cog/Frameworks/AudioOverload/aosdk/eng_ssf/scsp.c

1277 lines
30 KiB
C

/*
Sega/Yamaha YMF292-F (SCSP = Saturn Custom Sound Processor) emulation
By ElSemi
MAME/M1 conversion and cleanup by R. Belmont
Additional code and bugfixes by kingshriek
This chip has 32 voices. Each voice can play a sample or be part of
an FM construct. Unlike traditional Yamaha FM chips, the base waveform
for the FM still comes from the wavetable RAM.
ChangeLog:
* November 25, 2003 (ES) Fixed buggy timers and envelope overflows.
(RB) Improved sample rates other than 44100, multiple
chips now works properly.
* December 02, 2003 (ES) Added DISDL register support, improves mix.
* April 28, 2004 (ES) Corrected envelope rates, added key-rate scaling,
added ringbuffer support.
* January 8, 2005 (RB) Added ability to specify region offset for RAM.
* January 26, 2007 (ES) Added on-board DSP capability
* December 16, 2007 (kingshriek) Many EG bug fixes, implemented effects mixer,
implemented FM.
*/
#include <math.h>
#include <string.h>
#include "ao.h"
#include "cpuintrf.h"
#include "scsp.h"
#include "scspdsp.h"
#include "sat_hw.h"
#define ICLIP16(x) (x<-32768)?-32768:((x>32767)?32767:x)
#define SHIFT 12
#define FIX(v) ((UINT32) ((float) (1<<SHIFT)*(v)))
#define EG_SHIFT 16
#define FM_DELAY 0 // delay in number of slots processed before samples are written to the FM ring buffer
// include the LFO handling code
#include "scsplfo.c"
/*
SCSP features 32 programmable slots
that can generate FM and PCM (from ROM/RAM) sound
*/
//SLOT PARAMETERS
#define KEYONEX(slot) ((slot->udata.data[0x0]>>0x0)&0x1000)
#define KEYONB(slot) ((slot->udata.data[0x0]>>0x0)&0x0800)
#define SBCTL(slot) ((slot->udata.data[0x0]>>0x9)&0x0003)
#define SSCTL(slot) ((slot->udata.data[0x0]>>0x7)&0x0003)
#define LPCTL(slot) ((slot->udata.data[0x0]>>0x5)&0x0003)
#define PCM8B(slot) ((slot->udata.data[0x0]>>0x0)&0x0010)
#define SA(slot) (((slot->udata.data[0x0]&0xF)<<16)|(slot->udata.data[0x1]))
#define LSA(slot) (slot->udata.data[0x2])
#define LEA(slot) (slot->udata.data[0x3])
#define D2R(slot) ((slot->udata.data[0x4]>>0xB)&0x001F)
#define D1R(slot) ((slot->udata.data[0x4]>>0x6)&0x001F)
#define EGHOLD(slot) ((slot->udata.data[0x4]>>0x0)&0x0020)
#define AR(slot) ((slot->udata.data[0x4]>>0x0)&0x001F)
#define LPSLNK(slot) ((slot->udata.data[0x5]>>0x0)&0x4000)
#define KRS(slot) ((slot->udata.data[0x5]>>0xA)&0x000F)
#define DL(slot) ((slot->udata.data[0x5]>>0x5)&0x001F)
#define RR(slot) ((slot->udata.data[0x5]>>0x0)&0x001F)
#define STWINH(slot) ((slot->udata.data[0x6]>>0x0)&0x0200)
#define SDIR(slot) ((slot->udata.data[0x6]>>0x0)&0x0100)
#define TL(slot) ((slot->udata.data[0x6]>>0x0)&0x00FF)
#define MDL(slot) ((slot->udata.data[0x7]>>0xC)&0x000F)
#define MDXSL(slot) ((slot->udata.data[0x7]>>0x6)&0x003F)
#define MDYSL(slot) ((slot->udata.data[0x7]>>0x0)&0x003F)
#define OCT(slot) ((slot->udata.data[0x8]>>0xB)&0x000F)
#define FNS(slot) ((slot->udata.data[0x8]>>0x0)&0x03FF)
#define LFORE(slot) ((slot->udata.data[0x9]>>0x0)&0x8000)
#define LFOF(slot) ((slot->udata.data[0x9]>>0xA)&0x001F)
#define PLFOWS(slot) ((slot->udata.data[0x9]>>0x8)&0x0003)
#define PLFOS(slot) ((slot->udata.data[0x9]>>0x5)&0x0007)
#define ALFOWS(slot) ((slot->udata.data[0x9]>>0x3)&0x0003)
#define ALFOS(slot) ((slot->udata.data[0x9]>>0x0)&0x0007)
#define ISEL(slot) ((slot->udata.data[0xA]>>0x3)&0x000F)
#define IMXL(slot) ((slot->udata.data[0xA]>>0x0)&0x0007)
#define DISDL(slot) ((slot->udata.data[0xB]>>0xD)&0x0007)
#define DIPAN(slot) ((slot->udata.data[0xB]>>0x8)&0x001F)
#define EFSDL(slot) ((slot->udata.data[0xB]>>0x5)&0x0007)
#define EFPAN(slot) ((slot->udata.data[0xB]>>0x0)&0x001F)
//Envelope times in ms
static const double ARTimes[64]={100000/*infinity*/,100000/*infinity*/,8100.0,6900.0,6000.0,4800.0,4000.0,3400.0,3000.0,2400.0,2000.0,1700.0,1500.0,
1200.0,1000.0,860.0,760.0,600.0,500.0,430.0,380.0,300.0,250.0,220.0,190.0,150.0,130.0,110.0,95.0,
76.0,63.0,55.0,47.0,38.0,31.0,27.0,24.0,19.0,15.0,13.0,12.0,9.4,7.9,6.8,6.0,4.7,3.8,3.4,3.0,2.4,
2.0,1.8,1.6,1.3,1.1,0.93,0.85,0.65,0.53,0.44,0.40,0.35,0.0,0.0};
static const double DRTimes[64]={100000/*infinity*/,100000/*infinity*/,118200.0,101300.0,88600.0,70900.0,59100.0,50700.0,44300.0,35500.0,29600.0,25300.0,22200.0,17700.0,
14800.0,12700.0,11100.0,8900.0,7400.0,6300.0,5500.0,4400.0,3700.0,3200.0,2800.0,2200.0,1800.0,1600.0,1400.0,1100.0,
920.0,790.0,690.0,550.0,460.0,390.0,340.0,270.0,230.0,200.0,170.0,140.0,110.0,98.0,85.0,68.0,57.0,49.0,43.0,34.0,
28.0,25.0,22.0,18.0,14.0,12.0,11.0,8.5,7.1,6.1,5.4,4.3,3.6,3.1};
static UINT32 FNS_Table[0x400];
static INT32 EG_TABLE[0x400];
typedef enum {ATTACK,DECAY1,DECAY2,RELEASE} _STATE;
struct _EG
{
int volume; //
_STATE state;
int step;
//step vals
int AR; //Attack
int D1R; //Decay1
int D2R; //Decay2
int RR; //Release
int DL; //Decay level
UINT8 EGHOLD;
UINT8 LPLINK;
};
struct _SLOT
{
union
{
UINT16 data[0x10]; //only 0x1a bytes used
UINT8 datab[0x20];
} udata;
UINT8 active; //this slot is currently playing
UINT8 *base; //samples base address
UINT32 cur_addr; //current play address (24.8)
UINT32 nxt_addr; //next play address
UINT32 step; //pitch step (24.8)
UINT8 Backwards; //the wave is playing backwards
struct _EG EG; //Envelope
struct _LFO PLFO; //Phase LFO
struct _LFO ALFO; //Amplitude LFO
int slot;
signed short Prev; //Previous sample (for interpolation)
};
#define MEM4B(scsp) ((scsp->udata.data[0]>>0x0)&0x0200)
#define DAC18B(scsp) ((scsp->udata.data[0]>>0x0)&0x0100)
#define MVOL(scsp) ((scsp->udata.data[0]>>0x0)&0x000F)
#define RBL(scsp) ((scsp->udata.data[1]>>0x7)&0x0003)
#define RBP(scsp) ((scsp->udata.data[1]>>0x0)&0x003F)
#define MOFULL(scsp) ((scsp->udata.data[2]>>0x0)&0x1000)
#define MOEMPTY(scsp) ((scsp->udata.data[2]>>0x0)&0x0800)
#define MIOVF(scsp) ((scsp->udata.data[2]>>0x0)&0x0400)
#define MIFULL(scsp) ((scsp->udata.data[2]>>0x0)&0x0200)
#define MIEMPTY(scsp) ((scsp->udata.data[2]>>0x0)&0x0100)
#define SCILV0(scsp) ((scsp->udata.data[0x24/2]>>0x0)&0xff)
#define SCILV1(scsp) ((scsp->udata.data[0x26/2]>>0x0)&0xff)
#define SCILV2(scsp) ((scsp->udata.data[0x28/2]>>0x0)&0xff)
#define SCIEX0 0
#define SCIEX1 1
#define SCIEX2 2
#define SCIMID 3
#define SCIDMA 4
#define SCIIRQ 5
#define SCITMA 6
#define SCITMB 7
#define USEDSP
struct _SCSP
{
union
{
UINT16 data[0x30/2];
UINT8 datab[0x30];
} udata;
struct _SLOT Slots[32];
signed short RINGBUF[64];
unsigned char BUFPTR;
#if FM_DELAY
signed short DELAYBUF[FM_DELAY];
unsigned char DELAYPTR;
#endif
unsigned char *SCSPRAM;
UINT32 SCSPRAM_LENGTH;
char Master;
void (*Int68kCB)(int irq);
INT32 *buffertmpl, *buffertmpr;
UINT32 IrqTimA;
UINT32 IrqTimBC;
UINT32 IrqMidi;
UINT8 MidiOutW,MidiOutR;
UINT8 MidiStack[16];
UINT8 MidiW,MidiR;
int LPANTABLE[0x10000];
int RPANTABLE[0x10000];
int TimPris[3];
int TimCnt[3];
// DMA stuff
UINT32 scsp_dmea;
UINT16 scsp_drga;
UINT16 scsp_dtlg;
int ARTABLE[64], DRTABLE[64];
struct _SCSPDSP DSP;
};
static struct _SCSP *AllocedSCSP;
static void dma_scsp(struct _SCSP *SCSP); /*SCSP DMA transfer function*/
#define scsp_dgate scsp_regs[0x16/2] & 0x4000
#define scsp_ddir scsp_regs[0x16/2] & 0x2000
#define scsp_dexe scsp_regs[0x16/2] & 0x1000
#define dma_transfer_end ((scsp_regs[0x24/2] & 0x10)>>4)|(((scsp_regs[0x26/2] & 0x10)>>4)<<1)|(((scsp_regs[0x28/2] & 0x10)>>4)<<2)
static const float SDLT[8]={-1000000.0,-36.0,-30.0,-24.0,-18.0,-12.0,-6.0,0.0};
static INT16 *bufferl;
static INT16 *bufferr;
static int length;
static signed short *RBUFDST; //this points to where the sample will be stored in the RingBuf
static unsigned char DecodeSCI(struct _SCSP *SCSP,unsigned char irq)
{
unsigned char SCI=0;
unsigned char v;
v=(SCILV0((SCSP))&(1<<irq))?1:0;
SCI|=v;
v=(SCILV1((SCSP))&(1<<irq))?1:0;
SCI|=v<<1;
v=(SCILV2((SCSP))&(1<<irq))?1:0;
SCI|=v<<2;
return SCI;
}
static void ResetInterrupts(struct _SCSP *SCSP)
{
UINT32 reset = SCSP->udata.data[0x22/2];
if (reset & 0x40)
SCSP->Int68kCB(-SCSP->IrqTimA);
if (reset & 0x180)
SCSP->Int68kCB(-SCSP->IrqTimBC);
}
static void CheckPendingIRQ(struct _SCSP *SCSP)
{
UINT32 pend=SCSP->udata.data[0x20/2];
UINT32 en=SCSP->udata.data[0x1e/2];
if(SCSP->MidiW!=SCSP->MidiR)
{
SCSP->Int68kCB(SCSP->IrqMidi);
return;
}
if(!pend)
return;
if(pend&0x40)
if(en&0x40)
{
SCSP->Int68kCB(SCSP->IrqTimA);
return;
}
if(pend&0x80)
if(en&0x80)
{
SCSP->Int68kCB(SCSP->IrqTimBC);
return;
}
if(pend&0x100)
if(en&0x100)
{
SCSP->Int68kCB(SCSP->IrqTimBC);
return;
}
SCSP->Int68kCB(0);
}
static int Get_AR(struct _SCSP *SCSP,int base,int R)
{
int Rate=base+(R<<1);
if(Rate>63) Rate=63;
if(Rate<0) Rate=0;
return SCSP->ARTABLE[Rate];
}
static int Get_DR(struct _SCSP *SCSP,int base,int R)
{
int Rate=base+(R<<1);
if(Rate>63) Rate=63;
if(Rate<0) Rate=0;
return SCSP->DRTABLE[Rate];
}
static int Get_RR(struct _SCSP *SCSP,int base,int R)
{
int Rate=base+(R<<1);
if(Rate>63) Rate=63;
if(Rate<0) Rate=0;
return SCSP->DRTABLE[Rate];
}
static void Compute_EG(struct _SCSP *SCSP,struct _SLOT *slot)
{
int octave=OCT(slot);
int rate;
if(octave&8) octave=octave-16;
if(KRS(slot)!=0xf)
rate=octave+2*KRS(slot)+((FNS(slot)>>9)&1);
else
rate=0; //rate=((FNS(slot)>>9)&1);
slot->EG.volume=0x17F<<EG_SHIFT;
slot->EG.AR=Get_AR(SCSP,rate,AR(slot));
slot->EG.D1R=Get_DR(SCSP,rate,D1R(slot));
slot->EG.D2R=Get_DR(SCSP,rate,D2R(slot));
slot->EG.RR=Get_RR(SCSP,rate,RR(slot));
slot->EG.DL=0x1f-DL(slot);
slot->EG.EGHOLD=EGHOLD(slot);
}
static void SCSP_StopSlot(struct _SLOT *slot,int keyoff);
static int EG_Update(struct _SLOT *slot)
{
switch(slot->EG.state)
{
case ATTACK:
slot->EG.volume+=slot->EG.AR;
if(slot->EG.volume>=(0x3ff<<EG_SHIFT))
{
if (!LPSLNK(slot))
{
slot->EG.state=DECAY1;
if(slot->EG.D1R>=(1024<<EG_SHIFT)) //Skip DECAY1, go directly to DECAY2
slot->EG.state=DECAY2;
}
slot->EG.volume=0x3ff<<EG_SHIFT;
}
if(slot->EG.EGHOLD)
return 0x3ff<<(SHIFT-10);
break;
case DECAY1:
slot->EG.volume-=slot->EG.D1R;
if(slot->EG.volume<=0)
slot->EG.volume=0;
if(slot->EG.volume>>(EG_SHIFT+5)<=slot->EG.DL)
slot->EG.state=DECAY2;
break;
case DECAY2:
if(D2R(slot)==0)
return (slot->EG.volume>>EG_SHIFT)<<(SHIFT-10);
slot->EG.volume-=slot->EG.D2R;
if(slot->EG.volume<=0)
slot->EG.volume=0;
break;
case RELEASE:
slot->EG.volume-=slot->EG.RR;
if(slot->EG.volume<=0)
{
slot->EG.volume=0;
SCSP_StopSlot(slot,0);
//slot->EG.volume=0x17F<<EG_SHIFT;
//slot->EG.state=ATTACK;
}
break;
default:
return 1<<SHIFT;
}
return (slot->EG.volume>>EG_SHIFT)<<(SHIFT-10);
}
static UINT32 SCSP_Step(struct _SLOT *slot)
{
int octave=OCT(slot);
UINT64 Fn;
Fn=(FNS_Table[FNS(slot)]); //24.8
if(octave&8)
Fn>>=(16-octave);
else
Fn<<=octave;
return Fn/(44100);
}
static void Compute_LFO(struct _SLOT *slot)
{
if(PLFOS(slot)!=0)
LFO_ComputeStep(&(slot->PLFO),LFOF(slot),PLFOWS(slot),PLFOS(slot),0);
if(ALFOS(slot)!=0)
LFO_ComputeStep(&(slot->ALFO),LFOF(slot),ALFOWS(slot),ALFOS(slot),1);
}
static void SCSP_StartSlot(struct _SCSP *SCSP, struct _SLOT *slot)
{
UINT32 start_offset;
slot->active=1;
slot->Backwards=0;
slot->cur_addr=0; slot->nxt_addr=1<<SHIFT;
start_offset = PCM8B(slot) ? SA(slot) : SA(slot) & 0x7FFFE;
slot->base=SCSP->SCSPRAM + start_offset;
slot->step=SCSP_Step(slot);
Compute_EG(SCSP,slot);
slot->EG.state=ATTACK;
slot->EG.volume=0x17F<<EG_SHIFT;
slot->Prev=0;
Compute_LFO(slot);
// printf("StartSlot: SA %x PCM8B %x LPCTL %x ALFOS %x STWINH %x TL %x EFSDL %x\n", SA(slot), PCM8B(slot), LPCTL(slot), ALFOS(slot), STWINH(slot), TL(slot), EFSDL(slot));
// printf(" AR %x D1R %x D2R %x RR %x DL %x KRS %x EGHOLD %x LPSLNK %x\n", AR(slot), D1R(slot), D2R(slot), RR(slot), DL(slot), KRS(slot), EGHOLD(slot), LPSLNK(slot));
}
static void SCSP_StopSlot(struct _SLOT *slot,int keyoff)
{
if(keyoff /*&& slot->EG.state!=RELEASE*/)
{
slot->EG.state=RELEASE;
}
else
{
slot->active=0;
}
slot->udata.data[0]&=~0x800;
}
#define log_base_2(n) (log((float) n)/log((float) 2))
static void SCSP_Init(struct _SCSP *SCSP, const struct SCSPinterface *intf)
{
int i=0;
SCSP->IrqTimA = SCSP->IrqTimBC = SCSP->IrqMidi = 0;
SCSP->MidiR=SCSP->MidiW=0;
SCSP->MidiOutR=SCSP->MidiOutW=0;
// get SCSP RAM
{
memset(SCSP,0,sizeof(*SCSP));
if (!i)
{
SCSP->Master=1;
}
else
{
SCSP->Master=0;
}
if (intf->region)
{
SCSP->SCSPRAM = &sat_ram[0]; //(unsigned char *)intf->region;
SCSP->SCSPRAM_LENGTH = 512*1024;
SCSP->DSP.SCSPRAM = (UINT16 *)SCSP->SCSPRAM;
SCSP->DSP.SCSPRAM_LENGTH = (512*1024)/2;
// SCSP->SCSPRAM += intf->roffset;
}
}
for(i=0;i<0x400;++i)
{
float fcent=(double) 1200.0*log_base_2((double)(((double) 1024.0+(double)i)/(double)1024.0));
fcent=(double) 44100.0*pow(2.0,fcent/1200.0);
FNS_Table[i]=(float) (1<<SHIFT) *fcent;
}
for(i=0;i<0x400;++i)
{
float envDB=((float)(3*(i-0x3ff)))/32.0;
float scale=(float)(1<<SHIFT);
EG_TABLE[i]=(INT32)(pow(10.0,envDB/20.0)*scale);
}
for(i=0;i<0x10000;++i)
{
int iTL =(i>>0x0)&0xff;
int iPAN=(i>>0x8)&0x1f;
int iSDL=(i>>0xD)&0x07;
float TL=1.0;
float SegaDB=0;
float fSDL=1.0;
float PAN=1.0;
float LPAN,RPAN;
if(iTL&0x01) SegaDB-=0.4;
if(iTL&0x02) SegaDB-=0.8;
if(iTL&0x04) SegaDB-=1.5;
if(iTL&0x08) SegaDB-=3;
if(iTL&0x10) SegaDB-=6;
if(iTL&0x20) SegaDB-=12;
if(iTL&0x40) SegaDB-=24;
if(iTL&0x80) SegaDB-=48;
TL=pow(10.0,SegaDB/20.0);
SegaDB=0;
if(iPAN&0x1) SegaDB-=3;
if(iPAN&0x2) SegaDB-=6;
if(iPAN&0x4) SegaDB-=12;
if(iPAN&0x8) SegaDB-=24;
if((iPAN&0xf)==0xf) PAN=0.0;
else PAN=pow(10.0,SegaDB/20.0);
if(iPAN<0x10)
{
LPAN=PAN;
RPAN=1.0;
}
else
{
RPAN=PAN;
LPAN=1.0;
}
if(iSDL)
fSDL=pow(10.0,(SDLT[iSDL])/20.0);
else
fSDL=0.0;
SCSP->LPANTABLE[i]=FIX((4.0*LPAN*TL*fSDL));
SCSP->RPANTABLE[i]=FIX((4.0*RPAN*TL*fSDL));
}
SCSP->ARTABLE[0]=SCSP->DRTABLE[0]=0; //Infinite time
SCSP->ARTABLE[1]=SCSP->DRTABLE[1]=0; //Infinite time
for(i=2;i<64;++i)
{
double t,step,scale;
t=ARTimes[i]; //In ms
if(t!=0.0)
{
step=(1023*1000.0)/((float) 44100.0f*t);
scale=(double) (1<<EG_SHIFT);
SCSP->ARTABLE[i]=(int) (step*scale);
}
else
SCSP->ARTABLE[i]=1024<<EG_SHIFT;
t=DRTimes[i]; //In ms
step=(1023*1000.0)/((float) 44100.0f*t);
scale=(double) (1<<EG_SHIFT);
SCSP->DRTABLE[i]=(int) (step*scale);
}
// make sure all the slots are off
for(i=0;i<32;++i)
{
SCSP->Slots[i].slot=i;
SCSP->Slots[i].active=0;
SCSP->Slots[i].base=NULL;
}
LFO_Init();
SCSP->buffertmpl=(signed int*) malloc(44100*sizeof(signed int));
SCSP->buffertmpr=(signed int*) malloc(44100*sizeof(signed int));
memset(SCSP->buffertmpl,0,44100*sizeof(signed int));
memset(SCSP->buffertmpr,0,44100*sizeof(signed int));
// no "pend"
SCSP[0].udata.data[0x20/2] = 0;
//SCSP[1].udata.data[0x20/2] = 0;
SCSP->TimCnt[0] = 0xffff;
SCSP->TimCnt[1] = 0xffff;
SCSP->TimCnt[2] = 0xffff;
}
static void SCSP_UpdateSlotReg(struct _SCSP *SCSP,int s,int r)
{
struct _SLOT *slot=SCSP->Slots+s;
int sl;
switch(r&0x3f)
{
case 0:
case 1:
if(KEYONEX(slot))
{
for(sl=0;sl<32;++sl)
{
struct _SLOT *s2=SCSP->Slots+sl;
{
if(KEYONB(s2) && s2->EG.state==RELEASE/*&& !s2->active*/)
{
SCSP_StartSlot(SCSP, s2);
}
if(!KEYONB(s2) /*&& s2->active*/)
{
SCSP_StopSlot(s2,1);
}
}
}
slot->udata.data[0]&=~0x1000;
}
break;
case 0x10:
case 0x11:
slot->step=SCSP_Step(slot);
break;
case 0xA:
case 0xB:
slot->EG.RR=Get_RR(SCSP,0,RR(slot));
slot->EG.DL=0x1f-DL(slot);
break;
case 0x12:
case 0x13:
Compute_LFO(slot);
break;
}
}
static void SCSP_UpdateReg(struct _SCSP *SCSP, int reg)
{
switch(reg&0x3f)
{
case 0x2:
case 0x3:
{
unsigned int v=RBL(SCSP);
SCSP->DSP.RBP=RBP(SCSP);
if(v==0)
SCSP->DSP.RBL=8*1024;
else if(v==1)
SCSP->DSP.RBL=16*1024;
if(v==2)
SCSP->DSP.RBL=32*1024;
if(v==3)
SCSP->DSP.RBL=64*1024;
}
break;
case 0x6:
case 0x7:
SCSP_MidiIn(0, SCSP->udata.data[0x6/2]&0xff, 0);
break;
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
break;
case 0x18:
case 0x19:
if(SCSP->Master)
{
SCSP->TimPris[0]=1<<((SCSP->udata.data[0x18/2]>>8)&0x7);
SCSP->TimCnt[0]=(SCSP->udata.data[0x18/2]&0xff)<<8;
}
break;
case 0x1a:
case 0x1b:
if(SCSP->Master)
{
SCSP->TimPris[1]=1<<((SCSP->udata.data[0x1A/2]>>8)&0x7);
SCSP->TimCnt[1]=(SCSP->udata.data[0x1A/2]&0xff)<<8;
}
break;
case 0x1C:
case 0x1D:
if(SCSP->Master)
{
SCSP->TimPris[2]=1<<((SCSP->udata.data[0x1C/2]>>8)&0x7);
SCSP->TimCnt[2]=(SCSP->udata.data[0x1C/2]&0xff)<<8;
}
break;
case 0x22: //SCIRE
case 0x23:
if(SCSP->Master)
{
SCSP->udata.data[0x20/2]&=~SCSP->udata.data[0x22/2];
ResetInterrupts(SCSP);
// behavior from real hardware: if you SCIRE a timer that's expired,
// it'll immediately pop up again. ask Sakura Taisen on the Saturn...
if (SCSP->TimCnt[0] >= 0xff00)
{
SCSP->udata.data[0x20/2] |= 0x40;
}
if (SCSP->TimCnt[1] >= 0xff00)
{
SCSP->udata.data[0x20/2] |= 0x80;
}
if (SCSP->TimCnt[2] >= 0xff00)
{
SCSP->udata.data[0x20/2] |= 0x100;
}
}
break;
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
if(SCSP->Master)
{
SCSP->IrqTimA=DecodeSCI(SCSP,SCITMA);
SCSP->IrqTimBC=DecodeSCI(SCSP,SCITMB);
SCSP->IrqMidi=DecodeSCI(SCSP,SCIMID);
}
break;
}
}
static void SCSP_UpdateSlotRegR(struct _SCSP *SCSP, int slot,int reg)
{
}
static void SCSP_UpdateRegR(struct _SCSP *SCSP, int reg)
{
switch(reg&0x3f)
{
case 4:
case 5:
{
unsigned short v=SCSP->udata.data[0x5/2];
v&=0xff00;
v|=SCSP->MidiStack[SCSP->MidiR];
SCSP->Int68kCB(0); // cancel the IRQ
if(SCSP->MidiR!=SCSP->MidiW)
{
++SCSP->MidiR;
SCSP->MidiR&=15;
}
SCSP->udata.data[0x5/2]=v;
}
break;
case 8:
case 9:
{
unsigned char slot=SCSP->udata.data[0x8/2]>>11;
unsigned int CA=SCSP->Slots[slot&0x1f].cur_addr>>(SHIFT+12);
SCSP->udata.data[0x8/2]&=~(0x780);
SCSP->udata.data[0x8/2]|=CA<<7;
}
break;
}
}
static void SCSP_w16(struct _SCSP *SCSP,unsigned int addr,unsigned short val)
{
addr&=0xffff;
if(addr<0x400)
{
int slot=addr/0x20;
addr&=0x1f;
*((unsigned short *) (SCSP->Slots[slot].udata.datab+(addr))) = val;
SCSP_UpdateSlotReg(SCSP,slot,addr&0x1f);
}
else if(addr<0x600)
{
if (addr < 0x430)
{
*((unsigned short *) (SCSP->udata.datab+((addr&0x3f)))) = val;
SCSP_UpdateReg(SCSP, addr&0x3f);
}
}
else if(addr<0x700)
SCSP->RINGBUF[(addr-0x600)/2]=val;
else
{
//DSP
if(addr<0x780) //COEF
*((unsigned short *) (SCSP->DSP.COEF+(addr-0x700)/2))=val;
else if(addr<0x800)
*((unsigned short *) (SCSP->DSP.MADRS+(addr-0x780)/2))=val;
else if(addr<0xC00)
*((unsigned short *) (SCSP->DSP.MPRO+(addr-0x800)/2))=val;
if(addr==0xBF0)
{
// printf("DSP start\n");
SCSPDSP_Start(&SCSP->DSP);
}
}
}
static unsigned short SCSP_r16(struct _SCSP *SCSP, unsigned int addr)
{
unsigned short v=0;
addr&=0xffff;
if(addr<0x400)
{
int slot=addr/0x20;
addr&=0x1f;
SCSP_UpdateSlotRegR(SCSP, slot,addr&0x1f);
v=*((unsigned short *) (SCSP->Slots[slot].udata.datab+(addr)));
}
else if(addr<0x600)
{
if (addr < 0x430)
{
SCSP_UpdateRegR(SCSP, addr&0x3f);
v= *((unsigned short *) (SCSP->udata.datab+((addr&0x3f))));
}
}
else if(addr<0x700)
v=SCSP->RINGBUF[(addr-0x600)/2];
return v;
}
#define REVSIGN(v) ((~v)+1)
void SCSP_TimersAddTicks(struct _SCSP *SCSP, int ticks)
{
if(SCSP->TimCnt[0]<=0xff00)
{
SCSP->TimCnt[0] += ticks << (8-((SCSP->udata.data[0x18/2]>>8)&0x7));
if (SCSP->TimCnt[0] > 0xFF00)
{
SCSP->TimCnt[0] = 0xFFFF;
SCSP->udata.data[0x20/2]|=0x40;
}
SCSP->udata.data[0x18/2]&=0xff00;
SCSP->udata.data[0x18/2]|=SCSP->TimCnt[0]>>8;
}
if(SCSP->TimCnt[1]<=0xff00)
{
SCSP->TimCnt[1] += ticks << (8-((SCSP->udata.data[0x1a/2]>>8)&0x7));
if (SCSP->TimCnt[1] > 0xFF00)
{
SCSP->TimCnt[1] = 0xFFFF;
SCSP->udata.data[0x20/2]|=0x80;
}
SCSP->udata.data[0x1a/2]&=0xff00;
SCSP->udata.data[0x1a/2]|=SCSP->TimCnt[1]>>8;
}
if(SCSP->TimCnt[2]<=0xff00)
{
SCSP->TimCnt[2] += ticks << (8-((SCSP->udata.data[0x1c/2]>>8)&0x7));
if (SCSP->TimCnt[2] > 0xFF00)
{
SCSP->TimCnt[2] = 0xFFFF;
SCSP->udata.data[0x20/2]|=0x100;
}
SCSP->udata.data[0x1c/2]&=0xff00;
SCSP->udata.data[0x1c/2]|=SCSP->TimCnt[2]>>8;
}
}
static INLINE INT32 SCSP_UpdateSlot(struct _SCSP *SCSP, struct _SLOT *slot)
{
INT32 sample;
int step=slot->step;
UINT32 addr1,addr2,addr_select; // current and next sample addresses
UINT32 *addr[2] = {&addr1, &addr2}; // used for linear interpolation
UINT32 *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)}; //
if(SSCTL(slot)!=0) //no FM or noise yet
return 0;
if(PLFOS(slot)!=0)
{
step=step*PLFO_Step(&(slot->PLFO));
step>>=SHIFT;
}
if(PCM8B(slot))
{
addr1=slot->cur_addr>>SHIFT;
addr2=slot->nxt_addr>>SHIFT;
}
else
{
addr1=(slot->cur_addr>>(SHIFT-1))&0x7fffe;
addr2=(slot->nxt_addr>>(SHIFT-1))&0x7fffe;
}
if(MDL(slot)!=0 || MDXSL(slot)!=0 || MDYSL(slot)!=0)
{
INT32 smp=(SCSP->RINGBUF[(SCSP->BUFPTR+MDXSL(slot))&63]+SCSP->RINGBUF[(SCSP->BUFPTR+MDYSL(slot))&63])/2;
smp<<=0xA; // associate cycle with 1024
smp>>=0x1A-MDL(slot); // ex. for MDL=0xF, sample range corresponds to +/- 64 pi (32=2^5 cycles) so shift by 11 (16-5 == 0x1A-0xF)
if(!PCM8B(slot)) smp<<=1;
addr1+=smp; addr2+=smp;
}
if(PCM8B(slot)) //8 bit signed
{
INT8 *p1=(signed char *) (SCSP->SCSPRAM+(((SA(slot)+addr1)^1)&0x7FFFF));
INT8 *p2=(signed char *) (SCSP->SCSPRAM+(((SA(slot)+addr2)^1)&0x7FFFF));
//sample=(p[0])<<8;
INT32 s;
INT32 fpart=slot->cur_addr&((1<<SHIFT)-1);
s=(int) (p1[0]<<8)*((1<<SHIFT)-fpart)+(int) (p2[0]<<8)*fpart;
sample=(s>>SHIFT);
}
else //16 bit signed (endianness?)
{
INT16 *p1=(signed short *) (SCSP->SCSPRAM+((SA(slot)+addr1)&0x7FFFE));
INT16 *p2=(signed short *) (SCSP->SCSPRAM+((SA(slot)+addr2)&0x7FFFE));
//sample=LE16(p[0]);
INT32 s;
INT32 fpart=slot->cur_addr&((1<<SHIFT)-1);
s=(int) LE16(p1[0])*((1<<SHIFT)-fpart)+(int) LE16(p2[0])*fpart;
sample=(s>>SHIFT);
}
if(SBCTL(slot)&0x1)
sample ^= 0x7FFF;
if(SBCTL(slot)&0x2)
sample = (INT16)(sample^0x8000);
if(slot->Backwards)
slot->cur_addr-=step;
else
slot->cur_addr+=step;
slot->nxt_addr=slot->cur_addr+(1<<SHIFT);
addr1=slot->cur_addr>>SHIFT;
addr2=slot->nxt_addr>>SHIFT;
if(addr1>=LSA(slot) && !(slot->Backwards))
{
if(LPSLNK(slot) && slot->EG.state==ATTACK)
slot->EG.state = DECAY1;
}
for (addr_select=0;addr_select<2;addr_select++)
{
INT32 rem_addr;
switch(LPCTL(slot))
{
case 0: //no loop
if(*addr[addr_select]>=LSA(slot) && *addr[addr_select]>=LEA(slot))
{
//slot->active=0;
SCSP_StopSlot(slot,0);
}
break;
case 1: //normal loop
if(*addr[addr_select]>=LEA(slot))
{
rem_addr = *slot_addr[addr_select] - (LEA(slot)<<SHIFT);
*slot_addr[addr_select]=(LSA(slot)<<SHIFT) + rem_addr;
}
break;
case 2: //reverse loop
if((*addr[addr_select]>=LSA(slot)) && !(slot->Backwards))
{
rem_addr = *slot_addr[addr_select] - (LSA(slot)<<SHIFT);
*slot_addr[addr_select]=(LEA(slot)<<SHIFT) - rem_addr;
slot->Backwards=1;
}
else if((*addr[addr_select]<LSA(slot) || (*slot_addr[addr_select]&0x80000000)) && slot->Backwards)
{
rem_addr = (LSA(slot)<<SHIFT) - *slot_addr[addr_select];
*slot_addr[addr_select]=(LEA(slot)<<SHIFT) - rem_addr;
}
break;
case 3: //ping-pong
if(*addr[addr_select]>=LEA(slot)) //reached end, reverse till start
{
rem_addr = *slot_addr[addr_select] - (LEA(slot)<<SHIFT);
*slot_addr[addr_select]=(LEA(slot)<<SHIFT) - rem_addr;
slot->Backwards=1;
}
else if((*addr[addr_select]<LSA(slot) || (*slot_addr[addr_select]&0x80000000)) && slot->Backwards)//reached start or negative
{
rem_addr = (LSA(slot)<<SHIFT) - *slot_addr[addr_select];
*slot_addr[addr_select]=(LSA(slot)<<SHIFT) + rem_addr;
slot->Backwards=0;
}
break;
}
}
if(ALFOS(slot)!=0)
{
sample=sample*ALFO_Step(&(slot->ALFO));
sample>>=SHIFT;
}
if(slot->EG.state==ATTACK)
sample=(sample*EG_Update(slot))>>SHIFT;
else
sample=(sample*EG_TABLE[EG_Update(slot)>>(SHIFT-10)])>>SHIFT;
if(!STWINH(slot))
{
unsigned short Enc=((TL(slot))<<0x0)|(0x7<<0xd);
*RBUFDST=(sample*SCSP->LPANTABLE[Enc])>>(SHIFT+1);
}
return sample;
}
static void SCSP_DoMasterSamples(struct _SCSP *SCSP, int nsamples)
{
INT16 *bufr,*bufl;
int sl, s, i;
bufr=bufferr;
bufl=bufferl;
for(s=0;s<nsamples;++s)
{
INT32 smpl, smpr;
smpl = smpr = 0;
for(sl=0;sl<32;++sl)
{
#if FM_DELAY
RBUFDST=SCSP->DELAYBUF+SCSP->DELAYPTR;
#else
RBUFDST=SCSP->RINGBUF+SCSP->BUFPTR;
#endif
if(SCSP->Slots[sl].active)
{
struct _SLOT *slot=SCSP->Slots+sl;
unsigned short Enc;
signed int sample;
sample=SCSP_UpdateSlot(SCSP, slot);
Enc=((TL(slot))<<0x0)|((IMXL(slot))<<0xd);
SCSPDSP_SetSample(&SCSP->DSP,(sample*SCSP->LPANTABLE[Enc])>>(SHIFT-2),ISEL(slot),IMXL(slot));
Enc=((TL(slot))<<0x0)|((DIPAN(slot))<<0x8)|((DISDL(slot))<<0xd);
{
smpl+=(sample*SCSP->LPANTABLE[Enc])>>SHIFT;
smpr+=(sample*SCSP->RPANTABLE[Enc])>>SHIFT;
}
}
#if FM_DELAY
SCSP->RINGBUF[(SCSP->BUFPTR+64-(FM_DELAY-1))&63] = SCSP->DELAYBUF[(SCSP->DELAYPTR+FM_DELAY-(FM_DELAY-1))%FM_DELAY];
#endif
++SCSP->BUFPTR;
SCSP->BUFPTR&=63;
#if FM_DELAY
++SCSP->DELAYPTR;
if(SCSP->DELAYPTR>FM_DELAY-1) SCSP->DELAYPTR=0;
#endif
}
SCSPDSP_Step(&SCSP->DSP);
for(i=0;i<16;++i)
{
struct _SLOT *slot=SCSP->Slots+i;
if(EFSDL(slot))
{
unsigned short Enc=((EFPAN(slot))<<0x8)|((EFSDL(slot))<<0xd);
smpl+=(SCSP->DSP.EFREG[i]*SCSP->LPANTABLE[Enc])>>SHIFT;
smpr+=(SCSP->DSP.EFREG[i]*SCSP->RPANTABLE[Enc])>>SHIFT;
}
}
*bufl++ = ICLIP16(smpl>>2);
*bufr++ = ICLIP16(smpr>>2);
SCSP_TimersAddTicks(SCSP, 1);
CheckPendingIRQ(SCSP);
}
}
static void dma_scsp(struct _SCSP *SCSP)
{
static UINT16 tmp_dma[3], *scsp_regs;
scsp_regs = (UINT16 *)SCSP->udata.datab;
printf("SCSP: DMA transfer START\n"
"DMEA: %04x DRGA: %04x DTLG: %04x\n"
"DGATE: %d DDIR: %d\n",SCSP->scsp_dmea,SCSP->scsp_drga,SCSP->scsp_dtlg,scsp_dgate ? 1 : 0,scsp_ddir ? 1 : 0);
/* Copy the dma values in a temp storage for resuming later *
* (DMA *can't* overwrite his parameters). */
if(!(scsp_ddir))
{
tmp_dma[0] = scsp_regs[0x12/2];
tmp_dma[1] = scsp_regs[0x14/2];
tmp_dma[2] = scsp_regs[0x16/2];
}
if(scsp_ddir)
{
for(;SCSP->scsp_dtlg > 0;SCSP->scsp_dtlg-=2)
{
// program_write_word(SCSP->scsp_dmea, program_read_word(0x100000|SCSP->scsp_drga));
SCSP->scsp_dmea+=2;
SCSP->scsp_drga+=2;
}
}
else
{
for(;SCSP->scsp_dtlg > 0;SCSP->scsp_dtlg-=2)
{
// program_write_word(0x100000|SCSP->scsp_drga,program_read_word(SCSP->scsp_dmea));
SCSP->scsp_dmea+=2;
SCSP->scsp_drga+=2;
}
}
/*Resume the values*/
if(!(scsp_ddir))
{
scsp_regs[0x12/2] = tmp_dma[0];
scsp_regs[0x14/2] = tmp_dma[1];
scsp_regs[0x16/2] = tmp_dma[2];
}
/*Job done,request a dma end irq*/
// if(scsp_regs[0x1e/2] & 0x10)
// cpunum_set_input_line(2,dma_transfer_end,HOLD_LINE);
}
int SCSP_IRQCB(void *param)
{
CheckPendingIRQ(param);
return -1;
}
void SCSP_Update(void *param, INT16 **inputs, INT16 **buf, int samples)
{
struct _SCSP *SCSP = AllocedSCSP;
bufferl = buf[0];
bufferr = buf[1];
length = samples;
SCSP_DoMasterSamples(SCSP, samples);
}
void *scsp_start(const void *config)
{
const struct SCSPinterface *intf;
struct _SCSP *SCSP;
SCSP = malloc(sizeof(*SCSP));
memset(SCSP, 0, sizeof(*SCSP));
intf = config;
// init the emulation
SCSP_Init(SCSP, intf);
// set up the IRQ callbacks
{
SCSP->Int68kCB = intf->irq_callback[0];
// SCSP->stream = stream_create(0, 2, 44100, SCSP, SCSP_Update);
}
AllocedSCSP = SCSP;
return SCSP;
}
void scsp_stop(void)
{
free(AllocedSCSP->buffertmpl);
free(AllocedSCSP->buffertmpr);
free(AllocedSCSP);
}
void SCSP_set_ram_base(int which, void *base)
{
struct _SCSP *SCSP = AllocedSCSP;
if (SCSP)
{
SCSP->SCSPRAM = base;
SCSP->DSP.SCSPRAM = base;
}
}
READ16_HANDLER( SCSP_0_r )
{
struct _SCSP *SCSP = AllocedSCSP;
return SCSP_r16(SCSP, offset*2);
}
extern UINT32* stv_scu;
WRITE16_HANDLER( SCSP_0_w )
{
struct _SCSP *SCSP = AllocedSCSP;
UINT16 tmp, *scsp_regs;
tmp = SCSP_r16(SCSP, offset*2);
COMBINE_DATA(&tmp);
SCSP_w16(SCSP,offset*2, tmp);
scsp_regs = (UINT16 *)SCSP->udata.datab;
switch(offset*2)
{
// check DMA
case 0x412:
/*DMEA [15:1]*/
/*Sound memory address*/
SCSP->scsp_dmea = (((scsp_regs[0x14/2] & 0xf000)>>12)*0x10000) | (scsp_regs[0x12/2] & 0xfffe);
break;
case 0x414:
/*DMEA [19:16]*/
SCSP->scsp_dmea = (((scsp_regs[0x14/2] & 0xf000)>>12)*0x10000) | (scsp_regs[0x12/2] & 0xfffe);
/*DRGA [11:1]*/
/*Register memory address*/
SCSP->scsp_drga = scsp_regs[0x14/2] & 0x0ffe;
break;
case 0x416:
/*DGATE[14]*/
/*DDIR[13]*/
/*if 0 sound_mem -> reg*/
/*if 1 sound_mem <- reg*/
/*DEXE[12]*/
/*starting bit*/
/*DTLG[11:1]*/
/*size of transfer*/
SCSP->scsp_dtlg = scsp_regs[0x16/2] & 0x0ffe;
if(scsp_dexe)
{
dma_scsp(SCSP);
scsp_regs[0x16/2]^=0x1000;//disable starting bit
}
break;
//check main cpu IRQ
case 0x42a:
#if 0
if(stv_scu && !(stv_scu[40] & 0x40) /*&& scsp_regs[0x42c/2] & 0x20*/)/*Main CPU allow sound irq*/
{
cpunum_set_input_line_and_vector(0, 9, HOLD_LINE , 0x46);
logerror("SCSP: Main CPU interrupt\n");
}
#endif
break;
case 0x42c:
break;
case 0x42e:
break;
}
}
WRITE16_HANDLER( SCSP_MidiIn )
{
struct _SCSP *SCSP = AllocedSCSP;
SCSP->MidiStack[SCSP->MidiW++]=data;
SCSP->MidiW &= 15;
}
READ16_HANDLER( SCSP_MidiOutR )
{
struct _SCSP *SCSP = AllocedSCSP;
unsigned char val;
val=SCSP->MidiStack[SCSP->MidiR++];
SCSP->MidiR&=7;
return val;
}