cog/Audio/Chain/ConverterNode.mm

1138 lines
36 KiB
Plaintext

//
// ConverterNode.m
// Cog
//
// Created by Zaphod Beeblebrox on 8/2/05.
// Copyright 2005 __MyCompanyName__. All rights reserved.
//
#import "ConverterNode.h"
#import "BufferChain.h"
#import "OutputNode.h"
#import "Logging.h"
#import "lpc.h"
#import "util.h"
#import "hdcd_decode2.h"
#ifdef _DEBUG
#import "BadSampleCleaner.h"
#endif
#import "r8bstate.h"
#if !DSD_DECIMATE
#include "dsd2float.h"
#endif
void PrintStreamDesc(AudioStreamBasicDescription *inDesc) {
if(!inDesc) {
DLog(@"Can't print a NULL desc!\n");
return;
}
DLog(@"- - - - - - - - - - - - - - - - - - - -\n");
DLog(@" Sample Rate:%f\n", inDesc->mSampleRate);
DLog(@" Format ID:%s\n", (char *)&inDesc->mFormatID);
DLog(@" Format Flags:%X\n", inDesc->mFormatFlags);
DLog(@" Bytes per Packet:%d\n", inDesc->mBytesPerPacket);
DLog(@" Frames per Packet:%d\n", inDesc->mFramesPerPacket);
DLog(@" Bytes per Frame:%d\n", inDesc->mBytesPerFrame);
DLog(@" Channels per Frame:%d\n", inDesc->mChannelsPerFrame);
DLog(@" Bits per Channel:%d\n", inDesc->mBitsPerChannel);
DLog(@"- - - - - - - - - - - - - - - - - - - -\n");
}
@implementation ConverterNode
static void *kConverterNodeContext = &kConverterNodeContext;
@synthesize inputFormat;
- (id)initWithController:(id)c previous:(id)p {
self = [super initWithController:c previous:p];
if(self) {
rgInfo = nil;
_r8bstate = 0;
inputBuffer = NULL;
inputBufferSize = 0;
floatBuffer = NULL;
floatBufferSize = 0;
stopping = NO;
convertEntered = NO;
paused = NO;
skipResampler = YES;
extrapolateBuffer = NULL;
extrapolateBufferSize = 0;
#if DSD_DECIMATE
dsd2pcm = NULL;
dsd2pcmCount = 0;
#endif
hdcd_decoder = NULL;
lastChunkIn = nil;
[[NSUserDefaultsController sharedUserDefaultsController] addObserver:self forKeyPath:@"values.volumeScaling" options:0 context:kConverterNodeContext];
}
return self;
}
extern "C" void scale_by_volume(float *buffer, size_t count, float volume) {
if(volume != 1.0) {
size_t unaligned = (uintptr_t)buffer & 15;
if(unaligned) {
size_t count3 = unaligned >> 2;
while(count3 > 0) {
*buffer++ *= volume;
count3--;
count--;
}
}
vDSP_vsmul(buffer, 1, &volume, buffer, 1, count);
}
}
#if DSD_DECIMATE
/**
* DSD 2 PCM: Stage 1:
* Decimate by factor 8
* (one byte (8 samples) -> one float sample)
* The bits are processed from least signicifant to most signicicant.
* @author Sebastian Gesemann
*/
#define dsd2pcm_FILTER_COEFFS_COUNT 64
static const float dsd2pcm_FILTER_COEFFS[64] = {
0.09712411121659f, 0.09613438994044f, 0.09417884216316f, 0.09130441727307f,
0.08757947648990f, 0.08309142055179f, 0.07794369263673f, 0.07225228745463f,
0.06614191680338f, 0.05974199351302f, 0.05318259916599f, 0.04659059631228f,
0.04008603356890f, 0.03377897290478f, 0.02776684382775f, 0.02213240062966f,
0.01694232798846f, 0.01224650881275f, 0.00807793792573f, 0.00445323755944f,
0.00137370697215f, -0.00117318019994f, -0.00321193033831f, -0.00477694265140f,
-0.00591028841335f, -0.00665946056286f, -0.00707518873201f, -0.00720940203988f,
-0.00711340642819f, -0.00683632603227f, -0.00642384017266f, -0.00591723006715f,
-0.00535273320457f, -0.00476118922548f, -0.00416794965654f, -0.00359301524813f,
-0.00305135909510f, -0.00255339111833f, -0.00210551956895f, -0.00171076760278f,
-0.00136940723130f, -0.00107957856005f, -0.00083786862365f, -0.00063983084245f,
-0.00048043272086f, -0.00035442550015f, -0.00025663481039f, -0.00018217573430f,
-0.00012659899635f, -0.00008597726991f, -0.00005694188820f, -0.00003668060332f,
-0.00002290670286f, -0.00001380895679f, -0.00000799057558f, -0.00000440385083f,
-0.00000228567089f, -0.00000109760778f, -0.00000047286430f, -0.00000017129652f,
-0.00000004282776f, 0.00000000119422f, 0.00000000949179f, 0.00000000747450f
};
struct dsd2pcm_state {
/*
* This is the 2nd half of an even order symmetric FIR
* lowpass filter (to be used on a signal sampled at 44100*64 Hz)
* Passband is 0-24 kHz (ripples +/- 0.025 dB)
* Stopband starts at 176.4 kHz (rejection: 170 dB)
* The overall gain is 2.0
*/
/* These remain constant for the duration */
int FILT_LOOKUP_PARTS;
float *FILT_LOOKUP_TABLE;
uint8_t *REVERSE_BITS;
int FIFO_LENGTH;
int FIFO_OFS_MASK;
/* These are altered */
int *fifo;
int fpos;
};
static void dsd2pcm_free(void *);
static void dsd2pcm_reset(void *);
static void *dsd2pcm_alloc() {
struct dsd2pcm_state *state = (struct dsd2pcm_state *)calloc(1, sizeof(struct dsd2pcm_state));
float *FILT_LOOKUP_TABLE;
double *temp;
uint8_t *REVERSE_BITS;
if(!state)
return NULL;
state->FILT_LOOKUP_PARTS = (dsd2pcm_FILTER_COEFFS_COUNT + 7) / 8;
const int FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
// The current 128 tap FIR leads to an 8 KB lookup table
state->FILT_LOOKUP_TABLE = (float *)calloc(sizeof(float), FILT_LOOKUP_PARTS << 8);
if(!state->FILT_LOOKUP_TABLE)
goto fail;
FILT_LOOKUP_TABLE = state->FILT_LOOKUP_TABLE;
temp = (double *)calloc(sizeof(double), 0x100);
if(!temp)
goto fail;
for(int part = 0, sofs = 0, dofs = 0; part < FILT_LOOKUP_PARTS;) {
memset(temp, 0, 0x100 * sizeof(double));
for(int bit = 0, bitmask = 0x80; bit < 8 && sofs + bit < dsd2pcm_FILTER_COEFFS_COUNT;) {
double coeff = dsd2pcm_FILTER_COEFFS[sofs + bit];
for(int bite = 0; bite < 0x100; bite++) {
if((bite & bitmask) == 0) {
temp[bite] -= coeff;
} else {
temp[bite] += coeff;
}
}
bit++;
bitmask >>= 1;
}
for(int s = 0; s < 0x100;) {
FILT_LOOKUP_TABLE[dofs++] = (float)temp[s++];
}
part++;
sofs += 8;
}
free(temp);
{ // calculate FIFO stuff
int k = 1;
while(k < FILT_LOOKUP_PARTS * 2) k <<= 1;
state->FIFO_LENGTH = k;
state->FIFO_OFS_MASK = k - 1;
}
state->REVERSE_BITS = (uint8_t *)calloc(1, 0x100);
if(!state->REVERSE_BITS)
goto fail;
REVERSE_BITS = state->REVERSE_BITS;
for(int i = 0, j = 0; i < 0x100; i++) {
REVERSE_BITS[i] = (uint8_t)j;
// "reverse-increment" of j
for(int bitmask = 0x80;;) {
if(((j ^= bitmask) & bitmask) != 0) break;
if(bitmask == 1) break;
bitmask >>= 1;
}
}
state->fifo = (int *)calloc(sizeof(int), state->FIFO_LENGTH);
if(!state->fifo)
goto fail;
dsd2pcm_reset(state);
return (void *)state;
fail:
dsd2pcm_free(state);
return NULL;
}
static void *dsd2pcm_dup(void *_state) {
struct dsd2pcm_state *state = (struct dsd2pcm_state *)_state;
if(state) {
struct dsd2pcm_state *newstate = (struct dsd2pcm_state *)calloc(1, sizeof(struct dsd2pcm_state));
if(newstate) {
newstate->FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
newstate->FIFO_LENGTH = state->FIFO_LENGTH;
newstate->FIFO_OFS_MASK = state->FIFO_OFS_MASK;
newstate->fpos = state->fpos;
newstate->FILT_LOOKUP_TABLE = (float *)calloc(sizeof(float), state->FILT_LOOKUP_PARTS << 8);
if(!newstate->FILT_LOOKUP_TABLE)
goto fail;
memcpy(newstate->FILT_LOOKUP_TABLE, state->FILT_LOOKUP_TABLE, sizeof(float) * (state->FILT_LOOKUP_PARTS << 8));
newstate->REVERSE_BITS = (uint8_t *)calloc(1, 0x100);
if(!newstate->REVERSE_BITS)
goto fail;
memcpy(newstate->REVERSE_BITS, state->REVERSE_BITS, 0x100);
newstate->fifo = (int *)calloc(sizeof(int), state->FIFO_LENGTH);
if(!newstate->fifo)
goto fail;
memcpy(newstate->fifo, state->fifo, sizeof(int) * state->FIFO_LENGTH);
return (void *)newstate;
}
fail:
dsd2pcm_free(newstate);
return NULL;
}
return NULL;
}
static void dsd2pcm_free(void *_state) {
struct dsd2pcm_state *state = (struct dsd2pcm_state *)_state;
if(state) {
free(state->fifo);
free(state->REVERSE_BITS);
free(state->FILT_LOOKUP_TABLE);
free(state);
}
}
static void dsd2pcm_reset(void *_state) {
struct dsd2pcm_state *state = (struct dsd2pcm_state *)_state;
const int FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
int *fifo = state->fifo;
for(int i = 0; i < FILT_LOOKUP_PARTS; i++) {
fifo[i] = 0x55;
fifo[i + FILT_LOOKUP_PARTS] = 0xAA;
}
state->fpos = FILT_LOOKUP_PARTS;
}
static int dsd2pcm_latency(void *_state) {
struct dsd2pcm_state *state = (struct dsd2pcm_state *)_state;
if(state)
return state->FIFO_LENGTH;
else
return 0;
}
static void dsd2pcm_process(void *_state, const uint8_t *src, size_t sofs, size_t sinc, float *dest, size_t dofs, size_t dinc, size_t len) {
struct dsd2pcm_state *state = (struct dsd2pcm_state *)_state;
int bite1, bite2, temp;
float sample;
int *fifo = state->fifo;
const uint8_t *REVERSE_BITS = state->REVERSE_BITS;
const float *FILT_LOOKUP_TABLE = state->FILT_LOOKUP_TABLE;
const int FILT_LOOKUP_PARTS = state->FILT_LOOKUP_PARTS;
const int FIFO_OFS_MASK = state->FIFO_OFS_MASK;
int fpos = state->fpos;
while(len > 0) {
fifo[fpos] = REVERSE_BITS[fifo[fpos]] & 0xFF;
fifo[(fpos + FILT_LOOKUP_PARTS) & FIFO_OFS_MASK] = src[sofs] & 0xFF;
sofs += sinc;
temp = (fpos + 1) & FIFO_OFS_MASK;
sample = 0;
for(int k = 0, lofs = 0; k < FILT_LOOKUP_PARTS;) {
bite1 = fifo[(fpos - k) & FIFO_OFS_MASK];
bite2 = fifo[(temp + k) & FIFO_OFS_MASK];
sample += FILT_LOOKUP_TABLE[lofs + bite1] + FILT_LOOKUP_TABLE[lofs + bite2];
k++;
lofs += 0x100;
}
fpos = temp;
dest[dofs] = sample;
dofs += dinc;
len--;
}
state->fpos = fpos;
}
static void convert_dsd_to_f32(float *output, const uint8_t *input, size_t count, size_t channels, void **dsd2pcm) {
for(size_t channel = 0; channel < channels; ++channel) {
dsd2pcm_process(dsd2pcm[channel], input, channel, channels, output, channel, channels, count);
}
}
#else
static void convert_dsd_to_f32(float *output, const uint8_t *input, size_t count, size_t channels) {
const uint8_t *iptr = input;
float *optr = output;
for(size_t index = 0; index < count; ++index) {
for(size_t channel = 0; channel < channels; ++channel) {
uint8_t sample = *iptr++;
cblas_scopy(8, &dsd2float[sample][0], 1, optr++, (int)channels);
}
optr += channels * 7;
}
}
#endif
static void convert_u8_to_s16(int16_t *output, const uint8_t *input, size_t count) {
for(size_t i = 0; i < count; ++i) {
uint16_t sample = (input[i] << 8) | input[i];
sample ^= 0x8080;
output[i] = (int16_t)(sample);
}
}
static void convert_s8_to_s16(int16_t *output, const uint8_t *input, size_t count) {
for(size_t i = 0; i < count; ++i) {
uint16_t sample = (input[i] << 8) | input[i];
output[i] = (int16_t)(sample);
}
}
static void convert_u16_to_s16(int16_t *buffer, size_t count) {
for(size_t i = 0; i < count; ++i) {
buffer[i] ^= 0x8000;
}
}
static void convert_s16_to_hdcd_input(int32_t *output, const int16_t *input, size_t count) {
for(size_t i = 0; i < count; ++i) {
output[i] = input[i];
}
}
static void convert_s24_to_s32(int32_t *output, const uint8_t *input, size_t count) {
for(size_t i = 0; i < count; ++i) {
int32_t sample = (input[i * 3] << 8) | (input[i * 3 + 1] << 16) | (input[i * 3 + 2] << 24);
output[i] = sample;
}
}
static void convert_u24_to_s32(int32_t *output, const uint8_t *input, size_t count) {
for(size_t i = 0; i < count; ++i) {
int32_t sample = (input[i * 3] << 8) | (input[i * 3 + 1] << 16) | (input[i * 3 + 2] << 24);
output[i] = sample ^ 0x80000000;
}
}
static void convert_u32_to_s32(int32_t *buffer, size_t count) {
for(size_t i = 0; i < count; ++i) {
buffer[i] ^= 0x80000000;
}
}
static void convert_f64_to_f32(float *output, const double *input, size_t count) {
vDSP_vdpsp(input, 1, output, 1, count);
}
static void convert_be_to_le(uint8_t *buffer, size_t bitsPerSample, size_t bytes) {
size_t i;
bitsPerSample = (bitsPerSample + 7) / 8;
switch(bitsPerSample) {
case 2:
for(i = 0; i < bytes; i += 2) {
*(int16_t *)buffer = __builtin_bswap16(*(int16_t *)buffer);
buffer += 2;
}
break;
case 3: {
union {
vDSP_int24 int24;
uint32_t int32;
} intval;
intval.int32 = 0;
for(i = 0; i < bytes; i += 3) {
intval.int24 = *(vDSP_int24 *)buffer;
intval.int32 = __builtin_bswap32(intval.int32 << 8);
*(vDSP_int24 *)buffer = intval.int24;
buffer += 3;
}
} break;
case 4:
for(i = 0; i < bytes; i += 4) {
*(uint32_t *)buffer = __builtin_bswap32(*(uint32_t *)buffer);
buffer += 4;
}
break;
case 8:
for(i = 0; i < bytes; i += 8) {
*(uint64_t *)buffer = __builtin_bswap64(*(uint64_t *)buffer);
buffer += 8;
}
break;
}
}
- (void)process {
char writeBuf[CHUNK_SIZE];
// Removed endOfStream check from here, since we want to be able to flush the converter
// when the end of stream is reached. Convert function instead processes what it can,
// and returns 0 samples when it has nothing more to process at the end of stream.
while([self shouldContinue] == YES) {
int amountConverted;
while(paused) {
usleep(500);
}
@autoreleasepool {
amountConverted = [self convert:writeBuf amount:CHUNK_SIZE];
}
if(!amountConverted) {
if(paused) {
continue;
} else if(streamFormatChanged) {
[self cleanUp];
[self setupWithInputFormat:newInputFormat withInputConfig:newInputChannelConfig outputFormat:outputFormat outputConfig:outputChannelConfig isLossless:rememberedLossless];
continue;
} else
break;
}
[self writeData:writeBuf amount:amountConverted];
}
}
- (int)convert:(void *)dest amount:(int)amount {
UInt32 ioNumberPackets;
int amountReadFromFC;
int amountRead = 0;
int amountToIgnorePostExtrapolated = 0;
if(stopping)
return 0;
convertEntered = YES;
tryagain:
if(stopping || [self shouldContinue] == NO) {
convertEntered = NO;
return amountRead;
}
amountReadFromFC = 0;
if(floatOffset == floatSize) // skip this step if there's still float buffered
while(inpOffset == inpSize) {
size_t samplesRead = 0;
BOOL isFloat = !!(inputFormat.mFormatFlags & kAudioFormatFlagIsFloat);
BOOL isUnsigned = !isFloat && !(inputFormat.mFormatFlags & kAudioFormatFlagIsSignedInteger);
size_t bitsPerSample = inputFormat.mBitsPerChannel;
// Approximately the most we want on input
ioNumberPackets = CHUNK_SIZE;
if(!skipResampler && ioNumberPackets < PRIME_LEN_)
ioNumberPackets = PRIME_LEN_;
// We want to upscale this count if the ratio is below zero
if(sampleRatio < 1.0) {
ioNumberPackets = ((uint32_t)(ioNumberPackets / sampleRatio) + 15) & ~15;
}
#if DSD_DECIMATE
const size_t sizeScale = 3;
#else
const size_t sizeScale = (bitsPerSample == 1) ? 10 : 3;
#endif
size_t newSize = ioNumberPackets * floatFormat.mBytesPerPacket;
if(!inputBuffer || inputBufferSize < newSize)
inputBuffer = realloc(inputBuffer, inputBufferSize = newSize * sizeScale);
ssize_t amountToWrite = ioNumberPackets * inputFormat.mBytesPerPacket;
ssize_t bytesReadFromInput = 0;
while(bytesReadFromInput < amountToWrite && !stopping && !paused && !streamFormatChanged && [self shouldContinue] == YES && [self endOfStream] == NO) {
AudioStreamBasicDescription inf;
uint32_t config;
if([self peekFormat:&inf channelConfig:&config]) {
if(config != inputChannelConfig || memcmp(&inf, &inputFormat, sizeof(inf)) != 0) {
if(inputChannelConfig == 0 && memcmp(&inf, &inputFormat, sizeof(inf)) == 0) {
inputChannelConfig = config;
continue;
} else {
newInputFormat = inf;
newInputChannelConfig = config;
streamFormatChanged = YES;
break;
}
}
}
AudioChunk *chunk = [self readChunk:((amountToWrite - bytesReadFromInput) / inputFormat.mBytesPerPacket)];
inf = [chunk format];
size_t frameCount = [chunk frameCount];
config = [chunk channelConfig];
size_t bytesRead = frameCount * inf.mBytesPerPacket;
if(frameCount) {
NSData *samples = [chunk removeSamples:frameCount];
memcpy(((uint8_t *)inputBuffer) + bytesReadFromInput, [samples bytes], bytesRead);
lastChunkIn = [[AudioChunk alloc] init];
[lastChunkIn setFormat:inf];
[lastChunkIn setChannelConfig:config];
[lastChunkIn setLossless:[chunk lossless]];
[lastChunkIn assignSamples:[samples bytes] frameCount:frameCount];
}
bytesReadFromInput += bytesRead;
if(!frameCount) {
usleep(500);
}
}
// Pad end of track with input format silence
if(stopping || paused || streamFormatChanged || [self shouldContinue] == NO || [self endOfStream] == YES) {
if(!skipResampler && !is_postextrapolated_) {
#if DSD_DECIMATE
if(dsd2pcm) {
uint32_t amountToSkip = dsd2pcmLatency * inputFormat.mBytesPerPacket;
memset(((uint8_t *)inputBuffer) + bytesReadFromInput, 0x55, amountToSkip);
bytesReadFromInput += amountToSkip;
}
#endif
is_postextrapolated_ = 1;
#if DSD_DECIMATE
} else if(!is_postextrapolated_ && dsd2pcm) {
is_postextrapolated_ = 3;
#endif
}
}
BOOL isBigEndian = !!(inputFormat.mFormatFlags & kAudioFormatFlagIsBigEndian);
if(!bytesReadFromInput && streamFormatChanged && !skipResampler && is_postextrapolated_ < 2) {
AudioChunk *chunk = lastChunkIn;
lastChunkIn = nil;
AudioStreamBasicDescription inf = [chunk format];
size_t frameCount = [chunk frameCount];
size_t bytesRead = frameCount * inf.mBytesPerPacket;
if(frameCount) {
amountToIgnorePostExtrapolated = (int)frameCount;
NSData *samples = [chunk removeSamples:frameCount];
memcpy(inputBuffer, [samples bytes], bytesRead);
}
bytesReadFromInput += bytesRead;
}
if(!bytesReadFromInput) {
convertEntered = NO;
return amountRead;
}
if(bytesReadFromInput && isBigEndian) {
// Time for endian swap!
convert_be_to_le((uint8_t *)inputBuffer, inputFormat.mBitsPerChannel, bytesReadFromInput);
}
if(bytesReadFromInput && isFloat && inputFormat.mBitsPerChannel == 64) {
// Time for precision loss from weird inputs
samplesRead = bytesReadFromInput / sizeof(double);
convert_f64_to_f32((float *)(((uint8_t *)inputBuffer) + bytesReadFromInput), (const double *)inputBuffer, samplesRead);
memmove(inputBuffer, ((uint8_t *)inputBuffer) + bytesReadFromInput, samplesRead * sizeof(float));
bytesReadFromInput = samplesRead * sizeof(float);
}
if(bytesReadFromInput && !isFloat) {
float gain = 1.0;
if(bitsPerSample == 1) {
samplesRead = bytesReadFromInput / inputFormat.mBytesPerPacket;
size_t buffer_adder = (bytesReadFromInput + 15) & ~15;
convert_dsd_to_f32((float *)(((uint8_t *)inputBuffer) + buffer_adder), (const uint8_t *)inputBuffer, samplesRead, inputFormat.mChannelsPerFrame
#if DSD_DECIMATE
,
dsd2pcm
#endif
);
#if !DSD_DECIMATE
samplesRead *= 8;
#endif
memmove(inputBuffer, ((const uint8_t *)inputBuffer) + buffer_adder, samplesRead * inputFormat.mChannelsPerFrame * sizeof(float));
bitsPerSample = 32;
bytesReadFromInput = samplesRead * inputFormat.mChannelsPerFrame * sizeof(float);
isFloat = YES;
} else if(bitsPerSample <= 8) {
samplesRead = bytesReadFromInput;
size_t buffer_adder = (bytesReadFromInput + 1) & ~1;
if(!isUnsigned)
convert_s8_to_s16((int16_t *)(((uint8_t *)inputBuffer) + buffer_adder), (const uint8_t *)inputBuffer, samplesRead);
else
convert_u8_to_s16((int16_t *)(((uint8_t *)inputBuffer) + buffer_adder), (const uint8_t *)inputBuffer, samplesRead);
memmove(inputBuffer, ((uint8_t *)inputBuffer) + buffer_adder, samplesRead * 2);
bitsPerSample = 16;
bytesReadFromInput = samplesRead * 2;
isUnsigned = NO;
}
if(hdcd_decoder) { // implied bits per sample is 16, produces 32 bit int scale
samplesRead = bytesReadFromInput / 2;
if(isUnsigned)
convert_u16_to_s16((int16_t *)inputBuffer, samplesRead);
size_t buffer_adder = (bytesReadFromInput + 3) & ~3;
convert_s16_to_hdcd_input((int32_t *)(((uint8_t *)inputBuffer) + buffer_adder), (int16_t *)inputBuffer, samplesRead);
memmove(inputBuffer, ((uint8_t *)inputBuffer) + buffer_adder, samplesRead * 4);
hdcd_process_stereo((hdcd_state_stereo_t *)hdcd_decoder, (int32_t *)inputBuffer, (int)(samplesRead / 2));
if(((hdcd_state_stereo_t *)hdcd_decoder)->channel[0].sustain &&
((hdcd_state_stereo_t *)hdcd_decoder)->channel[1].sustain) {
[controller sustainHDCD];
}
gain = 2.0;
bitsPerSample = 32;
bytesReadFromInput = samplesRead * 4;
isUnsigned = NO;
} else if(bitsPerSample <= 16) {
samplesRead = bytesReadFromInput / 2;
if(isUnsigned)
convert_u16_to_s16((int16_t *)inputBuffer, samplesRead);
size_t buffer_adder = (bytesReadFromInput + 15) & ~15; // vDSP functions expect aligned to four elements
vDSP_vflt16((const short *)inputBuffer, 1, (float *)(((uint8_t *)inputBuffer) + buffer_adder), 1, samplesRead);
float scale = 1ULL << 15;
vDSP_vsdiv((const float *)(((uint8_t *)inputBuffer) + buffer_adder), 1, &scale, (float *)(((uint8_t *)inputBuffer) + buffer_adder), 1, samplesRead);
memmove(inputBuffer, ((uint8_t *)inputBuffer) + buffer_adder, samplesRead * sizeof(float));
bitsPerSample = 32;
bytesReadFromInput = samplesRead * sizeof(float);
isUnsigned = NO;
isFloat = YES;
} else if(bitsPerSample <= 24) {
samplesRead = bytesReadFromInput / 3;
size_t buffer_adder = (bytesReadFromInput + 3) & ~3;
if(isUnsigned)
convert_u24_to_s32((int32_t *)(((uint8_t *)inputBuffer) + buffer_adder), (uint8_t *)inputBuffer, samplesRead);
else
convert_s24_to_s32((int32_t *)(((uint8_t *)inputBuffer) + buffer_adder), (uint8_t *)inputBuffer, samplesRead);
memmove(inputBuffer, ((uint8_t *)inputBuffer) + buffer_adder, samplesRead * 4);
bitsPerSample = 32;
bytesReadFromInput = samplesRead * 4;
isUnsigned = NO;
}
if(!isFloat && bitsPerSample <= 32) {
samplesRead = bytesReadFromInput / 4;
if(isUnsigned)
convert_u32_to_s32((int32_t *)inputBuffer, samplesRead);
size_t buffer_adder = (bytesReadFromInput + 31) & ~31; // vDSP functions expect aligned to four elements
vDSP_vflt32((const int *)inputBuffer, 1, (float *)(((uint8_t *)inputBuffer) + buffer_adder), 1, samplesRead);
float scale = (1ULL << 31) / gain;
vDSP_vsdiv((const float *)(((uint8_t *)inputBuffer) + buffer_adder), 1, &scale, (float *)(((uint8_t *)inputBuffer) + buffer_adder), 1, samplesRead);
memmove(inputBuffer, ((uint8_t *)inputBuffer) + buffer_adder, samplesRead * sizeof(float));
bitsPerSample = 32;
bytesReadFromInput = samplesRead * sizeof(float);
isUnsigned = NO;
isFloat = YES;
}
#ifdef _DEBUG
[BadSampleCleaner cleanSamples:(float *)inputBuffer
amount:bytesReadFromInput / sizeof(float)
location:@"post int to float conversion"];
#endif
}
// Extrapolate start
if(!skipResampler && !is_preextrapolated_) {
size_t samples_in_buffer = bytesReadFromInput / floatFormat.mBytesPerPacket;
size_t prime = min(samples_in_buffer, PRIME_LEN_);
size_t _N_samples_to_add_ = N_samples_to_add_;
#if DSD_DECIMATE
if(dsd2pcm) _N_samples_to_add_ += dsd2pcmLatency;
#endif
size_t newSize = _N_samples_to_add_ * floatFormat.mBytesPerPacket;
newSize += bytesReadFromInput;
if(newSize > inputBufferSize) {
inputBuffer = realloc(inputBuffer, inputBufferSize = newSize * 3);
}
size_t bytesToSkip = 0;
#if DSD_DECIMATE
if(dsd2pcm) {
bytesToSkip = dsd2pcmLatency * floatFormat.mBytesPerPacket;
if(bytesReadFromInput >= bytesToSkip) {
bytesReadFromInput -= bytesToSkip;
} else {
bytesToSkip = 0;
}
}
#endif
memmove(((uint8_t *)inputBuffer) + N_samples_to_add_ * floatFormat.mBytesPerPacket, ((uint8_t *)inputBuffer) + bytesToSkip, bytesReadFromInput);
lpc_extrapolate_bkwd((float *)(((uint8_t *)inputBuffer) + _N_samples_to_add_ * floatFormat.mBytesPerPacket), samples_in_buffer, prime, floatFormat.mChannelsPerFrame, LPC_ORDER, _N_samples_to_add_, &extrapolateBuffer, &extrapolateBufferSize);
#ifdef _DEBUG
[BadSampleCleaner cleanSamples:(float *)inputBuffer
amount:_N_samples_to_add_ * floatFormat.mChannelsPerFrame
location:@"pre-extrapolated data"];
#endif
bytesReadFromInput += _N_samples_to_add_ * floatFormat.mBytesPerPacket;
latencyEaten = N_samples_to_drop_;
#if DSD_DECIMATE
if(dsd2pcm) latencyEaten += (int)ceil(dsd2pcmLatency * sampleRatio);
#endif
is_preextrapolated_ = 2;
#if DSD_DECIMATE
} else if(dsd2pcm && !is_preextrapolated_) {
latencyEaten = dsd2pcmLatency;
is_preextrapolated_ = 3;
#endif
}
if(is_postextrapolated_ == 1) {
size_t samples_in_buffer = bytesReadFromInput / floatFormat.mBytesPerPacket;
size_t prime = min(samples_in_buffer, PRIME_LEN_);
size_t newSize = bytesReadFromInput;
newSize += N_samples_to_add_ * floatFormat.mBytesPerPacket;
if(newSize > inputBufferSize) {
inputBuffer = realloc(inputBuffer, inputBufferSize = newSize * 3);
}
lpc_extrapolate_fwd((float *)inputBuffer, samples_in_buffer, prime, floatFormat.mChannelsPerFrame, LPC_ORDER, N_samples_to_add_, &extrapolateBuffer, &extrapolateBufferSize);
#ifdef _DEBUG
[BadSampleCleaner cleanSamples:(float *)(inputBuffer) + samples_in_buffer * floatFormat.mChannelsPerFrame
amount:N_samples_to_add_ * floatFormat.mChannelsPerFrame
location:@"post-extrapolated data"];
#endif
bytesReadFromInput += N_samples_to_add_ * floatFormat.mBytesPerPacket;
latencyEatenPost = N_samples_to_drop_;
is_postextrapolated_ = 2;
} else if(is_postextrapolated_ == 3) { // No need to skip the end
latencyEatenPost = 0;
}
// Input now contains bytesReadFromInput worth of floats, in the input sample rate
inpSize = bytesReadFromInput;
inpOffset = amountToIgnorePostExtrapolated * floatFormat.mBytesPerPacket;
}
if(inpOffset != inpSize && floatOffset == floatSize) {
#if DSD_DECIMATE
const float scaleModifier = (inputFormat.mBitsPerChannel == 1) ? 0.5f : 1.0f;
#endif
size_t inputSamples = (inpSize - inpOffset) / floatFormat.mBytesPerPacket;
ioNumberPackets = (UInt32)inputSamples;
ioNumberPackets = (UInt32)ceil((float)ioNumberPackets * sampleRatio);
ioNumberPackets = (ioNumberPackets + 255) & ~255;
size_t newSize = ioNumberPackets * floatFormat.mBytesPerPacket;
if(newSize < (ioNumberPackets * dmFloatFormat.mBytesPerPacket))
newSize = ioNumberPackets * dmFloatFormat.mBytesPerPacket;
if(!floatBuffer || floatBufferSize < newSize)
floatBuffer = realloc(floatBuffer, floatBufferSize = newSize * 3);
if(stopping) {
convertEntered = NO;
return 0;
}
size_t inputDone = 0;
size_t outputDone = 0;
if(!skipResampler) {
// This is needed at least for the flush, or else there won't be room for it
ioNumberPackets += ((r8bstate *)_r8bstate)->latency();
#ifdef _DEBUG
[BadSampleCleaner cleanSamples:(float *)(((uint8_t *)inputBuffer) + inpOffset)
amount:inputSamples * floatFormat.mChannelsPerFrame
location:@"resampler input"];
#endif
outputDone = ((r8bstate *)_r8bstate)->resample((float *)(((uint8_t *)inputBuffer) + inpOffset), inputSamples, &inputDone, (float *)floatBuffer, ioNumberPackets);
#ifdef _DEBUG
[BadSampleCleaner cleanSamples:(float *)floatBuffer
amount:outputDone * floatFormat.mChannelsPerFrame
location:@"resampler output"];
#endif
if(latencyEatenPost) {
// Post file flush
size_t odone = 0;
do {
odone = ((r8bstate *)_r8bstate)->flush((float *)(((uint8_t *)floatBuffer) + outputDone * floatFormat.mBytesPerPacket), ioNumberPackets - outputDone);
#ifdef _DEBUG
[BadSampleCleaner cleanSamples:(float *)(floatBuffer + outputDone * floatFormat.mBytesPerPacket)
amount:odone * floatFormat.mChannelsPerFrame
location:@"resampler flushed output"];
#endif
outputDone += odone;
} while(odone > 0);
}
} else {
memcpy(floatBuffer, (((uint8_t *)inputBuffer) + inpOffset), inputSamples * floatFormat.mBytesPerPacket);
inputDone = inputSamples;
outputDone = inputSamples;
}
inpOffset += inputDone * floatFormat.mBytesPerPacket;
if(latencyEaten) {
if(outputDone > latencyEaten) {
outputDone -= latencyEaten;
memmove(floatBuffer, ((uint8_t *)floatBuffer) + latencyEaten * floatFormat.mBytesPerPacket, outputDone * floatFormat.mBytesPerPacket);
latencyEaten = 0;
} else {
latencyEaten -= outputDone;
outputDone = 0;
}
}
if(latencyEatenPost) {
if(outputDone > latencyEatenPost) {
outputDone -= latencyEatenPost;
} else {
outputDone = 0;
}
latencyEatenPost = 0;
}
amountReadFromFC = (int)(outputDone * floatFormat.mBytesPerPacket);
scale_by_volume((float *)floatBuffer, amountReadFromFC / sizeof(float), volumeScale
#if DSD_DECIMATE
* scaleModifier
#endif
);
floatSize = amountReadFromFC;
floatOffset = 0;
}
if(floatOffset == floatSize)
goto tryagain;
ioNumberPackets = (amount - amountRead);
if(ioNumberPackets > (floatSize - floatOffset))
ioNumberPackets = (UInt32)(floatSize - floatOffset);
ioNumberPackets -= ioNumberPackets % outputFormat.mBytesPerPacket;
memcpy(((uint8_t *)dest) + amountRead, ((uint8_t *)floatBuffer) + floatOffset, ioNumberPackets);
floatOffset += ioNumberPackets;
amountRead += ioNumberPackets;
convertEntered = NO;
return amountRead;
}
- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context {
if(context == kConverterNodeContext) {
DLog(@"SOMETHING CHANGED!");
if([keyPath isEqualToString:@"values.volumeScaling"]) {
// User reset the volume scaling option
[self refreshVolumeScaling];
}
} else {
[super observeValueForKeyPath:keyPath ofObject:object change:change context:context];
}
}
static float db_to_scale(float db) {
return pow(10.0, db / 20);
}
- (void)refreshVolumeScaling {
if(rgInfo == nil) {
volumeScale = 1.0;
return;
}
NSString *scaling = [[NSUserDefaults standardUserDefaults] stringForKey:@"volumeScaling"];
BOOL useAlbum = [scaling hasPrefix:@"albumGain"];
BOOL useTrack = useAlbum || [scaling hasPrefix:@"trackGain"];
BOOL useVolume = useAlbum || useTrack || [scaling isEqualToString:@"volumeScale"];
BOOL usePeak = [scaling hasSuffix:@"WithPeak"];
float scale = 1.0;
float peak = 0.0;
if(useVolume) {
id pVolumeScale = [rgInfo objectForKey:@"volume"];
if(pVolumeScale != nil)
scale = [pVolumeScale floatValue];
}
if(useTrack) {
id trackGain = [rgInfo objectForKey:@"replayGainTrackGain"];
id trackPeak = [rgInfo objectForKey:@"replayGainTrackPeak"];
if(trackGain != nil)
scale = db_to_scale([trackGain floatValue]);
if(trackPeak != nil)
peak = [trackPeak floatValue];
}
if(useAlbum) {
id albumGain = [rgInfo objectForKey:@"replayGainAlbumGain"];
id albumPeak = [rgInfo objectForKey:@"replayGainAlbumPeak"];
if(albumGain != nil)
scale = db_to_scale([albumGain floatValue]);
if(albumPeak != nil)
peak = [albumPeak floatValue];
}
if(usePeak) {
if(scale * peak > 1.0)
scale = 1.0 / peak;
}
volumeScale = scale;
}
- (BOOL)setupWithInputFormat:(AudioStreamBasicDescription)inf withInputConfig:(uint32_t)inputConfig outputFormat:(AudioStreamBasicDescription)outf outputConfig:(uint32_t)outputConfig isLossless:(BOOL)lossless {
// Make the converter
inputFormat = inf;
outputFormat = outf;
inputChannelConfig = inputConfig;
outputChannelConfig = outputConfig;
nodeFormat = outputFormat;
nodeChannelConfig = outputChannelConfig;
rememberedLossless = lossless;
// These are the only sample formats we support translating
BOOL isFloat = !!(inputFormat.mFormatFlags & kAudioFormatFlagIsFloat);
if((!isFloat && !(inputFormat.mBitsPerChannel >= 1 && inputFormat.mBitsPerChannel <= 32)) || (isFloat && !(inputFormat.mBitsPerChannel == 32 || inputFormat.mBitsPerChannel == 64)))
return NO;
// These are really placeholders, as we're doing everything internally now
if(lossless &&
inputFormat.mBitsPerChannel == 16 &&
inputFormat.mChannelsPerFrame == 2 &&
inputFormat.mSampleRate == 44100) {
// possibly HDCD, run through decoder
hdcd_decoder = calloc(1, sizeof(hdcd_state_stereo_t));
hdcd_reset_stereo((hdcd_state_stereo_t *)hdcd_decoder, 44100);
}
floatFormat = inputFormat;
floatFormat.mFormatFlags = kAudioFormatFlagsNativeFloatPacked;
floatFormat.mBitsPerChannel = 32;
floatFormat.mBytesPerFrame = (32 / 8) * floatFormat.mChannelsPerFrame;
floatFormat.mBytesPerPacket = floatFormat.mBytesPerFrame * floatFormat.mFramesPerPacket;
#if DSD_DECIMATE
if(inputFormat.mBitsPerChannel == 1) {
// Decimate this for speed
floatFormat.mSampleRate *= 1.0 / 8.0;
dsd2pcmCount = floatFormat.mChannelsPerFrame;
dsd2pcm = (void **)calloc(dsd2pcmCount, sizeof(void *));
dsd2pcm[0] = dsd2pcm_alloc();
dsd2pcmLatency = dsd2pcm_latency(dsd2pcm[0]);
for(size_t i = 1; i < dsd2pcmCount; ++i) {
dsd2pcm[i] = dsd2pcm_dup(dsd2pcm[0]);
}
}
#endif
inpOffset = 0;
inpSize = 0;
floatOffset = 0;
floatSize = 0;
// This is a post resampler, post-down/upmix format
dmFloatFormat = floatFormat;
dmFloatFormat.mSampleRate = outputFormat.mSampleRate;
dmFloatFormat.mChannelsPerFrame = outputFormat.mChannelsPerFrame;
dmFloatFormat.mBytesPerFrame = (32 / 8) * dmFloatFormat.mChannelsPerFrame;
dmFloatFormat.mBytesPerPacket = dmFloatFormat.mBytesPerFrame * floatFormat.mFramesPerPacket;
skipResampler = outputFormat.mSampleRate == floatFormat.mSampleRate;
sampleRatio = (double)outputFormat.mSampleRate / (double)floatFormat.mSampleRate;
if(!skipResampler) {
const int channelCount = floatFormat.mChannelsPerFrame;
_r8bstate = (void *)(new r8bstate(channelCount, 1024, floatFormat.mSampleRate, outputFormat.mSampleRate));
PRIME_LEN_ = max(floatFormat.mSampleRate / 20, 1024u);
PRIME_LEN_ = min(PRIME_LEN_, 16384u);
PRIME_LEN_ = max(PRIME_LEN_, 2 * LPC_ORDER + 1);
N_samples_to_add_ = floatFormat.mSampleRate;
N_samples_to_drop_ = outputFormat.mSampleRate;
samples_len(&N_samples_to_add_, &N_samples_to_drop_, 20, 8192u);
is_preextrapolated_ = 0;
is_postextrapolated_ = 0;
}
latencyEaten = 0;
latencyEatenPost = 0;
PrintStreamDesc(&inf);
PrintStreamDesc(&outf);
[self refreshVolumeScaling];
// Move this here so process call isn't running the resampler until it's allocated
stopping = NO;
convertEntered = NO;
streamFormatChanged = NO;
paused = NO;
return YES;
}
- (void)dealloc {
DLog(@"Decoder dealloc");
[[NSUserDefaultsController sharedUserDefaultsController] removeObserver:self forKeyPath:@"values.volumeScaling" context:kConverterNodeContext];
paused = NO;
[self cleanUp];
}
- (void)setOutputFormat:(AudioStreamBasicDescription)format outputConfig:(uint32_t)outputConfig {
DLog(@"SETTING OUTPUT FORMAT!");
outputFormat = format;
outputChannelConfig = outputConfig;
}
- (void)inputFormatDidChange:(AudioStreamBasicDescription)format inputConfig:(uint32_t)inputConfig {
DLog(@"FORMAT CHANGED");
paused = YES;
while(convertEntered) {
usleep(500);
}
[self cleanUp];
[self setupWithInputFormat:format withInputConfig:inputConfig outputFormat:outputFormat outputConfig:outputChannelConfig isLossless:rememberedLossless];
}
- (void)setRGInfo:(NSDictionary *)rgi {
DLog(@"Setting ReplayGain info");
rgInfo = rgi;
[self refreshVolumeScaling];
}
- (void)cleanUp {
stopping = YES;
while(convertEntered) {
usleep(500);
}
if(hFilter) {
hFilter = nil;
}
if(hdcd_decoder) {
free(hdcd_decoder);
hdcd_decoder = NULL;
}
if(_r8bstate) {
delete(r8bstate *)_r8bstate;
_r8bstate = NULL;
}
#if DSD_DECIMATE
if(dsd2pcm && dsd2pcmCount) {
for(size_t i = 0; i < dsd2pcmCount; ++i) {
dsd2pcm_free(dsd2pcm[i]);
dsd2pcm[i] = NULL;
}
free(dsd2pcm);
dsd2pcm = NULL;
}
#endif
if(extrapolateBuffer) {
free(extrapolateBuffer);
extrapolateBuffer = NULL;
extrapolateBufferSize = 0;
}
if(floatBuffer) {
free(floatBuffer);
floatBuffer = NULL;
floatBufferSize = 0;
}
if(inputBuffer) {
free(inputBuffer);
inputBuffer = NULL;
inputBufferSize = 0;
}
floatOffset = 0;
floatSize = 0;
}
- (double)secondsBuffered {
return [buffer listDuration];
}
@end