cog/Audio/ThirdParty/lvqcl/lpc.c

194 lines
5.5 KiB
C

/*
* Copyright (c) 2013, 2018 lvqcl
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <memory.h>
#include <stdlib.h>
#include <stdbool.h>
#include "lpc.h"
static void apply_window(float *const data, const size_t data_len) {
#if 0
if (0) // subtract the mean
{
double mean = 0;
for(int i = 0; i < (int)data_len; i++)
mean += data[i];
mean /= data_len;
for(int i = 0; i < (int)data_len; i++)
data[i] -= (float)mean;
}
#endif
if(1) // Welch window
{
const float n2 = (data_len + 1) / 2.0f;
for(int i = 0; i < (int)data_len; i++) {
float k = (i + 1 - n2) / n2;
data[data_len - 1 - i] *= 1.0f - k * k;
}
}
}
static float vorbis_lpc_from_data(float *data, float *lpci, int n, int m, double *aut, double *lpc) {
double error;
double epsilon;
int i, j;
/* autocorrelation, p+1 lag coefficients */
j = m + 1;
while(j--) {
double d = 0; /* double needed for accumulator depth */
for(i = j; i < n; i++) d += (double)data[i] * data[i - j];
aut[j] = d;
}
/* Generate lpc coefficients from autocorr values */
/* set our noise floor to about -100dB */
error = aut[0] * (1. + 1e-10);
epsilon = 1e-9 * aut[0] + 1e-10;
for(i = 0; i < m; i++) {
double r = -aut[i + 1];
if(error < epsilon) {
memset(lpc + i, 0, (m - i) * sizeof(*lpc));
goto done;
}
/* Sum up this iteration's reflection coefficient; note that in
Vorbis we don't save it. If anyone wants to recycle this code
and needs reflection coefficients, save the results of 'r' from
each iteration. */
for(j = 0; j < i; j++) r -= lpc[j] * aut[i - j];
r /= error;
/* Update LPC coefficients and total error */
lpc[i] = r;
for(j = 0; j < i / 2; j++) {
double tmp = lpc[j];
lpc[j] += r * lpc[i - 1 - j];
lpc[i - 1 - j] += r * tmp;
}
if(i & 1) lpc[j] += lpc[j] * r;
error *= 1. - r * r;
}
done:
/* slightly damp the filter */
{
double g = .99;
double damp = g;
for(j = 0; j < m; j++) {
lpc[j] *= damp;
damp *= g;
}
}
for(j = 0; j < m; j++) lpci[j] = (float)lpc[j];
/* we need the error value to know how big an impulse to hit the
filter with later */
return error;
}
static void vorbis_lpc_predict(float *coeff, float *prime, int m, float *data, long n, float *work) {
/* in: coeff[0...m-1] LPC coefficients
prime[0...m-1] initial values (allocated size of n+m-1)
out: data[0...n-1] data samples */
long i, j, o, p;
float y;
if(!prime)
for(i = 0; i < m; i++)
work[i] = 0.f;
else
for(i = 0; i < m; i++)
work[i] = prime[i];
for(i = 0; i < n; i++) {
y = 0;
o = i;
p = m;
for(j = 0; j < m; j++)
y -= work[o++] * coeff[--p];
data[i] = work[o] = y;
}
}
void lpc_extrapolate2(float *const data, const size_t data_len, const int nch, const int lpc_order, const size_t extra_bkwd, const size_t extra_fwd, void **extrapolate_buffer, size_t *extrapolate_buffer_size) {
const size_t tdata_size = sizeof(float) * (extra_bkwd + data_len + extra_fwd);
const size_t aut_size = sizeof(double) * (lpc_order + 1);
const size_t lpc_size = sizeof(double) * lpc_order;
const size_t lpci_size = sizeof(float) * lpc_order;
const size_t work_size = sizeof(float) * (extra_bkwd + lpc_order + extra_fwd);
const size_t new_size = tdata_size + aut_size + lpc_size + lpci_size + work_size;
if(new_size > *extrapolate_buffer_size) {
*extrapolate_buffer = realloc(*extrapolate_buffer, new_size);
*extrapolate_buffer_size = new_size;
}
float *tdata = (float *)(*extrapolate_buffer); // for 1 channel only
double *aut = (double *)(*extrapolate_buffer + tdata_size);
double *lpc = (double *)(*extrapolate_buffer + tdata_size + aut_size);
float *lpci = (float *)(*extrapolate_buffer + tdata_size + aut_size + lpc_size);
float *work = (float *)(*extrapolate_buffer + tdata_size + aut_size + lpc_size + lpci_size);
for(int c = 0; c < nch; c++) {
if(extra_bkwd) {
for(int i = 0; i < (int)data_len; i++)
tdata[data_len - 1 - i] = data[i * nch + c];
} else {
for(int i = 0; i < (int)data_len; i++)
tdata[i] = data[i * nch + c];
}
apply_window(tdata, data_len);
vorbis_lpc_from_data(tdata, lpci, (int)data_len, lpc_order, aut, lpc);
// restore after apply_window
if(extra_bkwd) {
for(int i = 0; i < (int)data_len; i++)
tdata[data_len - 1 - i] = data[i * nch + c];
} else {
for(int i = 0; i < (int)data_len; i++)
tdata[i] = data[i * nch + c];
}
vorbis_lpc_predict(lpci, tdata + data_len - lpc_order, lpc_order, tdata + data_len, extra_fwd + extra_bkwd, work);
if(extra_bkwd) {
for(int i = 0; i < extra_bkwd; i++)
data[(-i - 1) * nch + c] = tdata[data_len + i];
} else {
for(int i = 0; i < extra_fwd; i++)
data[(i + data_len) * nch + c] = tdata[data_len + i];
}
}
}