cog/Frameworks/HivelyPlayer/HivelyPlayer/blip_buf.c

334 lines
9.9 KiB
C

/* blip_buf 1.1.0. http://www.slack.net/~ant/ */
#include "blip_buf.h"
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
/* Library Copyright (C) 2003-2009 Shay Green. This library is free software;
you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#if defined (BLARGG_TEST) && BLARGG_TEST
#include "blargg_test.h"
#endif
/* Equivalent to ULONG_MAX >= 0xFFFFFFFF00000000.
Avoids constants that don't fit in 32 bits. */
#if ULONG_MAX/0xFFFFFFFF > 0xFFFFFFFF
typedef unsigned long fixed_t;
enum { pre_shift = 32 };
#elif defined(ULLONG_MAX)
typedef unsigned long long fixed_t;
enum { pre_shift = 32 };
#else
typedef unsigned fixed_t;
enum { pre_shift = 0 };
#endif
enum { time_bits = pre_shift + 20 };
static fixed_t const time_unit = (fixed_t) 1 << time_bits;
enum { bass_shift = 9 }; /* affects high-pass filter breakpoint frequency */
enum { end_frame_extra = 2 }; /* allows deltas slightly after frame length */
enum { half_width = 8 };
enum { buf_extra = half_width*2 + end_frame_extra };
enum { phase_bits = 5 };
enum { phase_count = 1 << phase_bits };
enum { delta_bits = 15 };
enum { delta_unit = 1 << delta_bits };
enum { frac_bits = time_bits - pre_shift };
/* We could eliminate avail and encode whole samples in offset, but that would
limit the total buffered samples to blip_max_frame. That could only be
increased by decreasing time_bits, which would reduce resample ratio accuracy.
*/
/** Sample buffer that resamples to output rate and accumulates samples
until they're read out */
struct hvl_blip_t
{
fixed_t factor;
fixed_t offset;
int avail;
int size;
fixed_t integrator;
};
typedef int buf_t;
/* probably not totally portable */
#define SAMPLES( buf ) ((buf_t*) ((buf) + 1))
/* Arithmetic (sign-preserving) right shift */
#define ARITH_SHIFT( n, shift ) \
((n) >> (shift))
enum { max_sample = +32767 };
enum { min_sample = -32768 };
#define CLAMP( n ) \
{\
if ( (short) n != n )\
n = ARITH_SHIFT( n, 16 ) ^ max_sample;\
}
static void check_assumptions( void )
{
int n;
#if INT_MAX < 0x7FFFFFFF || UINT_MAX < 0xFFFFFFFF
#error "int must be at least 32 bits"
#endif
assert( (-3 >> 1) == -2 ); /* right shift must preserve sign */
n = max_sample * 2;
CLAMP( n );
assert( n == max_sample );
n = min_sample * 2;
CLAMP( n );
assert( n == min_sample );
assert( hvl_blip_max_ratio <= time_unit );
assert( hvl_blip_max_frame <= (fixed_t) -1 >> time_bits );
}
size_t hvl_blip_size( int size )
{
assert( size >= 0 );
return sizeof (hvl_blip_t) + (size + buf_extra) * sizeof (buf_t);
}
void hvl_blip_new_inplace( hvl_blip_t* m, int size )
{
assert( size >= 0 );
if ( m )
{
m->factor = time_unit / hvl_blip_max_ratio;
m->size = size;
hvl_blip_clear( m );
check_assumptions();
}
}
void hvl_blip_set_rates( hvl_blip_t* m, double clock_rate, double sample_rate )
{
double factor = time_unit * sample_rate / clock_rate;
m->factor = (fixed_t) factor;
/* Fails if clock_rate exceeds maximum, relative to sample_rate */
assert( 0 <= factor - m->factor && factor - m->factor < 1 );
/* Avoid requiring math.h. Equivalent to
m->factor = (int) ceil( factor ) */
if ( m->factor < factor )
m->factor++;
/* At this point, factor is most likely rounded up, but could still
have been rounded down in the floating-point calculation. */
}
void hvl_blip_clear( hvl_blip_t* m )
{
/* We could set offset to 0, factor/2, or factor-1. 0 is suitable if
factor is rounded up. factor-1 is suitable if factor is rounded down.
Since we don't know rounding direction, factor/2 accommodates either,
with the slight loss of showing an error in half the time. Since for
a 64-bit factor this is years, the halving isn't a problem. */
m->offset = m->factor / 2;
m->avail = 0;
m->integrator = 0;
memset( SAMPLES( m ), 0, (m->size + buf_extra) * sizeof (buf_t) );
}
int hvl_blip_clocks_needed( const hvl_blip_t* m, int samples )
{
fixed_t needed;
/* Fails if buffer can't hold that many more samples */
assert( samples >= 0 && m->avail + samples <= m->size );
needed = (fixed_t) samples * time_unit;
if ( needed < m->offset )
return 0;
return (int)((needed - m->offset + m->factor - 1) / m->factor);
}
void hvl_blip_end_frame( hvl_blip_t* m, unsigned t )
{
fixed_t off = t * m->factor + m->offset;
m->avail += off >> time_bits;
m->offset = off & (time_unit - 1);
/* Fails if buffer size was exceeded */
assert( m->avail <= m->size );
}
int hvl_blip_samples_avail( const hvl_blip_t* m )
{
return m->avail;
}
static void remove_samples( hvl_blip_t* m, int count )
{
buf_t* buf = SAMPLES( m );
int remain = m->avail + buf_extra - count;
m->avail -= count;
memmove( &buf [0], &buf [count], remain * sizeof buf [0] );
memset( &buf [remain], 0, count * sizeof buf [0] );
}
int hvl_blip_read_samples( hvl_blip_t* m, int out [], int count, int gain )
{
assert( count >= 0 );
if ( count > m->avail )
count = m->avail;
if ( count )
{
buf_t const* in = SAMPLES( m );
buf_t const* end = in + count;
fixed_t sum = m->integrator;
do
{
/* Eliminate fraction */
int s = (int) ARITH_SHIFT( sum, delta_bits );
sum += *in++;
*out = s * gain;
out += 2;
/* High-pass filter */
sum -= s << (delta_bits - bass_shift);
}
while ( in != end );
m->integrator = sum;
remove_samples( m, count );
}
return count;
}
/* Things that didn't help performance on x86:
__attribute__((aligned(128)))
#define short int
restrict
*/
static int const bl_step [phase_count + 1] [half_width] =
{
{ 0, 0, 0, 0, 0, 0, 0,32768},
{ -1, 9, -30, 79, -178, 380, -923,32713},
{ -2, 17, -58, 153, -346, 739,-1775,32549},
{ -3, 24, -83, 221, -503, 1073,-2555,32277},
{ -4, 30, -107, 284, -647, 1382,-3259,31898},
{ -5, 36, -127, 340, -778, 1662,-3887,31415},
{ -5, 40, -145, 390, -895, 1913,-4439,30832},
{ -6, 44, -160, 433, -998, 2133,-4914,30151},
{ -6, 47, -172, 469,-1085, 2322,-5313,29377},
{ -6, 49, -181, 499,-1158, 2479,-5636,28515},
{ -6, 50, -188, 521,-1215, 2604,-5885,27570},
{ -5, 51, -193, 537,-1257, 2697,-6063,26548},
{ -5, 51, -195, 547,-1285, 2760,-6172,25455},
{ -5, 50, -195, 550,-1298, 2792,-6214,24298},
{ -4, 49, -192, 548,-1298, 2795,-6193,23084},
{ -4, 47, -188, 540,-1284, 2770,-6112,21820},
{ -3, 45, -182, 526,-1258, 2719,-5976,20513},
{ -3, 42, -175, 508,-1221, 2643,-5788,19172},
{ -2, 39, -166, 486,-1173, 2544,-5554,17805},
{ -2, 36, -156, 460,-1116, 2425,-5277,16418},
{ -1, 33, -145, 431,-1050, 2287,-4963,15020},
{ -1, 30, -133, 399, -977, 2132,-4615,13618},
{ -1, 26, -120, 365, -898, 1963,-4240,12221},
{ 0, 23, -107, 329, -813, 1783,-3843,10836},
{ 0, 20, -94, 292, -725, 1593,-3427, 9470},
{ 0, 17, -81, 254, -633, 1396,-2998, 8131},
{ 0, 14, -68, 215, -540, 1194,-2560, 6824},
{ 0, 11, -56, 177, -446, 989,-2119, 5556},
{ 0, 8, -43, 139, -353, 784,-1678, 4334},
{ 0, 6, -31, 102, -260, 581,-1242, 3162},
{ 0, 3, -20, 66, -170, 381, -814, 2046},
{ 0, 1, -9, 32, -83, 187, -399, 991},
{ 0, 0, 0, 0, 0, 0, 0, 0}
};
/* Shifting by pre_shift allows calculation using unsigned int rather than
possibly-wider fixed_t. On 32-bit platforms, this is likely more efficient.
And by having pre_shift 32, a 32-bit platform can easily do the shift by
simply ignoring the low half. */
void hvl_blip_add_delta( hvl_blip_t* m, unsigned time, int delta )
{
unsigned fixed = (unsigned) ((time * m->factor + m->offset) >> pre_shift);
buf_t* out = SAMPLES( m ) + m->avail + (fixed >> frac_bits);
int const phase_shift = frac_bits - phase_bits;
int phase = fixed >> phase_shift & (phase_count - 1);
int const* in = bl_step [phase];
int const* rev = bl_step [phase_count - phase];
int interp = fixed >> (phase_shift - delta_bits) & (delta_unit - 1);
int delta2 = (delta * interp) >> delta_bits;
delta -= delta2;
/* Fails if buffer size was exceeded */
assert( out <= &SAMPLES( m ) [m->size + end_frame_extra] );
out [0] += in[0]*delta + in[half_width+0]*delta2;
out [1] += in[1]*delta + in[half_width+1]*delta2;
out [2] += in[2]*delta + in[half_width+2]*delta2;
out [3] += in[3]*delta + in[half_width+3]*delta2;
out [4] += in[4]*delta + in[half_width+4]*delta2;
out [5] += in[5]*delta + in[half_width+5]*delta2;
out [6] += in[6]*delta + in[half_width+6]*delta2;
out [7] += in[7]*delta + in[half_width+7]*delta2;
in = rev;
out [ 8] += in[7]*delta + in[7-half_width]*delta2;
out [ 9] += in[6]*delta + in[6-half_width]*delta2;
out [10] += in[5]*delta + in[5-half_width]*delta2;
out [11] += in[4]*delta + in[4-half_width]*delta2;
out [12] += in[3]*delta + in[3-half_width]*delta2;
out [13] += in[2]*delta + in[2-half_width]*delta2;
out [14] += in[1]*delta + in[1-half_width]*delta2;
out [15] += in[0]*delta + in[0-half_width]*delta2;
}
void hvl_blip_add_delta_fast( hvl_blip_t* m, unsigned time, int delta )
{
unsigned fixed = (unsigned) ((time * m->factor + m->offset) >> pre_shift);
buf_t* out = SAMPLES( m ) + m->avail + (fixed >> frac_bits);
int interp = fixed >> (frac_bits - delta_bits) & (delta_unit - 1);
int delta2 = delta * interp;
/* Fails if buffer size was exceeded */
assert( out <= &SAMPLES( m ) [m->size + end_frame_extra] );
out [7] += delta * delta_unit - delta2;
out [8] += delta2;
}