBeta = Izero(beta); const double kPi = 4.0 * std::atan(1.0) * cutoff; const double xDiv = 1.0 / ((numTaps / 2) * (numTaps / 2)); const int numTapsDiv2 = numTaps / 2; std::vector result(numTaps); for(int i = 0; i < numTaps; i++) { double fsinc; if(i == numTapsDiv2) { fsinc = 1.0; } else { const double x = i - numTapsDiv2; const double xPi = x * kPi; // - sinc - - Kaiser window - -sinc- fsinc = std::sin(xPi) * Izero(beta * std::sqrt(1 - x * x * xDiv)) / (izeroBeta * xPi); } result[i] = fsinc * cutoff; } return result; } MPT_NOINLINE void FIR_MinPhase(std::vector &table, const TinyFFT &fft) { std::vector> cepstrum(fft.Size()); MPT_ASSERT(cepstrum.size() >= table.size()); for(size_t i = 0; i < table.size(); i++) cepstrum[i] = table[i]; // Compute the real cepstrum: fft -> abs + ln -> ifft -> real fft.FFT(cepstrum); for(auto &v : cepstrum) v = std::log(std::abs(v)); fft.IFFT(cepstrum); fft.Normalize(cepstrum); // Window the cepstrum in such a way that anticausal components become rejected for(size_t i = 1; i < cepstrum.size() / 2; i++) { cepstrum[i] *= 2; cepstrum[i + cepstrum.size() / 2] *= 0; } // Now cancel the previous steps: fft -> exp -> ifft -> real fft.FFT(cepstrum); for(auto &v : cepstrum) v = std::exp(v); fft.IFFT(cepstrum); fft.Normalize(cepstrum); for(size_t i = 0; i < table.size(); i++) table[i] = cepstrum[i].real(); } class BiquadFilter { double b0, b1, b2, a1, a2, x1 = 0.0, x2 = 0.0, y1 = 0.0, y2 = 0.0; double Filter(double x0) { double y0 = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2; x2 = x1; x1 = x0; y2 = y1; y1 = y0; return y0; } public: BiquadFilter(double b0_, double b1_, double b2_, double a1_, double a2_) : b0(b0_), b1(b1_), b2(b2_), a1(a1_), a2(a2_) { } std::vector Run(std::vector table) { x1 = 0.0; x2 = 0.0; y1 = 0.0; y2 = 0.0; // Initialize filter to stable state for(int i = 0; i < 10000; i++) Filter(table[0]); // Now run the filter for(auto &v : table) v = Filter(v); return table; } }; // Observe: a and b are reversed here. To be absolutely clear: // a is the nominator and b is the denominator. :-/ BiquadFilter ZTransform(double a0, double a1, double a2, double b0, double b1, double b2, double fc, double fs) { // Prewarp s - domain coefficients const double wp = 2.0 * fs * std::tan(M_PI * fc / fs); a2 /= wp * wp; a1 /= wp; b2 /= wp * wp; b1 /= wp; // Compute bilinear transform and return it const double bd = 4 * b2 * fs * fs + 2 * b1 * fs + b0; return BiquadFilter( (4 * a2 * fs * fs + 2 * a1 * fs + a0) / bd, (2 * a0 - 8 * a2 * fs * fs) / bd, (4 * a2 * fs * fs - 2 * a1 * fs + a0) / bd, (2 * b0 - 8 * b2 * fs * fs) / bd, (4 * b2 * fs * fs - 2 * b1 * fs + b0) / bd); } BiquadFilter MakeRCLowpass(double sampleRate, double freq) { const double omega = 2 * M_PI * freq / sampleRate; const double term = 1 + 1 / omega; return BiquadFilter(1 / term, 0.0, 0.0, -1.0 + 1.0 / term, 0.0); } BiquadFilter MakeButterworth(double fs, double fc, double res_dB = 0) { // 2nd-order Butterworth s-domain coefficients are: // // b0 = 1.0 b1 = 0 b2 = 0 // a0 = 1 a1 = sqrt(2) a2 = 1 // // by tweaking the a1 parameter, some resonance can be produced. const double res = std::pow(10.0, (-res_dB / 10.0 / 2.0)); return ZTransform(1, 0, 0, 1, std::sqrt(2) * res, 1, fc, fs); } MPT_NOINLINE void Integrate(std::vector &table) { const double total = std::accumulate(table.begin(), table.end(), 0.0); double startVal = -total; for(auto &v : table) { startVal += v; v = startVal; } } MPT_NOINLINE void Quantize(const std::vector &in, Paula::BlepArray &quantized) { MPT_ASSERT(in.size() == Paula::BLEP_SIZE); constexpr int fact = 1 << Paula::BLEP_SCALE; const double cv = fact / (in.back() - in.front()); for(int i = 0; i < Paula::BLEP_SIZE; i++) { double val = in[i] * cv; #ifdef MPT_INTMIXER val = mpt::round(val); #endif quantized[i] = static_cast(-val); } } } // namespace void BlepTables::InitTables() { constexpr double sampleRate = Paula::PAULA_HZ; // Because Amiga only has 84 dB SNR, the noise floor is low enough with -90 dB. // A500 model uses slightly lower-quality kaiser window to obtain slightly // steeper stopband attenuation. The fixed filters attenuates the sidelobes by // 12 dB, compensating for the worse performance of the kaiser window. // 21 kHz stopband is not fully attenuated by 22 kHz. If the sampling frequency // is 44.1 kHz, all frequencies above 22 kHz will alias over 20 kHz, thus inaudible. // The output should be aliasingless for 48 kHz sampling frequency. auto unfilteredA500 = KaiserFIR(Paula::BLEP_SIZE, 21000.0 / sampleRate * 2.0, 8.0); auto unfilteredA1200 = KaiserFIR(Paula::BLEP_SIZE, 21000.0 / sampleRate * 2.0, 9.0); // Move filtering effects to start to allow IIRs more time to settle constexpr size_t padSize = 8; constexpr int fftSize = static_cast(mpt::bit_width(size_t(Paula::BLEP_SIZE)) + mpt::bit_width(padSize) - 2); const TinyFFT fft(fftSize); FIR_MinPhase(unfilteredA500, fft); FIR_MinPhase(unfilteredA1200, fft); // Make digital models for the filters on Amiga 500 and 1200. auto filterFixed5kHz = MakeRCLowpass(sampleRate, 4900.0); // The leakage filter seems to reduce treble in both models a bit // The A500 filter seems to be well modelled only with a 4.9 kHz // filter although the component values would suggest 5 kHz filter. auto filterLeakage = MakeRCLowpass(sampleRate, 32000.0); auto filterLED = MakeButterworth(sampleRate, 3275.0, -0.70); // Apply fixed filter to A500 auto amiga500Off = filterFixed5kHz.Run(unfilteredA500); // Produce the filtered outputs auto amiga1200Off = filterLeakage.Run(unfilteredA1200); // Produce LED filters auto amiga500On = filterLED.Run(amiga500Off); auto amiga1200On = filterLED.Run(amiga1200Off); // Integrate to produce blep Integrate(amiga500Off); Integrate(amiga500On); Integrate(amiga1200Off); Integrate(amiga1200On); Integrate(unfilteredA1200); // Quantize and scale Quantize(amiga500Off, WinSincIntegral[A500Off]); Quantize(amiga500On, WinSincIntegral[A500On]); Quantize(amiga1200Off, WinSincIntegral[A1200Off]); Quantize(amiga1200On, WinSincIntegral[A1200On]); Quantize(unfilteredA1200, WinSincIntegral[Unfiltered]); } const Paula::BlepArray &BlepTables::GetAmigaTable(Resampling::AmigaFilter amigaType, bool enableFilter) const { if(amigaType == Resampling::AmigaFilter::A500) return enableFilter ? WinSincIntegral[A500On] : WinSincIntegral[A500Off]; if(amigaType == Resampling::AmigaFilter::A1200) return enableFilter ? WinSincIntegral[A1200On] : WinSincIntegral[A1200Off]; return WinSincIntegral[Unfiltered]; } // we do not initialize blepState here // cppcheck-suppress uninitMemberVar State::State(uint32 sampleRate) { double amigaClocksPerSample = static_cast(PAULA_HZ) / sampleRate; numSteps = static_cast(amigaClocksPerSample / MINIMUM_INTERVAL); stepRemainder = SamplePosition::FromDouble(amigaClocksPerSample - numSteps * MINIMUM_INTERVAL); remainder = SamplePosition(0); } void State::Reset() { remainder = SamplePosition(0); activeBleps = 0; firstBlep = MAX_BLEPS / 2u; globalOutputLevel = 0; } void State::InputSample(int16 sample) { if(sample != globalOutputLevel) { // Start a new blep: level is the difference, age (or phase) is 0 clocks. firstBlep = (firstBlep - 1u) % MAX_BLEPS; if(activeBleps < std::size(blepState)) activeBleps++; blepState[firstBlep].age = 0; blepState[firstBlep].level = sample - globalOutputLevel; globalOutputLevel = sample; } } // Return output simulated as series of bleps int State::OutputSample(const BlepArray &WinSincIntegral) { int output = globalOutputLevel * (1 << Paula::BLEP_SCALE); uint32 lastBlep = firstBlep + activeBleps; for(uint32 i = firstBlep; i != lastBlep; i++) { const auto &blep = blepState[i % MAX_BLEPS]; output -= WinSincIntegral[blep.age] * blep.level; } output /= (1 << (Paula::BLEP_SCALE - 2)); // - 2 to compensate for the fact that we reduced the input sample bit depth return output; } // Advance the simulation by given number of clock ticks void State::Clock(int cycles) { uint32 lastBlep = firstBlep + activeBleps; for(uint32 i = firstBlep; i != lastBlep; i++) { auto &blep = blepState[i % MAX_BLEPS]; blep.age += static_cast(cycles); if(blep.age >= Paula::BLEP_SIZE) { activeBleps = static_cast(i - firstBlep); return; } } } } OPENMPT_NAMESPACE_END