/* Copyright (C) 2007-2010 Christian Kothe This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "freesurround_decoder.h" #include "channelmaps.h" #include #include #include #pragma warning(disable : 4244) #define pi _pi const float _pi = 3.141592654f; const float epsilon = 0.000001f; using namespace std; #undef min #undef max static void *_memalign_malloc(size_t size, size_t align) { void *ret = NULL; if(posix_memalign(&ret, align, size) != 0) { return NULL; } return ret; } static void _dsp_complexalloc(DSPDoubleSplitComplex *cpx, int count) { cpx->realp = (double *)_memalign_malloc(count * sizeof(double), 16); cpx->imagp = (double *)_memalign_malloc(count * sizeof(double), 16); } static void _dsp_complexfree(DSPDoubleSplitComplex *cpx) { free(cpx->realp); free(cpx->imagp); } // FreeSurround implementation class decoder_impl { public: // instantiate the decoder with a given channel setup and processing block size (in samples) decoder_impl(channel_setup setup, unsigned N) : N(N), wnd(N), inbuf(3 * N), setup(setup), C((unsigned)chn_alloc[setup].size()), buffer_empty(true), lt(N), rt(N), dst(N), dstf(N), dftsetupF(vDSP_DFT_zrop_CreateSetupD(0, N, vDSP_DFT_FORWARD)), dftsetupB(vDSP_DFT_zrop_CreateSetupD(0, N, vDSP_DFT_INVERSE)) { _dsp_complexalloc(&lf, N/2 + 1); _dsp_complexalloc(&rf, N/2 + 1); // allocate per-channel buffers outbuf.resize((N + N / 2) * C); signal.resize(C); for(unsigned k = 0; k < C; k++) _dsp_complexalloc(&signal[k], N/2 + 1); // init the window function for(unsigned k = 0; k < N; k++) wnd[k] = sqrt(0.5 * (1 - cos(2 * pi * k / N)) / N); // set default parameters set_circular_wrap(90); set_shift(0); set_depth(1); set_focus(0); set_center_image(1); set_front_separation(1); set_rear_separation(1); set_low_cutoff(40.0 / 22050); set_high_cutoff(90.0 / 22050); set_bass_redirection(false); flush(); } ~decoder_impl() { _dsp_complexfree(&lf); _dsp_complexfree(&rf); for(unsigned k = 0; k < C; k++) _dsp_complexfree(&signal[k]); vDSP_DFT_DestroySetupD(dftsetupF); vDSP_DFT_DestroySetupD(dftsetupB); } // decode a stereo chunk, produces a multichannel chunk of the same size (lagged) float *decode(const float *input) { // append incoming data to the end of the input buffer memcpy(&inbuf[N], &input[0], 8 * N); // process first and second half, overlapped buffered_decode(&inbuf[0]); buffered_decode(&inbuf[N]); // shift last half of the input to the beginning (for overlapping with a future block) memcpy(&inbuf[0], &inbuf[2 * N], 4 * N); buffer_empty = false; return &outbuf[0]; } // flush the internal buffers void flush() { memset(&outbuf[0], 0, outbuf.size() * 4); memset(&inbuf[0], 0, inbuf.size() * 4); buffer_empty = true; } // number of samples currently held in the buffer unsigned buffered() { return buffer_empty ? 0 : N / 2; } // set soundfield & rendering parameters void set_circular_wrap(float v) { circular_wrap = v; } void set_shift(float v) { shift = v; } void set_depth(float v) { depth = v; } void set_focus(float v) { focus = v; } void set_center_image(float v) { center_image = v; } void set_front_separation(float v) { front_separation = v; } void set_rear_separation(float v) { rear_separation = v; } void set_low_cutoff(float v) { lo_cut = v * (N / 2); } void set_high_cutoff(float v) { hi_cut = v * (N / 2); } void set_bass_redirection(bool v) { use_lfe = v; } private: // helper functions static inline float sqr(double x) { return x * x; } static inline double amplitude(const DSPDoubleSplitComplex &cpx, size_t index) { return sqrt(sqr(cpx.realp[index]) + sqr(cpx.imagp[index])); } static inline double phase(const DSPDoubleSplitComplex &cpx, size_t index) { return atan2(cpx.imagp[index], cpx.realp[index]); } static inline void polar(double a, double p, DSPDoubleSplitComplex &cpx, size_t index) { cpx.realp[index] = a * cos(p); cpx.imagp[index] = a * sin(p); } static inline float min(double a, double b) { return a < b ? a : b; } static inline float max(double a, double b) { return a > b ? a : b; } static inline float clamp(double x) { return max(-1, min(1, x)); } static inline float sign(double x) { return x < 0 ? -1 : (x > 0 ? 1 : 0); } // get the distance of the soundfield edge, along a given angle static inline double edgedistance(double a) { return min(sqrt(1 + sqr(tan(a))), sqrt(1 + sqr(1 / tan(a)))); } // get the index (and fractional offset!) in a piecewise-linear channel allocation grid int map_to_grid(double &x) { double gp = ((x + 1) * 0.5) * (grid_res - 1), i = min(grid_res - 2, floor(gp)); x = gp - i; return i; } // decode a block of data and overlap-add it into outbuf void buffered_decode(const float *input) { // demultiplex and apply window function vDSP_vspdp(input, 2, <[0], 1, N); vDSP_vspdp(input + 1, 2, &rt[0], 1, N); vDSP_vmulD(<[0], 1, &wnd[0], 1, <[0], 1, N); vDSP_vmulD(&rt[0], 1, &wnd[0], 1, &rt[0], 1, N); // map into spectral domain vDSP_ctozD((DSPDoubleComplex *)(<[0]), 2, &lf, 1, N / 2); vDSP_ctozD((DSPDoubleComplex *)(&rt[0]), 2, &rf, 1, N / 2); vDSP_DFT_ExecuteD(dftsetupF, lf.realp, lf.imagp, lf.realp, lf.imagp); vDSP_DFT_ExecuteD(dftsetupF, rf.realp, rf.imagp, rf.realp, rf.imagp); for(unsigned c = 0; c < C; c++) { signal[c].realp[0] = 0; signal[c].imagp[0] = 0; signal[c].realp[N/2] = 0; signal[c].imagp[N/2] = 0; } bzero(signal[C - 1].realp, sizeof(double) * (N / 2 + 1)); bzero(signal[C - 1].imagp, sizeof(double) * (N / 2 + 1)); // compute multichannel output signal in the spectral domain for(unsigned f = 1; f < N / 2; f++) { // get Lt/Rt amplitudes & phases double ampL = amplitude(lf, f), ampR = amplitude(rf, f); double phaseL = phase(lf, f), phaseR = phase(rf, f); // calculate the amplitude & phase differences double ampDiff = clamp((ampL + ampR < epsilon) ? 0 : (ampR - ampL) / (ampR + ampL)); double phaseDiff = abs(phaseL - phaseR); if(phaseDiff > pi) phaseDiff = 2 * pi - phaseDiff; // decode into x/y soundfield position double x, y; transform_decode(ampDiff, phaseDiff, x, y); // add wrap control transform_circular_wrap(x, y, circular_wrap); // add shift control y = clamp(y - shift); // add depth control y = clamp(1 - (1 - y) * depth); // add focus control transform_focus(x, y, focus); // add crossfeed control x = clamp(x * (front_separation * (1 + y) / 2 + rear_separation * (1 - y) / 2)); // get total signal amplitude double amp_total = sqrt(ampL * ampL + ampR * ampR); // and total L/C/R signal phases double phase_of[] = { phaseL, atan2(lf.imagp[f] + rf.imagp[f], lf.realp[f] + rf.realp[f]), phaseR }; // compute 2d channel map indexes p/q and update x/y to fractional offsets in the map grid int p = map_to_grid(x), q = map_to_grid(y); // map position to channel volumes for(unsigned c = 0; c < C - 1; c++) { // look up channel map at respective position (with bilinear interpolation) and build the signal const vector &a = chn_alloc[setup][c]; polar(amp_total * ((1 - x) * (1 - y) * a[q][p] + x * (1 - y) * a[q][p + 1] + (1 - x) * y * a[q + 1][p] + x * y * a[q + 1][p + 1]), phase_of[1 + (int)sign(chn_xsf[setup][c])], signal[c], f); } // optionally redirect bass if(use_lfe && f < hi_cut) { // level of LFE channel according to normalized frequency double lfe_level = f < lo_cut ? 1 : 0.5 * (1 + cos(pi * (f - lo_cut) / (hi_cut - lo_cut))); // assign LFE channel polar(amp_total, phase_of[1], signal[C - 1], f); signal[C - 1].realp[f] *= lfe_level; signal[C - 1].imagp[f] *= lfe_level; // subtract the signal from the other channels for(unsigned c = 0; c < C - 1; c++) { signal[c].realp[f] *= (1 - lfe_level); signal[c].imagp[f] *= (1 - lfe_level); } } } // shift the last 2/3 to the first 2/3 of the output buffer memmove(&outbuf[0], &outbuf[C * N / 2], N * C * 4); // and clear the rest memset(&outbuf[C * N], 0, C * 4 * N / 2); // backtransform each channel and overlap-add for(unsigned c = 0; c < C; c++) { // back-transform into time domain vDSP_DFT_ExecuteD(dftsetupB, signal[c].realp, signal[c].imagp, signal[c].realp, signal[c].imagp); vDSP_ztocD(&signal[c], 1, (DSPDoubleComplex *)(&dst[0]), 2, N / 2); // add the result to the last 2/3 of the output buffer, windowed (and remultiplex) vDSP_vmulD(&dst[0], 1, &wnd[0], 1, &dst[0], 1, N); vDSP_vdpsp(&dst[0], 1, &dstf[0], 1, N); vDSP_vadd(&outbuf[C * N / 2 + c], C, &dstf[0], 1, &outbuf[C * N / 2 + c], C, N); } } // transform amp/phase difference space into x/y soundfield space void transform_decode(double a, double p, double &x, double &y) { x = clamp(1.0047 * a + 0.46804 * a * p * p * p - 0.2042 * a * p * p * p * p + 0.0080586 * a * p * p * p * p * p * p * p - 0.0001526 * a * p * p * p * p * p * p * p * p * p * p - 0.073512 * a * a * a * p - 0.2499 * a * a * a * p * p * p * p + 0.016932 * a * a * a * p * p * p * p * p * p * p - 0.00027707 * a * a * a * p * p * p * p * p * p * p * p * p * p + 0.048105 * a * a * a * a * a * p * p * p * p * p * p * p - 0.0065947 * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p + 0.0016006 * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p - 0.0071132 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p + 0.0022336 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p - 0.0004804 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p * p); y = clamp(0.98592 - 0.62237 * p + 0.077875 * p * p - 0.0026929 * p * p * p * p * p + 0.4971 * a * a * p - 0.00032124 * a * a * p * p * p * p * p * p + 9.2491e-006 * a * a * a * a * p * p * p * p * p * p * p * p * p * p + 0.051549 * a * a * a * a * a * a * a * a + 1.0727e-014 * a * a * a * a * a * a * a * a * a * a); } // apply a circular_wrap transformation to some position void transform_circular_wrap(double &x, double &y, double refangle) { if(refangle == 90) return; refangle = refangle * pi / 180; double baseangle = 90 * pi / 180; // translate into edge-normalized polar coordinates double ang = atan2(x, y), len = sqrt(x * x + y * y); len = len / edgedistance(ang); // apply circular_wrap transform if(abs(ang) < baseangle / 2) // angle falls within the front region (to be enlarged) ang *= refangle / baseangle; else // angle falls within the rear region (to be shrunken) ang = pi - (-(((refangle - 2 * pi) * (pi - abs(ang)) * sign(ang)) / (2 * pi - baseangle))); // translate back into soundfield position len = len * edgedistance(ang); x = clamp(sin(ang) * len); y = clamp(cos(ang) * len); } // apply a focus transformation to some position void transform_focus(double &x, double &y, double focus) { if(focus == 0) return; // translate into edge-normalized polar coordinates double ang = atan2(x, y), len = clamp(sqrt(x * x + y * y) / edgedistance(ang)); // apply focus len = focus > 0 ? 1 - pow(1 - len, 1 + focus * 20) : pow(len, 1 - focus * 20); // back-transform into euclidian soundfield position len = len * edgedistance(ang); x = clamp(sin(ang) * len); y = clamp(cos(ang) * len); } // constants unsigned N, C; // number of samples per input/output block, number of output channels channel_setup setup; // the channel setup // parameters float circular_wrap; // angle of the front soundstage around the listener (90�=default) float shift; // forward/backward offset of the soundstage float depth; // backward extension of the soundstage float focus; // localization of the sound events float center_image; // presence of the center speaker float front_separation; // front stereo separation float rear_separation; // rear stereo separation float lo_cut, hi_cut; // LFE cutoff frequencies bool use_lfe; // whether to use the LFE channel // FFT data structures vector lt, rt, dst; // left total, right total (source arrays), time-domain destination buffer array vector dstf; // float conversion destination array DSPDoubleSplitComplex lf, rf; // left total / right total in frequency domain vDSP_DFT_SetupD dftsetupF, dftsetupB; // FFT objects // buffers bool buffer_empty; // whether the buffer is currently empty or dirty vector inbuf; // stereo input buffer (multiplexed) vector outbuf; // multichannel output buffer (multiplexed) vector wnd; // the window function, precomputed vector signal; // the signal to be constructed in every channel, in the frequency domain }; // implementation of the shell class freesurround_decoder::freesurround_decoder(channel_setup setup, unsigned blocksize) : impl(new decoder_impl(setup, blocksize)) { } freesurround_decoder::~freesurround_decoder() { delete impl; } float *freesurround_decoder::decode(const float *input) { return impl->decode(input); } void freesurround_decoder::flush() { impl->flush(); } void freesurround_decoder::circular_wrap(float v) { impl->set_circular_wrap(v); } void freesurround_decoder::shift(float v) { impl->set_shift(v); } void freesurround_decoder::depth(float v) { impl->set_depth(v); } void freesurround_decoder::focus(float v) { impl->set_focus(v); } void freesurround_decoder::center_image(float v) { impl->set_center_image(v); } void freesurround_decoder::front_separation(float v) { impl->set_front_separation(v); } void freesurround_decoder::rear_separation(float v) { impl->set_rear_separation(v); } void freesurround_decoder::low_cutoff(float v) { impl->set_low_cutoff(v); } void freesurround_decoder::high_cutoff(float v) { impl->set_high_cutoff(v); } void freesurround_decoder::bass_redirection(bool v) { impl->set_bass_redirection(v); } unsigned freesurround_decoder::buffered() { return impl->buffered(); } unsigned freesurround_decoder::num_channels(channel_setup s) { return (unsigned)chn_id[s].size(); } channel_id freesurround_decoder::channel_at(channel_setup s, unsigned i) { return i < chn_id[s].size() ? chn_id[s][i] : ci_none; }