// NES 6502 CPU emulator run function #if 0 /* Define these macros in the source file before #including this file. - Parameters might be expressions, so they are best evaluated only once, though they NEVER have side-effects, so multiple evaluation is OK. - Output parameters might be a multiple-assignment expression like "a=x", so they must NOT be parenthesized. - Except where noted, time() and related functions will NOT work correctly inside a macro. TIME() is always correct, and FLUSH_TIME() and CACHE_TIME() allow the time changing functions to work. - Macros "returning" void may use a {} statement block. */ // 0 <= addr <= 0xFFFF + page_size // time functions can be used int READ_MEM( addr_t ); void WRITE_MEM( addr_t, int data ); // 0 <= READ_MEM() <= 0xFF // 0 <= addr <= 0x1FF int READ_LOW( addr_t ); void WRITE_LOW( addr_t, int data ); // 0 <= READ_LOW() <= 0xFF // Often-used instructions attempt these before using a normal memory access. // Optional; defaults to READ_MEM() and WRITE_MEM() bool CAN_READ_FAST( addr_t ); // if true, uses result of READ_FAST void READ_FAST( addr_t, int& out ); // ALWAYS called BEFORE CAN_READ_FAST bool CAN_WRITE_FAST( addr_t ); // if true, uses WRITE_FAST instead of WRITE_MEM void WRITE_FAST( addr_t, int data ); // Used by instructions most often used to access the NES PPU (LDA abs and BIT abs). // Optional; defaults to READ_MEM. void READ_PPU( addr_t, int& out ); // 0 <= out <= 0xFF // The following can be used within macros: // Current time time_t TIME(); // Allows use of time functions void FLUSH_TIME(); // Must be used before end of macro if FLUSH_TIME() was used earlier void CACHE_TIME(); // Configuration (optional; commented behavior if defined) // Emulates dummy reads for indexed instructions #define NES_CPU_DUMMY_READS 1 // Optimizes as if map_code( 0, 0x10000 + cpu_padding, FLAT_MEM ) is always in effect #define FLAT_MEM my_mem_array // Expanded just before beginning of code, to help debugger #define CPU_BEGIN void my_run_cpu() { #endif /* Copyright (C) 2003-2008 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ // Allows MWCW debugger to step through code properly #ifdef CPU_BEGIN CPU_BEGIN #endif // Time #define TIME() (s_time + s.base) #define FLUSH_TIME() {s.time = s_time - time_offset;} #define CACHE_TIME() {s_time = s.time + time_offset;} // Defaults #ifndef CAN_WRITE_FAST #define CAN_WRITE_FAST( addr ) 0 #define WRITE_FAST( addr, data ) #endif #ifndef CAN_READ_FAST #define CAN_READ_FAST( addr ) 0 #define READ_FAST( addr, out ) #endif #ifndef READ_PPU #define READ_PPU( addr, out )\ {\ FLUSH_TIME();\ out = READ_MEM( addr );\ CACHE_TIME();\ } #endif #define READ_STACK READ_LOW #define WRITE_STACK WRITE_LOW // Dummy reads #if NES_CPU_DUMMY_READS // TODO: optimize time handling #define DUMMY_READ( addr, idx ) \ if ( (addr & 0xFF) < idx )\ {\ int const time_offset = 1;\ FLUSH_TIME();\ READ_MEM( (addr - 0x100) );\ CACHE_TIME();\ } #else #define DUMMY_READ( addr, idx ) #endif // Code #ifdef FLAT_MEM #define CODE_PAGE( addr ) (FLAT_MEM) #define CODE_OFFSET( addr ) (addr) #else #define CODE_PAGE( addr ) (s.code_map [NES_CPU_PAGE( addr )]) #define CODE_OFFSET( addr ) NES_CPU_OFFSET( addr ) #endif #define READ_CODE( addr ) (CODE_PAGE( addr ) [CODE_OFFSET( addr )]) // Stack #define SET_SP( v ) (sp = ((v) + 1) | 0x100) #define GET_SP() ((sp - 1) & 0xFF) #define SP( o ) ((sp + (o - (o>0)*0x100)) | 0x100) // Truncation #define BYTE( n ) ((BOOST::uint8_t ) (n)) /* (unsigned) n & 0xFF */ #define SBYTE( n ) ((BOOST::int8_t ) (n)) /* (BYTE( n ) ^ 0x80) - 0x80 */ #define WORD( n ) ((BOOST::uint16_t) (n)) /* (unsigned) n & 0xFFFF */ // Flags with hex value for clarity when used as mask. // Stored in indicated variable during emulation. int const n80 = 0x80; // nz int const v40 = 0x40; // flags int const r20 = 0x20; int const b10 = 0x10; int const d08 = 0x08; // flags int const i04 = 0x04; // flags int const z02 = 0x02; // nz int const c01 = 0x01; // c #define IS_NEG (nz & 0x8080) #define GET_FLAGS( out ) \ {\ out = flags & (v40 | d08 | i04);\ out += ((nz >> 8) | nz) & n80;\ out += c >> 8 & c01;\ if ( !BYTE( nz ) )\ out += z02;\ } #define SET_FLAGS( in ) \ {\ flags = in & (v40 | d08 | i04);\ c = nz = in << 8;\ nz += ~in & z02;\ } { int const time_offset = 0; // Local state Nes_Cpu::cpu_state_t s; #ifdef FLAT_MEM s.base = CPU.cpu_state_.base; #else s = CPU.cpu_state_; #endif CPU.cpu_state = &s; int s_time = CPU.cpu_state_.time; // helps even on x86 // Registers int pc = CPU.r.pc; int a = CPU.r.a; int x = CPU.r.x; int y = CPU.r.y; int sp; SET_SP( CPU.r.sp ); // Flags int flags; int c; // carry set if (c & 0x100) != 0 int nz; // Z set if (nz & 0xFF) == 0, N set if (nz & 0x8080) != 0 { int temp = CPU.r.flags; SET_FLAGS( temp ); } loop: // Check all values check( (unsigned) sp - 0x100 < 0x100 ); check( (unsigned) pc < 0x10000 ); check( (unsigned) a < 0x100 ); check( (unsigned) x < 0x100 ); check( (unsigned) y < 0x100 ); // Read instruction byte const* instr = CODE_PAGE( pc ); int opcode; if ( CODE_OFFSET(~0) == ~0 ) { opcode = instr [pc]; pc++; instr += pc; } else { instr += CODE_OFFSET( pc ); opcode = *instr++; pc++; } // local to function in case it helps optimizer static byte const clock_table [256] = {// 0 1 2 3 4 5 6 7 8 9 A B C D E F 0,6,2,8,3,3,5,5,3,2,2,2,4,4,6,6,// 0 2,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 1 6,6,0,8,3,3,5,5,4,2,2,2,4,4,6,6,// 2 2,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 3 6,6,2,8,3,3,5,5,3,2,2,2,3,4,6,6,// 4 2,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 5 6,6,2,8,3,3,5,5,4,2,2,2,5,4,6,6,// 6 2,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// 7 2,6,2,6,3,3,3,3,2,2,2,2,4,4,4,4,// 8 2,6,2,6,4,4,4,4,2,5,2,5,5,5,5,5,// 9 2,6,2,6,3,3,3,3,2,2,2,2,4,4,4,4,// A 2,5,2,5,4,4,4,4,2,4,2,4,4,4,4,4,// B 2,6,2,8,3,3,5,5,2,2,2,2,4,4,6,6,// C 2,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7,// D 2,6,2,8,3,3,5,5,2,2,2,2,4,4,6,6,// E 2,5,2,8,4,4,6,6,2,4,2,7,4,4,7,7 // F }; // 0x00 was 7 and 0x22 was 2 // Update time if ( s_time >= 0 ) goto out_of_time; #ifdef CPU_INSTR_HOOK { CPU_INSTR_HOOK( (pc-1), (&instr [-1]), a, x, y, GET_SP(), TIME() ); } #endif s_time += clock_table [opcode]; int data; data = *instr; switch ( opcode ) { // Macros #define GET_MSB() (instr [1]) #define ADD_PAGE( out ) (pc++, out = data + 0x100 * GET_MSB()) #define GET_ADDR() GET_LE16( instr ) #define PAGE_PENALTY( lsb ) s_time += (lsb) >> 8; #define INC_DEC( reg, n ) reg = BYTE( nz = reg + n ); goto loop; #define IND_Y( cross, out ) {\ int temp = READ_LOW( data ) + y;\ out = temp + 0x100 * READ_LOW( BYTE( data + 1 ) );\ cross( temp );\ } #define IND_X( out ) {\ int temp = data + x;\ out = 0x100 * READ_LOW( BYTE( temp + 1 ) ) + READ_LOW( BYTE( temp ) );\ } #define ARITH_ADDR_MODES( op )\ case op - 0x04: /* (ind,x) */\ IND_X( data )\ goto ptr##op;\ case op + 0x0C: /* (ind),y */\ IND_Y( PAGE_PENALTY, data )\ goto ptr##op;\ case op + 0x10: /* zp,X */\ data = BYTE( data + x );\ case op + 0x00: /* zp */\ data = READ_LOW( data );\ goto imm##op;\ case op + 0x14: /* abs,Y */\ data += y;\ goto ind##op;\ case op + 0x18: /* abs,X */\ data += x;\ ind##op:\ PAGE_PENALTY( data );\ case op + 0x08: /* abs */\ ADD_PAGE( data );\ ptr##op:\ FLUSH_TIME();\ data = READ_MEM( data );\ CACHE_TIME();\ case op + 0x04: /* imm */\ imm##op: // TODO: more efficient way to handle negative branch that wraps PC around #define BRANCH( cond )\ {\ ++pc;\ if ( !(cond) ) goto loop;\ s_time++;\ int offset = SBYTE( data );\ s_time += (BYTE(pc) + offset) >> 8 & 1;\ pc = WORD( pc + offset );\ goto loop;\ } // Often-Used case 0xB5: // LDA zp,x a = nz = READ_LOW( BYTE( data + x ) ); pc++; goto loop; case 0xA5: // LDA zp a = nz = READ_LOW( data ); pc++; goto loop; case 0xD0: // BNE BRANCH( BYTE( nz ) ); case 0x20: { // JSR int temp = pc + 1; pc = GET_ADDR(); WRITE_STACK( SP( -1 ), temp >> 8 ); sp = SP( -2 ); WRITE_STACK( sp, temp ); goto loop; } case 0x4C: // JMP abs pc = GET_ADDR(); goto loop; case 0xE8: // INX INC_DEC( x, 1 ) case 0x10: // BPL BRANCH( !IS_NEG ) ARITH_ADDR_MODES( 0xC5 ) // CMP nz = a - data; pc++; c = ~nz; nz &= 0xFF; goto loop; case 0x30: // BMI BRANCH( IS_NEG ) case 0xF0: // BEQ BRANCH( !BYTE( nz ) ); case 0x95: // STA zp,x data = BYTE( data + x ); case 0x85: // STA zp pc++; WRITE_LOW( data, a ); goto loop; case 0xC8: // INY INC_DEC( y, 1 ) case 0xA8: // TAY y = a; nz = a; goto loop; case 0x98: // TYA a = y; nz = y; goto loop; case 0xAD:{// LDA abs int addr = GET_ADDR(); pc += 2; READ_PPU( addr, a = nz ); goto loop; } case 0x60: // RTS pc = 1 + READ_STACK( sp ); pc += 0x100 * READ_STACK( SP( 1 ) ); sp = SP( 2 ); goto loop; { int addr; case 0x8D: // STA abs addr = GET_ADDR(); pc += 2; if ( CAN_WRITE_FAST( addr ) ) { WRITE_FAST( addr, a ); goto loop; } sta_ptr: FLUSH_TIME(); WRITE_MEM( addr, a ); CACHE_TIME(); goto loop; case 0x99: // STA abs,Y addr = y + GET_ADDR(); pc += 2; if ( CAN_WRITE_FAST( addr ) ) { WRITE_FAST( addr, a ); goto loop; } goto sta_abs_x; case 0x9D: // STA abs,X (slightly more common than STA abs) addr = x + GET_ADDR(); pc += 2; if ( CAN_WRITE_FAST( addr ) ) { WRITE_FAST( addr, a ); goto loop; } DUMMY_READ( addr, x ); sta_abs_x: FLUSH_TIME(); WRITE_MEM( addr, a ); CACHE_TIME(); goto loop; case 0x91: // STA (ind),Y #define NO_PAGE_PENALTY( lsb ) IND_Y( NO_PAGE_PENALTY, addr ) pc++; DUMMY_READ( addr, y ); goto sta_ptr; case 0x81: // STA (ind,X) IND_X( addr ) pc++; goto sta_ptr; } case 0xA9: // LDA #imm pc++; a = data; nz = data; goto loop; // common read instructions { int addr; case 0xA1: // LDA (ind,X) IND_X( addr ) pc++; goto a_nz_read_addr; case 0xB1:// LDA (ind),Y addr = READ_LOW( data ) + y; PAGE_PENALTY( addr ); addr += 0x100 * READ_LOW( BYTE( data + 1 ) ); pc++; READ_FAST( addr, a = nz ); if ( CAN_READ_FAST( addr ) ) goto loop; DUMMY_READ( addr, y ); goto a_nz_read_addr; case 0xB9: // LDA abs,Y PAGE_PENALTY( data + y ); addr = GET_ADDR() + y; pc += 2; READ_FAST( addr, a = nz ); if ( CAN_READ_FAST( addr ) ) goto loop; goto a_nz_read_addr; case 0xBD: // LDA abs,X PAGE_PENALTY( data + x ); addr = GET_ADDR() + x; pc += 2; READ_FAST( addr, a = nz ); if ( CAN_READ_FAST( addr ) ) goto loop; DUMMY_READ( addr, x ); a_nz_read_addr: FLUSH_TIME(); a = nz = READ_MEM( addr ); CACHE_TIME(); goto loop; } // Branch case 0x50: // BVC BRANCH( !(flags & v40) ) case 0x70: // BVS BRANCH( flags & v40 ) case 0xB0: // BCS BRANCH( c & 0x100 ) case 0x90: // BCC BRANCH( !(c & 0x100) ) // Load/store case 0x94: // STY zp,x data = BYTE( data + x ); case 0x84: // STY zp pc++; WRITE_LOW( data, y ); goto loop; case 0x96: // STX zp,y data = BYTE( data + y ); case 0x86: // STX zp pc++; WRITE_LOW( data, x ); goto loop; case 0xB6: // LDX zp,y data = BYTE( data + y ); case 0xA6: // LDX zp data = READ_LOW( data ); case 0xA2: // LDX #imm pc++; x = data; nz = data; goto loop; case 0xB4: // LDY zp,x data = BYTE( data + x ); case 0xA4: // LDY zp data = READ_LOW( data ); case 0xA0: // LDY #imm pc++; y = data; nz = data; goto loop; case 0xBC: // LDY abs,X data += x; PAGE_PENALTY( data ); case 0xAC:{// LDY abs int addr = data + 0x100 * GET_MSB(); pc += 2; FLUSH_TIME(); y = nz = READ_MEM( addr ); CACHE_TIME(); goto loop; } case 0xBE: // LDX abs,y data += y; PAGE_PENALTY( data ); case 0xAE:{// LDX abs int addr = data + 0x100 * GET_MSB(); pc += 2; FLUSH_TIME(); x = nz = READ_MEM( addr ); CACHE_TIME(); goto loop; } { int temp; case 0x8C: // STY abs temp = y; goto store_abs; case 0x8E: // STX abs temp = x; store_abs: int addr = GET_ADDR(); pc += 2; if ( CAN_WRITE_FAST( addr ) ) { WRITE_FAST( addr, temp ); goto loop; } FLUSH_TIME(); WRITE_MEM( addr, temp ); CACHE_TIME(); goto loop; } // Compare case 0xEC:{// CPX abs int addr = GET_ADDR(); pc++; FLUSH_TIME(); data = READ_MEM( addr ); CACHE_TIME(); goto cpx_data; } case 0xE4: // CPX zp data = READ_LOW( data ); case 0xE0: // CPX #imm cpx_data: nz = x - data; pc++; c = ~nz; nz &= 0xFF; goto loop; case 0xCC:{// CPY abs int addr = GET_ADDR(); pc++; FLUSH_TIME(); data = READ_MEM( addr ); CACHE_TIME(); goto cpy_data; } case 0xC4: // CPY zp data = READ_LOW( data ); case 0xC0: // CPY #imm cpy_data: nz = y - data; pc++; c = ~nz; nz &= 0xFF; goto loop; // Logical ARITH_ADDR_MODES( 0x25 ) // AND nz = (a &= data); pc++; goto loop; ARITH_ADDR_MODES( 0x45 ) // EOR nz = (a ^= data); pc++; goto loop; ARITH_ADDR_MODES( 0x05 ) // ORA nz = (a |= data); pc++; goto loop; case 0x2C:{// BIT abs int addr = GET_ADDR(); pc += 2; READ_PPU( addr, nz ); flags = (flags & ~v40) + (nz & v40); if ( a & nz ) goto loop; nz <<= 8; // result must be zero, even if N bit is set goto loop; } case 0x24: // BIT zp nz = READ_LOW( data ); pc++; flags = (flags & ~v40) + (nz & v40); if ( a & nz ) goto loop; // Z should be clear, and nz must be non-zero if nz & a is nz <<= 8; // set Z flag without affecting N flag goto loop; // Add/subtract ARITH_ADDR_MODES( 0xE5 ) // SBC case 0xEB: // unofficial equivalent data ^= 0xFF; goto adc_imm; ARITH_ADDR_MODES( 0x65 ) // ADC adc_imm: { int carry = c >> 8 & 1; int ov = (a ^ 0x80) + carry + SBYTE( data ); flags = (flags & ~v40) + (ov >> 2 & v40); c = nz = a + data + carry; pc++; a = BYTE( nz ); goto loop; } // Shift/rotate case 0x4A: // LSR A c = 0; case 0x6A: // ROR A nz = c >> 1 & 0x80; c = a << 8; nz += a >> 1; a = nz; goto loop; case 0x0A: // ASL A nz = a << 1; c = nz; a = BYTE( nz ); goto loop; case 0x2A: { // ROL A nz = a << 1; int temp = c >> 8 & 1; c = nz; nz += temp; a = BYTE( nz ); goto loop; } case 0x5E: // LSR abs,X data += x; case 0x4E: // LSR abs c = 0; case 0x6E: // ROR abs ror_abs: { ADD_PAGE( data ); FLUSH_TIME(); int temp = READ_MEM( data ); nz = (c >> 1 & 0x80) + (temp >> 1); c = temp << 8; goto rotate_common; } case 0x3E: // ROL abs,X data += x; goto rol_abs; case 0x1E: // ASL abs,X data += x; case 0x0E: // ASL abs c = 0; case 0x2E: // ROL abs rol_abs: ADD_PAGE( data ); nz = c >> 8 & 1; FLUSH_TIME(); nz += (c = READ_MEM( data ) << 1); rotate_common: pc++; WRITE_MEM( data, BYTE( nz ) ); CACHE_TIME(); goto loop; case 0x7E: // ROR abs,X data += x; goto ror_abs; case 0x76: // ROR zp,x data = BYTE( data + x ); goto ror_zp; case 0x56: // LSR zp,x data = BYTE( data + x ); case 0x46: // LSR zp c = 0; case 0x66: // ROR zp ror_zp: { int temp = READ_LOW( data ); nz = (c >> 1 & 0x80) + (temp >> 1); c = temp << 8; goto write_nz_zp; } case 0x36: // ROL zp,x data = BYTE( data + x ); goto rol_zp; case 0x16: // ASL zp,x data = BYTE( data + x ); case 0x06: // ASL zp c = 0; case 0x26: // ROL zp rol_zp: nz = c >> 8 & 1; nz += (c = READ_LOW( data ) << 1); goto write_nz_zp; // Increment/decrement case 0xCA: // DEX INC_DEC( x, -1 ) case 0x88: // DEY INC_DEC( y, -1 ) case 0xF6: // INC zp,x data = BYTE( data + x ); case 0xE6: // INC zp nz = 1; goto add_nz_zp; case 0xD6: // DEC zp,x data = BYTE( data + x ); case 0xC6: // DEC zp nz = -1; add_nz_zp: nz += READ_LOW( data ); write_nz_zp: pc++; WRITE_LOW( data, nz ); goto loop; case 0xFE: // INC abs,x data = x + GET_ADDR(); goto inc_ptr; case 0xEE: // INC abs data = GET_ADDR(); inc_ptr: nz = 1; goto inc_common; case 0xDE: // DEC abs,x data = x + GET_ADDR(); goto dec_ptr; case 0xCE: // DEC abs data = GET_ADDR(); dec_ptr: nz = -1; inc_common: FLUSH_TIME(); pc += 2; nz += READ_MEM( data ); WRITE_MEM( data, BYTE( nz ) ); CACHE_TIME(); goto loop; // Transfer case 0xAA: // TAX x = nz = a; goto loop; case 0x8A: // TXA a = nz = x; goto loop; case 0x9A: // TXS SET_SP( x ); // verified (no flag change) goto loop; case 0xBA: // TSX x = nz = GET_SP(); goto loop; // Stack case 0x48: // PHA sp = SP( -1 ); WRITE_STACK( sp, a ); goto loop; case 0x68: // PLA a = nz = READ_STACK( sp ); sp = SP( 1 ); goto loop; case 0x40:{// RTI pc = READ_STACK( SP( 1 ) ); pc += READ_STACK( SP( 2 ) ) * 0x100; int temp = READ_STACK( sp ); sp = SP( 3 ); data = flags; SET_FLAGS( temp ); CPU.r.flags = flags; // update externally-visible I flag int delta = s.base - CPU.irq_time_; if ( delta <= 0 ) goto loop; // end_time < irq_time if ( flags & i04 ) goto loop; s_time += delta; s.base = CPU.irq_time_; goto loop; } case 0x28:{// PLP int temp = READ_STACK( sp ); sp = SP( 1 ); int changed = flags ^ temp; SET_FLAGS( temp ); if ( !(changed & i04) ) goto loop; // I flag didn't change if ( flags & i04 ) goto handle_sei; goto handle_cli; } case 0x08:{// PHP int temp; GET_FLAGS( temp ); sp = SP( -1 ); WRITE_STACK( sp, temp | (b10 | r20) ); goto loop; } case 0x6C:{// JMP (ind) data = GET_ADDR(); byte const* page = CODE_PAGE( data ); pc = page [CODE_OFFSET( data )]; data = (data & 0xFF00) + ((data + 1) & 0xFF); pc += page [CODE_OFFSET( data )] * 0x100; goto loop; } case 0x00: // BRK goto handle_brk; // Flags case 0x38: // SEC c = 0x100; goto loop; case 0x18: // CLC c = 0; goto loop; case 0xB8: // CLV flags &= ~v40; goto loop; case 0xD8: // CLD flags &= ~d08; goto loop; case 0xF8: // SED flags |= d08; goto loop; case 0x58: // CLI if ( !(flags & i04) ) goto loop; flags &= ~i04; handle_cli: { //dprintf( "CLI at %d\n", TIME ); CPU.r.flags = flags; // update externally-visible I flag int delta = s.base - CPU.irq_time_; if ( delta <= 0 ) { if ( TIME() < CPU.irq_time_ ) goto loop; goto delayed_cli; } s.base = CPU.irq_time_; s_time += delta; if ( s_time < 0 ) goto loop; if ( delta >= s_time + 1 ) { // delayed irq until after next instruction s.base += s_time + 1; s_time = -1; goto loop; } // TODO: implement delayed_cli: dprintf( "Delayed CLI not emulated\n" ); goto loop; } case 0x78: // SEI if ( flags & i04 ) goto loop; flags |= i04; handle_sei: { CPU.r.flags = flags; // update externally-visible I flag int delta = s.base - CPU.end_time_; s.base = CPU.end_time_; s_time += delta; if ( s_time < 0 ) goto loop; dprintf( "Delayed SEI not emulated\n" ); goto loop; } // Unofficial // SKW - skip word case 0x1C: case 0x3C: case 0x5C: case 0x7C: case 0xDC: case 0xFC: PAGE_PENALTY( data + x ); case 0x0C: pc++; // SKB - skip byte case 0x74: case 0x04: case 0x14: case 0x34: case 0x44: case 0x54: case 0x64: case 0x80: case 0x82: case 0x89: case 0xC2: case 0xD4: case 0xE2: case 0xF4: pc++; goto loop; // NOP case 0xEA: case 0x1A: case 0x3A: case 0x5A: case 0x7A: case 0xDA: case 0xFA: goto loop; case Nes_Cpu::halt_opcode: // HLT - halt processor if ( pc-- > 0x10000 ) { // handle wrap-around (assumes caller has put page of HLT at 0x10000) pc = WORD( pc ); goto loop; } case 0x02: case 0x12: case 0x32: case 0x42: case 0x52: case 0x62: case 0x72: case 0x92: case 0xB2: case 0xD2: case 0xF2: goto stop; // Unimplemented case 0xFF: // force 256-entry jump table for optimization purposes c |= 1; // compiler doesn't know that this won't affect anything default: check( (unsigned) opcode < 0x100 ); #ifdef UNIMPL_INSTR UNIMPL_INSTR(); #endif // At least skip over proper number of bytes instruction uses static unsigned char const illop_lens [8] = { 0x40, 0x40, 0x40, 0x80, 0x40, 0x40, 0x80, 0xA0 }; int opcode = instr [-1]; int len = illop_lens [opcode >> 2 & 7] >> (opcode << 1 & 6) & 3; if ( opcode == 0x9C ) len = 2; pc += len; CPU.error_count_++; // Account for extra clock if ( (opcode >> 4) == 0x0B ) { if ( opcode == 0xB3 ) data = READ_LOW( data ); if ( opcode != 0xB7 ) PAGE_PENALTY( data + y ); } goto loop; } assert( false ); // catch missing 'goto loop' or accidental 'break' int result_; handle_brk: pc++; result_ = b10 | 4; #ifdef CPU_DONE interrupt: #endif { s_time += 7; // Save PC and read vector WRITE_STACK( SP( -1 ), pc >> 8 ); WRITE_STACK( SP( -2 ), pc ); pc = GET_LE16( &READ_CODE( 0xFFFA ) + (result_ & 4) ); // Save flags int temp; GET_FLAGS( temp ); temp |= r20 + (result_ & b10); // B flag set for BRK sp = SP( -3 ); WRITE_STACK( sp, temp ); // Update I flag in externally-visible flags CPU.r.flags = (flags |= i04); // Update time int delta = s.base - CPU.end_time_; if ( delta >= 0 ) goto loop; s_time += delta; s.base = CPU.end_time_; goto loop; } out_of_time: pc--; // Optional action that triggers interrupt or changes irq/end time #ifdef CPU_DONE { CPU_DONE( result_ ); if ( result_ >= 0 ) goto interrupt; if ( s_time < 0 ) goto loop; } #endif stop: // Flush cached state CPU.r.pc = pc; CPU.r.sp = GET_SP(); CPU.r.a = a; CPU.r.x = x; CPU.r.y = y; int temp; GET_FLAGS( temp ); CPU.r.flags = temp; CPU.cpu_state_.base = s.base; CPU.cpu_state_.time = s_time; CPU.cpu_state = &CPU.cpu_state_; }