cog/Frameworks/GME/gme/Gb_Oscs.cpp

337 lines
6.7 KiB
C++

// Gb_Snd_Emu 0.1.5. http://www.slack.net/~ant/
#include "Gb_Apu.h"
#include <string.h>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
// Gb_Osc
void Gb_Osc::reset()
{
delay = 0;
last_amp = 0;
length = 0;
output_select = 3;
output = outputs [output_select];
}
void Gb_Osc::clock_length()
{
if ( (regs [4] & len_enabled_mask) && length )
length--;
}
// Gb_Env
void Gb_Env::clock_envelope()
{
if ( env_delay && !--env_delay )
{
env_delay = regs [2] & 7;
int v = volume - 1 + (regs [2] >> 2 & 2);
if ( (unsigned) v < 15 )
volume = v;
}
}
bool Gb_Env::write_register( int reg, int data )
{
switch ( reg )
{
case 1:
length = 64 - (regs [1] & 0x3F);
break;
case 2:
if ( !(data >> 4) )
enabled = false;
break;
case 4:
if ( data & trigger )
{
env_delay = regs [2] & 7;
volume = regs [2] >> 4;
enabled = true;
if ( length == 0 )
length = 64;
return true;
}
}
return false;
}
// Gb_Square
void Gb_Square::reset()
{
phase = 0;
sweep_freq = 0;
sweep_delay = 0;
Gb_Env::reset();
}
void Gb_Square::clock_sweep()
{
int sweep_period = (regs [0] & period_mask) >> 4;
if ( sweep_period && sweep_delay && !--sweep_delay )
{
sweep_delay = sweep_period;
regs [3] = sweep_freq & 0xFF;
regs [4] = (regs [4] & ~0x07) | (sweep_freq >> 8 & 0x07);
int offset = sweep_freq >> (regs [0] & shift_mask);
if ( regs [0] & 0x08 )
offset = -offset;
sweep_freq += offset;
if ( sweep_freq < 0 )
{
sweep_freq = 0;
}
else if ( sweep_freq >= 2048 )
{
sweep_delay = 0; // don't modify channel frequency any further
sweep_freq = 2048; // silence sound immediately
}
}
}
void Gb_Square::run( blip_time_t time, blip_time_t end_time, int playing )
{
if ( sweep_freq == 2048 )
playing = false;
static unsigned char const table [4] = { 1, 2, 4, 6 };
int const duty = table [regs [1] >> 6];
int amp = volume & playing;
if ( phase >= duty )
amp = -amp;
int frequency = this->frequency();
if ( unsigned (frequency - 1) > 2040 ) // frequency < 1 || frequency > 2041
{
// really high frequency results in DC at half volume
amp = volume >> 1;
playing = false;
}
{
int delta = amp - last_amp;
if ( delta )
{
last_amp = amp;
synth->offset( time, delta, output );
}
}
time += delay;
if ( !playing )
time = end_time;
if ( time < end_time )
{
int const period = (2048 - frequency) * 4;
Blip_Buffer* const output = this->output;
int phase = this->phase;
int delta = amp * 2;
do
{
phase = (phase + 1) & 7;
if ( phase == 0 || phase == duty )
{
delta = -delta;
synth->offset_inline( time, delta, output );
}
time += period;
}
while ( time < end_time );
this->phase = phase;
last_amp = delta >> 1;
}
delay = time - end_time;
}
// Gb_Noise
void Gb_Noise::run( blip_time_t time, blip_time_t end_time, int playing )
{
int amp = volume & playing;
int tap = 13 - (regs [3] & 8);
if ( bits >> tap & 2 )
amp = -amp;
{
int delta = amp - last_amp;
if ( delta )
{
last_amp = amp;
synth->offset( time, delta, output );
}
}
time += delay;
if ( !playing )
time = end_time;
if ( time < end_time )
{
static unsigned char const table [8] = { 8, 16, 32, 48, 64, 80, 96, 112 };
int period = table [regs [3] & 7] << (regs [3] >> 4);
// keep parallel resampled time to eliminate time conversion in the loop
Blip_Buffer* const output = this->output;
const blip_resampled_time_t resampled_period =
output->resampled_duration( period );
blip_resampled_time_t resampled_time = output->resampled_time( time );
unsigned bits = this->bits;
int delta = amp * 2;
do
{
unsigned changed = (bits >> tap) + 1;
time += period;
bits <<= 1;
if ( changed & 2 )
{
delta = -delta;
bits |= 1;
synth->offset_resampled( resampled_time, delta, output );
}
resampled_time += resampled_period;
}
while ( time < end_time );
this->bits = bits;
last_amp = delta >> 1;
}
delay = time - end_time;
}
// Gb_Wave
inline void Gb_Wave::write_register( int reg, int data )
{
switch ( reg )
{
case 0:
if ( !(data & 0x80) )
enabled = false;
break;
case 1:
length = 256 - regs [1];
break;
case 2:
volume = data >> 5 & 3;
break;
case 4:
if ( data & trigger & regs [0] )
{
wave_pos = 0;
enabled = true;
if ( length == 0 )
length = 256;
}
}
}
void Gb_Wave::run( blip_time_t time, blip_time_t end_time, int playing )
{
int volume_shift = (volume - 1) & 7; // volume = 0 causes shift = 7
int frequency;
{
int amp = (wave [wave_pos] >> volume_shift & playing) * 2;
frequency = this->frequency();
if ( unsigned (frequency - 1) > 2044 ) // frequency < 1 || frequency > 2045
{
amp = 30 >> volume_shift & playing;
playing = false;
}
int delta = amp - last_amp;
if ( delta )
{
last_amp = amp;
synth->offset( time, delta, output );
}
}
time += delay;
if ( !playing )
time = end_time;
if ( time < end_time )
{
Blip_Buffer* const output = this->output;
int const period = (2048 - frequency) * 2;
int wave_pos = (this->wave_pos + 1) & (wave_size - 1);
do
{
int amp = (wave [wave_pos] >> volume_shift) * 2;
wave_pos = (wave_pos + 1) & (wave_size - 1);
int delta = amp - last_amp;
if ( delta )
{
last_amp = amp;
synth->offset_inline( time, delta, output );
}
time += period;
}
while ( time < end_time );
this->wave_pos = (wave_pos - 1) & (wave_size - 1);
}
delay = time - end_time;
}
// Gb_Apu::write_osc
void Gb_Apu::write_osc( int index, int reg, int data )
{
reg -= index * 5;
Gb_Square* sq = &square2;
switch ( index )
{
case 0:
sq = &square1; // FALLTHRU
case 1:
if ( sq->write_register( reg, data ) && index == 0 )
{
square1.sweep_freq = square1.frequency();
if ( (regs [0] & sq->period_mask) && (regs [0] & sq->shift_mask) )
{
square1.sweep_delay = 1; // cause sweep to recalculate now
square1.clock_sweep();
}
}
break;
case 2:
wave.write_register( reg, data );
break;
case 3:
if ( noise.write_register( reg, data ) )
noise.bits = 0x7FFF;
}
}