cog/Frameworks/GME/gme/Spc_Cpu.cpp

1063 lines
21 KiB
C++
Executable File

// Game_Music_Emu 0.5.2. http://www.slack.net/~ant/
#include "Spc_Cpu.h"
#include "blargg_endian.h"
#include "Snes_Spc.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
// Several instructions are commented out (or not even implemented). These aren't
// used by the SPC files tested.
// Optimize performance for the most common instructions, and size for the rest:
//
// 15% 0xF0 BEQ rel
// 8% 0xE4 MOV A,dp
// 4% 0xF5 MOV A,abs+X
// 4% 0xD0 BNE rel
// 4% 0x6F RET
// 4% 0x3F CALL addr
// 4% 0xF4 MOV A,dp+X
// 3% 0xC4 MOV dp,A
// 2% 0xEB MOV Y,dp
// 2% 0x3D INC X
// 2% 0xF6 MOV A,abs+Y
// (1% and below not shown)
Spc_Cpu::Spc_Cpu( Snes_Spc* e, uint8_t* ram_in ) : ram( ram_in ), emu( *e )
{
remain_ = 0;
assert( INT_MAX >= 0x7FFFFFFF ); // requires 32-bit int
blargg_verify_byte_order();
}
#define READ( addr ) (emu.read( addr ))
#define WRITE( addr, value ) (emu.write( addr, value ))
#define READ_DP( addr ) READ( (addr) + dp )
#define WRITE_DP( addr, value ) WRITE( (addr) + dp, value )
#define READ_PROG( addr ) (ram [addr])
#define READ_PROG16( addr ) GET_LE16( &READ_PROG( addr ) )
int Spc_Cpu::read( spc_addr_t addr )
{
return READ( addr );
}
void Spc_Cpu::write( spc_addr_t addr, int data )
{
WRITE( addr, data );
}
// Cycle table derived from text copy of SPC-700 manual (using regular expressions)
static unsigned char const cycle_table [0x100] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
2,8,4,5,3,4,3,6,2,6,5,4,5,4,6,8, // 0
2,8,4,5,4,5,5,6,5,5,6,5,2,2,4,6, // 1
2,8,4,5,3,4,3,6,2,6,5,4,5,4,5,4, // 2
2,8,4,5,4,5,5,6,5,5,6,5,2,2,3,8, // 3
2,8,4,5,3,4,3,6,2,6,4,4,5,4,6,6, // 4
2,8,4,5,4,5,5,6,5,5,4,5,2,2,4,3, // 5
2,8,4,5,3,4,3,6,2,6,4,4,5,4,5,5, // 6
2,8,4,5,4,5,5,6,5,5,5,5,2,2,3,6, // 7
2,8,4,5,3,4,3,6,2,6,5,4,5,2,4,5, // 8
2,8,4,5,4,5,5,6,5,5,5,5,2,2,12,5,// 9
3,8,4,5,3,4,3,6,2,6,4,4,5,2,4,4, // A
2,8,4,5,4,5,5,6,5,5,5,5,2,2,3,4, // B
3,8,4,5,4,5,4,7,2,5,6,4,5,2,4,9, // C
2,8,4,5,5,6,6,7,4,5,4,5,2,2,6,3, // D
2,8,4,5,3,4,3,6,2,4,5,3,4,3,4,3, // E
2,8,4,5,4,5,5,6,3,4,5,4,2,2,4,3 // F
};
// The C,mem instructions are hardly used, so a non-inline function is used for
// the common access code.
unsigned Spc_Cpu::mem_bit( spc_addr_t pc )
{
unsigned addr = READ_PROG16( pc );
unsigned t = READ( addr & 0x1FFF ) >> (addr >> 13);
return (t << 8) & 0x100;
}
spc_time_t Spc_Cpu::run( spc_time_t cycle_count )
{
remain_ = cycle_count;
uint8_t* const ram = this->ram; // cache
// Stack pointer is kept one greater than usual SPC stack pointer to allow
// common pre-decrement and post-increment memory instructions that some
// processors have. Address wrap-around isn't supported.
#define PUSH( v ) (*--sp = uint8_t (v))
#define PUSH16( v ) (sp -= 2, SET_LE16( sp, v ))
#define POP() (*sp++)
#define SET_SP( v ) (sp = ram + 0x101 + (v))
#define GET_SP() (sp - 0x101 - ram)
uint8_t* sp;
SET_SP( r.sp );
// registers
unsigned pc = (unsigned) r.pc;
int a = r.a;
int x = r.x;
int y = r.y;
// status flags
const int st_n = 0x80;
const int st_v = 0x40;
const int st_p = 0x20;
const int st_b = 0x10;
const int st_h = 0x08;
const int st_i = 0x04;
const int st_z = 0x02;
const int st_c = 0x01;
#define IS_NEG (nz & 0x880)
#define CALC_STATUS( out ) do {\
out = status & ~(st_n | st_z | st_c);\
out |= (c >> 8) & st_c;\
out |= (dp >> 3) & st_p;\
if ( IS_NEG ) out |= st_n;\
if ( !(nz & 0xFF) ) out |= st_z;\
} while ( 0 )
#define SET_STATUS( in ) do {\
status = in & ~(st_n | st_z | st_c | st_p);\
c = in << 8;\
nz = (in << 4) & 0x800;\
nz |= ~in & st_z;\
dp = (in << 3) & 0x100;\
} while ( 0 )
int status;
int c; // store C as 'c' & 0x100.
int nz; // Z set if (nz & 0xFF) == 0, N set if (nz & 0x880) != 0
unsigned dp; // direct page base
{
int temp = r.status;
SET_STATUS( temp );
}
goto loop;
unsigned data; // first operand of instruction and temporary across function calls
// Common endings for instructions
cbranch_taken_loop: // compare and branch
pc += (BOOST::int8_t) READ_PROG( pc );
remain_ -= 2;
inc_pc_loop: // end of instruction with an operand
pc++;
loop:
check( (unsigned) pc < 0x10000 );
check( (unsigned) GET_SP() < 0x100 );
check( (unsigned) a < 0x100 );
check( (unsigned) x < 0x100 );
check( (unsigned) y < 0x100 );
unsigned opcode = READ_PROG( pc );
pc++;
// to do: if pc is at end of memory, this will get wrong byte
data = READ_PROG( pc );
if ( remain_ <= 0 )
goto stop;
remain_ -= cycle_table [opcode];
// Use 'data' for temporaries whose lifetime crosses read/write calls, otherwise
// use a local temporary.
switch ( opcode )
{
#define BRANCH( cond ) {\
pc++;\
int offset = (BOOST::int8_t) data;\
if ( cond ) {\
pc += offset;\
remain_ -= 2;\
}\
goto loop;\
}
// Most-Common
case 0xF0: // BEQ (most common)
BRANCH( !(uint8_t) nz )
case 0xD0: // BNE
BRANCH( (uint8_t) nz )
case 0x3F: // CALL
PUSH16( pc + 2 );
pc = READ_PROG16( pc );
goto loop;
case 0x6F: // RET
pc = POP();
pc += POP() * 0x100;
goto loop;
#define CASE( n ) case n:
// Define common address modes based on opcode for immediate mode. Execution
// ends with data set to the address of the operand.
#define ADDR_MODES( op )\
CASE( op - 0x02 ) /* (X) */\
data = x + dp;\
pc--;\
goto end_##op;\
CASE( op + 0x0F ) /* (dp)+Y */\
data = READ_PROG16( data + dp ) + y;\
goto end_##op;\
CASE( op - 0x01 ) /* (dp+X) */\
data = READ_PROG16( uint8_t (data + x) + dp );\
goto end_##op;\
CASE( op + 0x0E ) /* abs+Y */\
data += y;\
goto abs_##op;\
CASE( op + 0x0D ) /* abs+X */\
data += x;\
CASE( op - 0x03 ) /* abs */\
abs_##op:\
pc++;\
data += 0x100 * READ_PROG( pc );\
goto end_##op;\
CASE( op + 0x0C ) /* dp+X */\
data = uint8_t (data + x);\
CASE( op - 0x04 ) /* dp */\
data += dp;\
end_##op:
// 1. 8-bit Data Transmission Commands. Group I
ADDR_MODES( 0xE8 ) // MOV A,addr
// case 0xE4: // MOV a,dp (most common)
mov_a_addr:
a = nz = READ( data );
goto inc_pc_loop;
case 0xBF: // MOV A,(X)+
data = x + dp;
x = uint8_t (x + 1);
pc--;
goto mov_a_addr;
case 0xE8: // MOV A,imm
a = data;
nz = data;
goto inc_pc_loop;
case 0xF9: // MOV X,dp+Y
data = uint8_t (data + y);
case 0xF8: // MOV X,dp
data += dp;
goto mov_x_addr;
case 0xE9: // MOV X,abs
data = READ_PROG16( pc );
pc++;
mov_x_addr:
data = READ( data );
case 0xCD: // MOV X,imm
x = data;
nz = data;
goto inc_pc_loop;
case 0xFB: // MOV Y,dp+X
data = uint8_t (data + x);
case 0xEB: // MOV Y,dp
data += dp;
goto mov_y_addr;
case 0xEC: // MOV Y,abs
data = READ_PROG16( pc );
pc++;
mov_y_addr:
data = READ( data );
case 0x8D: // MOV Y,imm
y = data;
nz = data;
goto inc_pc_loop;
// 2. 8-BIT DATA TRANSMISSION COMMANDS, GROUP 2
ADDR_MODES( 0xC8 ) // MOV addr,A
WRITE( data, a );
goto inc_pc_loop;
{
int temp;
case 0xCC: // MOV abs,Y
temp = y;
goto mov_abs_temp;
case 0xC9: // MOV abs,X
temp = x;
mov_abs_temp:
WRITE( READ_PROG16( pc ), temp );
pc += 2;
goto loop;
}
case 0xD9: // MOV dp+Y,X
data = uint8_t (data + y);
case 0xD8: // MOV dp,X
WRITE( data + dp, x );
goto inc_pc_loop;
case 0xDB: // MOV dp+X,Y
data = uint8_t (data + x);
case 0xCB: // MOV dp,Y
WRITE( data + dp, y );
goto inc_pc_loop;
case 0xFA: // MOV dp,dp
data = READ( data + dp );
case 0x8F: // MOV dp,#imm
pc++;
WRITE_DP( READ_PROG( pc ), data );
goto inc_pc_loop;
// 3. 8-BIT DATA TRANSMISSIN COMMANDS, GROUP 3.
case 0x7D: // MOV A,X
a = x;
nz = x;
goto loop;
case 0xDD: // MOV A,Y
a = y;
nz = y;
goto loop;
case 0x5D: // MOV X,A
x = a;
nz = a;
goto loop;
case 0xFD: // MOV Y,A
y = a;
nz = a;
goto loop;
case 0x9D: // MOV X,SP
x = nz = GET_SP();
goto loop;
case 0xBD: // MOV SP,X
SET_SP( x );
goto loop;
//case 0xC6: // MOV (X),A (handled by MOV addr,A in group 2)
case 0xAF: // MOV (X)+,A
WRITE_DP( x, a );
x++;
goto loop;
// 5. 8-BIT LOGIC OPERATION COMMANDS
#define LOGICAL_OP( op, func )\
ADDR_MODES( op ) /* addr */\
data = READ( data );\
case op: /* imm */\
nz = a func##= data;\
goto inc_pc_loop;\
{ unsigned addr;\
case op + 0x11: /* X,Y */\
data = READ_DP( y );\
addr = x + dp;\
pc--;\
goto addr_##op;\
case op + 0x01: /* dp,dp */\
data = READ_DP( data );\
case op + 0x10: /*dp,imm*/\
pc++;\
addr = READ_PROG( pc ) + dp;\
addr_##op:\
nz = data func READ( addr );\
WRITE( addr, nz );\
goto inc_pc_loop;\
}
LOGICAL_OP( 0x28, & ); // AND
LOGICAL_OP( 0x08, | ); // OR
LOGICAL_OP( 0x48, ^ ); // EOR
// 4. 8-BIT ARITHMETIC OPERATION COMMANDS
ADDR_MODES( 0x68 ) // CMP addr
data = READ( data );
case 0x68: // CMP imm
nz = a - data;
c = ~nz;
nz &= 0xFF;
goto inc_pc_loop;
case 0x79: // CMP (X),(Y)
data = READ_DP( x );
nz = data - READ_DP( y );
c = ~nz;
nz &= 0xFF;
goto loop;
case 0x69: // CMP (dp),(dp)
data = READ_DP( data );
case 0x78: // CMP dp,imm
pc++;
nz = READ_DP( READ_PROG( pc ) ) - data;
c = ~nz;
nz &= 0xFF;
goto inc_pc_loop;
case 0x3E: // CMP X,dp
data += dp;
goto cmp_x_addr;
case 0x1E: // CMP X,abs
data = READ_PROG16( pc );
pc++;
cmp_x_addr:
data = READ( data );
case 0xC8: // CMP X,imm
nz = x - data;
c = ~nz;
nz &= 0xFF;
goto inc_pc_loop;
case 0x7E: // CMP Y,dp
data += dp;
goto cmp_y_addr;
case 0x5E: // CMP Y,abs
data = READ_PROG16( pc );
pc++;
cmp_y_addr:
data = READ( data );
case 0xAD: // CMP Y,imm
nz = y - data;
c = ~nz;
nz &= 0xFF;
goto inc_pc_loop;
{
int addr;
case 0xB9: // SBC (x),(y)
case 0x99: // ADC (x),(y)
pc--; // compensate for inc later
data = READ_DP( x );
addr = y + dp;
goto adc_addr;
case 0xA9: // SBC dp,dp
case 0x89: // ADC dp,dp
data = READ_DP( data );
case 0xB8: // SBC dp,imm
case 0x98: // ADC dp,imm
pc++;
addr = READ_PROG( pc ) + dp;
adc_addr:
nz = READ( addr );
goto adc_data;
// catch ADC and SBC together, then decode later based on operand
#undef CASE
#define CASE( n ) case n: case (n) + 0x20:
ADDR_MODES( 0x88 ) // ADC/SBC addr
data = READ( data );
case 0xA8: // SBC imm
case 0x88: // ADC imm
addr = -1; // A
nz = a;
adc_data: {
if ( opcode & 0x20 )
data ^= 0xFF; // SBC
int carry = (c >> 8) & 1;
int ov = (nz ^ 0x80) + carry + (BOOST::int8_t) data; // sign-extend
int hc = (nz & 15) + carry;
c = nz += data + carry;
hc = (nz & 15) - hc;
status = (status & ~(st_v | st_h)) | ((ov >> 2) & st_v) | ((hc >> 1) & st_h);
if ( addr < 0 ) {
a = (uint8_t) nz;
goto inc_pc_loop;
}
WRITE( addr, (uint8_t) nz );
goto inc_pc_loop;
}
}
// 6. ADDITION & SUBTRACTION COMMANDS
#define INC_DEC_REG( reg, n )\
nz = reg + n;\
reg = (uint8_t) nz;\
goto loop;
case 0xBC: INC_DEC_REG( a, 1 ) // INC A
case 0x3D: INC_DEC_REG( x, 1 ) // INC X
case 0xFC: INC_DEC_REG( y, 1 ) // INC Y
case 0x9C: INC_DEC_REG( a, -1 ) // DEC A
case 0x1D: INC_DEC_REG( x, -1 ) // DEC X
case 0xDC: INC_DEC_REG( y, -1 ) // DEC Y
case 0x9B: // DEC dp+X
case 0xBB: // INC dp+X
data = uint8_t (data + x);
case 0x8B: // DEC dp
case 0xAB: // INC dp
data += dp;
goto inc_abs;
case 0x8C: // DEC abs
case 0xAC: // INC abs
data = READ_PROG16( pc );
pc++;
inc_abs:
nz = ((opcode >> 4) & 2) - 1;
nz += READ( data );
WRITE( data, (uint8_t) nz );
goto inc_pc_loop;
// 7. SHIFT, ROTATION COMMANDS
case 0x5C: // LSR A
c = 0;
case 0x7C:{// ROR A
nz = ((c >> 1) & 0x80) | (a >> 1);
c = a << 8;
a = nz;
goto loop;
}
case 0x1C: // ASL A
c = 0;
case 0x3C:{// ROL A
int temp = (c >> 8) & 1;
c = a << 1;
nz = c | temp;
a = (uint8_t) nz;
goto loop;
}
case 0x0B: // ASL dp
c = 0;
data += dp;
goto rol_mem;
case 0x1B: // ASL dp+X
c = 0;
case 0x3B: // ROL dp+X
data = uint8_t (data + x);
case 0x2B: // ROL dp
data += dp;
goto rol_mem;
case 0x0C: // ASL abs
c = 0;
case 0x2C: // ROL abs
data = READ_PROG16( pc );
pc++;
rol_mem:
nz = (c >> 8) & 1;
nz |= (c = READ( data ) << 1);
WRITE( data, (uint8_t) nz );
goto inc_pc_loop;
case 0x4B: // LSR dp
c = 0;
data += dp;
goto ror_mem;
case 0x5B: // LSR dp+X
c = 0;
case 0x7B: // ROR dp+X
data = uint8_t (data + x);
case 0x6B: // ROR dp
data += dp;
goto ror_mem;
case 0x4C: // LSR abs
c = 0;
case 0x6C: // ROR abs
data = READ_PROG16( pc );
pc++;
ror_mem: {
int temp = READ( data );
nz = ((c >> 1) & 0x80) | (temp >> 1);
c = temp << 8;
WRITE( data, nz );
goto inc_pc_loop;
}
case 0x9F: // XCN
nz = a = (a >> 4) | uint8_t (a << 4);
goto loop;
// 8. 16-BIT TRANSMISION COMMANDS
case 0xBA: // MOVW YA,dp
a = READ_DP( data );
nz = (a & 0x7F) | (a >> 1);
y = READ_DP( uint8_t (data + 1) );
nz |= y;
goto inc_pc_loop;
case 0xDA: // MOVW dp,YA
WRITE_DP( data, a );
WRITE_DP( uint8_t (data + 1), y );
goto inc_pc_loop;
// 9. 16-BIT OPERATION COMMANDS
case 0x3A: // INCW dp
case 0x1A:{// DECW dp
data += dp;
// low byte
int temp = READ( data );
temp += ((opcode >> 4) & 2) - 1; // +1 for INCW, -1 for DECW
nz = ((temp >> 1) | temp) & 0x7F;
WRITE( data, (uint8_t) temp );
// high byte
data = uint8_t (data + 1) + dp;
temp >>= 8;
temp = uint8_t (temp + READ( data ));
nz |= temp;
WRITE( data, temp );
goto inc_pc_loop;
}
case 0x9A: // SUBW YA,dp
case 0x7A: // ADDW YA,dp
{
// read 16-bit addend
int temp = READ_DP( data );
int sign = READ_DP( uint8_t (data + 1) );
temp += 0x100 * sign;
status &= ~(st_v | st_h);
// to do: fix half-carry for SUBW (it's probably wrong)
// for SUBW, negate and truncate to 16 bits
if ( opcode & 0x80 ) {
temp = (temp ^ 0xFFFF) + 1;
sign = temp >> 8;
}
// add low byte (A)
temp += a;
a = (uint8_t) temp;
nz = (temp | (temp >> 1)) & 0x7F;
// add high byte (Y)
temp >>= 8;
c = y + temp;
nz = (nz | c) & 0xFF;
// half-carry (temporary avoids CodeWarrior optimizer bug)
unsigned hc = (c & 15) - (y & 15);
status |= (hc >> 4) & st_h;
// overflow if sign of YA changed when previous sign and addend sign were same
status |= (((c ^ y) & ~(y ^ sign)) >> 1) & st_v;
y = (uint8_t) c;
goto inc_pc_loop;
}
case 0x5A: { // CMPW YA,dp
int temp = a - READ_DP( data );
nz = ((temp >> 1) | temp) & 0x7F;
temp = y + (temp >> 8);
temp -= READ_DP( uint8_t (data + 1) );
nz |= temp;
c = ~temp;
nz &= 0xFF;
goto inc_pc_loop;
}
// 10. MULTIPLICATION & DIVISON COMMANDS
case 0xCF: { // MUL YA
unsigned temp = y * a;
a = (uint8_t) temp;
nz = ((temp >> 1) | temp) & 0x7F;
y = temp >> 8;
nz |= y;
goto loop;
}
case 0x9E: // DIV YA,X
{
// behavior based on SPC CPU tests
status &= ~(st_h | st_v);
if ( (y & 15) >= (x & 15) )
status |= st_h;
if ( y >= x )
status |= st_v;
unsigned ya = y * 0x100 + a;
if ( y < x * 2 )
{
a = ya / x;
y = ya - a * x;
}
else
{
a = 255 - (ya - x * 0x200) / (256 - x);
y = x + (ya - x * 0x200) % (256 - x);
}
nz = (uint8_t) a;
a = (uint8_t) a;
goto loop;
}
// 11. DECIMAL COMPENSATION COMMANDS
// seem unused
// case 0xDF: // DAA
// case 0xBE: // DAS
// 12. BRANCHING COMMANDS
case 0x2F: // BRA rel
pc += (BOOST::int8_t) data;
goto inc_pc_loop;
case 0x30: // BMI
BRANCH( IS_NEG )
case 0x10: // BPL
BRANCH( !IS_NEG )
case 0xB0: // BCS
BRANCH( c & 0x100 )
case 0x90: // BCC
BRANCH( !(c & 0x100) )
case 0x70: // BVS
BRANCH( status & st_v )
case 0x50: // BVC
BRANCH( !(status & st_v) )
case 0x03: // BBS dp.bit,rel
case 0x23:
case 0x43:
case 0x63:
case 0x83:
case 0xA3:
case 0xC3:
case 0xE3:
pc++;
if ( (READ_DP( data ) >> (opcode >> 5)) & 1 )
goto cbranch_taken_loop;
goto inc_pc_loop;
case 0x13: // BBC dp.bit,rel
case 0x33:
case 0x53:
case 0x73:
case 0x93:
case 0xB3:
case 0xD3:
case 0xF3:
pc++;
if ( !((READ_DP( data ) >> (opcode >> 5)) & 1) )
goto cbranch_taken_loop;
goto inc_pc_loop;
case 0xDE: // CBNE dp+X,rel
data = uint8_t (data + x);
// fall through
case 0x2E: // CBNE dp,rel
pc++;
if ( READ_DP( data ) != a )
goto cbranch_taken_loop;
goto inc_pc_loop;
case 0xFE: // DBNZ Y,rel
y = uint8_t (y - 1);
BRANCH( y )
case 0x6E: { // DBNZ dp,rel
pc++;
unsigned temp = READ_DP( data ) - 1;
WRITE_DP( (uint8_t) data, (uint8_t) temp );
if ( temp )
goto cbranch_taken_loop;
goto inc_pc_loop;
}
case 0x1F: // JMP (abs+X)
pc = READ_PROG16( pc ) + x;
// fall through
case 0x5F: // JMP abs
pc = READ_PROG16( pc );
goto loop;
// 13. SUB-ROUTINE CALL RETURN COMMANDS
case 0x0F:{// BRK
check( false ); // untested
PUSH16( pc + 1 );
pc = READ_PROG16( 0xFFDE ); // vector address verified
int temp;
CALC_STATUS( temp );
PUSH( temp );
status = (status | st_b) & ~st_i;
goto loop;
}
case 0x4F: // PCALL offset
pc++;
PUSH16( pc );
pc = 0xFF00 + data;
goto loop;
case 0x01: // TCALL n
case 0x11:
case 0x21:
case 0x31:
case 0x41:
case 0x51:
case 0x61:
case 0x71:
case 0x81:
case 0x91:
case 0xA1:
case 0xB1:
case 0xC1:
case 0xD1:
case 0xE1:
case 0xF1:
PUSH16( pc );
pc = READ_PROG16( 0xFFDE - (opcode >> 3) );
goto loop;
// 14. STACK OPERATION COMMANDS
{
int temp;
case 0x7F: // RET1
temp = POP();
pc = POP();
pc |= POP() << 8;
goto set_status;
case 0x8E: // POP PSW
temp = POP();
set_status:
SET_STATUS( temp );
goto loop;
}
case 0x0D: { // PUSH PSW
int temp;
CALC_STATUS( temp );
PUSH( temp );
goto loop;
}
case 0x2D: // PUSH A
PUSH( a );
goto loop;
case 0x4D: // PUSH X
PUSH( x );
goto loop;
case 0x6D: // PUSH Y
PUSH( y );
goto loop;
case 0xAE: // POP A
a = POP();
goto loop;
case 0xCE: // POP X
x = POP();
goto loop;
case 0xEE: // POP Y
y = POP();
goto loop;
// 15. BIT OPERATION COMMANDS
case 0x02: // SET1
case 0x22:
case 0x42:
case 0x62:
case 0x82:
case 0xA2:
case 0xC2:
case 0xE2:
case 0x12: // CLR1
case 0x32:
case 0x52:
case 0x72:
case 0x92:
case 0xB2:
case 0xD2:
case 0xF2: {
data += dp;
int bit = 1 << (opcode >> 5);
int mask = ~bit;
if ( opcode & 0x10 )
bit = 0;
WRITE( data, (READ( data ) & mask) | bit );
goto inc_pc_loop;
}
case 0x0E: // TSET1 abs
case 0x4E:{// TCLR1 abs
data = READ_PROG16( pc );
pc += 2;
unsigned temp = READ( data );
nz = temp & a;
temp &= ~a;
if ( !(opcode & 0x40) )
temp |= a;
WRITE( data, temp );
goto loop;
}
case 0x4A: // AND1 C,mem.bit
c &= mem_bit( pc );
pc += 2;
goto loop;
case 0x6A: // AND1 C,/mem.bit
check( false ); // untested
c &= ~mem_bit( pc );
pc += 2;
goto loop;
case 0x0A: // OR1 C,mem.bit
check( false ); // untested
c |= mem_bit( pc );
pc += 2;
goto loop;
case 0x2A: // OR1 C,/mem.bit
check( false ); // untested
c |= ~mem_bit( pc );
pc += 2;
goto loop;
case 0x8A: // EOR1 C,mem.bit
c ^= mem_bit( pc );
pc += 2;
goto loop;
case 0xEA: { // NOT1 mem.bit
data = READ_PROG16( pc );
pc += 2;
unsigned temp = READ( data & 0x1FFF );
temp ^= 1 << (data >> 13);
WRITE( data & 0x1FFF, temp );
goto loop;
}
case 0xCA: { // MOV1 mem.bit,C
data = READ_PROG16( pc );
pc += 2;
unsigned temp = READ( data & 0x1FFF );
unsigned bit = data >> 13;
temp = (temp & ~(1 << bit)) | (((c >> 8) & 1) << bit);
WRITE( data & 0x1FFF, temp );
goto loop;
}
case 0xAA: // MOV1 C,mem.bit
c = mem_bit( pc );
pc += 2;
goto loop;
// 16. PROGRAM STATUS FLAG OPERATION COMMANDS
case 0x60: // CLRC
c = 0;
goto loop;
case 0x80: // SETC
c = ~0;
goto loop;
case 0xED: // NOTC
c ^= 0x100;
goto loop;
case 0xE0: // CLRV
status &= ~(st_v | st_h);
goto loop;
case 0x20: // CLRP
dp = 0;
goto loop;
case 0x40: // SETP
dp = 0x100;
goto loop;
case 0xA0: // EI
check( false ); // untested
status |= st_i;
goto loop;
case 0xC0: // DI
check( false ); // untested
status &= ~st_i;
goto loop;
// 17. OTHER COMMANDS
case 0x00: // NOP
goto loop;
//case 0xEF: // SLEEP
//case 0xFF: // STOP
} // switch
// unhandled instructions fall out of switch so emulator can catch them
stop:
pc--;
{
int temp;
CALC_STATUS( temp );
r.status = (uint8_t) temp;
}
r.pc = pc;
r.sp = (uint8_t) GET_SP();
r.a = (uint8_t) a;
r.x = (uint8_t) x;
r.y = (uint8_t) y;
return remain_;
}