cog/Frameworks/libcelt_0061/celt-0.6.1/libcelt/modes.c

515 lines
15 KiB
C

/* (C) 2007-2009 Jean-Marc Valin, CSIRO
(C) 2008 Gregory Maxwell */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "celt.h"
#include "modes.h"
#include "rate.h"
#include "os_support.h"
#include "stack_alloc.h"
#include "quant_bands.h"
#ifdef STATIC_MODES
#include "static_modes.c"
#endif
#define MODEVALID 0xa110ca7e
#define MODEPARTIAL 0x7eca10a1
#define MODEFREED 0xb10cf8ee
#ifndef M_PI
#define M_PI 3.141592653
#endif
int celt_mode_info(const CELTMode *mode, int request, celt_int32_t *value)
{
if (check_mode(mode) != CELT_OK)
return CELT_INVALID_MODE;
switch (request)
{
case CELT_GET_FRAME_SIZE:
*value = mode->mdctSize;
break;
case CELT_GET_LOOKAHEAD:
*value = mode->overlap;
break;
case CELT_GET_NB_CHANNELS:
*value = mode->nbChannels;
break;
case CELT_GET_BITSTREAM_VERSION:
*value = CELT_BITSTREAM_VERSION;
break;
case CELT_GET_SAMPLE_RATE:
*value = mode->Fs;
break;
default:
return CELT_UNIMPLEMENTED;
}
return CELT_OK;
}
#ifndef STATIC_MODES
#define PBANDS 8
#ifdef STDIN_TUNING
int MIN_BINS;
#else
#define MIN_BINS 3
#endif
/* Defining 25 critical bands for the full 0-20 kHz audio bandwidth
Taken from http://ccrma.stanford.edu/~jos/bbt/Bark_Frequency_Scale.html */
#define BARK_BANDS 25
static const celt_int16_t bark_freq[BARK_BANDS+1] = {
0, 100, 200, 300, 400,
510, 630, 770, 920, 1080,
1270, 1480, 1720, 2000, 2320,
2700, 3150, 3700, 4400, 5300,
6400, 7700, 9500, 12000, 15500,
20000};
static const celt_int16_t pitch_freq[PBANDS+1] ={0, 345, 689, 1034, 1378, 2067, 3273, 5340, 6374};
/* This allocation table is per critical band. When creating a mode, the bits get added together
into the codec bands, which are sometimes larger than one critical band at low frequency */
#ifdef STDIN_TUNING
int BITALLOC_SIZE;
int *band_allocation;
#else
#define BITALLOC_SIZE 12
static const int band_allocation[BARK_BANDS*BITALLOC_SIZE] =
/* 0 100 200 300 400 510 630 770 920 1k 1.2 1.5 1.7 2k 2.3 2.7 3.1 3.7 4.4 5.3 6.4 7.7 9.5 12k 15k */
{ 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*0*/
2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /*1*/
2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 7, 7, 7, 5, 4, 0, 0, 0, 0, 0, 0, /*2*/
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 5, 6, 8, 8, 8, 6, 5, 4, 0, 0, 0, 0, 0, /*3*/
3, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 6, 7, 9, 9, 9, 7, 6, 5, 5, 5, 0, 0, 0, /*4*/
3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 7, 7, 9, 10, 10, 10, 9, 6, 5, 5, 5, 5, 1, 0, /*5*/
4, 3, 3, 4, 6, 7, 7, 7, 7, 7, 8, 9, 9, 9, 11, 10, 10, 9, 9, 8, 11, 10, 10, 1, 0, /*6*/
5, 5, 5, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10, 12, 12, 11, 11, 17, 12, 15, 15, 20, 18, 10, 1, /*7*/
6, 7, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 14, 17, 18, 21, 22, 27, 29, 39, 37, 38, 40, 35, 1, /*8*/
7, 7, 7, 8, 8, 8, 10, 10, 10, 13, 14, 18, 20, 24, 28, 32, 32, 35, 38, 38, 42, 50, 59, 54, 31, /*9*/
8, 8, 8, 8, 8, 9, 10, 12, 14, 20, 22, 25, 28, 30, 35, 42, 46, 50, 55, 60, 62, 62, 72, 82, 62, /*10*/
9, 9, 9, 10, 12, 13, 15, 18, 22, 30, 32, 35, 40, 45, 55, 62, 66, 70, 85, 90, 92, 92, 92,102, 92, /*11*/
};
#endif
static celt_int16_t *compute_ebands(celt_int32_t Fs, int frame_size, int *nbEBands)
{
celt_int16_t *eBands;
int i, res, min_width, lin, low, high, nBark;
res = (Fs+frame_size)/(2*frame_size);
min_width = MIN_BINS*res;
/* Find the number of critical bands supported by our sampling rate */
for (nBark=1;nBark<BARK_BANDS;nBark++)
if (bark_freq[nBark+1]*2 >= Fs)
break;
/* Find where the linear part ends (i.e. where the spacing is more than min_width */
for (lin=0;lin<nBark;lin++)
if (bark_freq[lin+1]-bark_freq[lin] >= min_width)
break;
low = ((bark_freq[lin]/res)+(MIN_BINS-1))/MIN_BINS;
high = nBark-lin;
*nbEBands = low+high;
eBands = celt_alloc(sizeof(celt_int16_t)*(*nbEBands+2));
if (eBands==NULL)
return NULL;
/* Linear spacing (min_width) */
for (i=0;i<low;i++)
eBands[i] = MIN_BINS*i;
/* Spacing follows critical bands */
for (i=0;i<high;i++)
eBands[i+low] = (bark_freq[lin+i]+res/2)/res;
/* Enforce the minimum spacing at the boundary */
for (i=0;i<*nbEBands;i++)
if (eBands[i] < MIN_BINS*i)
eBands[i] = MIN_BINS*i;
eBands[*nbEBands] = (bark_freq[nBark]+res/2)/res;
eBands[*nbEBands+1] = frame_size;
if (eBands[*nbEBands] > eBands[*nbEBands+1])
eBands[*nbEBands] = eBands[*nbEBands+1];
/* FIXME: Remove last band if too small */
return eBands;
}
static void compute_pbands(CELTMode *mode, int res)
{
int i;
celt_int16_t *pBands;
pBands=celt_alloc(sizeof(celt_int16_t)*(PBANDS+2));
mode->pBands = pBands;
if (pBands==NULL)
return;
mode->nbPBands = PBANDS;
for (i=0;i<PBANDS+1;i++)
{
pBands[i] = (pitch_freq[i]+res/2)/res;
if (pBands[i] < mode->eBands[i])
pBands[i] = mode->eBands[i];
}
pBands[PBANDS+1] = mode->eBands[mode->nbEBands+1];
for (i=1;i<mode->nbPBands+1;i++)
{
int j;
for (j=0;j<mode->nbEBands;j++)
if (mode->eBands[j] <= pBands[i] && mode->eBands[j+1] > pBands[i])
break;
if (mode->eBands[j] != pBands[i])
{
if (pBands[i]-mode->eBands[j] < mode->eBands[j+1]-pBands[i] &&
mode->eBands[j] != pBands[i-1])
pBands[i] = mode->eBands[j];
else
pBands[i] = mode->eBands[j+1];
}
}
mode->pitchEnd = pBands[PBANDS];
}
static void compute_allocation_table(CELTMode *mode, int res)
{
int i, j, nBark;
celt_int16_t *allocVectors;
const int C = CHANNELS(mode);
/* Find the number of critical bands supported by our sampling rate */
for (nBark=1;nBark<BARK_BANDS;nBark++)
if (bark_freq[nBark+1]*2 >= mode->Fs)
break;
mode->nbAllocVectors = BITALLOC_SIZE;
allocVectors = celt_alloc(sizeof(celt_int16_t)*(BITALLOC_SIZE*mode->nbEBands));
if (allocVectors==NULL)
return;
/* Compute per-codec-band allocation from per-critical-band matrix */
for (i=0;i<BITALLOC_SIZE;i++)
{
celt_int32_t current = 0;
int eband = 0;
for (j=0;j<nBark;j++)
{
int edge, low;
celt_int32_t alloc;
edge = mode->eBands[eband+1]*res;
alloc = band_allocation[i*BARK_BANDS+j];
alloc = alloc*C*mode->mdctSize;
if (edge < bark_freq[j+1])
{
int num, den;
num = alloc * (edge-bark_freq[j]);
den = bark_freq[j+1]-bark_freq[j];
low = (num+den/2)/den;
allocVectors[i*mode->nbEBands+eband] = (current+low+128)/256;
current=0;
eband++;
current += alloc-low;
} else {
current += alloc;
}
}
allocVectors[i*mode->nbEBands+eband] = (current+128)/256;
}
mode->allocVectors = allocVectors;
}
#endif /* STATIC_MODES */
CELTMode *celt_mode_create(celt_int32_t Fs, int channels, int frame_size, int *error)
{
int i;
#ifdef STDIN_TUNING
scanf("%d ", &MIN_BINS);
scanf("%d ", &BITALLOC_SIZE);
band_allocation = celt_alloc(sizeof(int)*BARK_BANDS*BITALLOC_SIZE);
for (i=0;i<BARK_BANDS*BITALLOC_SIZE;i++)
{
scanf("%d ", band_allocation+i);
}
#endif
#ifdef STATIC_MODES
const CELTMode *m = NULL;
CELTMode *mode=NULL;
ALLOC_STACK;
#if !defined(VAR_ARRAYS) && !defined(USE_ALLOCA)
if (global_stack==NULL)
{
celt_free(global_stack);
goto failure;
}
#endif
for (i=0;i<TOTAL_MODES;i++)
{
if (Fs == static_mode_list[i]->Fs &&
channels == static_mode_list[i]->nbChannels &&
frame_size == static_mode_list[i]->mdctSize)
{
m = static_mode_list[i];
break;
}
}
if (m == NULL)
{
celt_warning("Mode not included as part of the static modes");
if (error)
*error = CELT_BAD_ARG;
return NULL;
}
mode = (CELTMode*)celt_alloc(sizeof(CELTMode));
if (mode==NULL)
goto failure;
CELT_COPY(mode, m, 1);
mode->marker_start = MODEPARTIAL;
#else
int res;
CELTMode *mode=NULL;
celt_word16_t *window;
ALLOC_STACK;
#if !defined(VAR_ARRAYS) && !defined(USE_ALLOCA)
if (global_stack==NULL)
{
celt_free(global_stack);
goto failure;
}
#endif
/* The good thing here is that permutation of the arguments will automatically be invalid */
if (Fs < 32000 || Fs > 96000)
{
celt_warning("Sampling rate must be between 32 kHz and 96 kHz");
if (error)
*error = CELT_BAD_ARG;
return NULL;
}
if (channels < 0 || channels > 2)
{
celt_warning("Only mono and stereo supported");
if (error)
*error = CELT_BAD_ARG;
return NULL;
}
if (frame_size < 64 || frame_size > 1024 || frame_size%2!=0)
{
celt_warning("Only even frame sizes from 64 to 1024 are supported");
if (error)
*error = CELT_BAD_ARG;
return NULL;
}
res = (Fs+frame_size)/(2*frame_size);
mode = celt_alloc(sizeof(CELTMode));
if (mode==NULL)
goto failure;
mode->marker_start = MODEPARTIAL;
mode->Fs = Fs;
mode->mdctSize = frame_size;
mode->nbChannels = channels;
mode->eBands = compute_ebands(Fs, frame_size, &mode->nbEBands);
if (mode->eBands==NULL)
goto failure;
compute_pbands(mode, res);
if (mode->pBands==NULL)
goto failure;
mode->ePredCoef = QCONST16(.8f,15);
if (frame_size > 640 && (frame_size%16)==0)
{
mode->nbShortMdcts = 8;
} else if (frame_size > 384 && (frame_size%8)==0)
{
mode->nbShortMdcts = 4;
} else if (frame_size > 384 && (frame_size%10)==0)
{
mode->nbShortMdcts = 5;
} else if (frame_size > 256 && (frame_size%6)==0)
{
mode->nbShortMdcts = 3;
} else if (frame_size > 256 && (frame_size%8)==0)
{
mode->nbShortMdcts = 4;
} else if (frame_size > 64 && (frame_size%4)==0)
{
mode->nbShortMdcts = 2;
} else if (frame_size > 128 && (frame_size%6)==0)
{
mode->nbShortMdcts = 3;
} else
{
mode->nbShortMdcts = 1;
}
/* Overlap must be divisible by 4 */
if (mode->nbShortMdcts > 1)
mode->overlap = ((frame_size/mode->nbShortMdcts)>>2)<<2;
else
mode->overlap = (frame_size>>3)<<2;
compute_allocation_table(mode, res);
if (mode->allocVectors==NULL)
goto failure;
window = (celt_word16_t*)celt_alloc(mode->overlap*sizeof(celt_word16_t));
if (window==NULL)
goto failure;
#ifndef FIXED_POINT
for (i=0;i<mode->overlap;i++)
window[i] = Q15ONE*sin(.5*M_PI* sin(.5*M_PI*(i+.5)/mode->overlap) * sin(.5*M_PI*(i+.5)/mode->overlap));
#else
for (i=0;i<mode->overlap;i++)
window[i] = MIN32(32767,32768.*sin(.5*M_PI* sin(.5*M_PI*(i+.5)/mode->overlap) * sin(.5*M_PI*(i+.5)/mode->overlap)));
#endif
mode->window = window;
mode->bits = (const celt_int16_t **)compute_alloc_cache(mode, 1);
if (mode->bits==NULL)
goto failure;
#ifndef SHORTCUTS
psydecay_init(&mode->psy, MAX_PERIOD/2, mode->Fs);
if (mode->psy.decayR==NULL)
goto failure;
#endif
#endif /* !STATIC_MODES */
#ifdef DISABLE_STEREO
if (channels > 1)
{
celt_warning("Stereo support was disable from this build");
if (error)
*error = CELT_BAD_ARG;
return NULL;
}
#endif
mdct_init(&mode->mdct, 2*mode->mdctSize);
mode->fft = pitch_state_alloc(MAX_PERIOD);
mode->shortMdctSize = mode->mdctSize/mode->nbShortMdcts;
mdct_init(&mode->shortMdct, 2*mode->shortMdctSize);
mode->shortWindow = mode->window;
mode->prob = quant_prob_alloc(mode);
if ((mode->mdct.trig==NULL) || (mode->mdct.kfft==NULL) || (mode->fft==NULL) ||
(mode->shortMdct.trig==NULL) || (mode->shortMdct.kfft==NULL) || (mode->prob==NULL))
goto failure;
mode->marker_start = MODEVALID;
mode->marker_end = MODEVALID;
if (error)
*error = CELT_OK;
return mode;
failure:
if (error)
*error = CELT_INVALID_MODE;
if (mode!=NULL)
celt_mode_destroy(mode);
return NULL;
}
void celt_mode_destroy(CELTMode *mode)
{
int i;
const celt_int16_t *prevPtr = NULL;
if (mode == NULL)
{
celt_warning("NULL passed to celt_mode_destroy");
return;
}
if (mode->marker_start == MODEFREED || mode->marker_end == MODEFREED)
{
celt_warning("Freeing a mode which has already been freed");
return;
}
if (mode->marker_start != MODEVALID && mode->marker_start != MODEPARTIAL)
{
celt_warning("This is not a valid CELT mode structure");
return;
}
mode->marker_start = MODEFREED;
#ifndef STATIC_MODES
if (mode->bits!=NULL)
{
for (i=0;i<mode->nbEBands;i++)
{
if (mode->bits[i] != prevPtr)
{
prevPtr = mode->bits[i];
celt_free((int*)mode->bits[i]);
}
}
}
celt_free((int**)mode->bits);
celt_free((int*)mode->eBands);
celt_free((int*)mode->pBands);
celt_free((int*)mode->allocVectors);
celt_free((celt_word16_t*)mode->window);
#ifndef SHORTCUTS
psydecay_clear(&mode->psy);
#endif
#endif
mdct_clear(&mode->mdct);
mdct_clear(&mode->shortMdct);
pitch_state_free(mode->fft);
quant_prob_free(mode->prob);
mode->marker_end = MODEFREED;
celt_free((CELTMode *)mode);
}
int check_mode(const CELTMode *mode)
{
if (mode==NULL)
return CELT_INVALID_MODE;
if (mode->marker_start == MODEVALID && mode->marker_end == MODEVALID)
return CELT_OK;
if (mode->marker_start == MODEFREED || mode->marker_end == MODEFREED)
celt_warning("Using a mode that has already been freed");
else
celt_warning("This is not a valid CELT mode");
return CELT_INVALID_MODE;
}