cog/Plugins/MIDI/MIDI/resampler.c

337 lines
9.5 KiB
C

#include "resampler.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
/* Copyright (C) 2004-2008 Shay Green.
Copyright (C) 2015-2022 Christopher Snowhill. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#undef PI
#define PI 3.1415926535897932384626433832795029
enum { imp_scale = 0x7FFF };
typedef int16_t imp_t;
typedef int32_t imp_off_t; /* for max_res of 512 and impulse width of 32, end offsets must be 32 bits */
#if RESAMPLER_BITS == 16
typedef int32_t intermediate_t;
#elif RESAMPLER_BITS == 32
typedef int64_t intermediate_t;
#endif
static void gen_sinc(double rolloff, int width, double offset, double spacing, double scale,
int count, imp_t *out) {
double const maxh = 256;
double const step = PI / maxh * spacing;
double const to_w = maxh * 2 / width;
double const pow_a_n = pow(rolloff, maxh);
double angle = (count / 2 - 1 + offset) * -step;
scale /= maxh * 2;
while(count--) {
double w;
*out++ = 0;
w = angle * to_w;
if(fabs(w) < PI) {
double rolloff_cos_a = rolloff * cos(angle);
double num = 1 - rolloff_cos_a -
pow_a_n * cos(maxh * angle) +
pow_a_n * rolloff * cos((maxh - 1) * angle);
double den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff;
double sinc = scale * num / den - scale;
out[-1] = (imp_t)(cos(w) * sinc + sinc);
}
angle += step;
}
}
enum { width = 64 };
enum { stereo = 2 };
enum { max_res = 512 };
enum { min_width = (width < 4 ? 4 : width) };
enum { adj_width = min_width / 4 * 4 + 2 };
enum { write_offset = adj_width * stereo };
enum { buffer_size = 128 };
typedef struct _resampler {
int width_;
int rate_;
int inptr;
int infilled;
int outptr;
int outfilled;
int latency;
imp_t const *imp;
imp_t impulses[max_res * (adj_width + 2 * (sizeof(imp_off_t) / sizeof(imp_t)))];
sample_t buffer_in[buffer_size * stereo * 2];
sample_t buffer_out[buffer_size * stereo];
} resampler;
void *resampler_create() {
resampler *r = (resampler *)malloc(sizeof(resampler));
if(r) resampler_clear(r);
return r;
}
void *resampler_dup(void *_r) {
resampler *r = (resampler *)_r;
resampler *t = (resampler *)malloc(sizeof(resampler));
if(r && t) {
memcpy(t, r, sizeof(resampler));
t->imp = t->impulses + (r->imp - r->impulses);
} else if(t) {
resampler_clear(t);
}
return t;
}
void resampler_destroy(void *r) {
free(r);
}
void resampler_clear(void *_r) {
resampler *r = (resampler *)_r;
r->width_ = adj_width;
r->inptr = 0;
r->infilled = 0;
r->outptr = 0;
r->outfilled = 0;
r->latency = 0;
r->imp = r->impulses;
resampler_set_rate(r, 1.0);
}
void resampler_set_rate(void *_r, double new_factor) {
resampler *rs = (resampler *)_r;
double const rolloff = 0.999;
double const gain = 1.0;
int step;
double fraction;
double filter;
double pos = 0.0;
imp_t *out;
int n;
/* determine number of sub-phases that yield lowest error */
double ratio_ = 0.0;
int res = -1;
{
double least_error = 2;
double pos = 0;
int r;
for(r = 1; r <= max_res; r++) {
double nearest, error;
pos += new_factor;
nearest = floor(pos + 0.5);
error = fabs(pos - nearest);
if(error < least_error) {
res = r;
ratio_ = nearest / res;
least_error = error;
}
}
}
rs->rate_ = ratio_;
/* how much of input is used for each output sample */
step = stereo * (int)floor(ratio_);
fraction = fmod(ratio_, 1.0);
filter = (ratio_ < 1.0) ? 1.0 : 1.0 / ratio_;
/*int input_per_cycle = 0;*/
out = rs->impulses;
for(n = res; --n >= 0;) {
int cur_step;
gen_sinc(rolloff, (int)(rs->width_ * filter + 1) & ~1, pos, filter,
(double)(imp_scale * gain * filter), (int)rs->width_, out);
out += rs->width_;
cur_step = step;
pos += fraction;
if(pos >= 0.9999999) {
pos -= 1.0;
cur_step += stereo;
}
((imp_off_t *)out)[0] = (cur_step - rs->width_ * 2 + 4) * sizeof(sample_t);
((imp_off_t *)out)[1] = 2 * sizeof(imp_t) + 2 * sizeof(imp_off_t);
out += 2 * (sizeof(imp_off_t) / sizeof(imp_t));
/*input_per_cycle += cur_step;*/
}
/* last offset moves back to beginning of impulses*/
((imp_off_t *)out)[-1] -= (char *)out - (char *)rs->impulses;
rs->imp = rs->impulses;
}
int resampler_get_free(void *_r) {
resampler *r = (resampler *)_r;
return buffer_size * stereo - r->infilled;
}
int resampler_get_min_fill(void *_r) {
resampler *r = (resampler *)_r;
const int min_needed = write_offset + stereo;
const int latency = r->latency ? 0 : adj_width;
int min_free = min_needed - r->infilled - latency;
return min_free < 0 ? 0 : min_free;
}
void resampler_write_pair(void *_r, sample_t ls, sample_t rs) {
resampler *r = (resampler *)_r;
if(!r->latency) {
int i;
for(i = 0; i < adj_width / 2; ++i) {
r->buffer_in[r->inptr + 0] = 0;
r->buffer_in[r->inptr + 1] = 0;
r->buffer_in[buffer_size * stereo + r->inptr + 0] = 0;
r->buffer_in[buffer_size * stereo + r->inptr + 1] = 0;
r->inptr = (r->inptr + stereo) % (buffer_size * stereo);
r->infilled += stereo;
}
r->latency = 1;
}
if(r->infilled < buffer_size * stereo) {
r->buffer_in[r->inptr + 0] = ls;
r->buffer_in[r->inptr + 1] = rs;
r->buffer_in[buffer_size * stereo + r->inptr + 0] = ls;
r->buffer_in[buffer_size * stereo + r->inptr + 1] = rs;
r->inptr = (r->inptr + stereo) % (buffer_size * stereo);
r->infilled += stereo;
}
}
#ifdef _MSC_VER
#define restrict __restrict
#endif
static const sample_t *resampler_inner_loop(resampler *r, sample_t **out_,
sample_t const *out_end, sample_t const in[], int in_size) {
in_size -= write_offset;
if(in_size > 0) {
sample_t *restrict out = *out_;
sample_t const *const in_end = in + in_size;
imp_t const *imp = r->imp;
do {
/* accumulate in extended precision*/
int pt = imp[0];
int n;
intermediate_t l = (intermediate_t)pt * (intermediate_t)(in[0]);
intermediate_t r = (intermediate_t)pt * (intermediate_t)(in[1]);
if(out >= out_end)
break;
for(n = (adj_width - 2) / 2; n; --n) {
pt = imp[1];
l += (intermediate_t)pt * (intermediate_t)(in[2]);
r += (intermediate_t)pt * (intermediate_t)(in[3]);
/* pre-increment more efficient on some RISC processors*/
imp += 2;
pt = imp[0];
r += (intermediate_t)pt * (intermediate_t)(in[5]);
in += 4;
l += (intermediate_t)pt * (intermediate_t)(in[0]);
}
pt = imp[1];
l += (intermediate_t)pt * (intermediate_t)(in[2]);
r += (intermediate_t)pt * (intermediate_t)(in[3]);
/* these two "samples" after the end of the impulse give the
* proper offsets to the next input sample and next impulse */
in = (sample_t const *)((char const *)in + ((imp_off_t *)(&imp[2]))[0]); /* some negative value */
imp = (imp_t const *)((char const *)imp + ((imp_off_t *)(&imp[2]))[1]); /* small positive or large negative */
out[0] = (sample_t)(l >> 15);
out[1] = (sample_t)(r >> 15);
out += 2;
} while(in < in_end);
r->imp = imp;
*out_ = out;
}
return in;
}
#undef restrict
static int resampler_wrapper(resampler *r, sample_t out[], int *out_size,
sample_t const in[], int in_size) {
sample_t *out_ = out;
int result = resampler_inner_loop(r, &out_, out + *out_size, in, in_size) - in;
*out_size = out_ - out;
return result;
}
static void resampler_fill(resampler *r) {
while(!r->outfilled && r->infilled) {
int writepos = (r->outptr + r->outfilled) % (buffer_size * stereo);
int writesize = (buffer_size * stereo) - writepos;
int inread;
if(writesize > (buffer_size * stereo - r->outfilled))
writesize = buffer_size * stereo - r->outfilled;
inread = resampler_wrapper(r, &r->buffer_out[writepos], &writesize, &r->buffer_in[buffer_size * stereo + r->inptr - r->infilled], r->infilled);
r->infilled -= inread;
r->outfilled += writesize;
if(!inread)
break;
}
}
int resampler_get_avail(void *_r) {
resampler *r = (resampler *)_r;
if(r->outfilled < stereo && r->infilled >= r->width_)
resampler_fill(r);
return r->outfilled;
}
static void resampler_read_pair_internal(resampler *r, sample_t *ls, sample_t *rs, int advance) {
if(r->outfilled < stereo)
resampler_fill(r);
if(r->outfilled < stereo) {
*ls = 0;
*rs = 0;
return;
}
*ls = r->buffer_out[r->outptr + 0];
*rs = r->buffer_out[r->outptr + 1];
if(advance) {
r->outptr = (r->outptr + 2) % (buffer_size * stereo);
r->outfilled -= stereo;
}
}
void resampler_read_pair(void *_r, sample_t *ls, sample_t *rs) {
resampler *r = (resampler *)_r;
resampler_read_pair_internal(r, ls, rs, 1);
}
void resampler_peek_pair(void *_r, sample_t *ls, sample_t *rs) {
resampler *r = (resampler *)_r;
resampler_read_pair_internal(r, ls, rs, 0);
}