392 lines
11 KiB
C
392 lines
11 KiB
C
/* (C) 2007-2008 Jean-Marc Valin, CSIRO
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "mathops.h"
|
|
#include "cwrs.h"
|
|
#include "vq.h"
|
|
#include "arch.h"
|
|
#include "os_support.h"
|
|
|
|
/** Takes the pitch vector and the decoded residual vector, computes the gain
|
|
that will give ||p+g*y||=1 and mixes the residual with the pitch. */
|
|
static void mix_pitch_and_residual(int * restrict iy, celt_norm_t * restrict X, int N, int K, const celt_norm_t * restrict P)
|
|
{
|
|
int i;
|
|
celt_word32_t Ryp, Ryy, Rpp;
|
|
celt_word16_t ryp, ryy, rpp;
|
|
celt_word32_t g;
|
|
VARDECL(celt_norm_t, y);
|
|
#ifdef FIXED_POINT
|
|
int yshift;
|
|
#endif
|
|
SAVE_STACK;
|
|
#ifdef FIXED_POINT
|
|
yshift = 13-celt_ilog2(K);
|
|
#endif
|
|
ALLOC(y, N, celt_norm_t);
|
|
|
|
Rpp = 0;
|
|
i=0;
|
|
do {
|
|
Rpp = MAC16_16(Rpp,P[i],P[i]);
|
|
y[i] = SHL16(iy[i],yshift);
|
|
} while (++i < N);
|
|
|
|
Ryp = 0;
|
|
Ryy = 0;
|
|
/* If this doesn't generate a dual MAC (on supported archs), fire the compiler guy */
|
|
i=0;
|
|
do {
|
|
Ryp = MAC16_16(Ryp, y[i], P[i]);
|
|
Ryy = MAC16_16(Ryy, y[i], y[i]);
|
|
} while (++i < N);
|
|
|
|
ryp = ROUND16(Ryp,14);
|
|
ryy = ROUND16(Ryy,14);
|
|
rpp = ROUND16(Rpp,14);
|
|
/* g = (sqrt(Ryp^2 + Ryy - Rpp*Ryy)-Ryp)/Ryy */
|
|
g = MULT16_32_Q15(celt_sqrt(MAC16_16(Ryy, ryp,ryp) - MULT16_16(ryy,rpp)) - ryp,
|
|
celt_rcp(SHR32(Ryy,9)));
|
|
|
|
i=0;
|
|
do
|
|
X[i] = ADD16(P[i], ROUND16(MULT16_16(y[i], g),11));
|
|
while (++i < N);
|
|
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
|
|
void alg_quant(celt_norm_t *X, celt_mask_t *W, int N, int K, celt_norm_t *P, ec_enc *enc)
|
|
{
|
|
VARDECL(celt_norm_t, y);
|
|
VARDECL(int, iy);
|
|
VARDECL(celt_word16_t, signx);
|
|
int j, is;
|
|
celt_word16_t s;
|
|
int pulsesLeft;
|
|
celt_word32_t sum;
|
|
celt_word32_t xy, yy, yp;
|
|
celt_word16_t Rpp;
|
|
int N_1; /* Inverse of N, in Q14 format (even for float) */
|
|
#ifdef FIXED_POINT
|
|
int yshift;
|
|
#endif
|
|
SAVE_STACK;
|
|
|
|
#ifdef FIXED_POINT
|
|
yshift = 13-celt_ilog2(K);
|
|
#endif
|
|
|
|
ALLOC(y, N, celt_norm_t);
|
|
ALLOC(iy, N, int);
|
|
ALLOC(signx, N, celt_word16_t);
|
|
N_1 = 512/N;
|
|
|
|
sum = 0;
|
|
j=0; do {
|
|
X[j] -= P[j];
|
|
if (X[j]>0)
|
|
signx[j]=1;
|
|
else {
|
|
signx[j]=-1;
|
|
X[j]=-X[j];
|
|
P[j]=-P[j];
|
|
}
|
|
iy[j] = 0;
|
|
y[j] = 0;
|
|
sum = MAC16_16(sum, P[j],P[j]);
|
|
} while (++j<N);
|
|
Rpp = ROUND16(sum, NORM_SHIFT);
|
|
|
|
celt_assert2(Rpp<=NORM_SCALING, "Rpp should never have a norm greater than unity");
|
|
|
|
xy = yy = yp = 0;
|
|
|
|
pulsesLeft = K;
|
|
|
|
/* Do a pre-search by projecting on the pyramid */
|
|
if (K > (N>>1))
|
|
{
|
|
celt_word16_t rcp;
|
|
sum=0;
|
|
j=0; do {
|
|
sum += X[j];
|
|
} while (++j<N);
|
|
|
|
#ifdef FIXED_POINT
|
|
if (sum <= K)
|
|
#else
|
|
if (sum <= EPSILON)
|
|
#endif
|
|
{
|
|
X[0] = QCONST16(1.f,14);
|
|
j=1; do
|
|
X[j]=0;
|
|
while (++j<N);
|
|
sum = QCONST16(1.f,14);
|
|
}
|
|
/* Do we have sufficient accuracy here? */
|
|
rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
|
|
j=0; do {
|
|
#ifdef FIXED_POINT
|
|
/* It's really important to round *towards zero* here */
|
|
iy[j] = MULT16_16_Q15(X[j],rcp);
|
|
#else
|
|
iy[j] = floor(rcp*X[j]);
|
|
#endif
|
|
y[j] = SHL16(iy[j],yshift);
|
|
yy = MAC16_16(yy, y[j],y[j]);
|
|
xy = MAC16_16(xy, X[j],y[j]);
|
|
yp += P[j]*y[j];
|
|
y[j] *= 2;
|
|
pulsesLeft -= iy[j];
|
|
} while (++j<N);
|
|
}
|
|
celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
|
|
|
|
while (pulsesLeft > 1)
|
|
{
|
|
int pulsesAtOnce=1;
|
|
int best_id;
|
|
celt_word16_t magnitude;
|
|
celt_word32_t best_num = -VERY_LARGE16;
|
|
celt_word16_t best_den = 0;
|
|
#ifdef FIXED_POINT
|
|
int rshift;
|
|
#endif
|
|
/* Decide on how many pulses to find at once */
|
|
pulsesAtOnce = (pulsesLeft*N_1)>>9; /* pulsesLeft/N */
|
|
if (pulsesAtOnce<1)
|
|
pulsesAtOnce = 1;
|
|
#ifdef FIXED_POINT
|
|
rshift = yshift+1+celt_ilog2(K-pulsesLeft+pulsesAtOnce);
|
|
#endif
|
|
magnitude = SHL16(pulsesAtOnce, yshift);
|
|
|
|
best_id = 0;
|
|
/* The squared magnitude term gets added anyway, so we might as well
|
|
add it outside the loop */
|
|
yy = MAC16_16(yy, magnitude,magnitude);
|
|
/* Choose between fast and accurate strategy depending on where we are in the search */
|
|
/* This should ensure that anything we can process will have a better score */
|
|
j=0;
|
|
do {
|
|
celt_word16_t Rxy, Ryy;
|
|
/* Select sign based on X[j] alone */
|
|
s = magnitude;
|
|
/* Temporary sums of the new pulse(s) */
|
|
Rxy = EXTRACT16(SHR32(MAC16_16(xy, s,X[j]),rshift));
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
Ryy = EXTRACT16(SHR32(MAC16_16(yy, s,y[j]),rshift));
|
|
|
|
/* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
|
|
Rxy is positive because the sign is pre-computed) */
|
|
Rxy = MULT16_16_Q15(Rxy,Rxy);
|
|
/* The idea is to check for num/den >= best_num/best_den, but that way
|
|
we can do it without any division */
|
|
/* OPT: Make sure to use conditional moves here */
|
|
if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
|
|
{
|
|
best_den = Ryy;
|
|
best_num = Rxy;
|
|
best_id = j;
|
|
}
|
|
} while (++j<N);
|
|
|
|
j = best_id;
|
|
is = pulsesAtOnce;
|
|
s = SHL16(is, yshift);
|
|
|
|
/* Updating the sums of the new pulse(s) */
|
|
xy = xy + MULT16_16(s,X[j]);
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
yy = yy + MULT16_16(s,y[j]);
|
|
yp = yp + MULT16_16(s, P[j]);
|
|
|
|
/* Only now that we've made the final choice, update y/iy */
|
|
/* Multiplying y[j] by 2 so we don't have to do it everywhere else */
|
|
y[j] += 2*s;
|
|
iy[j] += is;
|
|
pulsesLeft -= pulsesAtOnce;
|
|
}
|
|
|
|
if (pulsesLeft > 0)
|
|
{
|
|
celt_word16_t g;
|
|
celt_word16_t best_num = -VERY_LARGE16;
|
|
celt_word16_t best_den = 0;
|
|
int best_id = 0;
|
|
celt_word16_t magnitude = SHL16(1, yshift);
|
|
|
|
/* The squared magnitude term gets added anyway, so we might as well
|
|
add it outside the loop */
|
|
yy = MAC16_16(yy, magnitude,magnitude);
|
|
j=0;
|
|
do {
|
|
celt_word16_t Rxy, Ryy, Ryp;
|
|
celt_word16_t num;
|
|
/* Select sign based on X[j] alone */
|
|
s = magnitude;
|
|
/* Temporary sums of the new pulse(s) */
|
|
Rxy = ROUND16(MAC16_16(xy, s,X[j]), 14);
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
Ryy = ROUND16(MAC16_16(yy, s,y[j]), 14);
|
|
Ryp = ROUND16(MAC16_16(yp, s,P[j]), 14);
|
|
|
|
/* Compute the gain such that ||p + g*y|| = 1
|
|
...but instead, we compute g*Ryy to avoid dividing */
|
|
g = celt_psqrt(MULT16_16(Ryp,Ryp) + MULT16_16(Ryy,QCONST16(1.f,14)-Rpp)) - Ryp;
|
|
/* Knowing that gain, what's the error: (x-g*y)^2
|
|
(result is negated and we discard x^2 because it's constant) */
|
|
/* score = 2*g*Rxy - g*g*Ryy;*/
|
|
#ifdef FIXED_POINT
|
|
/* No need to multiply Rxy by 2 because we did it earlier */
|
|
num = MULT16_16_Q15(ADD16(SUB16(Rxy,g),Rxy),g);
|
|
#else
|
|
num = g*(2*Rxy-g);
|
|
#endif
|
|
if (MULT16_16(best_den, num) > MULT16_16(Ryy, best_num))
|
|
{
|
|
best_den = Ryy;
|
|
best_num = num;
|
|
best_id = j;
|
|
}
|
|
} while (++j<N);
|
|
iy[best_id] += 1;
|
|
}
|
|
j=0;
|
|
do {
|
|
P[j] = MULT16_16(signx[j],P[j]);
|
|
X[j] = MULT16_16(signx[j],X[j]);
|
|
if (signx[j] < 0)
|
|
iy[j] = -iy[j];
|
|
} while (++j<N);
|
|
encode_pulses(iy, N, K, enc);
|
|
|
|
/* Recompute the gain in one pass to reduce the encoder-decoder mismatch
|
|
due to the recursive computation used in quantisation. */
|
|
mix_pitch_and_residual(iy, X, N, K, P);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce
|
|
the final normalised signal in the current band. */
|
|
void alg_unquant(celt_norm_t *X, int N, int K, celt_norm_t *P, ec_dec *dec)
|
|
{
|
|
VARDECL(int, iy);
|
|
SAVE_STACK;
|
|
ALLOC(iy, N, int);
|
|
decode_pulses(iy, N, K, dec);
|
|
mix_pitch_and_residual(iy, X, N, K, P);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
celt_word16_t renormalise_vector(celt_norm_t *X, celt_word16_t value, int N, int stride)
|
|
{
|
|
int i;
|
|
celt_word32_t E = EPSILON;
|
|
celt_word16_t rE;
|
|
celt_word16_t g;
|
|
celt_norm_t *xptr = X;
|
|
for (i=0;i<N;i++)
|
|
{
|
|
E = MAC16_16(E, *xptr, *xptr);
|
|
xptr += stride;
|
|
}
|
|
|
|
rE = celt_sqrt(E);
|
|
#ifdef FIXED_POINT
|
|
if (rE <= 128)
|
|
g = Q15ONE;
|
|
else
|
|
#endif
|
|
g = MULT16_16_Q15(value,celt_rcp(SHL32(rE,9)));
|
|
xptr = X;
|
|
for (i=0;i<N;i++)
|
|
{
|
|
*xptr = PSHR32(MULT16_16(g, *xptr),8);
|
|
xptr += stride;
|
|
}
|
|
return rE;
|
|
}
|
|
|
|
static void fold(const CELTMode *m, int N, celt_norm_t *Y, celt_norm_t * restrict P, int N0, int B)
|
|
{
|
|
int j;
|
|
const int C = CHANNELS(m);
|
|
int id = (N0*C) % (C*B);
|
|
/* Here, we assume that id will never be greater than N0, i.e. that
|
|
no band is wider than N0. In the unlikely case it happens, we set
|
|
everything to zero */
|
|
/*{
|
|
int offset = (N0*C - (id+C*N))/2;
|
|
if (offset > C*N0/16)
|
|
offset = C*N0/16;
|
|
offset -= offset % (C*B);
|
|
if (offset < 0)
|
|
offset = 0;
|
|
//printf ("%d\n", offset);
|
|
id += offset;
|
|
}*/
|
|
if (id+C*N>N0*C)
|
|
for (j=0;j<C*N;j++)
|
|
P[j] = 0;
|
|
else
|
|
for (j=0;j<C*N;j++)
|
|
P[j] = Y[id++];
|
|
}
|
|
|
|
void intra_fold(const CELTMode *m, celt_norm_t * restrict x, int N, int *pulses, celt_norm_t *Y, celt_norm_t * restrict P, int N0, int B)
|
|
{
|
|
int c;
|
|
celt_word16_t pred_gain;
|
|
const int C = CHANNELS(m);
|
|
|
|
fold(m, N, Y, P, N0, B);
|
|
c=0;
|
|
do {
|
|
int K = pulses[c];
|
|
if (K==0)
|
|
pred_gain = Q15ONE;
|
|
else
|
|
pred_gain = celt_div((celt_word32_t)MULT16_16(Q15_ONE,N),(celt_word32_t)(N+2*K*(K+1)));
|
|
|
|
renormalise_vector(P+c, pred_gain, N, C);
|
|
} while (++c < C);
|
|
}
|
|
|