// // NES 2A03 // // Ported from NSFPlay 2.2 to VGMPlay (including C++ -> C conversion) // by Valley Bell on 24 September 2013 // Updated to NSFPlay 2.3 on 26 September 2013 // (Note: Encoding is UTF-8) //#include #include #include // for memset() #include // for NULL #include "mamedef.h" #include "../stdbool.h" #include "np_nes_apu.h" // Master Clock: 21477272 (NTSC) // APU Clock = Master Clock / 12 #define DEFAULT_CLOCK 1789772.0 // not sure if this shouldn't be 1789772,667 instead #define DEFAULT_RATE 44100 /** Upper half of APU **/ enum { OPT_UNMUTE_ON_RESET=0, OPT_NONLINEAR_MIXER, OPT_PHASE_REFRESH, OPT_DUTY_SWAP, OPT_END }; enum { SQR0_MASK = 1, SQR1_MASK = 2, }; // Note: For increased speed, I'll inline all of NSFPlay's Counter member functions. #define COUNTER_SHIFT 24 typedef struct _Counter Counter; struct _Counter { double ratio; UINT32 val, step; }; #define COUNTER_setcycle(cntr, s) (cntr).step = (UINT32)((cntr).ratio / (s + 1)) #define COUNTER_iup(cntr) (cntr).val += (cntr).step #define COUNTER_value(cntr) ((cntr).val >> COUNTER_SHIFT) #define COUNTER_init(cntr, clk, rate) \ { \ (cntr).ratio = (1 << COUNTER_SHIFT) * (1.0 * clk / rate); \ (cntr).step = (UINT32)((cntr).ratio + 0.5); \ (cntr).val = 0; \ } typedef struct _NES_APU NES_APU; struct _NES_APU { int option[OPT_END]; // 各種オプション int mask; INT32 sm[2][2]; UINT32 gclock; UINT8 reg[0x20]; INT32 out[2]; double rate, clock; INT32 square_table[32]; // nonlinear mixer int scounter[2]; // frequency divider int sphase[2]; // phase counter int duty[2]; int volume[2]; int freq[2]; int sfreq[2]; bool sweep_enable[2]; bool sweep_mode[2]; bool sweep_write[2]; int sweep_div_period[2]; int sweep_div[2]; int sweep_amount[2]; bool envelope_disable[2]; bool envelope_loop[2]; bool envelope_write[2]; int envelope_div_period[2]; int envelope_div[2]; int envelope_counter[2]; int length_counter[2]; bool enable[2]; Counter tick_count; UINT32 tick_last; }; static void sweep_sqr(NES_APU* apu, int ch); // calculates target sweep frequency static INT32 calc_sqr(NES_APU* apu, int ch, UINT32 clocks); static void Tick(NES_APU* apu, UINT32 clocks); static void sweep_sqr(NES_APU* apu, int i) { int shifted = apu->freq[i] >> apu->sweep_amount[i]; if (i == 0 && apu->sweep_mode[i]) shifted += 1; apu->sfreq[i] = apu->freq[i] + (apu->sweep_mode[i] ? -shifted : shifted); //DEBUG_OUT("shifted[%d] = %d (%d >> %d)\n",i,shifted,apu->freq[i],apu->sweep_amount[i]); } void NES_APU_np_FrameSequence(void* chip, int s) { NES_APU* apu = (NES_APU*)chip; int i; //DEBUG_OUT("FrameSequence(%d)\n",s); if (s > 3) return; // no operation in step 4 // 240hz clock for (i=0; i < 2; ++i) { bool divider = false; if (apu->envelope_write[i]) { apu->envelope_write[i] = false; apu->envelope_counter[i] = 15; apu->envelope_div[i] = 0; } else { ++apu->envelope_div[i]; if (apu->envelope_div[i] > apu->envelope_div_period[i]) { divider = true; apu->envelope_div[i] = 0; } } if (divider) { if (apu->envelope_loop[i] && apu->envelope_counter[i] == 0) apu->envelope_counter[i] = 15; else if (apu->envelope_counter[i] > 0) --apu->envelope_counter[i]; } } // 120hz clock if ((s&1) == 0) for (i=0; i < 2; ++i) { if (!apu->envelope_loop[i] && (apu->length_counter[i] > 0)) --apu->length_counter[i]; if (apu->sweep_enable[i]) { //DEBUG_OUT("Clock sweep: %d\n", i); --apu->sweep_div[i]; if (apu->sweep_div[i] <= 0) { sweep_sqr(apu, i); // calculate new sweep target //DEBUG_OUT("sweep_div[%d] (0/%d)\n",i,apu->sweep_div_period[i]); //DEBUG_OUT("freq[%d]=%d > sfreq[%d]=%d\n",i,apu->freq[i],i,apu->sfreq[i]); if (apu->freq[i] >= 8 && apu->sfreq[i] < 0x800 && apu->sweep_amount[i] > 0) // update frequency if appropriate { apu->freq[i] = apu->sfreq[i] < 0 ? 0 : apu->sfreq[i]; if (apu->scounter[i] > apu->freq[i]) apu->scounter[i] = apu->freq[i]; } apu->sweep_div[i] = apu->sweep_div_period[i] + 1; //DEBUG_OUT("freq[%d]=%d\n",i,apu->freq[i]); } if (apu->sweep_write[i]) { apu->sweep_div[i] = apu->sweep_div_period[i] + 1; apu->sweep_write[i] = false; } } } } static INT32 calc_sqr(NES_APU* apu, int i, UINT32 clocks) { static const INT16 sqrtbl[4][16] = { {0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} }; INT32 ret = 0; apu->scounter[i] += clocks; while (apu->scounter[i] > apu->freq[i]) { apu->sphase[i] = (apu->sphase[i] + 1) & 15; apu->scounter[i] -= (apu->freq[i] + 1); } //INT32 ret = 0; if (apu->length_counter[i] > 0 && apu->freq[i] >= 8 && apu->sfreq[i] < 0x800 ) { int v = apu->envelope_disable[i] ? apu->volume[i] : apu->envelope_counter[i]; ret = sqrtbl[apu->duty[i]][apu->sphase[i]] ? v : 0; } return ret; } bool NES_APU_np_Read(void* chip, UINT32 adr, UINT32* val) { NES_APU* apu = (NES_APU*)chip; if (0x4000 <= adr && adr < 0x4008) { *val |= apu->reg[adr&0x7]; return true; } else if(adr==0x4015) { *val |= (apu->length_counter[1]?2:0)|(apu->length_counter[0]?1:0); return true; } else return false; } static void Tick(NES_APU* apu, UINT32 clocks) { apu->out[0] = calc_sqr(apu, 0, clocks); apu->out[1] = calc_sqr(apu, 1, clocks); } // 生成される波形の振幅は0-8191 UINT32 NES_APU_np_Render(void* chip, INT32 b[2]) { NES_APU* apu = (NES_APU*)chip; INT32 m[2]; COUNTER_iup(apu->tick_count); Tick(apu, (COUNTER_value(apu->tick_count) - apu->tick_last) & 0xFF); apu->tick_last = COUNTER_value(apu->tick_count); apu->out[0] = (apu->mask & 1) ? 0 : apu->out[0]; apu->out[1] = (apu->mask & 2) ? 0 : apu->out[1]; if(apu->option[OPT_NONLINEAR_MIXER]) { INT32 voltage; INT32 ref; voltage = apu->square_table[apu->out[0] + apu->out[1]]; m[0] = apu->out[0] << 6; m[1] = apu->out[1] << 6; ref = m[0] + m[1]; if (ref > 0) { m[0] = (m[0] * voltage) / ref; m[1] = (m[1] * voltage) / ref; } else { m[0] = voltage; m[1] = voltage; } } else { m[0] = apu->out[0] << 6; m[1] = apu->out[1] << 6; } // Shifting is (x-2) to match the volume of MAME's NES APU sound core b[0] = m[0] * apu->sm[0][0]; b[0] += m[1] * apu->sm[0][1]; b[0] >>= 7-2; // was 7, but is now 8 for bipolar square b[1] = m[0] * apu->sm[1][0]; b[1] += m[1] * apu->sm[1][1]; b[1] >>= 7-2; // see above return 2; } void* NES_APU_np_Create(int clock, int rate) { NES_APU* apu; int i, c, t; apu = (NES_APU*)malloc(sizeof(NES_APU)); if (apu == NULL) return NULL; memset(apu, 0x00, sizeof(NES_APU)); //NES_APU_np_SetClock(apu, DEFAULT_CLOCK); //NES_APU_np_SetRate(apu, DEFAULT_RATE); NES_APU_np_SetClock(apu, clock); NES_APU_np_SetRate(apu, rate); apu->option[OPT_UNMUTE_ON_RESET] = true; apu->option[OPT_PHASE_REFRESH] = true; apu->option[OPT_NONLINEAR_MIXER] = true; apu->option[OPT_DUTY_SWAP] = false; apu->square_table[0] = 0; for(i=1;i<32;i++) apu->square_table[i]=(INT32)((8192.0*95.88)/(8128.0/i+100)); for(c=0;c<2;++c) for(t=0;t<2;++t) apu->sm[c][t] = 128; return apu; } void NES_APU_np_Destroy(void* chip) { free(chip); } void NES_APU_np_Reset(void* chip) { NES_APU* apu = (NES_APU*)chip; int i; apu->gclock = 0; apu->mask = 0; apu->scounter[0] = 0; apu->scounter[1] = 0; apu->sphase[0] = 0; apu->sphase[0] = 0; apu->sweep_div[0] = 1; apu->sweep_div[1] = 1; apu->envelope_div[0] = 0; apu->envelope_div[1] = 0; apu->length_counter[0] = 0; apu->length_counter[1] = 0; apu->envelope_counter[0] = 0; apu->envelope_counter[1] = 0; for (i = 0x4000; i < 0x4008; i++) NES_APU_np_Write(apu, i, 0); NES_APU_np_Write(apu, 0x4015, 0); if (apu->option[OPT_UNMUTE_ON_RESET]) NES_APU_np_Write(apu, 0x4015, 0x0f); for (i = 0; i < 2; i++) apu->out[i] = 0; NES_APU_np_SetRate(apu, apu->rate); } void NES_APU_np_SetOption(void* chip, int id, int val) { NES_APU* apu = (NES_APU*)chip; if(idoption[id] = val; } void NES_APU_np_SetClock(void* chip, double c) { NES_APU* apu = (NES_APU*)chip; apu->clock = c; } void NES_APU_np_SetRate(void* chip, double r) { NES_APU* apu = (NES_APU*)chip; apu->rate = r ? r : DEFAULT_RATE; COUNTER_init(apu->tick_count, apu->clock, apu->rate); apu->tick_last = 0; } void NES_APU_np_SetMask(void* chip, int m) { NES_APU* apu = (NES_APU*)chip; apu->mask = m; } void NES_APU_np_SetStereoMix(void* chip, int trk, INT16 mixl, INT16 mixr) { NES_APU* apu = (NES_APU*)chip; if (trk < 0) return; if (trk > 1) return; apu->sm[0][trk] = mixl; apu->sm[1][trk] = mixr; } bool NES_APU_np_Write(void* chip, UINT32 adr, UINT32 val) { NES_APU* apu = (NES_APU*)chip; int ch; static const UINT8 length_table[32] = { 0x0A, 0xFE, 0x14, 0x02, 0x28, 0x04, 0x50, 0x06, 0xA0, 0x08, 0x3C, 0x0A, 0x0E, 0x0C, 0x1A, 0x0E, 0x0C, 0x10, 0x18, 0x12, 0x30, 0x14, 0x60, 0x16, 0xC0, 0x18, 0x48, 0x1A, 0x10, 0x1C, 0x20, 0x1E }; if (0x4000 <= adr && adr < 0x4008) { //DEBUG_OUT("$%04X = %02X\n",adr,val); adr &= 0xf; ch = adr >> 2; switch (adr) { case 0x0: case 0x4: apu->volume[ch] = val & 15; apu->envelope_disable[ch] = (val >> 4) & 1; apu->envelope_loop[ch] = (val >> 5) & 1; apu->envelope_div_period[ch] = (val & 15); apu->duty[ch] = (val >> 6) & 3; if (apu->option[OPT_DUTY_SWAP]) { if (apu->duty[ch] == 1) apu->duty[ch] = 2; else if (apu->duty[ch] == 2) apu->duty[ch] = 1; } break; case 0x1: case 0x5: apu->sweep_enable[ch] = (val >> 7) & 1; apu->sweep_div_period[ch] = (((val >> 4) & 7)); apu->sweep_mode[ch] = (val >> 3) & 1; apu->sweep_amount[ch] = val & 7; apu->sweep_write[ch] = true; sweep_sqr(apu, ch); break; case 0x2: case 0x6: apu->freq[ch] = val | (apu->freq[ch] & 0x700) ; sweep_sqr(apu, ch); if (apu->scounter[ch] > apu->freq[ch]) apu->scounter[ch] = apu->freq[ch]; break; case 0x3: case 0x7: apu->freq[ch] = (apu->freq[ch] & 0xFF) | ((val & 0x7) << 8) ; if (apu->option[OPT_PHASE_REFRESH]) apu->sphase[ch] = 0; apu->envelope_write[ch] = true; if (apu->enable[ch]) { apu->length_counter[ch] = length_table[(val >> 3) & 0x1f]; } sweep_sqr(apu, ch); if (apu->scounter[ch] > apu->freq[ch]) apu->scounter[ch] = apu->freq[ch]; break; default: return false; } apu->reg[adr] = val; return true; } else if (adr == 0x4015) { apu->enable[0] = (val & 1) ? true : false; apu->enable[1] = (val & 2) ? true : false; if (!apu->enable[0]) apu->length_counter[0] = 0; if (!apu->enable[1]) apu->length_counter[1] = 0; apu->reg[adr-0x4000] = val; return true; } // 4017 is handled in np_nes_dmc.c //else if (adr == 0x4017) //{ //} return false; }